
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RIEMANN-LEBESGUE FOREST FOR REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel ensemble method called Riemann-Lebesgue Forest (RLF) for
regression. The core idea in RLF is to mimic the way how a measurable function
can be approximated by partitioning its range into a few intervals. With this idea in
mind, we develop a new tree learner named Riemann-Lebesgue Tree (RLT) which
has a chance to perform Lebesgue type cutting,i.e splitting the node from response
Y at certain non-terminal nodes. In other words, we introduce the "splitting type
randomness" in our ensemble method. We show that the optimal Lebesgue type
cutting results in larger variance reduction in response Y than ordinary CART
(Breiman et al., 1984) cutting (an analogue of Riemann partition). Such property is
beneficial to the ensemble part of RLF. We also generalize the asymptotic normality
of RLF under different parameter settings. Two one-dimensional examples are
provided to illustrate the flexibility of RLF. The competitive performance of RLF
against original random forest (Breiman, 2001) is demonstrated by experiments in
simulation data and real world datasets.

1 INTRODUCTION

Random Forest (Breiman, 2001) has been a successful ensemble method in regression and classi-
fication tasks for decades. Combination of weak decision tree learners reduces the variance of a
random forest (RF) and results in a robust improvement in performance. “Feature bagging" further
prevents RF from being biased toward strong features which might cause fitted subtrees are correlated.
However, the benefit of “feature bagging" may be limited when only small proportion of features are
informative. In that case, RF is likely to learn noisy relationship between predictors and response
which in the end makes RF underfit the true functional relationship hidden in the data.

Many methods have been proposed to tackle this issue. Heaton (2016) proposed to rule out irrelevant
features or perform feature engineering at the beginning of fitting a RF . Another type of ideas is
to adjust the way RF selecting informative features. Amaratunga et al. (2008), Ghosh & Cabrera
(2021) employed weighted random sampling in choosing the eligible features at each node. Besides
the feature weighting method, Xu et al. (2012) used different types of trees such as C4.5, CART,
and CHAID to build a hybrid forest. The resulted forest performs well in many high-dimension
datasets. Zhou & Feng (2017) employed a sequential multi-grained scanning to discover the feature
relationships.

Most of those methods only deal with classification tasks. In this paper, we fill in the gap by proposing
a novel forest named Riemann-Lebesgue Forest (RLF) which has superior performance than ordinary
Random Forest in regression tasks. The main idea of RLF is to exploit information hidden in the
response rather than predictors only. In most types of tree algorithms, people approximate the
regression function in the "Riemann" sense. That means the fitted function f̂(x) can be written as
follows:

f̂(x) =

P∑
i=1

ȳRi
1{x∈Ri} (1)

where each Ri is a hypercube in feature space, ȳRi represents the mean value of responses lying in
the region Ri and P is the total number of hypercubes partitioned. Fig.1(a) gives an example of a
smooth function fitted by step functions in one dimension.

As we can see, partitioning x-axis may underfit the true function unless we keep partitioning, which
means we take the limit of step functions. But that is nearly undoable in practice. Many decision tree

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

y = x3

x

y

(a)

y = x3

x

y

(b)

Figure 1: Two types of function approximation.(a):"Riemann" type approximation. (b): "Lebesgue"
type approximation

algorithms follow this idea by choosing optimal splitting value of optimal feature at each non-terminal
node. On the other hand, we know that any measureable function f : Rp → R can be approximated
by a sequence of simple functions ϕn(x), n = 1, 2, Equation equation 2 gives an example of
simple functions:

ϕn(x) =

n2n∑
j=1

j − 1

2n
χAj,n + nχBn (2)

where Aj,n = f−1([j−1
2n , j

2n)) for j = 1, 2, ..., n2n and Bn = f−1([n,∞]).

It is now a standard analysis exercise to show that ϕn converges to f . Note that if f is finite (which
is typically a case in practice), χBn

will vanish for large n. In other words, we can actually obtain
the partitioned feature space indirectly by partitioning the response space (real line) in regression
tasks. For comparison, we borrow the term in analysis and name this kind of partition procedure
as "Lebesgue" type. Fig. 1(b) gives an example of approximating a function in "Lebesgue" sense.
One characteristic for partitioning feature space from response is, the shape of resulted region is
not limited to hypercube, which actually enriches the structure of trees in a forest. To overcome the
limited structures learned by ordinary RF in sparse models, we incorporate the idea of "Lebesgue"
partition in constructing each decision tree. To implement the "Lebesgue" type splitting rule as shown
in part (b) in Fig.1(b) , we can apply the CART-split criterion on response Y which is simple but
efficient.

The remaining sections of this paper are organized as following schema. In section 2.1, we illustrate
the idea of Riemann-Lebesgue Forest (RLF) in detail. In section 3, we present the potential of
Lebesgue cutting in reducing the variance of response Y . Theoretical results such as asymptotic
normality of RLF and time complexity analysis are included. We compare the performance of RLF
and RF in sparse model and benchmark real datasets in section 4. Simulation results of tuned RLF
in models with small signal-to-noise ratio and mixture distribution will be demonstrated as well.
Section 5 discusses few characteristics and limitations of RLF and proposes future directions. The R
codes for the implementation of RLF, selected real datasets and the simulation results are available in
supplementary materials. All simulations and experiments are performed on a ThinkPad with Intel(R)
Core(TM) i5-8250U CPU @ 1.60GHz and 32 GB RAM.

2 METHODOLOGY

In section 2.1, we first introduce essential preliminary used in the rest of the paper. We will illustrate
how to incorporate "Lebesgue" partition in constructing a CART type tree in section 2.2. Then we
apply this new type of tree to the algorithm of Riemann-Lebesgue Forest in section 2.3.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 PRELIMINARY

In this paper, we only consider the regression framework where the data consist of n i.i.d pairs of
random variables Zi = (Xi, Yi) ∈ X × R,i = 1, 2, ..., n. Let FZ be the common distribution of Zi.
WLOG, we can assume the feature space X = [0, 1]d, where d is the dimension of feature space.

The procedure of generating a Random Forest regression function from Breiman’s original algorithm
can be summarized as follows:

1. Bootstrapping N times from original dataset.
2. For each bootstrapped dataset, build a CART decision tree based on those subsamples.
3. Take the average of N built trees as the ensemble regressor.

At bootstrapping time i, denote (Xi1, Yi1), ..., (Xik, Yik) be a corresponding subsample of the
training set. If we write the corresponding grown CART tree as T (ωi)((Xi1, Yi1), ..., (Xik, Yik)),
then the final random forest estimator Rn evaluated at point x∗ can be written as:

Rn(x
∗) =

1

N

N∑
i=1

T
(ωi)
x∗ ((Xi1, Yi1), ..., (Xik, Yk)) (3)

where random variables ωi represents the randomness from the construction of i-th CART tree. For
growing a CART tree, at each node of a tree, the CART-split criterion is applied. mtry features will
be randomly picked as potential splitting directions. Typically mtry = ⌊d/3⌋. On the other hand,
the structure of a single CART tree in original forests relies on both predictors and responses in the
corresponding subsample, i.e the randomness also comes from resampling (bootstrapping procedure).
By assumption in Breiman (2001), (ωi)

n
i=1 are i.i.d and independent of each bootstrapped dataset.

A detailed description of the CART-split criterion is as follows. Let A be a generic non-terminal
node in a decision tree and N(A) be the number of observations lying in node A. A candidate cut is
a pair (j, z) where j represents a dimension in {1, ..., d} and z is the splitting point along the j-th
coordinate of feature space. Since CART-split criterion in RF focuses on splitting predictors, we
can view such cutting method as the "Riemann" type splitting rule. Let the set CR = {(j, z(j)) : j ∈
{p1, ..., pmtry

}, z(j) ∈ X(j)} consist of all possible cuts in node A and denote Xi = (X
(1)
i , ...,X

(d)
i),

where the set {p1, ..., pmtry
} represents randomly picked feature index in CART, then for any

(j, z) ∈ CR, the CART-split criterion (Breiman et al., 1984) chooses the optimal (j∗, z∗) such that

(j∗, z∗) ∈ argmax
j∈mtry

(j,z)∈CR

L(j, z)

where

L(j, z) =
1

N(A)

n∑
i=1

(Yi − ȲA)
21Xi∈A − 1

N(A)

n∑
i=1

(Yi − ȲAL
1
X

(j)
i <z

− ȲAR
1
X

(j)
i ≥z

)21Xi∈A

(4)

, AL = {xi ∈ A : xj
i < z, i = 1, 2, ..., n}, AR = {xi ∈ A : xj

i ≥ z, i = 1, 2, ..., n} and
ȲA, ȲAL

, ȲAR
are the averages of responses Yi with the corresponding features are in sets A,AL and

AR, respectively.

2.2 RIEMANN-LEBESGUE TREE

To implement the "Lebesgue" type splitting rule as shown in part (b) in Fig.1(b) , we can apply the
CART-split criterion on response Y . Note that we only need to choose the optimal splitting point
for Y in this case. Denote CL = {(j, z) : j ∈ {0}, z ∈ Y } be the set consist of all possible splitting
points for response, then we choose the optimal splitting point z∗L at node A such that

z∗L ∈ argmax
z∈CL

L̃(z)

where

L̃(z) =
1

N(A)

n∑
i=1

(Yi − ȲA)
21Yi∈A − 1

N(A)

n∑
i=1

(Yi − ȲÃD
1Yi<z − ȲÃU

1Yi≥z)
21Yi∈A (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

, ÃD = {xi ∈ A : Yi < z, i = 1, 2, ..., n}, ÃU = {xi ∈ A : Yi ≥ z, i = 1, 2, ..., n} and
ȲA, ȲAD

, ȲAU
are the averages of responses Yi with the corresponding features are in sets A, ÃD

and ÃU , respectively.

As we can see from equation 4 and equation 5, the "Lebesgue" type splitting rule will go through all
potential cutting points for y while the "Riemann" type splitting can only check part of them. We can
conclude that L(j∗, z∗) ≤ L̃(z∗L).

One issue for the "Lebesgue" type splitting rule is overfitting. Suppose the response Y at A′ only
takes two distinct values, say Y = 0 or Y = 1, on a node A′ . The CART-split criterion for Y
can give a perfect split z∗L = 0.5 under some appropriate sets of CL. In other words, we will have
L̃(z∗) = 1

N(A′)

∑n
i=1(Yi − ȲA′)21Yi∈A′ . This phenomenon restricts the potential application of

"Lebesgue" partitioning in classification task.

To overcome the potential overfitting from the "Lebesgue" type splitting, we apply "Riemann" and
"Lebesgue" splitting in a hybrid way. Since we will eventually construct an ensemble learner from
Riemann-Lebesgue trees, it’s acceptable to introduce a Bernoulli random variable B to determining
splitting types at each non-terminal node A. More specifically,

B ∼ Bernoulli(p̃), p̃ =
L̃(z∗L)

L(j∗, z∗) + L̃(z∗L)

If B = 1, the "Riemann" type splitting will be employed, and vice versa. The reason why we define
p̃ as above is to control the number of nodes taking "Lebesgue" type splitting. We already seen that
L(j∗, z∗) ≤ L̃(z∗L), so it’s expected that there won’t be too many "Lebesgue" type nodes and p̃ will
play a role of regularization.

Another issue for the Riemann-Lebesgue Tree is the prediction. When there comes a new point (x, y),
we are not allowed to use the information of its response y. That enforces us to estimate the value of
response locally when we need to know which partition the new point belongs to.

Linear regression is one of the candidates for the local model. However, it is unstable when the
sample size is relatively small. Another choice is the K-Nearest Neighborhood algorithm (KNN).
However, the performance of KNN relies on the distance function we used which can be unstable in
high-dimensional cases.

In this paper, we choose random forest as the local model to obtain an estimate of the response value
of a new incoming point since random forest is parameter free and robust for small sample size. We
believe there exists more efficient local models, which is our future work. Algorithm 1 summarizes
the procedure of fitting a Riemann-Lebesgue Tree. To our best knowledge, this is the first type of
base learner exploring information directly from response.

2.3 RIEMANN-LEBESGUE FOREST

Once we establish the way to build a Riemann-Lebesgue Tree, the ensemble version follows imme-
diately. We follow the spirit of original Forest (Breiman, 2001) . That is, growing M trees from
different subsamples. Each tree is grown as illustrated in Algorithm 1. We employ sampling without
replacement (subagging) in ensembling part.For completeness we provide the procedure of predicting
x value from a Riemann-Lebesgue Forest (RLF) in Algorithm 2 of section A.3.

3 THEORETICAL ANALYSIS OF RLF

For the sake of theoretical analysis, we give a theoretical version of Riemann-Lebesgue Forest.
Suppose (Z1, ..., Zn) are i.i.d from a common underlying distribution FZ , where Zi = (Xi, Yi). Let
h(ωi) be the random kernel corresponding to the randomness ωi induced by i-th subsample 1, where
(ωi)

n
i=1 are i.i.d with Fω and independent of each subsample. Denote N be subagging times and k be

subagging size. Since we uniformly samples k distinct data points with replacement, the incomplete
U -statistic with random kernel (See detailed explanations in section A.4) at the query point x is

1More specifically, the randomness of a Riemann-Lebesgue tree given a fixed subsampling comes from the
feature bagging and random choice of Riemann type cutting and Lebesgue type cutting.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Riemann-Lebesgue Tree (Fitting)

Require: Training data Dn = {(Xi, Yi), i = 1, ..., n}. Minimum node size Mnode. mtry ∈
{1, 2, ..., d}. Let N(A) denote the number of sample points at node A and A is the root of the
tree at the beginning. Mlocal is the number of trees used in local random forests.

1: if N(A) > Mnode then
2: Select Mtry ⊂ {1, 2, ..., d} of cardinality mtry without replacement uniformly.
3: Perform CART-split criterion among the selected features, and obtain j∗, z∗, L(j∗, z∗).
4: Perform CART-split criterion with respect to Yi ∈ A, and obtain z∗L, L̃(z

∗
L).

5: Calculate p̃ =
L̃(z∗

L)

L(j∗,z∗)+L̃(z∗
L)

and sample B ∼ Bernoulli(p̃).
6: if B = 1 then
7: Cut the node A according to j∗, z∗. Denote AL and AR as the two resulting nodes.
8: Repeat steps 1− 14 for nodes AL and AR.
9: else

10: Cut the node A according to z∗L. Denote AD and AU as the two resulting nodes.
11: Fit a random forest model with Mlocal trees w.r.t points in current node A. Call it RFlocal.
12: Repeat steps 1− 14 for nodes AD and AU .
13: else
14: Set the current node A as a terminal node.
15: Return: A collection of nodes and fitted CART-splitting rules

Un,k,N ;ω(x) =
1

N

N∑
i=1

h(ω(i))(x;Zi1 , ..., Zik)

=
1(
n
k

) ∑
(n,k)

Wi

p
h(ω(i))(x;Zi1 , ..., Zik)

(6)

where p = N/
(
n
k

)
and vector

W = (W1, ...,W(nk)
) ∼ Multinomial(N,

1(
n
k

) , ..., 1(
n
k

))
Note that in asymptotic theory, both N and k can rely on sample size n. We first show Lebesgue
cuttings induce smaller L2 training error than Riemann cutting in section 3.1.In section 3.2, we
further give the convergence rate of the asymptotic normality of RLF. To see the time efficiency of
RLF in different sizes of data, a complexity analysis is given in section 3.3. Since the Lebesgue part
of each Riemann-Lebesgue Tree is essentially splitting the response Y with CART-criterion, many
consistency results for traditional RF can be applied to RLF directly. For completeness, in section
A.5 of Appendix, we provide a version of consistency adapted to RLF according to the results of
Scornet et al. (2014).

3.1 VARIANCE REDUCTION OF RESPONSE Y BY LEBESGUE CUTTINGS

In section 2.2, we conclude that L(j∗, z∗) ≤ L̃(z∗L) for each partition in constructing a Riemann-
Lebesgue Tree. Theorem 3.1 formalizes the above conclusion.
Theorem 3.1. Let the regression function be Y = f(X) + ε ,where X ∈ Rd, Y ∈ R and f is
a bound measurable function and ε is the noise term. Under the procedure defined in equation 4
and equation 5, let A∗

1 = {Y > a∗}, A∗
2 = {Y ≤ a∗} be the optimal Lebesgue cutting and

B∗
1 = {X(j∗) > b∗}, B∗

2 = {X(j∗) ≤ b∗} be the optimal Riemann(CART) cutting ,then we have:

Var(Y)−Var(Y |A∗
1)P (A∗

1)−Var(Y |A∗
2)P (A∗

2) ≥ Var(Y)−Var(Y |B∗
1)P (B∗

1)−Var(Y |B∗
2)P (B∗

2)

In other words, the variance reduction of response Y induced by the optimal Lebesgue cutting will
be greater or equal to that of optimal Riemann cutting. It follows immediately that a RLT will
have smaller L2 training error than a ordinary CART tree given other tree parameters are the same.
According to the bias-variance decomposition, RLF is expected to have smaller mean squared error
than RF after the ensembling step. Real-world data experiments in section 4 verified this conjecture.
The proof of Theorem 3.1 is based on the variance decomposition formula (law of total variance).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 CONVERGENCE RATE OF THE ASYMPTOTIC NORMALITY

Peng et al. (2019) provided sharp Berry-Esseen bounds for of RF under the Bernoulli sampling (Chen
& Kato, 2019). The main idea follows from the Stein’s method (Chen et al., 2010) and Hoeffding
decomposition (Vaart, 2000). Getting inspired by the results in (Peng et al., 2019) and (Mentch &
Hooker, 2016), we derive improved Berry-Esseen bounds of RLF for small-N settings (i.e, relatively
small number of trees in RLF) where lim n

N = α and α > 0 or ∞ in Theorem 3.2.

Theorem 3.2. Suppose Z1, ..., Zn
i.i.d∼ PZ and Un,k,N ;ω is defined as in equation 6 with random

kernel h(ω)(Z1, ..., Zk). Denote θ = E[h(Z1, ..., Zk;ω)]. Let ζk = var(h(Z1, ..., Zk;ω)), ζ1,ω =
E[g2(Z1)] where g(z) = E[h(z, Z2, ..., Zk;ω)] − θ. And p = N/

(
n
k

)
. Denote αn = n

N . If
ζk < ∞, ζ1,ω > 0,0 < η0 < 1/2 and E[|h− θ|2m]/E2[|h− θ|m] is uniformly bounded for m = 2, 3,
we have the following Berry-Esseen bound for Un,k,N ;ω:

supz∈R

∣∣∣∣P(
√
N(Un,k,N ;ω − θ)√
k2ζ1,ω/αn + ζk

≤ z

)
− Φ(z)

∣∣∣∣ ≤ C̃

{
E|g|3

n1/2ζ
3/2
1,ω

+

[
k

n

(
ζk

kζ1,ω
− 1

)]1/2

+N− 1
2+η0 +

(
k

n

)1/3

+
E|h− θ|3

N1/2(E|h− θ|2)3/2

+

[
n

N2η0

(1− p)ζk
k2ζ1,ω

] 1
2
}

(7)

where C̃ is a positive constant. The proof follows the idea in (Peng et al., 2019) which decomposes
the generalized incomplete U-statistic as a sum of complete U-statistic and a remainder. See section
A.8 for details. Two asymptotic results can be induced from inequality equation 7:

1. If 0 < α = limαn < ∞ and n
N2η0k2ζ1,ω

→ 0, then
√
N(Un,k,N;ω−θ)√
k2ζ1,ω/α+ζk

d−→ N(0, 1) .

2. If limαn = ∞ and n
N2η0k2ζ1,ω

→ 0, then
√
N(Un,k,N;ω−θ)√

ζk

d−→ N(0, 1).

where we implicitly assume that limn→∞ ζk ̸= ∞. More generally, if k/n → 0, k2/n → ∞ and
N → ∞, the asymptotic normality still holds under some conditions on moments of h. In summary,
Theorem 3.2 generalizes the results in (Mentch & Hooker, 2016; Peng et al., 2019; Ghosal & Hooker,
2021) by directly assuming the resampling scheme is sampling without replacement and providing
sharp Berry-Esseen bounds for asymptotic normality of RLF. Unlike the bounds in (Peng et al., 2019),
inequality equation 7 provides one extra term which comes from the difference between uniformly
sampling without replacement and Bernoulli sampling (See section A.8). It is worth mentioning that
the asymptotic results in small-N setting provide a theoretical support for people employing less
number of base learners as long as the subsample size k is appropriately designed.

3.3 COMPLEXITY ANALYSIS

The essential difference between RLF and RF is, a local RF is randomly determined to be fitted at
certain nodes of each CART tree. Whether a local RF is fitted relies on a Bernoulli random variable.
To analyze the computation time for fitting a RLF, we assume that a local RF will be fit at each
non-terminal node of a RLT.

We borrow the notations used in Algorithm 1 and Algorithm 2. In the best case of balanced tree, the
time flexibility of building a CART tree is O(mtry · n · log2n) (Trevor Hastie & Friedman, 2009).
If the optimal splitting leads to the extreme imbalanced cutting, the worst time flexibility would be
O(mtry · n2) where the tree depth is n.

In the best case of building a Riemann-Lebesgue Tree, we have the following recursion relation

T (n) = 2T (
n

2
) +O(Mlocal ·mtry · n · log2n)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 2: Test MSEs for RLF and RF. (a) Test MSE as a function of Number of trees, (b) Test MSE rate as a
function of Number of local trees, (c) Test MSE as a function of Number of noisy variables, (d) Test MSE as a
function of Subagging ratio.

where T (·) is a measurement of the runtime of a Riemann-Lebesgue Tree. By the limited fourth case
in Master theorem (Cormen et al., 2009), T (n) = O(Mlocal ·mtry · n · log22n). Then the best time
complexity of RLF is O(M ·Mlocal ·mtry · n · log22n), which has polylogarithmic runtime. With
similar argument, we can see the worst time complexity of RLF is O(M ·Mlocal ·mtry · n2 · log2n).

In summary, we observe that the exact difference in complexity in best and worst comes from the
factor Mlocal · log2n. This implies that the difference of complexity between classical RF and RLF
increases when the size of dataset n or the number of local trees Mlocal increases. Table S4 in
appendix compares the time efficiency of these two ensemble methods in many datasets. The results
show that RLF is relatively slow but still comparable to RF when dataset is in small-to-medium
scale. While in large datasets, RLF and RF both have low time efficiency. How to implement RLF in
parallelization is one of our future directions.

4 EXPERIMENTS

4.1 SPARSE MODEL

To explore the performance of RLF in sparse model, we consider the following regression model in
(Trevor Hastie & Friedman, 2009):

Y = 10 ·
5∏

j=1

e−2X2
j +

35∑
j=6

Xj + ε, ε ∼ N(0, σ2)

where Xj is the j-th dimension of an observation X. The response Y ∈ R and random sample X
will be i.i.d and uniformly distributed on the 100-dimension unit cube [0, 1]100. In this case, the
effective dimension is 35. And σ is set to be 1.3 so that the signal-to-noise ratio is approximately
2. Fig. 2 summarizes Test MSEs for RLF and RF as functions of different hyperparameters. As we
can see, given data-driven p̃, RLF outperforms RF in almost all experiment settings. See detailed
experiment settings and analysis in section A.2 of appendix.

4.2 REAL DATA PERFORMANCE

We used 10-folds stratified cross-validation 2 to compare the performance of RLF and RF on 30
benchmark real datasets from (Fischer et al., 2023). The size of datasets ranges from five hundred to
nearly fifty thousand observations. For time efficiency and consistency, we set the number of trees in
RLF and RF to be 100 and subtrees in local RF in Lebesgue part of RLF to be 10, i.e Mlocal=10. See
section A.1 for the detail of datasets and statistical significance tests employed.

We observe that RLF reaches roughly the same mean-squared-error as RF for most datasets and
outperforms RF in 20 datasets where eight of them are statistically significant. The binomial test for
win/loss ratio of RLF also shows that RLF does better job than RF statistically.

2That means stratified sampling method was employed to ensure the distribution of response is the same
across the training and testing sets

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Mean squared error and corresponding 95% margin of error (based on 10-folds cross-validation) for
Riemann–Lebesgue Forest(100,10) vs.Random Forest(100)

Dataset RLF(100,10) RF(100) Dataset RLF(100,10) RF(100)

FF 4205.21 ±5612.77 4303.31±5432.01 CPU 5.72±0.63 5.92±0.59
SP 1.90±0.87 1.88±0.82 KRA 0.0188 ±0.00062* 0.0214 ±0.00059
EE 1.258±0.32 1.262±0.35 PUMA 4.97e-4 ±1.38e-5* 5.14e-4±1.67e-5
CAR 5374313 ±787019.9 5390741 ±840508.3 GS 1.2e-4 ±4.06e-6* 1.5e-4±4.71e-6
QSAR 0.7568±0.14 0.7594±0.13 BH 0.01 ±0.01 0.011±0.012
CCS 28.34±4.87 28.19 ±4.09 NPP 5.97e-7±6.84e-8 6.5e-7±9.10e-8
SOC 587.87±205.53 565.08 ±204.29 MH 0.02±0.00093* 0.022 ±0.0011
GOM 240.67±38.74 247.61±39.16 FIFA 0.5775±0.026 0.5796±0.024
SF 0.66±0.21 0.67 ±0.2 KC 0.041±0.0013 0.037±0.0013*
ASN 11.87 ±1.28* 13.02±1.30 SUC 83.16±2.26 82.38±2.27
WINER 0.3319±0.034 0.3299 ±0.035 CH 0.056±0.0026* 0.059±0.0026
AUV 8073182±1513348* 9368024±833367.9 HI 217.64±4.91 212.12±4.42*
SG 0.01367±0.0045 0.01364±0.0046 CPS 0.2766±0.0077 0.2772±0.0068
ABA 4.63 ±0.54 4.58±0.56 PP 11.94±0.16* 12.09±0.13
WINEW 0.3670±0.021 0.3612±0.022 SA 6.13±0.16 6.26±0.21

The better performing values are highlighted in bold and significant results are marked with "".

4.3 TUNING OF SPLITTING CONTROL PROBABILITY p̃

Instead of using data-driven p̃, we can set the control probability p̃ as a tunable parameter when
constructing a RLT. That is to say, we set p̃ be a fixed value for all nodes in a RLT. For instance, under
the same sparse model defined in section 4.1, Fig.3(a) indicates that the sparse model favors more
Lebesgue cuttings.3 This is consistent with the intuition that noisy variables weaken the effectiveness
of Riemann cutting. In this section, we provide two one-dimensional examples to illustrate the
flexibility of RLF with tuned p̃. One is designed to have small signal-to-noise ratio. The other is a
mixture model with prior probability where we anticipate that RLF will perform better because of
nature the Lebesgue type cutting. Test MSEs of RLF as functions of p̃ in Fig S4(a) and S4(b) exhibit
the potential benefit of tuning control probability p̃. See details of tuning procedure in section A.9.

(a) Sparse model (b) Example 1 (c) Example 2

Figure 3: (a) Test MSEs for RLF and RF as functions of control probability p̃. Orange points in (b) and (c)
represent test samples generated by two models. Blue solid lines are the underlying functions ;Green lines are
the predicted curves for optimal RLFs while the red lines are the predicted curve of optimal RF in two examples.

EXAMPLE 1: SMALL SIGNAL-TO-NOISE RATIO

Figure 3(b) demonstrates the predicted regression curves from tuned RLF and tuned RF in one-
dimensional case. Our synthetic model is based on the sine function used in (Cai et al., 2020) and
(Cai et al., 2023):

Y = sin(16X) + ε, ε ∼ N(0, σ2)

where X ∼ Unif[0, 1] and σ = 1. Predicted curves in Fig.3(b) show that tuned RLF is robust to
relative high level of noise and it is capable to identify the pattern in response while traditional RF
is too conservative in this case. Table S5 (See appendix) lists validation MSE of top 10 models
with tuning parameters for RF and RLF. Based on the top 10 models, we can see RLF generally

3Since RF doesn’t have parameter p̃ so the Test MSE curve of RF is a constant function w.r.t p̃

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

outperforms RF in this case. Indeed, the testing MSE under best RF is 1.283 while the testing MSE
of best RLF is 1.018 (See Table S6 in Appendix). Another interesting phenomenon is , when the
noise level is high, RLF prefers using more Riemann type cuttings to achieve better performance as
top 5 tuned RLFs in Table S6 have relatively large value of p̃.

EXAMPLE 2: MIXTURE MODEL WITH PRIOR PROBABILITY

In this section, we consider a mixture model as follows:

Y =

{
5X + ε if C = 1

10 + 5X + ε if C = 2
(8)

where X, ε
i.i.d∼ N(0, 1) and the random variable C is uniformly distributed on {1, 2}. To generate

an observation of response, we first randomly pick a value of state variable C from {1, 2} and
generate Y according to the model defined in equation 8. In this way, Y will follow a mixture
Gaussian distribution. Figure 3(c) demonstrates that RLF is able to capture complicated distribution
of response with the help of Lebesgue cuttings while traditional RF fails in detecting the complex
pattern in response.

Similarly, Table S7 (See appendix) lists validation MSEs of top 10 models with tuning parameters
and the testing error of best RLF (29.87) is smaller than that of best RF (35.17) showing that RLF
also beats RF in this case. It is worth mentioning that Table S7 gives us a clue that when response Y
has mixture distribution, RLF favors more Lebesgue cuttings since top 5 tuned RLF models tend to
employ relatively small value of p̃.

4.4 EXTRA EXPERIMENTS OF RLF WITH TUNED p̃

We perform extra experiments on 26 datasets listed in Table 1 to show the strength of RLF after
parameter tuning. Four large datasets are excluded due to the time efficiency of parameter tuning.
Table 2 shows that tuned RLF still outperforms tuned RF in many real world datasets and wins more
often than in original experiments. More specifically, tuned RLF wins in 23 datasets among which 12
of them are statistically significant. See A.10 for detailed settings for tuning process.

Table 2: Averaged MSEs and 95% marginal errors for Best RLF and Best RF

Dataset Best RLF Best RF Dataset Best RLF Best RF

FF 4221.49 ±9191.91 4376.29±8922.14 ABA 4.66±0.39 4.63±0.38
SP 1.78 ±0.78 1.98±0.73 WINEW 0.398±0.025 0.403±0.0264
EE 0.54 ±0.29* 1.50±0.35 CPU 5.67±0.58* 6.15±0.43
CAR 5194266 ±1287865 5622327±1482889 KRA 0.019±0.0008* 0.024±0.0013
QSAR 0.79 ±0.10 0.80±0.13 PUMA 0.00048±1.35e-05* 0.00053±1.82e-05
CCS 27.11 ±3.52* 37.23±7.0 GS 0.00011±7.95e-06* 0.00016±8.07e-06
SOC 405.63±376.21 621.75±528.39 BH 0.0061±0.0032 0.0069±0.0040
GOM 255.49±56.60 263.16±64.10 NPP 7.79e-07±1.96e-07* 1.08e-06±1.95e-07
SF 0.67±0.19 0.62±0.21 MH 0.021±0.0017* 0.023±0.0012
ASN 5.67±1.07* 14.14±2.00 FIFA 0.578±0.011 0.581±0.010
WINER 0.347±0.026 0.349±0.026 SUC 89.67±11.40 91.80±10.36
AUV 4192163±1236743* 9878887±1670280 CH 0.056±0.018* 0.062±0.019
SG 0.0137±0.0049* 0.0143±0.0049 CPS 0.279±0.0061 0.27±0.0060

The better performing values are highlighted in bold and significant results are marked with "*".

5 DISCUSSION AND LIMITATION

Theorem 3.1 has shown the benefit of Lebesgue cutting in reducing the L2 error of RLF. Section 4.3
further demonstrates the flexibility of RLF in many complicated models and real world datasets with
tuned p̃. The asymptotic normality in section 3 is useful for statistical inference such as confidence
intervals and hypothesis testings (Mentch & Hooker, 2016). It’s possible to obtain a Berry-Esseen
bound of RLF in large N -setting by similar arguments. However, this bound can be worthless in
practice as it’s requires N ≫ n and we decide not to pursue it in this paper.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Although the experiment results show that tuned p̃ is superior than data-driven p̃, the cross-validation
tuning process is less time efficient than data-driven methods in large datasets. How to choose the
optimal value of p̃ is an interesting problem. On the other hand, we employ a Bernoulli random
variable to determine the splitting type at each non-terminal node. It’s possible that there are other
better regularization methods to control the overfitting resulted from Lebesgue splitting. Connecting
RLT with boosting would be another riveting direction as RLT is essentially a new kind of base
learner in ensemble methods.

As we discussed in section 3.3, time efficiency is the main limitation of RLF. For prediction part, we
employ random forest locally which is powerful but time consuming for large dataset. Developing
a more efficient local model for RLF would benefit RLF in large datasets. The time efficiency of
current RLF can be improved by employing less number of subtrees in local forest and setting larger
value of control probability p̃ so that each RLT won’t perform too many Lebesgue splittings.

Readers may view the use of Riemann-Lebesgue Tree as counterintuitive if the local models (e.g
local forests) can estimate response Y accurately. However, the local models don’t have to be as good
as the RLF or RLT since we only require the local models to indicate the direction, not the precise
prediction of new points. What’s more, when the response is complicated, as indicated in example
2 (mixture model with prior probability), we can employ more Lebesgue type splittings in RLF to
partition the range of response Y . As a result, the local distribution of Y becomes simpler which will
relax the requirement of the precision of local models. The flexibility of RLF comes from the control
probability p̃, which controls the number of Lebesgue type splittings in each RLT and can be tailored
to different cases.

In more general scenarios, how to cope with possible missing values deserves deep inspection since
RLF replies heavily on the information from all variables and it’s possible that the prediction of local
RF in RLF could be misled by missing values. Actually, in practice, we can perform imputation by
rough average/mode, or by an averaging/mode based on proximities during the data preprocessing,
which is out of the scope of our current paper.

REFERENCES

Dhammika Amaratunga, Javier Cabrera, and Yung-Seop Lee. Enriched random forests. Bioinfor-
matics, 24(18):2010–2014, 07 2008. ISSN 1367-4803. doi:10.1093/bioinformatics/btn356. URL
https://doi.org/10.1093/bioinformatics/btn356.

L. Breiman. Random forests. Machine Learning, 45:5–32, 2001. URL https://api.
semanticscholar.org/CorpusID:89141.

L. Breiman, Jerome H. Friedman, Richard A. Olshen, and C. J. Stone. Classification and regression
trees. 1984.

Yuchao Cai, Hanyuan Hang, Hanfang Yang, and Zhouchen Lin. Boosted histogram transform
for regression. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
1251–1261. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
cai20a.html.

Yuchao Cai, Yuheng Ma, Yiwei Dong, and Hanfang Yang. Extrapolated random tree for regression.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 3442–3468. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/v202/cai23d.html.

Louis H. Y. Chen, Larry Goldstein, and Qi-Man Shao. Normal approximation by stein’s method.
2010. URL https://api.semanticscholar.org/CorpusID:118531844.

Xiaohui Chen and Kengo Kato. Randomized incomplete u-statistics in high dimensions. The
Annals of Statistics, 47(6):pp. 3127–3156, 2019. ISSN 00905364, 21688966. URL https:
//www.jstor.org/stable/26867161.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. ISBN 0262033844.

10

https://doi.org/10.1093/bioinformatics/btn356
https://doi.org/10.1093/bioinformatics/btn356
https://api.semanticscholar.org/CorpusID:89141
https://api.semanticscholar.org/CorpusID:89141
https://proceedings.mlr.press/v119/cai20a.html
https://proceedings.mlr.press/v119/cai20a.html
https://proceedings.mlr.press/v202/cai23d.html
https://api.semanticscholar.org/CorpusID:118531844
https://www.jstor.org/stable/26867161
https://www.jstor.org/stable/26867161

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Bradley Efron and Robert Tibshirani. Improvements on cross-validation: The .632+ bootstrap method.
Journal of the American Statistical Association, 92(438):548–560, 1997. ISSN 01621459. URL
http://www.jstor.org/stable/2965703.

Sebastian Felix Fischer, Liana Harutyunyan Matthias Feurer, and Bernd Bischl. OpenML-CTR23 – a
curated tabular regression benchmarking suite. In AutoML Conference 2023 (Workshop), 2023.
URL https://openreview.net/forum?id=HebAOoMm94.

Indrayudh Ghosal and Giles Hooker. Boosting random forests to reduce bias; one-step boosted
forest and its variance estimate. Journal of Computational and Graphical Statistics, 30(2):
493–502, 2021. doi:10.1080/10618600.2020.1820345. URL https://doi.org/10.1080/
10618600.2020.1820345.

Debopriya Ghosh and Javier Cabrera. Enriched random forest for high dimensional genomic
data. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 19(5):2817–2828, jun 2021. ISSN 1545-
5963. doi:10.1109/TCBB.2021.3089417. URL https://doi.org/10.1109/TCBB.2021.
3089417.

Jeff Heaton. An empirical analysis of feature engineering for predictive modeling. In SoutheastCon
2016, pp. 1–6, 2016. doi:10.1109/SECON.2016.7506650.

Niels Landwehr, Mark A. Hall, and Eibe Frank. Logistic model trees. Machine Learning, 59:161–205,
2003. URL https://api.semanticscholar.org/CorpusID:6306536.

Alan J. Lee. U-statistics: Theory and practice. 1990. URL https://api.semanticscholar.
org/CorpusID:125216198.

Lucas Mentch and Giles Hooker. Quantifying uncertainty in random forests via confidence intervals
and hypothesis tests. J. Mach. Learn. Res., 17(1):841–881, jan 2016. ISSN 1532-4435.

Claude Nadeau and Y. Bengio. Inference for the generalization error. Machine Learning, 52:239–281,
01 2003. doi:10.1023/A:1024068626366.

Weiguang Peng, Tim Coleman, and Lucas K. Mentch. Rates of convergence for random forests
via generalized u-statistics. Electronic Journal of Statistics, 2019. URL https://api.
semanticscholar.org/CorpusID:209942194.

Erwan Scornet, Gérard Biau, and Jean-Philippe Vert. Consistency of random forests. Annals of Statis-
tics, 43:1716–1741, 2014. URL https://api.semanticscholar.org/CorpusID:
8869713.

Robert Tibshirani Trevor Hastie and Jerome Friedman. The Elements of Statistical Learning. Springer
New York, 2009. ISBN 9780387848587. doi:10.1007/b94608. URL http://dx.doi.org/
10.1007/b94608.

A. W. van der Vaart. Asymptotic Statistics. Number 9780521784504 in Cambridge Books. Cam-
bridge University Press, July 2000. URL https://ideas.repec.org/b/cup/cbooks/
9780521784504.html.

Baoxun Xu, Joshua Zhexue Huang, Graham J. Williams, and Yunming Ye. Hybrid weighted
random forests for classifying very high-dimensional data. 2012. URL https://api.
semanticscholar.org/CorpusID:10700381.

Zhi-Hua Zhou and Ji Feng. Deep forest: Towards an alternative to deep neural networks. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17,
pp. 3553–3559, 2017. doi:10.24963/ijcai.2017/497. URL https://doi.org/10.24963/
ijcai.2017/497.

11

http://www.jstor.org/stable/2965703
https://openreview.net/forum?id=HebAOoMm94
https://doi.org/10.1080/10618600.2020.1820345
https://doi.org/10.1080/10618600.2020.1820345
https://doi.org/10.1080/10618600.2020.1820345
https://doi.org/10.1109/TCBB.2021.3089417
https://doi.org/10.1109/TCBB.2021.3089417
https://doi.org/10.1109/TCBB.2021.3089417
https://doi.org/10.1109/SECON.2016.7506650
https://api.semanticscholar.org/CorpusID:6306536
https://api.semanticscholar.org/CorpusID:125216198
https://api.semanticscholar.org/CorpusID:125216198
https://doi.org/10.1023/A:1024068626366
https://api.semanticscholar.org/CorpusID:209942194
https://api.semanticscholar.org/CorpusID:209942194
https://api.semanticscholar.org/CorpusID:8869713
https://api.semanticscholar.org/CorpusID:8869713
https://doi.org/10.1007/b94608
http://dx.doi.org/10.1007/b94608
http://dx.doi.org/10.1007/b94608
https://ideas.repec.org/b/cup/cbooks/9780521784504.html
https://ideas.repec.org/b/cup/cbooks/9780521784504.html
https://api.semanticscholar.org/CorpusID:10700381
https://api.semanticscholar.org/CorpusID:10700381
https://doi.org/10.24963/ijcai.2017/497
https://doi.org/10.24963/ijcai.2017/497
https://doi.org/10.24963/ijcai.2017/497

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DATA PREPARATION AND STATISTIC TOOLS USED IN REAL DATA EXPERIMENTS

Table S3 summarizes the datasets we used in experiments. Note that there are 35 datasets in original
benchmarks. We didn’t perform comparison on the datasets with the number of instances more than
50,000 since the complexity of RLF is relatively higher than RF. We also excluded datasets with
missing values whose results might be unfair. We took logarithm transformation for some datasets
to alleviate the impact of skewness. As described in Algorithm 2, we set the subagging ratio to be
0.632, which should have the same efficiency with bootstrapping (Efron & Tibshirani, 1997)

Table S3 : Real datasets used for the experiments,sorted by size

Dataset Observations Numerical features Symbolic features Log transformation

Forestfire (FF) 517 9 2 No

Student performance (SP) 649 14 17 No

Energy efficiency (EE) 768 9 0 No

Cars(CAR) 804 18 0 No

QSAR fish toxicity (QSAR) 908 7 0 No

Concrete Compressive Strength (CCS) 1030 9 0 No

Socmob(SOC) 1056 2 4 No

Geographical Origin Of Music (GOM) 1059 117 0 No

Solar Flare (SF) 1066 3 8 No

Airfoil Self-Noise (ASN) 1503 6 0 No

Red wine quality (WINER) 1599 12 0 No

Auction Verification (AUV) 2043 7 1 No

Space Ga (SG) 3107 7 0 No

Abalone (ABA) 4177 8 1 No

Winequality-white (WINEW) 4898 12 0 No

CPU Activity (CPU) 8192 22 0 No

Kinematics of Robot Arm (KRA) 8192 9 0 No

Pumadyn32nh (PUMA) 8192 33 0 No

Grid Stability (GS) 10000 13 0 No

Brazil Housing (BH) 10692 6 4 Yes

Naval propulsion plant (NPP) 11934 15 0 No

Miami housing (MH) 13932 16 0 Yes

Fifa (FIFA) 19178 28 1 Yes

Kings county (KC) 21613 18 4 Yes

Superconductivity (SUC) 20263 82 0 No

Califonia housing (CH) 20460 9 0 Yes

Health insurance (HI) 22272 5 7 No

Cps88wages (CPS) 28155 3 4 Yes

Physiochemical Protein (PP) 45730 10 0 No

Sarcos (SA) 48933 22 0 No

We employed a corrected resampled t-test (Nadeau & Bengio, 2003; Landwehr et al., 2003), to
identify whether one method significantly outperforms another at 5% significance level. This test
rectifies the dependencies of results induced by overlapped data points and has correct size and good
power. The corresponding statistic is

t =
1
V

∑V
t=1 rt√

(1
V + n2

n1
)σ̂2

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

where V is the number of validation experiments performed (ten in our case), rt is the difference
in MSE between RLF and RF on t-th fold. σ̂ is the sample standard deviation of differences. n1

is the number ofdata points used for training and n2is the number of testing cases. In our case,
n2/n1 = 1/9 since we used 10-folds cross-validation.

A.2 EXPERIMENT DETAILS IN SPARSE MODEL

There are 1000 training cases and 500 test observations. Each subplot in Figure 2 illustrates the
curves of mean squared error for RLF and RF, as functions of a single hyperparameter. The default
setting for RLF is M = 100,Mlocal = 10, α = 0.632,Mnode = 5. Same setting except Mlocal

applies to RF. To obtain, for example the test MSE as a function of number of global trees, we set
M = 1, 2, ..., 500 while other parameters remain the same with default setting. Similar strategy was
applied to the other three hyperparameters we are interested.

In Fig.2(a) , we let RLF and RF share the same the number of trees. We observe that the test MSE
for RLF decreases more than that of RF as the number of trees increases. In Fig.2(b) , RF is fitted
under default setting while we only changed the number of local trees used in local random forest
of RLF. As we can see, large number of local trees indeed benefits the performance of RLF. On the
other hand, in order to control the computation time burden, the number of local trees should not be
too large. Fig.2(c) implies that increasing the number of noisy variables in the regression model will
impair both the performance of RLF and RF. Nevertheless, RLF always outperforms RF, which is
anticipated. To see the impact of subagging ratio on RLF, we first controlled the result from ordinary
RF under default setting and increased subagging ratio, which determines the subsample size in RLF,
from 0.4 to 1. The test MSE curve for RLF in Fig.2(d) indicates that even a small subagging ratio
could generatea decent result. We can therefore set the subagging ratio relatively small to make RLF
efficient.

A.3 ALGORITHM FOR RLF

Algorithm 2 Riemann-Lebesgue Forest prediction at x

Require: Original Training data Dn = {(Xi, Yi), i = 1, ..., n} with Xi ∈ [0, 1]d. Minimum node
size Mnode, mtry ∈ {1, 2, ..., d}. Number of trees M > 0, Number of trees used in local random
forests Mlocal > 10 , k ∈ {1, 2, ..., n} and x.

1: for i = 1 to M do
2: Select k points without replacement from Dn.
3: Use selected k points to fit a Riemann-Lebesgue Tree described in Algorithm 1. Hyperpa-

rameters such as Mnode, mtry of RLF are shared with each Riemann-Lebesgue Tree.
4: Compute T

(ωi)
x ((Xi1,Yi1),...,(Xik,Yk)) , the predicted value of the Riemann-Lebesgue Tree

at x, which is the average of Y ′
i s falling in the terminal node of x in.

return Compute the random forest estimate Rn(x), which is the final predicted value of x from
Riemann-Lebesgue Forest.

A.4 INCOMPLETE U-STATISTICS

Before give the definition of incomplete U-statistics, we first give a brief introduction of U-statistics.
We borrow notations from (Vaart, 2000). Suppose we have i.i.d samples X1, ..., Xn from an unknown
distribution, and we want to estimate a parameter θ defined as follows

θ = Eh(X1, ..., Xr)

where the function h is permutation symmetric in its r arguments and we call h as a kernel function
with order r. Then a U-statistic with kernel h is defined as

U =
1(
n
r

) ∑
β

h(Xβ1
, ..., Xβr

)

where the sum is taken over all all unordered subsets β with r distinct elements from {1, ..., n} .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Note that the U -statistic is an unbiased estimator for θ and has smaller variance than a single kernel
h. In practice, it’s unrealistic to average all

(
n
r

)
kernels (trees). To make U -statistics more useful in

applications, we can define an incomplete U -statistic which utilizes smaller number of subsets as
follows:

Un,r,N =
1

N

N∑
i=1

h(Xβ1,...,Xβr
)

when N =
(
n
r

)
, we obtain a complete U -statistic.

When the total number of subsamples of size r taken from a sample of size n is large, it may
be convenient to use instead an ‘incomplete’ U-statistic based on N suitably selected subsamples.
Asymptotically, it can be shown that an incomplete U -statistic may be asymptotically efficient
compared with the ‘complete’ one even when N increases much less rapidly than the total number.
See more explanations and applications for complete/incomplete U -statistics in (Vaart, 2000; Lee,
1990; Peng et al., 2019; Chen et al., 2010). In a Riemann-Lebesgue Forest, each tree can be viewed as
a random kernel since it is permutation symmetric w.r.t inputs. The randomness of the kernel comes
from feature bagging and subsampling and cutting types. Similar definition can be applied to RF as
well.

A.5 CONSISTENCY OF RLF

Based on the results from (Scornet et al., 2014), it’s relatively easy to derive the consistency of RLF
under an additive regression model as follows:

Y =

p∑
j=1

mj(Xj) + ε (9)

where X = (X1, ..,Xp) is uniformly distributed over [0, 1]p, the noise ε ∼ N(0, σ2) has finite
variance and is independent of X. Each component function mj is continuous.

When there are only S(< p) effective dimensions of the model, the sparse version of equation 9
becomes

Y =

S∑
j=1

mj(Xj) + ε

which is exactly the condition where RLF may perform better. Therefore the additive regression model
is a good framework for studying the consistency of RLF. Since the Lebesgue part of each Riemann-
Lebesgue Tree is essentially splitting the response Y with CART-criterion, many consistency results
for CART can be applied to RLT directly.

For example,Breiman et al. (1984) proved the consistency of CART under the assumptions of
shrinking diameter of cell partition and lower bounds of empirical distribution of X . Scornet
et al. (2014) shown the consistency of RF under the assumption of additive regression model and
appropriate complexity of the tree partition.

We now state one version of consistency adapted to RLF where we assume that the total number
of nodes tn in each RLT approaches to infinity more slowly than the subsample size kn. The proof
follows immediately from the argument for Theorem 1 in (Scornet et al., 2014).

Theorem A.1. Assume the response Y is generated from the sparse model defined in equation 9.
Then, given kn → ∞, tn → ∞ and tn(logkn)9/kn → 0 where kn is the subagging size and tn is the
number of terminal nodes in each Riemann-Lebesgue Tree, we have

lim
n→∞

EX [h∗
n,k,N (X)−m(X)]2 = 0

where m(X) = E[Y |X], h∗
n,k,N (X) = Eω,Z [h

(ω)(X;Z)]. The consistency of empirical averaged
RLF estimate follows from the law of large numbers.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Note that Theorem A.1 still holds even when we select all data points for each tree, which means
controlling the number of nodes tn via minimal size of nodes Mnode is sufficient for the error
bound of RLF. According to (Scornet et al., 2014), the term (logkn)9 results from the assumption of
Gaussian noise. We can replace it by a bounded random variable so that the term (logkn)9 becomes
logkn, which can be regarded as the complexity of a single RLT partition,

A.6 RUNNING TIME FOR RLF AND RF

For completeness, Table S4 compares averaged running time (in seconds) of RLF,RF on our selected
datasets in manuscript. For RLF, M = 100,Mlocal = 10 and p̃ = 0.8. For RF, M = 100. Other
parameters are set by default values. We ran 10-fold cross-validation. We calculated the running time
as sum of training time and prediction time.

Table S4 : Average running time (in seconds) for RLF(100),RF(100)

Dataset Observations # Features RLF RF
FF 517 11 1.28±0.97 0.16± 0.55
SP 649 31 1.73±0.1 0.32±0.04
EE 768 9 0.54±0.012 0.052±0.0036

CAR 804 18 0.86±0.07 0.084±0.0035
QSAR 908 7 1.37±0.067 0.14±0.035
CCS 1030 9 1.53±0.079 0.16±0.04
SOC 1056 6 0.72±0.052 0.073±0.0038
GOM 1059 117 15.72±0.90 2.37±0.074

SF 1066 11 0.90±0.028 0.12±0.004
ASN 1503 6 1.15±0.14 0.11±0.004

WINER 1599 12 3.13±0.15 0.38±0.0042
AUV 2043 8 1.89±0.12 0.22±0.031
SG 3107 7 7.94±0.47 1.02±0.044

ABA 4177 9 13.57±0.68 2.08±0.10
WINEW 4898 12 15.73±0.82 4.10±0.13

CPU 8192 22 68.76±3.07 16.39±0.84
KRA 8192 9 32.66±1.59 8.45±0.56

PUMA 8192 33 112.14±3.71 24.36±1.06
GS 10000 13 70.48±5.8 22.53±3.00
BH 10692 10 123.09±5.38 31.48±01.15
NPP 11934 15 180.33±33.76 39.55±8.43
MH 13932 16 150.73±5.23 55.12±4.28
FIFA 19178 29 550.83±57.34 388.54±75.08
SUC 20263 82 1122.48±125.88 993.17±102.78
CH 20460 9 714.86±79.44 340.15±43.62
KC 21613 22 1510.17±65.83 651.06±15.03
HI 22272 12 1370.773±163.53 486.55±43.02

CPS 28155 7 206.32±41.58 58.75±12.78
PP 45730 10 2551.45±398.63 2149.19±260.17
SA 48933 22 4505.45±1098.13 2347.74±258.91

A.7 PROOF OF THEOREM 3.1

For simplicity, we assume one-dimension case, i.e Y = f(X)+ε. Let A1, A2 be a nontrivial partition
of the initial outcome space, by the law of total variance or variance decomposition formula, we have

V ar(Y) = V ar(Y |A1)P (A1) + V ar(Y |A2)P (A2)

+E[Y |A1]
2(1− P (A1))P (A1) +E[Y |A2]

2(1− P (A2))P (A2)

− 2E[Y |A1]P (A1)E[Y |A2]P (A2)

In Lebesgue cutting, we have A1 = {Y > a}, A2 = {Y ≤ a}. Then the theoretical variance
reduction of Y in the initial outcome space can be written as following:

V ar(Y)− V ar(Y |A1)P (A1)− V ar(Y |A2)P (A2) = E[Y |Y > a]2(1− P (Y > a))P (Y > a)

+E[Y |Y ≤ a]2(1− P (Y ≤ a))P (Y ≤ a)

− 2E[Y |Y > a]P (Y > a)E[Y |Y ≤ a]P (Y ≤ a)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

To find optimal splitting point a which gives the maximal variance reduction, we should solve the
following optimization problem.

max
a

[(
(E[Y |Y > a]−E[Y |Y ≤ a])2 · (1− P (Y > a))P (Y > a)

)]
= max

a

[((
P (Y ≤ a)E[Y 1Y >a]− P (Y > a)E[Y 1Y≤a]

)2

· 1

(1− P (Y > a))P (Y > a)

)]

= max
a

[
E[Y 1Y >a]

2

(1− P (Y > a))P (Y > a)

]
(WLOG, we assume E[Y] = 0)

= max
a

[L(a)]

where

L(a) =
E[Y 1Y >a]

2

(1− P (Y > a))P (Y > a)

Similar argument applies for Riemann cutting. Let Riemann partition be B1 = {X > b}, B2 =
{X ≤ b}, then the corresponding optimization problem for Riemann cutting would be

max
b

[
E[Y 1X>b]

2

(1− P (X > b))P (X > b)

]
= max

b
[R(b)]

where

R(b) =
E[Y 1X>b]

2

(1− P (X > b))P (X > b)

To maximize function L(a), a will go through all possible values of Y which essentially considers
all possible partitions w.r.t Y . While for R(b), when we go through all possible values of X , it does
not necessary check all possible cutting w.r.t Y . Therefore, the numerator in L(a) has more possible
values. On the other hand, denominators in L(a) and R(b) have the same range from 0 to 1.

These two observations tell us that function L(a) has larger range set. We can now conclude that

max
a

[
E[Y 1Y >a]

2

(1− P (Y > a))P (Y > a)

]
≥ max

b

[
E[Y 1X>b]

2

(1− P (X > b))P (X > b)

]
(10)

In other words, the optimal Lebesgue cutting can reduce more variance than optimal Riemann cutting
(CART) does. We can also see the noise doesn’t affect the conclusion since Y already absorbed
noises in practice.

Another analysis of equation 10 from discrete case:

In discrete case, we need to compare L(j∗, z∗) and L̃(z∗L) as defined in equation 4 and equation 5.

Note that the set of possible partitions of current set of responses induced by the Riemann cutting
of covariate X is a subset of that of Lebesgue cutting whose feasible set is essentially induced by
response directly. Note that the objective functions L(j, z) and L̃(z) have the same form, the one
with larger feasible set should have larger optimal value.

Suppose we have n points {(X1, Y1), ..., (Xn, Yn)} whose y values are all distinct in a certain non-
terminal node and both cutting types employ CART split criterion, then Lebesgue cutting will go
through all (n + 1) splitting points in Y directly, which essentially gives the largest feasible set
of optimization problem. On the other hand, in Riemann type cutting, the space of Y is indirectly
partitioned by going through all possible splitting points in direction X(j). It’s not necessary that this
procedure will take care all (n+ 1) splitting points in Y . For example, when X(j) is a direction with
only three distinct values , z(j) can only have four choices of splitting point which will restrict the
possible values of ȲAL

, ȲAR
in optimizing L(j, z) and leads to a smaller feasible set.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.8 PROOF OF THEOREM 3.2

We basically follows the idea in (Peng et al., 2019) which decomposes the generalized incomplete
U-statistic as a sum of complete U-statistic and a remainder. To deal with the random kernel, we
utilize the conclusions based on extended Hoeffding decomposition (Peng et al., 2019). For the
simplicity of notation, it’s harmless to assume that θ = 0.

For 0 < η0 < 1
2 , we first decompose Un,k,N,ω/

√
k2ζ1,ω/n+ ζk/N2η0 as follows:

Un,k,N,ω√
k2ζ1,ω

n + ζk
N

=

1

(nk)

∑
(n,k)

ρi

p h
(ωi)(Zi1 , ..., Zik) +

1

(nk)

∑
(n,k)

Wi−ρi

p h(ωi)(Zi1 , ..., Zik)√
k2ζ1,ω

n + ζk
N

=
A+ 1

(nk)

∑
(n,k)

Wi−ρi

p h(ωi)(Zi1 , ..., Zik)√
k2ζ1,ω

n + ζk
N

(11)

where

A =
1(
n
k

) ∑
(n,k)

ρi
p
h(ωi)(Zi1 , ..., Zik)

=
N̂

N

1

N̂

∑
(n,k)

ρih
(ωi)(Zi1 , ..., Zik)

(12)

and ρi
i.i.d∼ Bernoulli(p), p = N/

(
n
k

)
and N̂ =

∑
(n,k) ρi. We can see E[N̂] = N . WLOG, we can

assume θn,k,N = 0. Then we have

A =
N̂

N
B (13)

where

B =
1

N̂

∑
(n,k)

ρih
(ωi)(Zi1 , ..., Zik)

and B is a complete generalized U-statistic with Bernoulli sampling as described in (Peng et al.,
2019). According to Theorem 4 in Peng et al. (2019), we have

supz∈R

∣∣∣∣P(B√
k2ζ1,ω/n+ ζk/N

)
− Φ(z)

∣∣∣∣ ≤ C

{
E|g|3

n1/2ζ
3/2
1,ω

+
E|h|3

N1/2(E|h|2)3/2

+

[
k

n

(
ζk

kζ1,ω
− 1

)]1/2
+

(
k

n

)1/3

+N− 1
2+η0

}
:= ε0

(14)

where 0 < η0 < 1/2.

By definition, we have ζk = var(h) = E|h|2 = Σ2
k,n,ω,Z

Denote

T =
A√

k2ζ1,ω/n+ ζk/N
= W +∆

where

W =
B√

k2ζ1,ω/n+ ζk/N
, ∆ = (

N̂

N
− 1)W

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

According to the argument in proof of Theorem 4 in (Peng et al., 2019), it’s easy to verify that

−P

(
z − |∆| ≤ W ≤ z

)
≤ P

(
U ≤ z

)
− P

(
W ≤ z

)
≤ P

(
z ≤ W ≤ z + |∆|

)
Thus we only need to consider bounding P (z ≤ W ≤ Z + |∆|). By Bernstein’s inequality, we have

P

(
|N̂
N

− 1| ≥ ε

)
≤ 2exp

(
− −ε2N

1− p+ ε/3

)

Let ε = N−β and note that P (|Z| ≥ Nα) ≤ 2exp(−N2α/2), we have

P (|∆| ≥ N−β+α) ≤ P

(
|N̂
N

− 1| ≥ N−β

)
+ P (|W | ≥ Nα)

≤ 2exp
(
− N1−2β

1− p+N−β/3

)
+ P (|Z| ≥ Nα) + 2ε0

≤ 2exp
(
− 1

(1− p)N2β−1 +Nβ−1/3

)
+ 2exp(−N2α/2) + 2ε0

:= ε1 + 2ε0

(15)

Eventually, we can bound P (z ≤ W ≤ z + |∆|) as follows:

P (z ≤ W ≤ z + |∆|) ≤ P (z ≤ W ≤ z + |∆|, |∆| ≤ N−β+α) + P (|∆| ≥ N−β+α)

≤ P (z ≤ W ≤ z +N−β+α) + ε1 + 2ε0

≤ 2ε0 + P (z ≤ Z ≤ z +N−β+α) + ε1 + 2ε0

≤ 4ε0 + ε1 +
1√
2π

N−β+α

:= 4ε0 + ε1 + ε2

(16)

Let β = 0.5 + η1 and α = η1, where η1 > 0. It’s easy to see ε1 ≪ ε2 when N is large and therefore

sup
z∈R

∣∣∣∣P(A√
k2ζ1,ω/n+ ζk/N

)
− Φ(z)

∣∣∣∣ = sup
z∈R

∣∣∣∣P (T ≤ z)− Φ(z)

∣∣∣∣
≤ sup

z∈R

∣∣∣∣P (W ≤ z)− Φ(z)

∣∣∣∣+ sup
z∈R

∣∣∣∣P (T ≤ z)− P (W ≤ z)

∣∣∣∣
≤ 5ε0 + ε1 + ε2

= C

{
E|g|3

n1/2ζ
3/2
1,ω

+
E|h|3

N1/2(E|h|2)3/2

+

[
k

n

(
ζk

kζ1,ω
− 1

)]1/2
+

(
k

n

)1/3

+N− 1
2+η0 +N− 1

2

}
:= ε3

(17)

We observe that the factor of N̂/N only produces the extra term N− 1
2 in the final bound, which is

similar to (Peng et al., 2019). We employ this technique one more time to achieve the bound for
Un,k,N,ω .

Denote

Un,k,N,ω√
k2ζ1,ω

n + ζk
N

=
A√

k2ζ1,ω
n + ζk

N

+ C =
A√

k2ζ1,ω
n + ζk

N

+
D√

k2ζ1,ω/n+ ζk/N

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where A is defined as above and

C =

1

(nk)

∑
(n,k)

Wi−ρi

p h(ωi)(Zi1 , ..., Zik)√
k2ζ1,ω/n+ ζk/N

, D =
1(
n
k

) ∑
(n,k)

Wi − ρi
p

h(ωi)(Zi1 , ..., Zik)

Again, we only need to bound P

(
z ≤ A√

k2ζ1,ω
n +

ζk
N

≤ z + |C|
)

. Let 0 < η0 < 1
2 , by Jensen’s

inequality, we have

P (|C| ≥ Nη0−1/2) ≤ N
1
2−η0E[|C|]

≤ N
1
2−η0

√
E[|C|2]

(18)

Note that Ghosal & Hooker (2021) illustrates that these two selection schemes (sampling without
replacement and Bernoulli sampling) are asymptotically the same. More specifically, one can show
that

E[|D|2] = E
[(

1

N

∑
i

(Wi − ρi)h
(ωi)(Zi)

)2]
= K

[
1

N
− 1(

n
k

)]
where Zi represents the i-th subsample from Z = (Z1, ..., Zn) and K = E[(h(ωi)(Zi))

2] =
V ar(h(ωi)(Zi)) = ζk since we assume that θ = 0.

It follows that

P (|C| ≥ Nη0−1/2) ≤ N
1
2−η0

(
K(

1

N
− 1(

n
k

))) 1
2 (

k2ζ1,ω
n

+
ζk
N

)− 1
2

= (K(1− p))
1
2

(
N2η0k2ζ1,ω

n
+

N2η0ζk
N

)− 1
2

= (K(1− p))
1
2

(
k2ζ1,ω
n/N2η0

+N2η0−1ζk

)− 1
2

≤ (K(1− p))
1
2

(
k2ζ1,ω
n/N2η0

)− 1
2

= (K(1− p))
1
2

(
n/N2η0

k2ζ1,ω

) 1
2

=

(
n

N2η0

(1− p)ζk
k2ζ1,ω

) 1
2

(19)

Eventually, we can bound P

(
z ≤ A√

k2ζ1,ω
n +

ζk
N

≤ z + |C|
)

as follows:

P

(
z ≤ A√

k2ζ1,ω
n + ζk

N

≤ z + |C|
)

≤ P

(
z ≤ A√

k2ζ1,ω
n + ζk

N

≤ z + |C|, |C| ≤ N−1/2

)
+ P (|C| ≥ N−1/2)

≤ P

(
z ≤ A√

k2ζ1,ω
n + ζk

N

≤ z +N−1/2

)
+

(
n

N2η0

(1− p)ζk
k2ζ1,ω

) 1
2

≤ ε3 + P (z ≤ Z ≤ z +N−1/2) +

(
n

N2η0

(1− p)ζk
k2ζ1,ω

) 1
2

≤ ε3 +
1√
2π

N−1/2 +

(
n

N2η0

(1− p)ζk
k2ζ1,ω

) 1
2

(20)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Note that ε3 also includes terms of order N−1/2 and therefore

sup
z∈R

∣∣∣∣P(Un,k,N,ω√
k2ζ1,ω/n+ ζk/N

)
− Φ(z)

∣∣∣∣ ≤ sup
z∈R

∣∣∣∣P (
A√

k2ζ1,ω
n + ζk

N

≤ z)− Φ(z)

∣∣∣∣
+ sup

z∈R

∣∣∣∣P (Un,k,N,ω ≤ z)− P (
A√

k2ζ1,ω
n + ζk

N

≤ z)

∣∣∣∣
≤ ε3 + ε3 +

1√
2π

N−1/2 +

[
n

N2η0

(1− p)ζk
k2ζ1,ω

] 1
2

= C̃

{
E|g|3

n1/2ζ
3/2
1,ω

+
E|h|3

N1/2(E|h|2)3/2

+

[
k

n

(
ζk

kζ1,ω
− 1

)]1/2
+

(
k

n

)1/3

+N− 1
2+η0

+

[
n

N2η0

(1− p)ζk
k2ζ1,ω

] 1
2
}

(21)

where C̃ is a positive constant.

A.9 TUNING RESULTS FOR TWO EXAMPLES

(a) Example 1 (b) Example 2

Figure S4: Test MSE curve as function of control probability p̃ in two examples

Table S5 : Top 10 tuned models for RLF and RF for Example 1

Rank of Validation MSE RF α Mnode M RLF p̃ Mlocal

1 1.308092 0.5 15 100 1.081210 0.4 10
2 1.309780 0.5 5 50 1.085926 0.4 20
3 1.313989 0.5 15 200 1.088091 0.4 50
4 1.315487 0.63 5 200 1.117446 0.6 50
5 1.316665 0.5 5 100 1.125599 0.6 10
6 1.316748 0.63 10 50 1.127653 0.6 20
7 1.320919 0.8 10 200 1.128331 0.2 10
8 1.326341 0.5 10 50 1.150248 0.2 20
9 1.327373 0.8 5 150 1.164717 0.2 50

10 1.327539 0.63 10 150 1.197099 0.8 20

Table S6 : Testing MSE under optimal model for Example 1:

Bset RF Best RLF
Testing MSE 1.283 1.018

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table S7 : Top 10 tuned models for RLF and RF for Example 2

Rank of Validation MSE RF α Mnode M RLF p̃ Mlocal

1 33.18551 0.63 15 100 28.48683 0.4 10
2 34.40944 0.5 15 50 29.34517 0.2 10
3 34.53584 0.63 5 200 29.53972 0.4 20
4 34.61853 0.63 10 100 29.72733 0.4 50
5 34.64231 0.63 5 50 29.98644 0.2 20
6 34.76124 0.8 5 50 30.22297 0.6 10
7 34.78667 0.63 10 150 30.31668 0.2 50
8 34.84602 0.5 15 150 30.33824 0.6 50
9 34.99652 0.8 5 150 30.94450 0.6 20

10 35.19693 0.63 15 150 32.03192 0.8 10

Table S8 : Testing MSE under optimal model for Example 2:

Best RF Best RLF

Testing MSE 35.17 29.87

Tuning procedure: For each example, we generated 3000 samples from the corresponding model
and divide in into three parts for training, validation and testing. The ratio is 6:2:2. For RF, we set
subagging ratio α ∈ {0.5, 0.63, 0.8}, minimal node size Mnode ∈ {5, 10, 15} and number of trees
M ∈ {50, 100, 150, 200}. For RLF, we keep M = 100 and α = 0.63 all the time for efficiency. We
set p̃ ∈ {0.2, 0.4, 0.6, 0.8} and Mlocal ∈ {10, 20, 50} which are two new parameters introduced in
RLF. Fig. S4(a) and S4(b) are Test MSEs for RLF as functions of p̃ with M = 100,Mlocal = 10.
For RF, we use the default setting.

A.10 EXTRA EXPERIMENTS WITH TUNED RLF AND RF

We performed extra experiments on 26 datasets (due to the time efficiency of parameter tuning) to
compare best RF and best RLF.

We performed 5-fold cross validations to ensure 20% of observations are used as testing set. For the
rest of 80% points, we further randomly pick 25% of them as validation set, which is used to select
best models among parameter space. As a result, the ratio of training,validation and testing is 6:2:2.

Tuning parameters for RLF: p̃ ∈ {0.4, 0.6, 0.8}. We set M = 100,Mlocal = 10,Mnode = 5 all the
time for RLF due to the time efficiency. Tuning parameters for RF: M ∈ {50, 150, 200},Mnode ∈
{5, 10, 15}. Other parameters for RLF and RF follow the default value. Note that the implementation
of RF in R doesn’t have parameter of tree depth but we can control and depth of tree by the value of
minimal size of node Mnode.

21

	Introduction
	Methodology
	Preliminary
	Riemann-Lebesgue Tree
	Riemann-Lebesgue Forest

	Theoretical analysis of RLF
	Variance reduction of response Y by Lebesgue cuttings
	Convergence rate of the asymptotic normality
	Complexity analysis

	Experiments
	Sparse model
	Real Data Performance
	Tuning of Splitting control probability
	Extra experiments of RLF with tuned

	Discussion and Limitation
	Appendix
	Data preparation and statistic tools used in real data experiments
	Experiment details in sparse model
	Algorithm for RLF
	Incomplete U-statistics
	Consistency of RLF
	Running time for RLF and RF
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Tuning results for two examples
	Extra experiments with tuned RLF and RF

