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ABSTRACT

Proficient game agents with diverse play styles enrich the gaming experience and
enhance the replay value of games. However, recent advancements in game AI
based on reinforcement learning have predominantly focused on improving profi-
ciency, whereas methods based on evolution algorithms generate agents with di-
verse play styles but exhibit subpar performance compared to RL methods. To ad-
dress this gap, this paper proposes Mixed Proximal Policy Optimization (MPPO),
a method designed to improve the proficiency of existing suboptimal agents while
retaining their distinct styles. MPPO unifies loss objectives for both online and
offline samples and introduces an implicit constraint to approximate demonstra-
tor policies by adjusting the empirical distribution of samples. Empirical results
across environments of varying scales demonstrate that MPPO achieves profi-
ciency levels comparable to, or even superior to, pure online algorithms while
preserving demonstrators’ play styles. This work presents an effective approach
for generating highly proficient and diverse game agents, ultimately contributing
to more engaging gameplay experiences.

1 INTRODUCTION

Games benefit from having bots with varied proficiency and diverse play styles. Bots with different
levels of proficiency accommodate a wider range of players, providing smoother gaming experi-
ences (Climent et al., 2024; Romero-Mendez et al., 2023). In games featuring competition and
cooperation, distinct agent styles provide value both as diversified opponents (Barros et al., 2023)
and as adaptive partners for players with varied strategic preferences (Sweller, 1994; Chen, 2017).
This is particularly evident in contemporary games that incorporate heterogeneous agents. From
aggressive melee assassins to defensive support mages, characters in MOBA titles (Dota 2, League
of Legends) and hero shooters (Valorant, Overwatch) possess distinct gameplay mechanics, and
corresponding AI agents must replicate these stylistic nuances to provide immersive player experi-
ences (Gao et al., 2023).

Advancement and application of Reinforcement Learning (RL) in game AI elevate agents’ profi-
ciency across various games. In traditional games, AlphaZero defeats top humans in chess, Shogi,
and Go (Silver et al., 2017); PerfectDou (Yang et al., 2024) outperforms other AIs in DouDiZhu;
AlphaHoldem (Zhao et al., 2022) beats human professionals in Texas Hold’em Poker. In com-
puter games, AlphaStar (Vinyals et al., 2019) reaches grandmaster level in StarCraft II, OpenAI
Five (Berner et al., 2019) defeats the Dota 2 world champion team, and JueWu (Ye et al., 2020)
beats top esport players in The Honor of Kings. However, these methods prioritize reward maxi-
mization, and agents’ play styles are not within their considerations.

The pursuit of diverse game-playing agents has attracted growing interest. While Quality-Diversity
(QD) optimization (Lehman & Stanley, 2011) methods have been applied to generate varied be-
haviors (Canaan et al., 2019; Perez-Liebana et al., 2020), they often rely on predefined behavior
descriptors and archive structures, which can limit their scalability and performance in complex
domains like image-based games (Fuks et al., 2019; Chen et al., 2019; Badia et al., 2020). Mean-
while, within RL, population-based algorithms have emerged as a promising paradigm for fostering
strategic diversity. These methods induce behavioral heterogeneity by optimizing agents towards
divergent objectives, such as employing distinct risk preferences (Jiang et al., 2023), randomizing
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reward functions (Tang et al., 2021), or directly maximizing a diversity metric (Parker-Holder et al.,
2020) like the determinant of the population’s behavioral embedding matrix.

While effective for discovering diverse behaviors, these population-based methods come at the sig-
nificant computational cost of maintaining a large agent cohort and offer limited control over steering
strategies toward a predefined style.

We therefore introduce a method that complements the population-based paradigm by efficiently
”polishing” individual agents. Our approach tackles the distinct problem of single-agent policy
optimization with style preservation: given suboptimal, stylized agents, we enhance their proficiency
while preserving their play styles. To this end, we propose Mixed Proximal Policy Optimization
(MPPO), a Learning from Demonstration (LfD) algorithm that leverages existing demonstrators to
achieve this goal. Specifically, we employ two types of actors: on-policy actors improve policies and
generalize learned behaviors to unseen states, while LfD actors imitate the demonstrators’ policies.
Samples generated by these actors are processed and trained using unified loss objectives. Through
theoretical analysis, we prove that our method can monotonically improve the policy while satisfying
implicit behavior cloning constraints. We test MPPO in three environments of varying complexity:
Blackjack, Maze Navigation, and Mahjong. Empirical results demonstrate that MPPO is comparable
or superior to baseline methods, achieving meaningful improvements in agent proficiency while
retaining the unique characteristics of the original play styles. Notably, starting from suboptimal
demonstrations, one of our Mahjong agents surpasses the top-ranked bot on Botzone’s Elo ranking
list (Zhou et al., 2018). The following are the key contributions of this paper:

• This paper proposes MPPO, a method that leverages data from suboptimal demonstrators to
enhance policy proficiency while maintaining a relatively small distance from the demon-
strators’ policies.

• Theoretically, we demonstrate that our loss objectives are capable of monotonically im-
proving the policy while guiding the student policy to imitate the demonstrator’s.

• Enhancements to offline dataset collection and replay mechanisms enable the straightfor-
ward application of Monte Carlo-based advantage estimation, while reducing the storage
footprint by at least 98% in our test scenarios.

• We present a suite of environments of varying scales as a benchmark to test agents’ play
style diversity and proficiency, with each environment accompanied by multiple stylized
bots. In addition, we introduce a metric, Dpolicy, to quantify differences in play styles.

2 RELATED WORKS

Learning from Demonstration (LfD) is a broad research area that focuses on improving agents’
learning efficiency by leveraging demonstration data to reduce the cost of agents’ blind trial-and-
error in environments. Based on whether methods integrate RL, LfD methods can be categorized
into two categories: pure Imitation Learning (IL) (Zare et al., 2024), which learns policies solely
through imitating experts’ behaviors, and RL combined with demonstration learning, which utilizes
demonstration data to accelerate the RL process.

Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) is a prominent IL method
that considers IL problems as distribution matching, and it integrates adversarial training tech-
niques (Goodfellow et al., 2014) to assign rewards for actions. Although this architecture solves
challenges from sparse reward, students can hardly surpass demonstrator policies. POfD (Kang
et al., 2018) and SAIL (Zhu et al., 2020) are GAN-based methods that build upon GAIL to address
its limitations. However, these GAN-based methods suffer from inherent limitations of adversarial
training, such as training instability and limited scalability in high dimensions (Brown et al., 2019).

Combining demonstration learning with reinforcement learning (RL) is appropriately termed Rein-
forcement Learning with Expert Demonstrations (RLED) (Piot et al., 2014). The core difference
between RLED and IL is that the rewards are generated by the environment in RLED. The primary
goal of methods (Chemali & Lazaric, 2015; Wagenmaker & Pacchiano, 2023; Hou et al., 2024) in
this paradigm is to accelerate training or enhance performance using expert demonstrations, which
aligns with our research focus. Additionally, our approach aims to preserve the demonstrators’
behavioral styles.
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Under the paradigm of RLED, existing approaches diverge in how they integrate offline data. Some
methods employ a sequential strategy, pre-training on demonstrator data before fine-tuning with
online interactions (Nair et al., 2021; Nakamoto et al., 2024), while others leverage offline and
online data concurrently throughout training (Hester et al., 2017; Ball et al., 2023).

Since our primary objective is to achieve policy improvement while preserving the play style of
the original demonstrators, we adopt the latter approach, which allows continuous guidance from
demonstration data during policy optimization. Within this concurrent learning setting, a number
of methods have been tailored to specific action space structures. For instance, DDPGfD (Vecerı́k
et al., 2017) and RLPD (Ball et al., 2023) are designed for continuous control domains, whereas
DQfD (Hester et al., 2017) represents a leading approach tailored to discrete action spaces, a com-
mon setting in game environments that motivates our approaches.

DQfD integrates deep Q-learning (Mnih et al., 2013) with demonstration data by combining multi-
step temporal difference (TD) and supervised losses, aiming to address state distribution bias and
accelerate the convergence of the learning process. While our method aligns with DQfD in terms of
application settings, there are key distinctions beyond the differences in their backbone algorithms.
Specifically, DQfD employs explicit supervised losses to guide student policies; instead, we utilize
implicit soft constraints to guide student policies through demonstration data filtering—this is rooted
in our prior awareness that demonstrations may be suboptimal. Furthermore, we incorporate multi-
step TD into Generalized Advantage Estimation (GAE) (Schulman et al., 2015), which significantly
simplifies the algorithm’s architecture.

3 PRELIMINARIES

We formulate game environments as standard Markov Decision Processes (MDP) M =
⟨S,A, R,P, γ, ρ0⟩, where S and A are the observable state space and the action space, respec-
tively, R(s, a) represents the reward function, and γ ∈ (0, 1) is the discount factor. ρ0 is the initial
state distribution. Policy π(at|st) is defined as the distribution of actions conditioned on states at
step t, where st ∈ S and at ∈ A. P(s′|s, a) is the transition distribution of taking action a at
observable state s. Both randomness from environment dynamics and randomness due to unob-
servable state information are attributed to P in the formulation. The trajectory τ = {st, at}Tt=0.
The performance measure of policy is defined as J(π) = Eπ

∑T
t=0 γ

tR(st, at)). Then, the value
function, state-value function, and the advantage function can be defined as Vπ(s) = J(π|s0 = s),
Qπ(s, a) = J(π|s0 = s, a0 = a), and Aπ(s, a) = Qπ(s, a)− Vπ(s), respectively.

Theorem 1. (Kakade & Langford, 2002) Let the discounted unnormalized visitation frequencies
as ρπ(s) =

∑T
t=0 γ

tP (st = s|π), and P (st = s|π) represents the probability of the t-th state equals
to s in trajectories generated by policy π. For any two policies π and π′, the performance difference
J∆(π

′, π) ≜ J(π′)− J(π) can be measured by:

J∆(π
′, π) = Es∼ρπ′ (·),a∼π′(·|s)[Aπ(s, a)]. (1)

This theorem implies that improving policy from π to π′ can be achieved by maximizing equation 1.
From this theorem, Trust Region Policy Optimization (TRPO) (Schulman et al., 2017a) and Behav-
ior Proximal Policy Optimization (BPPO) (Zhuang et al., 2023) are derived, which can guarantee
the monotonic performance improvement for online and offline settings, respectively.

Metric for Play Style Distance To quantify the similarity between play styles, metrics are defined
based on action distributions. Lin et al. (2024) used the 2-Wasserstein distance (W2) (Vaserstein,
1969) to measure the distance between play styles; however, W2 is computationally expensive as a
metric. More critically, its value depends on an arbitrary embedding of actions into a metric space
to define pairwise distances. This makes results inconsistent and difficult to interpret, as different
embeddings yield different distances for the same policies. Thus, we use total variational divergence,
denoted as Dpolicy, to overcome W2’s drawbacks and measure play style distances. Defined in
equation 2, it quantifies action-level play style discrepancies.

Dpolicy = E
s∈S

1

2

∑
a∈A

|π1(a|s)− π2(a|s)| (2)
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4 PROPOSED ALGORITHM

Our algorithm integrates data from both online environmental interactions and offline demonstration
datasets. We therefore term it Mixed Proximal Policy Optimization (MPPO).

In this section, we establish two fundamental theoretical properties of MPPO: 1) the policy improves
monotonically, and 2) the policy remains proximal to the demonstration policy throughout the learn-
ing process. Subsequently, we provide the pseudocode and implementation details of MPPO.

We denote collections of demonstration trajectories as D = {τ1, τ2, ..., τN} and the policy at some
point during the learning process as πk. Our approach to policy improvement builds upon Theorem
1. However, directly optimizing equation 1 is intractable due to its dependence on the unknown
state distribution ρπ′

k
(s) of the new policy. Standard online RL methods, such as TRPO, address

this by approximating ρπ′
k
(s) with ρπk

(s), the state distribution of the current policy πk, thereby
guaranteeing monotonic improvement under on-policy data.

In our setting, which incorporates off-policy demonstration data, we propose a mixed state dis-
tribution. We sample a fraction β of state-action tuples from the demonstration dataset D, and
the remainder 1 − β from the current policy πk. This leads to the empirical state distribution
ρmix(s) = βρD(s) + (1− β)ρπk

(s), where ρD(s) is the state visitation distribution in the demon-
stration data. Substituting this mixed distribution into equation 1 yields the following surrogate
objective:

Ĵ∆(π, πk) = Es∼βρD(·)+(1−β)ρπk
(·),a∼π(·|s)[Aπk

(s, a)]

=βEs∼ρD(·),a∼π(·|s)Aπk
(s, a)+(1−β)Es∼ρπk

(·),a∼π(·|s)Aπk
(s, a) (3)

The monotonic improvement guarantee for the second term in equation 3, which handles on-policy
data, is well-established by TRPO. For the first term, which utilizes off-policy demonstration data,
recent work on BPPO provides analogous theoretical guarantees, ensuring improvement under static
dataset constraints. We leverage these prior theoretical results. Since our objective is a linear com-
bination of the objectives from TRPO and BPPO, the monotonic improvement property is preserved
for the combined objective Ĵ∆.

For practical implementation and stability, we adopt the clipped surrogate objective from Proximal
Policy Optimization (PPO) (Schulman et al., 2017b), which provides a first-order approximation to
the constrained optimization problems solved by TRPO and BPPO. This yields our final practical
loss function:

LMPPO = βEs∼ρD(·)[min(rAπk
(s, a), clip(r, 1− ϵ, 1+ ϵ)Aπk

(s, a))]

+(1−β)Es∼ρπk
(·)[min(rAπk

(s, a), clip(r, 1− ϵ, 1+ ϵ)Aπk
(s, a))] (4)

where ϵ restricts new π′
k from deviating from πk, and r =

π′
k(a|s)

πk(a|s) serves a dual purpose:

• For the on-policy samples, it acts as the probability ratio, quantifying the change in the
policy probability for a given action and forming the basis of the PPO clipping objective.

• For the off-policy demonstration samples, it functions both as the probability ratio
within the PPO objective and as the importance sampling mechanism to correct for the
distribution shift between the behavior policy and the current policy. This formulation pro-
vides an implicit constraint that anchors the updated policy π′

k to its immediate predecessor
πk, which, due to small PPO updates, remains in the neighborhood of the teacher’s state-
action distribution. While BPPO introduces a decaying clipping ratio to further mitigate
distribution shift, we employ a small, fixed clipping value as a more simple and robust
alternative.

The mathematical unity of this term enables the seamless integration of offline and online data into
a consistent objective function. Thus, MPPO is guaranteed to improve the policy monotonically.
Next, we need to ensure the similarity between the student policy and the demonstration policy.

4
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Theorem 2. πT is the teacher’s policy, and πS is the student’s policy. Given D = {τ1, τ2, ...τN},
where each τi is sampled with πT , the play style distance Dpolicy(πS , πT ) is non-increasing and is
systematically guided toward the demonstrator’s policy under the influence of the offline component
of MPPO, provided that ∀(st, at) ∈ τi, the value AπT

(st, at) is positive1.

Theorem 2 ensures that the policy is regularized to limit its divergence from the demonstrator’s
policy. The MPPO objective (Eq. equation 4) primarily drives performance improvement, which
may naturally lead the policy away from the teacher. The implicit constraint in Theorem 2 acts as
a regularizer, anchoring the policy to the demonstrator’s behavioral style. The hyperparameter β
governs the equilibrium between these dual objectives of proficiency and style consistency.

We have also modified the storage and replay mechanisms for the demonstration data in MPPO.
Existing LfD and offline algorithms typically provide datasets as collections of (s, a, r) or
(s, a, r, s′, a′) tuples. These methods either rely on 1-step TD estimation or require full processing
and computation of entire trajectories to recover episodic information, which is necessary for multi-
step TD or Monte Carlo-based advantage estimation. Additionally, a drawback of existing datasets
is that complete state information must be stored, which often results in large storage footprints.

We collect demonstration trajectories τi by recording the environment initialization seed and action
sequences {at}Tt=0. During the training phase, complete episodes can be recovered by replaying
these action sequences without modifying other online RL components. This enables full-episode
advantage estimation methods, such as GAE, to be applied to both online and offline samples.

Building on the aforementioned results, we derive a practical algorithm. During training, two types
of sampling actors are instantiated: 1) on-policy actors, which collect training data through environ-
ment interactions using the latest student policy as described in the original PPO algorithm; and 2)
LfD actors, which reproduce demonstrator data from the demonstration trajectories. To satisfy the
conditions of Theorem 2, we filter trajectories from the dataset D, retaining only those with positive
total returns for policy optimization. In particular, LfD actors initialize the game environment using
the recorded seed and feed the action sequences to generate complete (s, a, r, v, adv) tuples as train-
ing samples. Here, v denotes the state value estimated by the critic network, and adv represents the
GAE advantage calculated from r and v. This approach ensures that data collected by both types of
actors can be processed uniformly before being fed into the replay buffer for policy improvement.

To summarize, on the actor side, we modified the collection and replay mechanisms for offline data,
enabling accurate full-episode advantage estimates to be readily applied to offline samples. On the
learner side, theoretical results have established that MPPO can monotonically improve policies
in both online and offline reinforcement learning settings. Additionally, MPPO’s behavior cloning
constraint is implicitly defined between the demonstration policy πT and the student policy πS via
data filtering. The pseudocode for MPPO is shown in Algorithm 1.

5 EXPERIMENTS

In this section, we aim to investigate two key questions: 1) whether MPPO can meaningfully
enhance agents’ game proficiency beyond suboptimal demonstrations; and 2) whether the im-
proved agents can retain their game styles.

We adopt the IMPALA architecture (Espeholt et al., 2018) for our experiments. At the end of each
update step, the learner sends the latest model parameters to all actors, which then update their
parameters before initiating new episodes. For MPPO agents in each environment, we adjusted the
ratio of on-policy actors and LfD actors such that demonstration data accounts for approximately
5% (β = 0.05) of the total incoming data.

We conduct experiments across three environments of varying scales: Blackjack, Maze, and MCR
Mahjong. For each environment, we provide multiple suboptimal demonstrators, from which ap-
proximately 30K demonstration trajectories with positive outcomes are collected per demonstrator.
To compare storage footprints, we collect datasets in both our proposed format and the traditional
format. Results show that our format reduces storage usage by 98%2.

1The conclusion holds solely based on the positivity of AπT (st, at), regardless of how AπT is defined or
interpreted. The proof of the theorem is included in Appendix A

2Blackjack: 1.13MB VS 84MB, Maze: 120MB VS 18.3GB, Mahjong: 155MB VS 40GB.
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Algorithm 1 Mixed Proximal Policy Optimization
Input: Collections of Demonstrations: D = {τ1, τ2, ...τN},
Actor policy: πθ, Critic policy: Vϕ, Demo Indicator: d

1: for n=1,2,... do
2: if Demo Indicator d ∼ U(0, 1) < β then
3: sample τi = {(st, at)}Tt=0 ∼ D
4: Initialize environment
5: for t=0,1,...,T do
6: retrieve action at ∈ {at}Tt=0 from τi
7: estimate state value with Vϕ

8: send trajectories with positive returns to learner
9: end for

10: else
11: Randomly initialize environment
12: for t=0,1,...,T do
13: sample action at ∼ πθ

14: estimate state value with Vϕ

15: send all trajectories to learner
16: end for
17: end if
18: calculate advantage with GAE
19: update Vϕ and πθ with MPPO loss equation 4
20: end for

Student agents are evaluated in terms of their game proficiency and their play style distance to their
corresponding demonstrators. All experiments are repeated 5 times with different random seeds,
and detailed experimental configurations for each environment are provided in Appendix C. Our
anonymized data and codes are available at https://github.com/AMysteriousBeing/MPPO.

5.1 BLACKJACK

Settings Blackjack is a single agent stochastic game, and its rules and settings closely follow
the descriptions in Sutton & Barto (2018). For players, the goal is to attain a hand closer to 21
than the dealer’s without exceeding this value. We provide a rule-based Blackjack Bot A, whose
policy is represented by the red dashed lines in Figure 1. We trained MPPO student agents using
demonstration data from Bot A and compared their win rates with those of PPO agents, the optimal
policy, and Bot A’s policy. A total of 15,000 fixed seeds are used to test the win rates of the rule-
based bots and student agents.

Results As shown in Table 1A, the win rates of MPPO agents are comparable to those of the
optimal policy and PPO agents, yet significantly higher than those of Bot A. Given the tractable state
space of Blackjack, we can analyze agents’ game proficiency by examining their policy decision
boundaries. As illustrated in Figure 1, MPPO agents consistently converge between the optimal
policy and the demonstrator’s policy. This indicates that, in Blackjack, MPPO agents can surpass
the game proficiency of the demonstrator while maintaining its play styles, an observation further
supported by Table 1B. Specifically, MPPO agents’ policies are more distant from the optimal policy
and closer to Bot A’s policy compared to PPO agents’ policies.

5.2 MAZE NAVIGATION

Settings The maze environment is a deterministic pathfinding task set in a 19×19 random grid
world, where a valid path from the entrance to the exit is guaranteed. At each step within the maze,
agents move in a single direction until they encounter a fork or a wall. The environment terminates
under two conditions: if the agent reaches the exit, it receives a positive reward; if the step limit of
80 is exceeded, no reward is given. Within the maze, the agent can observe 5 adjacent grids around
its current position, and an example of a random maze is provided in Figure 2.
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Figure 1: Visualization of Decision Boundaries Learned by
PPO and MPPO Agents.

Figure 2: Example of a random
maze.

Table 1: Blackjack A). Win rates and B). Dpolicy

results
A Optimal Bot A PPO Agent MPPO Agent

43.26 40.84 43.40±0.17 42.82±0.08
B Optimal Policy Bot A
PPO 0.042±0.008 0.259±0.006
MPPO 0.135±0.004 0.150±0.011

Table 3: Mahjong’s Bot Information
Bot Name UUID Ranking Elo Score
Baseline 5eb7...123e 1 1328.76
Bot A 5fdf...5837 17 1240.50
Bot B 627e...c460 161 1128.66
Bot C 5ecc...eb73 266 980.51

Table 2: Maze A). Success Rates and B). Dpolicy

Results.
A)Agents Win Rate% Avg Step

Optimal 100.00 25.224
Bot A 92.40 53.450
Bot B 89.00 55.714
PPO 99.64±0.12 27.230±0.147
MPPO A 99.52±0.31 27.649 ±0.440
MPPO B 99.04±0.81 28.104 ± 0.649

B)Agents Optimal Bot A Bot B
PPO .057±.002 .509±.002 .492±.001
MPPO A .084±.001 .471±.013 .530±.008
MPPO B .076±.004 .521±.010 .481±.009

For maze-navigating bots, we provide Maze Bot A, a right-hand search (RHS) bot, and Maze Bot
B, a left-hand search (LHS) bot. The RHS and LHS bots implement right-hand and left-hand wall-
following behaviors, respectively. For the maze environment, we use success rates and average steps
to quantify agents’ proficiency. A run is considered successful if the agent reaches the exit within
the step limit. We evaluated agents in 500 unseen mazes.

Results As shown in Table 2A, the success rates of MPPO agents are comparable to those of
PPO agents, yet MPPO agents require slightly more steps on average to exit the mazes. In contrast
to their demonstrators, MPPO agents exhibit significantly higher success rates, with their average
steps reduced by approximately 20.

For the Dpolicy metric, Table 2B demonstrates that MPPO achieves meaningful policy improvement
while preserving the navigation styles of its demonstrators. This can be explained by the strategies
learned by the agents. The MPPO A agent, while converging to a near-optimal policy, retains a
stylistic preference for right-hand turns inherited from its demonstrator (Maze Bot A). Analytically,
this is reflected in its policy logits, which show a stronger propensity for right turns compared to the
PPO agent when facing ambiguous states (as the environment is partially observable). Behaviorally,
this bias manifests as more occasional detours to the right in certain maze configurations, which
directly accounts for the slightly increased average path length in Table 2A. The same principle
explains the results for MPPO B, which exhibits a symmetric preference for left-hand turns.

5.3 MAHJONG

Settings Mahjong is a multi-player game with imperfect information. The complexity of
imperfect-information games can be quantified by information sets (info sets), which refer to game

7
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states that players are unable to differentiate based on their observations. Mahjong features around
10121 info sets, with the average size of each set estimated at 1048, a complexity vastly exceeding
that of Heads-Up Texas Hold’em, where the average info set size is roughly 103 (Lu et al., 2023).

The game is played with a set of 144 tiles. Each player begins with 13 tiles, which are only observ-
able by themselves. They take turns to draw and discard a tile until one completes a winning hand
with a 14th tile. Our environment adopts the Mahjong Competition Rules (MCR) variant, which
contains 81 different scoring patterns. The details of the MCR are provided in Appendix B.

For the Mahjong environment, we additionally analyze the distribution of winning patterns between
agents, as these patterns reflect the strategies employed by the winners during the game. We denote
the distance between winning pattern distributions as Dtarget, defined in equation 5. Here, p denotes
an MCR pattern, P represents the set of all patterns, and πi(p) refers to the probability that an
agent following policy πi wins with pattern p. Compared to Dpolicy, Dtarget provides a more
straightforward measure of play style, enabling us to examine whether micro-level play styles indeed
influence macro-level strategies.

Dtarget =
1

2

∑
p∈P

|π1(p)− π2(p)| (5)

The MCR Mahjong bots are selected from Botzone (Zhou et al., 2018), an online platform for AI in
games. As shown in Table 3, the demonstrators, specifically Bot A, B, and C, are deliberately chosen
from different performance ranges. For reference, currently there are over 600 bots on the platform,
and Elo scores range from 460 to 1328. To accelerate training, MPPO and PPO agents (A, B, and
C) are initialized using behavior cloning checkpoints derived from Bot A, B, and C, respectively3.

All student agents are evaluated for game proficiency against the Baseline bot every 12 hours. The
win rates of the demonstrator bots are calculated directly from Botzone’s historical Elo data. Mean-
while, the win rate of each student agent is determined by testing the agent against the baseline bot
over 512 games. We use the final checkpoints of the agents to calculate Dpolicy. For the action dis-
tributions of the demonstrator bots, we collect (s, a) pairs from 100 trajectories not used in training,
and we set p(a|s) = 1a=ai , ∀ai ∈ A. We exclude states s with only one legal action and feed the re-
maining states into the agents’ models. Similarly, for Dtarget, the winning pattern distribution π(p)
of the demonstrator bots is calculated directly from their historical game data, whereas the π(p) of
student agents is derived from policy evaluation runs using 20,000 fixed seeds.

Table 4: Mahjong A). Win Rates and B). Dpolicy

Results.
A)Win Rate Teacher MPPO PPO

VS Base Bot Agents Agents
Bot A 43.67 51.05±1.43 36.72±3.11
Bot B 39.82 46.17±1.72 34.96±2.57
Bot C 37.05 42.42±3.66 33.32±1.41

B)Dpolicy MPPO PPO
Bot A 0.297±.016 0.678±.027
Bot B 0.318±.007 0.691±.013
Bot C 0.279±.020 0.772±.027

Table 5: Dtarget between teachers and students.
Values between student and demonstrator pairs
are highlighted.
Dtarget Bot A Bot B Bot C
Bot A 0 .023 .071
PPO A .195±.003 .208±.003 .215±.004
MPPO A .037±.008 .047±.009 .077±.002
Bot B .023 0 .063
PPO B 0.201±.007 .214±.007 .221±.008
MPPO B 0.047±.007 .039±.005 .068±.004
Bot C .071 0.063 0
PPO C .191±.006 .204±.007 .212±.007
MPPO C .086±.002 .076±.010 .047±.012

Results The performance of agents against the baseline is presented in Figure 3. MPPO agents
quickly surpass their demonstrators, and Bot A student agents defeat the baseline at the end of train-
ing. We recorded the best performance of each student agent across all runs, and the results are
summarized in Table 4A. For reference, the champion bot from the IJCAI 2024 Mahjong AI Com-
petition ranks 33rd in Botzone’s Elo rankings. This indicates that MPPO agents can outperform

3This warm-start is employed solely to reduce wall-clock time and resource consumption and is not a
methodological prerequisite, as shown in Appendix G.
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Figure 3: Bots’ win rates against the Baseline. Red dashed
lines are the demonstrators’ win rates against Baseline.
Shaded areas are 95% confidence intervals.

Figure 4: Occurrence of selected
patterns.

top-tier bots using suboptimal demonstrations. As shown in Table 4B, the Dpolicy values of stu-
dent agents relative to their demonstrator bots indicate that MPPO agents have action distributions
significantly closer to their demonstrator bots than PPO agents.

In Table 5, the Dtarget values between MPPO student agents and their corresponding demonstrators
are consistently the lowest, confirming the observation from Dpocliy. Additionally, Bot A and Bot
B have relatively close target distributions, and this proximity in target preference is also inherited
by MPPO agents A and B.

In the calculation of Dtarget, we observe that PPO agents rapidly lose the ability to achieve some
patterns while focusing on several others. In contrast, MPPO agents retain the ability to achieve
most patterns, a capability preserved by the demonstration trajectories, as illustrated in Figure 4.
This phenomenon explains why the Dtarget values of PPO agents are significantly higher than those
of MPPO agents.

Now we can address the questions posed at the beginning of this section. MPPO exhibits a strong
ability to surpass the proficiency of demonstrators and, in some cases, even outperform PPO. By
comparing Dpolicy values among PPO agents, MPPO agents, and bots, we conclude that MPPO
agents imitate the play styles of their demonstrators at the action level. Further analysis of Dtarget

in Mahjong confirms that such action-level style similarities extend to the strategy level, for example,
target selection in MCR Mahjong, and that MPPO agents thus retain their demonstrators’ play styles.

6 ABLATION AND COMPARATIVE STUDY

To analyze the impact of different components of the MPPO algorithm, we conducted ablation
studies using Bot A’s trajectories across each environment. Table 6 summarizes the win rates and
Dpolicy values between the agent groups and their corresponding demonstrators4.

For the 2x Demo and 0.5x Demo experiments, we doubled and halved the value of β, respectively,
to analyze the impact of the demonstration data ratio. As expected, a higher ratio of demonstration
data leads to a lower Dpolicy. The proportion of demonstration data also affects the final proficiency
of the agents. In each environment, the proficiency metrics of MPPO agents peak at different ratios,
indicating that different environments correspond to unique optimal ratios of demonstration data.

4The learning curves are presented in Appendix C.
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Table 6: Summarized ablation and comparison study results for A) Win rates and B) Dpolicy with
each environment’s Bot A. Ablation and comparative study results are separated by a horizontal line.
Highest Win rates and lowest Dpolicy values in ablation study results are highlighted.
Method A) Blackjack Maze Mahjong B) Blackjack Maze Mahjong
PPO 43.40±0.17 99.64±0.12 36.72±3.11 .259±.006 .509±.002 .678±.027
MPPO Ref 42.82±0.08 99.52±0.31 51.05±1.43 .150±.011 .471±.013 .297±.016
2x Demo 42.08±0.06 99.60±0.20 48.09±1.86 .093±.007 .457±.018 .287±.006
0.5x Demo 42.93±0.12 99.12±0.99 46.84±1.97 .186±.003 .492±.012 .324±.007
All Data 43.62±0.04 94.24±0.81 42.30±3.65 .294±.003 .572±.016 .775±.057
TD(0) Adv 43.31±0.28 99.40±0.69 17.34±0.74 .218±.004 .523±.003 .727±.042
GAIL 25.63±1.21 92.40±0.00 3.32±0.58 .501±.010 2e−6± 0 .784±.044
SAIL 38.50±0.01 94.52±0.70 19.73±3.30 .495±.006 .540±.017 .690±.025
DQfD 42.26±0.29 87.20±2.62 15.43±1.38 .411±.003 .659±.001 .793±.004
PPOfD 42.89±0.15 99.40±0.20 41.52±2.59 .231±.011 .347±.009 .335±.019

For the All Data experiments, we regenerate all datasets to include all trajectories for demonstration.
This violates the prerequisite condition Aπ(st, at) > 0 in Theorem 2, reducing the entire algorithm
to online PPO where a fraction of the actors sample from fixed seed environments with a fixed policy.
In this setting, Dpolicy values are high in all environments, and the win rates vary by environment.

For the TD(0) Adv experiments, we replace GAE with 1-step TD advantage, an approach com-
monly adopted in existing offline RL and LfD methods. This weakens the prerequisite condition
Aπ(st, at) > 0 in Theorem 2, since 1-step TD responds slowly to the final reward. Consequently,
we observe higher Dpolicy values in all settings. While TD(0) performs well in Blackjack and Maze,
it struggles in Mahjong, a more complex environment with long-horizon decision sequences, as it
fails to leverage all future information.

For the comparative study, we compare MPPO with other LfD and IL methods: GAIL, SAIL, and
DQfD. As shown in Table 6A, GAIL and SAIL perform well in Maze, a 2D state-space environment,
yet struggle in Mahjong, where defining similarity between state-action pairs is challenging. This
aligns with the findings of Brown et al. (2019), which note that adversarial-based IL methods do not
scale effectively to high-dimensional scenarios.

DQfD also performs poorly in Mahjong: its training trajectories for the game exhibit the same low-
entropy characteristics as those of the MPPO algorithm. To eliminate the influence of backbone
algorithms and differences in action-sampling strategies, we ported DQfD’s explicit supervised loss
to MPPO, creating PPOfD. In essence, PPOfD differs from MPPO solely in the mechanism by
which it encourages students to imitate demonstrators. PPOfD outperforms DQfD across all envi-
ronments; it is comparable to MPPO in Blackjack and Maze but lags significantly behind MPPO in
Mahjong. This indicates that our implicit behavior cloning constraint is more adaptable to diverse
environments than explicit loss functions.

Regarding play styles, as shown in Table 6B, MPPO is the only method that meaningfully maintains
low Dpolicy values while improving agent proficiency across all environments.

7 CONCLUSION

In this paper, we tackle the dual objectives of proficiency and diversity in game-playing agents
through MPPO, a method that enhances the proficiency of suboptimal agents while preserving their
play styles. Through theoretical analysis, MPPO unifies the loss objectives for both online and of-
fline samples, and implicitly guides student agents toward the demonstrators’ policies by adjusting
the empirical distribution of samples. Our experiments show that MPPO matches or even outper-
forms the pure online baseline (PPO) in proficiency, while preserving demonstrators’ game styles
by closely aligning with their policy distributions. Looking ahead, we aim to extend our method to
continuous action domains. In addition, exploring trajectory-level metrics, such as state visitation
distributions, presents a promising path for a richer characterization of behavioral style. We expect
this work to contribute to more engaging gameplay and a more diverse agent ecosystem.
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oung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Aga-
piou, Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard,
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A PROOF OF THEOREM 2

Proof. We study the effect of MPPO’s offline objective when clipping is not activated. Define
1a=x as 1 if action a = x, else 0, then πT (a|st) = 1a=at Then ∀(st, at) ∈ τi, the next iteration
policy π′

S(at|st) = πS(at|st) + α∇πS(at|st)
πT (at|st) AπT

(st, at), where α is a constant. The change in
2Dpolicy(πS , πT ) =

∑
a |πT (a|st), πS(a|st)| is:∑

a

(|πT (a|st), π′
S(a|st)|−|πT (a|st), πS(a|st)|)=

∑
a=at

(πS(a|st)−π′
S(a|st))+

∑
a̸=at

(π′
S(a|st)−πS(a|st))

= πS(at|st)− π′
S(at|st) + πS(at|st)− π′

S(at|st) = −2α
∇πS(at|st)

1a=at

AπT (st, at)

−α∇πS(at|st)
1a=at

AπT
<0 as α>0, thus Dpolicy(πS , πT ) decreases as training progresses if AπT is positive.

B MCR MAHJONG ENVIRONMENT DESCRIPTION

Mahjong is a four-player tile-based tabletop game involving imperfect information. The complexity
of imperfect-information games can be quantified by information sets, which refer to game states that
players are unable to differentiate based on their own observations. The average size of information
sets in Mahjong is approximately 1048, rendering it a considerably more complex game to solve
compared to Heads-Up Texas Hold’em, where the average size of information sets is around 103.
To enhance the readability of this paper, we highlight the terminologies used in Mahjong with bold
texts, and we differentiate scoring patterns with italicized texts.

In Mahjong, there are 144 tiles, as depicted in Figure 5A. Despite the existence of numerous rule
variants, the general rules of Mahjong remain the same. At a broad level, Mahjong is a pattern-
matching game. Each player starts with 13 tiles that are only visible to themselves, and they take
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Figure 5: Basics of Mahjong. A). All the Mahjong tiles. There are four identical copies for each tile.
B). Examples of Chow, Pung, and Kong. Only suited tiles are available for Chow. C). Example of the
GWP. D). Examples of special winning patterns, the special patterns are seperated and underscored.

turns to draw and discard one tile until one completes a winning pattern with a 14th tile. The general
winning pattern (GWP) of 14 tiles consists of four melds and a pair, as shown in Fig. 5C. A meld
can be in the form of Chow, Pung, or Kong, as shown in Fig. 5B. Besides drawing all the tiles
by themselves, players have the option to take the tile just discarded by another player instead of
drawing one to form a meld or declare a win.

B.1 OFFICIAL INTERNATIONAL MAHJONG

Official International Mahjong, also known as Mahjong Competition Rules (MCR), is a Mahjong
variant aiming to enhance the game’s complexity and competitiveness while weakening its gambling
nature. It specifies 81 scoring patterns, which range from 1 to 88 points. In addition to forming the
general winning pattern (GWP), players must accumulate at least 8 points by matching at least one
scoring pattern in order to declare a win. Among the 81 patterns, 56 are highly valued and are
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referred to as major patterns, since most winning hands usually include at least one of them. Some
special patterns do not adhere to the GWP, such as Seven Pairs, Thirteen Orphans, and Knitted
Straight, as illustrated in Fig 5D.

The final scores of each player depend on the winner’s fan value and the provider of the 14th winning
tile. Specifically, if the winner makes a winning hand of x fans by drawing a tile themselves, they
receive 8 + x points from the other three players. Instead, if the 14th winning tile comes from
another player, either discarded or added to the promoted pung, the winning player receives 8 + x
points from the provider of this tile, and only 8 points from the other two players.

B.2 MCR AS AN ENVIRONMENT

As an environment, MCR exhibits several unique characteristics that pose challenges to algorithms.

First, the 8-point-to-win rule of MCR adds an additional requirement to the hand patterns. This
requirement excludes many hand patterns that would otherwise be valid GWPs. Agents must be
capable of distinguishing between valid and invalid hand patterns to achieve a high level of per-
formance.In addition, the various scoring patterns of MCR render the environment multi-goaled.
Although most patterns comply with the GWPs, some special patterns do not. Notably, in many
situations, these special patterns can be the closest and easiest goals to pursue. These special pat-
terns add to the diverse choices of goals other than GWPs and thus require effective exploration by
agents.

Besides, the state transitions of Mahjong can be approximately represented by a directed acyclic
graph. To win a game, agents are expected to make around 10 to 40 consecutive decisions. Mis-
takes or poorly sampled actions in Mahjong can lead to much worse game states and are hard to
recover from, such as destroying some melds. Such a property of Mahjong conflicts with the need
for exploration and poses additional challenges to learning-based agents. Furthermore, Mahjong
involves high randomness and uncertainty from drawing tiles to opponent moves. During gameplay,
newly encountered game states are rarely seen during training, and it is difficult and impractical to
measure the similarity between states to draw on past experience. Thus, Mahjong predominantly
presents out-of-distribution (OOD) states to its agents and imposes high demands on its agents’
generalization capabilities.

B.3 REWARD SETTING FOR MCR MAHJONG ENVIRONMENT

In MCR Mahjong environment, we implement dense rewards to encourage agents to approach a
winning hand more quickly, by incorporating Shanten Distance to calculate the reward in each
step. Shanten Distance measures the minimum distance between the agents’ current hand and any
valid winning pattern. Thus, agents receive a small positive reward by decreasing Shanten Distance
and a small penalty by increasing Shanten Distance.

Additionally, MCR Mahjong environment differentiates between winning by self-drawing and win-
ning with a tile from other players. Agents will receive higher rewards if they win by self-drawing,
and other players will receive the same penalty for losing. Otherwise, it will receive a positive re-
ward, but the player who played the last tile will receive a larger penalty to discourage reckless play.
Table 7 presents the reward settigns for MCR Mahjong Environment.

C EXPERIMENT SETUP AND CONFIGURATIONS

We conducted our experiments on Intel Xeon Gold 6348 CPU@2.6GHz platform with one Nvidia
GeForce 3080 GPU and 1024GB RAM. For the software platform, we use Python 3.9.16, CUDA
12.4, Pytorch 2.5.1, and PyMahjongGB 1.2.0 on Ubuntu 20.04.

Tables 8, 9, and 10 present the experimental configurations for the Blackjack, Maze, and MCR
Mahjong environments, respectively. These configurations were determined via manual parameter
searching and comparative analysis of results upon agent convergence. For the MPPO students in
the MCR Mahjong environment, as they continue training from behavior-cloning checkpoints, their
policy networks are frozen for the first 1000 GPU iterations to fit the value networks alone without
breaking the policy.
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Table 7: Reward Settings for MCR Environment
Agent Event Value
Flat Step Penalty -0.0006
Decrease in Shanten Distance 0.07
Increase in Shanten Distance -0.07
Win by Self-drawing 0.8
Win with Other Player’s tile 0.6
Game Lost -0.2
Game Lost with playing the final tile -0.5
Nobody Wins 0

Table 8: BlackJack Experiment Configuration
Entry Setting Entry Setting

Replay Buffer Iteration Per
-Size 4100 -Model Sync 1

GAE Lambda 0.98 Entropy Coeff 0
Batch Size 4096 Entropy Decay 1

Policy Coeff 1 Value Coeff 0.1
Gamma 1 Learning Rate 1e-2

PPO Epoch 3 PPO Clip 0.05
Normal Actor 76 LfD Actor 4

Gail/Sail Gail/Sail
-Discriminator -Learning Rate 1e-5
-Steps/Iteration 8 Run Duration 1 hour

Table 9: Maze Experiment Configuration
Entry Setting Entry Setting

Replay Buffer Iteration Per
-Size 8200 -Model Sync 1

GAE Lambda 0.98 Entropy Coeff 0
Batch Size 8192 Entropy Decay 1

Policy Coeff 1 Value Coeff 0.5
Gamma 1 Learning Rate 5e-5

PPO Epoch 3 PPO Clip 0.05
Normal Actor 75 LfD Actor 5

Gail/Sail Gail/Sail
-Discriminator -Learning Rate 1e-5
-Steps/Iteration 8 -Run Duration 1 hour

Table 10: MCR Mahjong Experiment Configura-
tion

Entry Setting Entry Setting
Replay Buffer Iteration Per

-Size 4100 -Model Sync 1
GAE Lambda 0.98 Entropy Coeff 1.5e-1

Batch Size 4096 Entropy Decay 0.99998
Policy Coeff 1 Value Coeff 1

Gamma 1 Learning Rate 1e-5
PPO Epoch 5 PPO Clip 0.05

Normal Actor 70 LfD Actor 10
Gail/Sail Gail/Sail

-Discriminator -Learning Rate 1e-5
-Steps/Iteration 5 Run Duration 7 Days

Figure 6: Win Rate Curves During Training
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D WIN RATE CURVES

Figure 6 presents the win rate curves for all experimental runs in the ablation study and compar-
ative study. For each environment, we use Bot A to generate demonstration trajectories, which
are utilized by all variants of MPPO in the ablation study and by all methods in the comparative
study, except for PPO. For experiments in Mahjong environment, all methods are initialized with
behavior-cloning checkpoints except DQfD, which has its own behavior-cloning pre-training phase
before reinforcement learning.

It should be noted that the ”win rate” metric presented in this section refers to the win rate of games
generated during training, which differs from the win rates reported in the experiment section of
the main text. During training, actors sample from action distributions of behavior policies, while
during testing, actors always take the action with the highest logit value. In our original experiments,
the sample generation rate and the sample consumption rate were recorded at fixed time intervals;
however, to compare the performance of different algorithms, these metrics have been converted to
accumulated sample consumption.

E USE OF LARGE LANGUAGE MODEL

In the preparation of this manuscript, the author utilized a large language model (LLM) for the
purpose of text polishing and refinement. This includes improving grammar, sentence structure, and
overall clarity. The author remains solely responsible for the entire academic content, including all
ideas, arguments, and conclusions presented herein.

F COMPARATIVE ANALYSIS OF STYLE DISTANCE METRICS

We re-calculate Dpolicy for BlackJack, Maze, and Mahjong environment using W2 by setting
dA(ai, aj) = 1, ∀i ̸= j and dA(ai, ai) = 0. The Pearson correlation coefficient between these
two sets of aggregated distances was 0.9742, indicating a very strong positive correlation and con-
firming that TV divergence is a highly consistent relative measure for play style difference in our
contexts.

To address the relationship between the Total Variation (TV) divergence and the 2-Wasserstein (W2)
distance for measuring policy difference, we conducted a correlation analysis. We recomputed the
Dpolicy metric for the Blackjack, Maze, and Mahjong environments using the W2 distance, defining
the ground metric on the discrete action space as dA(ai, aj) = 1,∀i ̸= j. The per-state distances
were aggregated into a global Dpolicy(W2) following the same expectation as in Eq. equation 2.
The results are shown in Table 11, 12, and 13. The Pearson correlation coefficient between the
TV-based and the W2-based Dpolicy across all evaluated policy pairs was 0.9742. This near-perfect
positive correlation confirms that the TV divergence serves as a highly consistent and reliable relative
measure for play-style difference in our contexts, justifying its use for comparative analysis in this
work.

Table 11: Dpolicy(W2) results for Maze
Agents Optimal Bot A Bot B

PPO .057±.003 .510±.005 .494±.004
MPPO A .084±.001 .469±.010 .536±.011
MPPO B .076±.004 .536±.011 .470±.013

Table 12: Dpolicy(W2) results for Mahjong
Agents MPPO PPO
Bot A 0.297±.019 0.678±.022
Bot B 0.328±.006 0.691±.010
Bot C 0.279±.016 0.772±.022

Table 13: Dpolicy(W2) results for BlackJack
Agents Optimal Policy Bot A
PPO 0.042±0.009 0.259±0.007
MPPO 0.135±0.004 0.150±0.011

Table 14: Mahjong MPPO A Rand. Init. Results
Metric Warm Start Random Initialization
Win Rate 51.05±1.43 51.31±1.51
Dpolicy 0.297±.016 0.305±.010
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G MAHJONG MPPO AGENT WITH RANDOM INITIALIZATION

In the main experiments, MPPO and PPO agents in the Mahjong environment were warm-started
from behavior cloning (BC) checkpoints derived from their respective demonstrator bots. We clarify
that this warm-start is employed solely to reduce wall-clock time and resource consumption and is
not a methodological prerequisite for MPPO.

To validate this claim, we conducted an ablation study on the Mahjong environment using Bot A’s
demonstration data. We compared an MPPO agent initialized from a BC checkpoint against an
MPPO agent initialized from random weights. All other experimental settings, including network
architecture, hyperparameters, and the mixture ratio of demonstration data (β = 0.05), remained
identical.

The results are summarized in Table 14. The final win rates were nearly identical, and the policy
distance to the demonstrator remained low in both cases. This confirms that the demonstration data
integrated via the MPPO objective is sufficient to effectively guide policy improvement and style
preservation, even without a pre-trained policy. The complete win rate curve against the baseline
bot and the corresponding training curve for this experiment are presented in Figure 7 and Figure 8,
respectively.

Figure 7: Win Rate Against the Baseline for MPPO
Agent A When Trained from Random Initialization.

Figure 8: Win Rate Curves During Training
for MPPO Agent A (Random Initialization).
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