
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

POLICY IMPROVEMENT WITH STYLE-SPECIFIC
DEMONSTRATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Proficient game agents with diverse play styles enrich the gaming experience and
enhance the replay value of games. However, recent advancements in game AI
based on reinforcement learning have predominantly focused on improving profi-
ciency, whereas methods based on evolution algorithms generate agents with di-
verse play styles but exhibit subpar performance compared to RL methods. To ad-
dress this gap, this paper proposes Mixed Proximal Policy Optimization (MPPO),
a method designed to improve the proficiency of existing suboptimal agents while
retaining their distinct styles. MPPO unifies loss objectives for both online and
offline samples and introduces an implicit constraint to approximate demonstra-
tor policies by adjusting the empirical distribution of samples. Empirical results
across environments of varying scales demonstrate that MPPO achieves profi-
ciency levels comparable to, or even superior to, pure online algorithms while
preserving demonstrators’ play styles. This work presents an effective approach
for generating highly proficient and diverse game agents, ultimately contributing
to more engaging gameplay experiences.

1 INTRODUCTION

Games benefit from having bots with varied proficiency and diverse play styles. Bots with different
levels of proficiency accommodate a wider range of players, providing smoother gaming experi-
ences (Climent et al., 2024; Romero-Mendez et al., 2023). In games featuring competition and
cooperation, distinct agent styles provide value both as diversified opponents (Barros et al., 2023)
and as adaptive partners for players with varied strategic preferences (Sweller, 1994; Chen, 2017).
This is particularly evident in contemporary games that incorporate heterogeneous agents. From
aggressive melee assassins to defensive support mages, characters in MOBA titles (Dota 2, League
of Legends) and hero shooters (Valorant, Overwatch) possess distinct gameplay mechanics, and
corresponding AI agents must replicate these stylistic nuances to provide immersive player experi-
ences (Gao et al., 2023).

Advancement and application of Reinforcement Learning (RL) in game AI elevate agents’ profi-
ciency across various games. In traditional games, AlphaZero defeats top humans in chess, Shogi,
and Go (Silver et al., 2017); PerfectDou (Yang et al., 2024) outperforms other AIs in DouDiZhu;
AlphaHoldem (Zhao et al., 2022) beats human professionals in Texas Hold’em Poker. In com-
puter games, AlphaStar (Vinyals et al., 2019) reaches grandmaster level in StarCraft II, OpenAI
Five (Berner et al., 2019) defeats the Dota 2 world champion team, and JueWu (Ye et al., 2020)
beats top esport players in The Honor of Kings. However, these methods prioritize reward maxi-
mization, and agents’ play styles are not within their considerations.

Diversity among game-playing agents has also been gaining increasing attention in the research
community. In recent years, methods rooted in Quality-Diversity (QD) optimization (Lehman &
Stanley, 2011), a novel class of evolutionary algorithms, have been applied to game environments
to generate diverse AI agents (Canaan et al., 2019; Perez-Liebana et al., 2020). However, QD-based
methods rely on explicit elitism mechanisms (e.g., fixed grids or unstructured archives) that impose
artificial constraints such as predefined bounds or sensitive parameters. Consequently, in high-
dimensional and large parameter spaces like those in image-based Atari games, QD optimization
still exhibits a significant performance gap compared to RL-based approaches. (Fuks et al., 2019;
Chen et al., 2019; Badia et al., 2020).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We approach the dual goals of diversity and proficiency from an alternative perspective. Given a
set of suboptimal agents with distinct play styles, either through manual rule-based implementation
or through QD optimization methods, we aim to enhance their proficiency while preserving their
play styles. To this end, we propose Mixed Proximal Policy Optimization (MPPO), a Learning
from Demonstration (LfD) algorithm that leverages existing suboptimal agents to achieve this goal.
Specifically, we employ two types of actors: self-play actors improve policies and generalize learned
behaviors to unseen states, while LfD actors imitate the demonstrators’ policies. Samples generated
by these actors are processed and trained using unified loss objectives. Through theoretical analysis,
we prove that our method can monotonically improve the policy while satisfying implicit behavior
cloning constraints. We test MPPO in three environments of varying complexity: Blackjack, Maze
Navigation, and Mahjong. Empirical results demonstrate that MPPO is comparable or superior
to baseline methods, achieving meaningful improvements in agent proficiency while retaining the
unique characteristics of the original play styles. Notably, starting from suboptimal demonstrations,
one of our Mahjong agents surpasses the top-ranked bot on Botzone’s Elo ranking list (Zhou et al.,
2018). The following are the key contributions of this paper:

• This paper proposes MPPO, a method that leverages data from suboptimal demonstrators to
enhance policy proficiency while maintaining a relatively small distance from the demon-
strators’ policies.

• Theoretically, we demonstrate that our loss objectives are capable of monotonically im-
proving the policy while guiding the student policy to imitate the demonstrator’s.

• Enhancements to offline dataset collection and replay mechanisms enable the straightfor-
ward application of Monte Carlo-based advantage estimation, while reducing the storage
footprint by at least 98% in our test scenarios.

• We present a suite of environments of varying scales as a benchmark to test agents’ play
style diversity and proficiency, with each environment accompanied by multiple stylized
bots. In addition, we introduce a metric, Dpolicy, to quantify differences in play styles.

2 RELATED WORKS

Learning from Demonstration (LfD) is a broad research area that focuses on improving agents’
learning efficiency by leveraging demonstration data to reduce the cost of agents’ blind trial-and-
error in environments. Based on whether methods integrate RL, LfD methods can be categorized
into two categories: pure Imitation Learning (IL) (Zare et al., 2024), which learns policies solely
through imitating experts’ behaviors, and RL combined with demonstration learning, which utilizes
demonstration data to accelerate the RL process.

Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) is a prominent IL method
that considers IL problems as distribution matching, and it integrates adversarial training tech-
niques (Goodfellow et al., 2014) to assign rewards for actions. Although this architecture solves
challenges from sparse reward, students can hardly surpass demonstrator policies. POfD (Kang
et al., 2018) and SAIL (Zhu et al., 2020) are GAN-based methods that build upon GAIL to address
its limitations. However, these GAN-based methods suffer from inherent limitations of adversarial
training, such as training instability and limited scalability in high dimensions (Brown et al., 2019).

Combining demonstration learning with reinforcement learning (RL) is appropriately termed Rein-
forcement Learning with Expert Demonstrations (RLED) (Piot et al., 2014). The core difference
between RLED and IL is that the rewards are generated by the environment in RLED. The primary
goal of methods (Chemali & Lazaric, 2015; Vecerı́k et al., 2017; Hou et al., 2024) in this paradigm
is to accelerate training or enhance performance using expert demonstrations, which aligns with our
research focus. Additionally, our approach aims to preserve the demonstrators’ behavioral styles.

DQfD (Hester et al., 2017) stands as a prominent work within this paradigm. It integrates deep Q-
learning (Mnih et al., 2013) with demonstration data by combining multi-step temporal difference
(TD) and supervised losses, aiming to address state distribution bias and accelerate the conver-
gence of the learning process. While our method aligns with DQfD in terms of application settings,
there are key distinctions beyond the differences in their backbone algorithms. Specifically, DQfD
employs explicit supervised losses to guide student policies; instead, we utilize implicit soft con-
straints to guide student policies through demonstration data filtering—this is rooted in our prior

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

awareness that demonstrations may be suboptimal. Furthermore, we incorporate multi-step TD into
Generalized Advantage Estimation (GAE) (Schulman et al., 2015), which significantly simplifies
the algorithm’s architecture.

3 PRELIMINARIES

We formulate game environments as standard Markov Decision Processes (MDP) M =
⟨S,A, R,P, γ, ρ0⟩, where S and A are the observable state space and the action space, respec-
tively, R(s, a) represents the reward function, and γ ∈ (0, 1) is the discount factor. ρ0 is the initial
state distribution. Policy π(at|st) is defined as the distribution of actions conditioned on states at
step t, where st ∈ S and at ∈ A. P(s′|s, a) is the transition distribution of taking action a at
observable state s. Both randomness from environment dynamics and randomness due to unob-
servable state information are attributed to P in the formulation. The trajectory τ = {st, at}Tt=0.
The performance measure of policy is defined as J(π) = Eπ

∑T
t=0 γ

tR(st, at)). Then, the value
function, state-value function, and the advantage function can be defined as V (s) = J(π|s0 = s),
Q(s, a) = J(π|s0 = s, a0 = a), and A(s, a) = Q(s, a)− V (s), respectively.

Theorem 1. (Kakade & Langford, 2002) Let the discounted unnormalized visitation frequencies
as ρπ(s) =

∑T
t=0 γ

tP (st = s|π), and P (st = s|π) represents the probability of the t-th state equals
to s in trajectories generated by policy π. For any two policies π and π′, the performance difference
J∆(π

′, π) ≜ J(π′)− J(π) can be measured by:

J∆(π
′, π) = Es∼ρπ′ (·),a∼π′(·|s)[Aπ(s, a)]. (1)

This theorem implies that improving policy from π to π′ can be achieved by maximizing equation 1.
From this theorem, Trust Region Policy Optimization (TRPO) (Schulman et al., 2017a) and Behav-
ior Proximal Policy Optimization (BPPO) (Zhuang et al., 2023) are derived, which can guarantee
the monotonic performance improvement for online and offline settings, respectively.

Metric for Play Style Distance To quantify the similarity between play styles, metrics are defined
based on action distributions. Lin et al. (2024) used the 2-Wasserstein distance (W2) (Vaserstein,
1969) to measure the distance between play styles; however, W2 is computationally expensive as a
metric and, more critically, varies with changes in the action-to-logit mapping. Thus, we use total
variational divergence, denoted as Dpolicy, to overcome W2’s drawbacks and measure play style
distances. Defined in equation 2, it quantifies action-level play style discrepancies.

Dpolicy = E
s∈S

1

2

∑
a∈A

|π1(a|s)− π2(a|s)| (2)

4 PROPOSED ALGORITHM

Our algorithm integrates data from both online environmental interactions and offline demonstration
datasets. We therefore term it Mixed Proximal Policy Optimization (MPPO).

In this section, we establish two fundamental theoretical properties of MPPO: 1) the policy im-
proves monotonically, and 2) the policy converges monotonically toward the demonstration policy.
Subsequently, we provide the pseudocode and implementation details of MPPO.

We denote collections of demonstration trajectories as D = {τ1, τ2, ..., τN} and the policy at some
point during the learning process as πk. Our approach to policy improvement builds upon Theorem
1. However, directly optimizing equation 1 is intractable due to its dependence on the unknown
state distribution ρπ′

k
(s) of the new policy. Standard online RL methods, such as TRPO, address

this by approximating ρπ′
k
(s) with ρπk

(s), the state distribution of the current policy πk, thereby
guaranteeing monotonic improvement under on-policy data.

In our setting, which incorporates off-policy demonstration data, we propose a mixed state dis-
tribution. We sample a fraction β of state-action tuples from the demonstration dataset D, and
the remainder 1 − β from the current policy πk. This leads to the empirical state distribution

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ρmix(s) = βρD(s) + (1− β)ρπk
(s), where ρD(s) is the state visitation distribution in the demon-

stration data. Substituting this mixed distribution into equation 1 yields the following surrogate
objective:

Ĵ∆(π, πk) = Es∼βρD(·)+(1−β)ρπk
(·),a∼π(·|s)[Aπk

(s, a)]

=βEs∼ρD(·),a∼π(·|s)Aπk
(s, a)+(1−β)Es∼ρπk

(·),a∼π(·|s)Aπk
(s, a) (3)

The monotonic improvement guarantee for the second term in equation 3, which handles on-policy
data, is well-established by TRPO. For the first term, which utilizes off-policy demonstration data,
recent work on BPPO provides analogous theoretical guarantees, ensuring improvement under static
dataset constraints. We leverage these prior theoretical results. Since our objective is a linear com-
bination of the objectives from TRPO and BPPO, the monotonic improvement property is preserved
for the combined objective Ĵ∆.

For practical implementation and stability, we adopt the clipped surrogate objective from Proximal
Policy Optimization (PPO) (Schulman et al., 2017b), which provides a first-order approximation to
the constrained optimization problems solved by TRPO and BPPO. This yields our final practical
loss function:

LMPPO = βEs∼ρD(·)[min(rAπk
(s, a), clip(r, 1− ϵ, 1 + ϵ)Aπk

(s, a))]

+(1−β)Es∼ρπk
(·)[min(rAπk

(s, a), clip(r, 1−ϵ, 1+ϵ)Aπk
(s, a))] (4)

where ϵ is a small constant that restricts new π′
k from deviating from πk, and r =

π′
k(a|s)

πk(a|s) serves a
dual purpose:

• For the on-policy samples, it acts as the probability ratio, quantifying the change in the
policy probability for a given action and forming the basis of the PPO clipping objective.

• For the off-policy demonstration samples, it functions as an importance sampling ratio.
This ratio corrects for the distribution shift between the teacher’s policy πT and the current
student policy πk. The theoretically correct ratio is r =

π′
k(a|s)

πT (a|s) ; however, in practice, since
the teacher policy πT may be unknown or non-differentiable, we approximate it using
the previous policy πk, under the assumption that the policy update is sufficiently small
per iteration. BPPO mitigates the distribution shift with a decaying clipping ratio, and we
adopts a more simplified and robust alternative by setting a small, fixed clipping value from
the outset.

The mathematical unity of this term enables the seamless integration of offline and online data into
a consistent objective function. Thus, MPPO is guaranteed to improve the policy monotonically.
Next, we need to ensure the similarity between the student policy and the demonstration policy.

Theorem 2. πT is the teacher’s policy, and πS is the student’s policy. Given D = {τ1, τ2, ...τN},
where each τi is sampled with πT , Dpolicy(πS , πT) monotonically decreases under the influence of
the offline component of MPPO, provided that ∀(st, at) ∈ τi, the value AπT

(st, at) is positive1.

We have also modified the storage and replay mechanisms for the demonstration data in MPPO.
Existing LfD and offline algorithms typically provide datasets as collections of (s, a, r) or
(s, a, r, s′, a′) tuples. These methods either rely on 1-step TD estimation or require full processing
and computation of entire trajectories to recover episodic information, which is necessary for multi-
step TD or Monte Carlo-based advantage estimation. Additionally, a drawback of existing datasets
is that complete state information must be stored, which often results in large storage footprints.

We collect demonstration trajectories τi by recording the environment initialization seed and action
sequences {at}Tt=0. During the training phase, complete episodes can be recovered by replaying
these action sequences without modifying other online RL components. This enables full-episode
advantage estimation methods, such as GAE, to be applied to both online and offline samples.

Building on the aforementioned results, we derive a practical algorithm. During training, two types
of sampling actors are instantiated: 1) self-play actors, which collect training data through self-play

1The conclusion holds solely based on the positivity of AπT (st, at), regardless of how AπT is defined or
interpreted. The proof of the theorem is included in Appendix A

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

using the latest model as described in the original PPO algorithm; and 2) LfD actors, which repro-
duce demonstrator data from the demonstration trajectories. To satisfy the conditions of Theorem
2, we filter trajectories from the dataset D, retaining only those with positive total returns for policy
optimization. In particular, LfD actors initialize the game environment using the recorded seed and
feed the action sequences to generate complete (s, a, r, v, adv) tuples as training samples. Here,
v denotes the state value estimated by the critic network, and adv represents the GAE advantage
calculated from r and v. This approach ensures that data collected by both types of actors can be
processed uniformly before being fed into the replay buffer for policy improvement.

To summarize, on the actor side, we modified the collection and replay mechanisms for offline data,
enabling accurate full-episode advantage estimates to be readily applied to offline samples. On the
learner side, theoretical results have established that MPPO can monotonically improve policies
in both online and offline reinforcement learning settings. Additionally, MPPO’s behavior cloning
constraint is implicitly defined between the demonstration policy πT and the student policy πS via
data filtering. The pseudocode for MPPO is available in Appendix B.

5 EXPERIMENTS

In this section, we aim to investigate two key questions: 1) whether MPPO can meaningfully
enhance agents’ game proficiency beyond suboptimal demonstrations; and 2) whether the im-
proved agents can retain their game styles.

We adopt the IMPALA architecture (Espeholt et al., 2018) for our experiments. At the end of each
update step, the learner sends the latest model parameters to all actors, which then update their
parameters before initiating new episodes. For MPPO agents in each environment, we adjusted the
ratio of self-play actors and LfD actors such that demonstration data accounts for approximately
5% (β = 0.05) of the total incoming data.

We conduct experiments across three environments of varying scales: Blackjack, Maze, and MCR
Mahjong. For each environment, we provide multiple suboptimal demonstrators, from which ap-
proximately 30K demonstration trajectories with positive outcomes are collected per demonstrator.
To compare storage footprints, we collect datasets in both our proposed format and the traditional
format. Results show that our format reduces storage usage by 98%2.

Student agents are evaluated in terms of their game proficiency and their play style distance to their
corresponding demonstrators. All experiments are repeated 5 times with different random seeds,
and detailed experimental configurations for each environment are provided in Appendix D. Our
anonymized data and codes are available at https://github.com/AMysteriousBeing/MPPO.

5.1 BLACKJACK

Settings Blackjack is a single agent stochastic game, and its rules and settings closely follow
the descriptions in Sutton & Barto (2018). For players, the goal is to attain a hand closer to 21
than the dealer’s without exceeding this value. We provide a rule-based Blackjack Bot A, whose
policy is represented by the red dashed lines in Figure 1. We trained MPPO student agents using
demonstration data from Bot A and compared their win rates with those of PPO agents, the optimal
policy, and Bot A’s policy. A total of 15,000 fixed seeds are used to test the win rates of the rule-
based bots and student agents.

Results As shown in Table 1A, the win rates of MPPO agents are comparable to those of the
optimal policy and PPO agents, yet significantly higher than those of Bot A. Given the tractable state
space of Blackjack, we can analyze agents’ game proficiency by examining their policy decision
boundaries. As illustrated in Figure 1, MPPO agents consistently converge between the optimal
policy and the demonstrator’s policy. This indicates that, in Blackjack, MPPO agents can surpass
the game proficiency of the demonstrator while maintaining its play styles, an observation further
supported by Table 1B. Specifically, MPPO agents’ policies are more distant from the optimal policy
and closer to Bot A’s policy compared to PPO agents’ policies.

2Blackjack: 1.13MB VS 84MB, Maze: 120MB VS 18.3GB, Mahjong: 155MB VS 40GB.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: Visualization of Decision Boundaries Learned by
PPO and MPPO Agents.

Figure 2: Example of a random
maze.

5.2 MAZE NAVIGATION

Settings The maze environment is a deterministic pathfinding task set in a 19×19 random grid
world, where a valid path from the entrance to the exit is guaranteed. At each step within the maze,
agents move in a single direction until they encounter a fork or a wall. The environment terminates
under two conditions: if the agent reaches the exit, it receives a positive reward; if the step limit of
80 is exceeded, no reward is given. Within the maze, the agent can observe 5 adjacent grids around
its current position, and an example of a random maze is provided in Figure 2.

For maze-navigating bots, we provide Maze Bot A, a right-hand search (RHS) bot, and Maze Bot
B, a left-hand search (LHS) bot. The RHS bot maintains awareness of its heading and ensures
that its right-hand adjacent cell is a wall, while the LHS bot adheres to its left-hand wall. For the
maze environment, we use success rates and average steps to quantify agents’ proficiency. A run is
considered successful if the agent reaches the exit within the step limit. We evaluated agents in 500
unseen mazes.

Results As shown in Table 2A, the success rates of MPPO agents are comparable to those of
PPO agents, yet MPPO agents require slightly more steps on average to exit the mazes. In contrast
to their demonstrators, MPPO agents exhibit significantly higher success rates, with their average
steps reduced by approximately 20. For the Dpolicy metric, as shown in Figure 2B, the policies of
MPPO A agents are substantially closer to the optimal policy than to their demonstrator’s policy.
Additionally, their policies are closer to that of Maze Bot A than to that of Maze Bot B, a pattern
that also applies to MPPO B agents. This implies that MPPO agents are able to retain the styles of
their demonstrators in the maze environment.

Table 1: Blackjack A). Win rates and B). Dpolicy

results
A Optimal Bot A PPO Agent MPPO Agent

43.26 40.84 43.40±0.17 42.82±0.08
B Optimal Policy Bot A
PPO 0.042±0.008 0.259±0.006
MPPO 0.135±0.004 0.150±0.011

Table 3: Mahjong’s Bot Information
Bot Name UUID Ranking Elo Score
Baseline 5eb7...123e 1 1328.76
Bot A 5fdf...5837 17 1240.50
Bot B 627e...c460 161 1128.66
Bot C 5ecc...eb73 266 980.51

Table 2: Maze A). Success Rates and B). Dpolicy

Results.
A)Agents Win Rate% Avg Step

Optimal 100.00 25.224
Bot A 92.40 53.450
Bot B 89.00 55.714
PPO 99.64±0.12 27.230±0.147
MPPO A 99.52±0.31 27.649 ±0.440
MPPO B 99.04±0.81 28.104 ± 0.649

B)Agents Optimal Bot A Bot B
PPO .057±.002 .509±.002 .492±.001
MPPO A .084±.001 .471±.013 .530±.008
MPPO B .076±.004 .521±.010 .481±.009

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.3 MAHJONG

Settings Mahjong is a multi-player game with imperfect information. The complexity of
imperfect-information games can be quantified by information sets (info sets), which refer to game
states that players are unable to differentiate based on their observations. Mahjong features around
10121 info sets, with the average size of each set estimated at 1048, a complexity vastly exceeding
that of Heads-Up Texas Hold’em, where the average info set size is roughly 103 (Lu et al., 2023).

The game is played with a set of 144 tiles. Each player begins with 13 tiles, which are only observ-
able by themselves. They take turns to draw and discard a tile until one completes a winning hand
with a 14th tile. Our environment adopts the Mahjong Competition Rules (MCR) variant, which
contains 81 different scoring patterns. The details of the MCR are provided in Appendix C.

For the Mahjong environment, we additionally analyze the distribution of winning patterns between
agents, as these patterns reflect the strategies employed by the winners during the game. We denote
the distance between winning pattern distributions as Dtarget, defined in equation 5. Here, p denotes
an MCR pattern, P represents the set of all patterns, and πi(p) refers to the probability that an
agent following policy πi wins with pattern p. Compared to Dpolicy, Dtarget provides a more
straightforward measure of play style, enabling us to examine whether micro-level play styles indeed
influence macro-level strategies.

Dtarget =
1

2

∑
p∈P

|π1(p)− π2(p)| (5)

The MCR Mahjong bots are selected from Botzone (Zhou et al., 2018), an online platform for AI in
games. As shown in Table 3, the demonstrators, specifically Bot A, B, and C, are deliberately chosen
from different performance ranges. For reference, currently there are over 600 bots on the platform,
and Elo scores range from 460 to 1328. To accelerate training, MPPO and PPO agents (A, B, and
C) are initialized using behavior cloning checkpoints derived from Bot A, B, and C, respectively.

All student agents are evaluated for game proficiency against the Baseline bot every 12 hours. The
win rates of the demonstrator bots are calculated directly from Botzone’s historical Elo data. Mean-
while, the win rate of each student agent is determined by testing the agent against the baseline bot
over 512 games. We use the final checkpoints of the agents to calculate Dpolicy. For the action dis-
tributions of the demonstrator bots, we collect (s, a) pairs from 100 trajectories not used in training,
and we set p(a|s) = 1a=ai , ∀ai ∈ A. We exclude states s with only one legal action and feed the re-
maining states into the agents’ models. Similarly, for Dtarget, the winning pattern distribution π(p)
of the demonstrator bots is calculated directly from their historical game data, whereas the π(p) of
student agents is derived from self-play games using 20,000 fixed seeds.

Table 4: Mahjong A). Win Rates and B). Dpolicy

Results.
A)Win Rate Teacher MPPO PPO

VS Base Bot Agents Agents
Bot A 43.67 51.05±1.43 36.72±3.11
Bot B 39.82 46.17±1.72 34.96±2.57
Bot C 37.05 42.42±3.66 33.32±1.41

B)Dpolicy MPPO PPO
Bot A 0.297±.016 0.678±.027
Bot B 0.318±.007 0.691±.013
Bot C 0.279±.020 0.772±.027

Table 5: Dtarget between teachers and students.
Values between student and demonstrator pairs
are highlighted.
Dtarget Bot A Bot B Bot C
Bot A 0 .023 .071
PPO A .195±.003 .208±.003 .215±.004
MPPO A .037±.008 .047±.009 .077±.002
Bot B .023 0 .063
PPO B 0.201±.007 .214±.007 .221±.008
MPPO B 0.047±.007 .039±.005 .068±.004
Bot C .071 0.063 0
PPO C .191±.006 .204±.007 .212±.007
MPPO C .086±.002 .076±.010 .047±.012

Results The performance of agents against the baseline is presented in Figure 3. MPPO agents
quickly surpass their demonstrators, and Bot A student agents defeat the baseline at the end of train-
ing. We recorded the best performance of each student agent across all runs, and the results are
summarized in Table 4A. For reference, the champion bot from the IJCAI 2024 Mahjong AI Com-
petition ranks 33rd in Botzone’s Elo rankings. This indicates that MPPO agents can outperform

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Bots’ win rates against the Baseline. Red dashed
lines are the demonstrators’ win rates against Baseline.
Shaded areas are 95% confidence intervals.

Figure 4: Occurrence of selected
patterns.

top-tier bots using suboptimal demonstrations. As shown in Table 4B, the Dpolicy values of stu-
dent agents relative to their demonstrator bots indicate that MPPO agents have action distributions
significantly closer to their demonstrator bots than PPO agents.

In Table 5, the Dtarget values between MPPO student agents and their corresponding demonstrators
are consistently the lowest, confirming the observation from Dpocliy. Additionally, Bot A and Bot
B have relatively close target distributions, and this proximity in target preference is also inherited
by MPPO agents A and B.

In the calculation of Dtarget, we observe that PPO agents rapidly lose the ability to achieve some
patterns while focusing on several others. In contrast, MPPO agents retain the ability to achieve
most patterns, a capability preserved by the demonstration trajectories, as illustrated in Figure 4.
This phenomenon explains why the Dtarget values of PPO agents are significantly higher than those
of MPPO agents.

Now we can address the questions posed at the beginning of this section. MPPO exhibits a strong
ability to surpass the proficiency of demonstrators and, in some cases, even outperform PPO. By
comparing Dpolicy values among PPO agents, MPPO agents, and bots, we conclude that MPPO
agents imitate the play styles of their demonstrators at the action level. Further analysis of Dtarget

in Mahjong confirms that such action-level style similarities extend to the strategy level, for example,
target selection in MCR Mahjong, and that MPPO agents thus retain their demonstrators’ play styles.

6 ABLATION AND COMPARATIVE STUDY

To analyze the impact of different components of the MPPO algorithm, we conducted ablation
studies using Bot A’s trajectories across each environment. Table 6 summarizes the win rates and
Dpolicy values between the agent groups and their corresponding demonstrators3.

For the 2x Demo and 0.5x Demo experiments, we doubled and halved the value of β, respectively,
to analyze the impact of the demonstration data ratio. As expected, a higher ratio of demonstration
data leads to a lower Dpolicy. The proportion of demonstration data also affects the final proficiency
of the agents. In each environment, the proficiency metrics of MPPO agents peak at different ratios,
indicating that different environments correspond to unique optimal ratios of demonstration data.

3The learning curves are presented in Appendix C.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Summarized ablation and comparison study results for A) Win rates and B) Dpolicy with
each environment’s Bot A. Ablation and comparative study results are separated by a horizontal line.
Highest Win rates and lowest Dpolicy values in ablation study results are highlighted.
Method A) Blackjack Maze Mahjong B) Blackjack Maze Mahjong
PPO 43.40±0.17 99.64±0.12 36.72±3.11 .259±.006 .509±.002 .678±.027
MPPO Ref 42.82±0.08 99.52±0.31 51.05±1.43 .150±.011 .471±.013 .297±.016
2x Demo 42.08±0.06 99.60±0.20 48.09±1.86 .093±.007 .457±.018 .287±.006
0.5x Demo 42.93±0.12 99.12±0.99 46.84±1.97 .186±.003 .492±.012 .324±.007
All Data 43.62±0.04 94.24±0.81 42.30±3.65 .294±.003 .572±.016 .775±.057
TD(0) Adv 43.31±0.28 99.40±0.69 17.34±0.74 .218±.004 .523±.003 .727±.042
GAIL 25.63±1.21 92.40±0.00 3.32±0.58 .501±.010 2e−6± 0 .784±.044
SAIL 38.50±0.01 94.52±0.70 19.73±3.30 .495±.006 .540±.017 .690±.025
DQfD 42.26±0.29 87.20±2.62 15.43±1.38 .411±.003 .659±.001 .793±.004
PPOfD 42.89±0.15 99.40±0.20 41.52±2.59 .231±.011 .347±.009 .335±.019

For the All Data experiments, we regenerate all datasets to include all trajectories for demonstration.
This violates the prerequisite condition Aπ(st, at) > 0 in Theorem 2, reducing the entire algorithm
to online PPO where a fraction of the actors sample from fixed seed environments with a fixed policy.
In this setting, Dpolicy values are high in all environments, and the win rates vary by environment.

For the TD(0) Adv experiments, we replace GAE with 1-step TD advantage, an approach com-
monly adopted in existing offline RL and LfD methods. This weakens the prerequisite condition
Aπ(st, at) > 0 in Theorem 2, since 1-step TD responds slowly to the final reward. Consequently,
we observe higher Dpolicy values in all settings. While TD(0) performs well in Blackjack and Maze,
it struggles in Mahjong, a more complex environment with long-horizon decision sequences, as it
fails to leverage all future information.

For the comparative study, we compare MPPO with other LfD and IL methods: GAIL, SAIL, and
DQfD. As shown in Table 6A, GAIL and SAIL perform well in Maze, a 2D state-space environment,
yet struggle in Mahjong, where defining similarity between state-action pairs is challenging. This
aligns with the findings of Brown et al. (2019), which note that adversarial-based IL methods do not
scale effectively to high-dimensional scenarios.

DQfD also performs poorly in Mahjong: its training trajectories for the game exhibit the same low-
entropy characteristics as those of the MPPO algorithm. To eliminate the influence of backbone
algorithms and differences in action-sampling strategies, we ported DQfD’s explicit supervised loss
to MPPO, creating PPOfD. In essence, PPOfD differs from MPPO solely in the mechanism by
which it encourages students to imitate demonstrators. PPOfD outperforms DQfD across all envi-
ronments; it is comparable to MPPO in Blackjack and Maze but lags significantly behind MPPO in
Mahjong. This indicates that our implicit behavior cloning constraint is more adaptable to diverse
environments than explicit loss functions.

Regarding play styles, as shown in Table 6B, MPPO is the only method that meaningfully maintains
low Dpolicy values while improving agent proficiency across all environments.

7 CONCLUSION

In this paper, we tackle the dual objectives of proficiency and diversity in game-playing agents
through MPPO, a method that enhances the proficiency of suboptimal agents while preserving their
play styles. Through theoretical analysis, MPPO unifies the loss objectives for both online and of-
fline samples, and implicitly guides student agents toward the demonstrators’ policies by adjusting
the empirical distribution of samples. Our experiments show that MPPO matches or even outper-
forms the pure online baseline (PPO) in proficiency, while preserving demonstrators’ game styles
by closely aligning with their policy distributions. Looking ahead, we aim to extend our method to
continuous action domains. We expect this work to contribute to more engaging gameplay and a
more diverse agent ecosystem.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark, 2020.
URL https://arxiv.org/abs/2003.13350.

Pablo Barros, Özge Nilay Yalçın, Ana Tanevska, and Alessandra Sciutti. Incorporating rivalry in
reinforcement learning for a competitive game. Neural Computing and Applications, 35(23):
16739–16752, Aug 2023. ISSN 1433-3058. doi: 10.1007/s00521-022-07746-9. URL https:
//doi.org/10.1007/s00521-022-07746-9.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning. CoRR, abs/1912.06680, 2019. URL http://arxiv.org/abs/1912.06680.

Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond
suboptimal demonstrations via inverse reinforcement learning from observations, 2019. URL
https://arxiv.org/abs/1904.06387.

Rodrigo Canaan, Julian Togelius, Andy Nealen, and Stefan Menzel. Diverse agents for ad-hoc
cooperation in hanabi, 2019. URL https://arxiv.org/abs/1907.03840.

Jessica Chemali and Alessandro Lazaric. Direct policy iteration with demonstrations. In Proceed-
ings of the 24th International Conference on Artificial Intelligence, IJCAI’15, pp. 3380–3386.
AAAI Press, 2015. ISBN 9781577357384.

Stephen Chen. Learning player behavior models to enable cooperative planning for non-player
characters. PhD thesis, Carnegie Mellon University Pittsburgh, PA, 2017.

Zefeng Chen, Yuren Zhou, Xiaoyu He, and Siyu Jiang. A restart-based rank-1 evolution strategy for
reinforcement learning. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, IJCAI’19, pp. 2130–2136. AAAI Press, 2019. ISBN 9780999241141.

Laura Climent, Alessio Longhi, Alejandro Arbelaez, and Maurizio Mancini. A framework for de-
signing reinforcement learning agents with dynamic difficulty adjustment in single-player action
video games. Entertainment Computing, 50:100686, 2024. ISSN 1875-9521. doi: https://doi.org/
10.1016/j.entcom.2024.100686. URL https://www.sciencedirect.com/science/
article/pii/S1875952124000545.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IM-
PALA: scalable distributed deep-rl with importance weighted actor-learner architectures. CoRR,
abs/1802.01561, 2018. URL http://arxiv.org/abs/1802.01561.

Lior Fuks, Noor Awad, Frank Hutter, and Marius Lindauer. An evolution strategy with progres-
sive episode lengths for playing games. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19, pp. 1234–1240. International Joint Con-
ferences on Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/172. URL
https://doi.org/10.24963/ijcai.2019/172.

Yiming Gao, Feiyu Liu, Liang Wang, Zhenjie Lian, Weixuan Wang, Siqin Li, Xianliang Wang,
Xianhan Zeng, Rundong Wang, Jiawei Wang, Qiang Fu, Wei Yang, Lanxiao Huang, and Wei Liu.
Towards effective and interpretable human-agent collaboration in moba games: A communication
perspective, 2023. URL https://arxiv.org/abs/2304.11632.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014. URL https:
//arxiv.org/abs/1406.2661.

10

https://arxiv.org/abs/2003.13350
https://doi.org/10.1007/s00521-022-07746-9
https://doi.org/10.1007/s00521-022-07746-9
http://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1904.06387
https://arxiv.org/abs/1907.03840
https://www.sciencedirect.com/science/article/pii/S1875952124000545
https://www.sciencedirect.com/science/article/pii/S1875952124000545
http://arxiv.org/abs/1802.01561
https://doi.org/10.24963/ijcai.2019/172
https://arxiv.org/abs/2304.11632
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Todd Hester, Matej Vecerı́k, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Andrew
Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John P. Agapiou, Joel Z. Leibo, and Au-
drunas Gruslys. Learning from demonstrations for real world reinforcement learning. CoRR,
abs/1704.03732, 2017. URL http://arxiv.org/abs/1704.03732.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. CoRR, abs/1606.03476,
2016. URL http://arxiv.org/abs/1606.03476.

Muhan Hou, Koen Hindriks, Guszti Eiben, and Kim Baraka. “give me an example like this”:
Episodic active reinforcement learning from demonstrations. In Proceedings of the 12th Inter-
national Conference on Human-Agent Interaction, HAI ’24, pp. 287–295, New York, NY, USA,
2024. Association for Computing Machinery. ISBN 9798400711787. doi: 10.1145/3687272.
3688298. URL https://doi.org/10.1145/3687272.3688298.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the Nineteenth International Conference on Machine Learning, ICML ’02, pp.
267–274, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc. ISBN 1558608737.

Bingyi Kang, Zequn Jie, and Jiashi Feng. Policy optimization with demonstrations. In Jennifer
Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 2469–2478. PMLR,
10–15 Jul 2018. URL https://proceedings.mlr.press/v80/kang18a.html.

Joel Lehman and Kenneth O. Stanley. Evolving a diversity of virtual creatures through novelty
search and local competition. In Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’11, pp. 211–218, New York, NY, USA, 2011. Associa-
tion for Computing Machinery. ISBN 9781450305570. doi: 10.1145/2001576.2001606. URL
https://doi.org/10.1145/2001576.2001606.

Chiu-Chou Lin, Wei-Chen Chiu, and I-Chen Wu. Perceptual similarity for measuring decision-
making style and policy diversity in games. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856. URL https://openreview.net/forum?id=30C9AWBW49.

Yunlong Lu, Wenxin Li, and Wenlong Li. Official international mahjong: A new playground for ai
research. Algorithms, 16(5), 2023. ISSN 1999-4893. doi: 10.3390/a16050235. URL https:
//www.mdpi.com/1999-4893/16/5/235.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013. URL
https://arxiv.org/abs/1312.5602.

Diego Perez-Liebana, Yu-Jhen Hsu, Stavros Emmanouilidis, Bobby Khaleque, and Raluca Gaina.
Tribes: A new turn-based strategy game for ai research. Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, 16(1):252–258, Oct. 2020. doi: 10.
1609/aiide.v16i1.7438. URL https://ojs.aaai.org/index.php/AIIDE/article/
view/7438.

Bilal Piot, Matthieu Geist, and Olivier Pietquin. Boosted bellman residual minimization handling
expert demonstrations. In Toon Calders, Floriana Esposito, Eyke Hüllermeier, and Rosa Meo
(eds.), Machine Learning and Knowledge Discovery in Databases, pp. 549–564, Berlin, Heidel-
berg, 2014. Springer Berlin Heidelberg. ISBN 978-3-662-44851-9.

Edwin A. Romero-Mendez, Pedro C. Santana-Mancilla, Miguel Garcia-Ruiz, Osval A. Montesinos-
López, and Luis E. Anido-Rifón. The use of deep learning to improve player engagement in
a video game through a dynamic difficulty adjustment based on skills classification. Applied
Sciences, 13(14), 2023. ISSN 2076-3417. doi: 10.3390/app13148249. URL https://www.
mdpi.com/2076-3417/13/14/8249.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and P. Abbeel. High-dimensional
continuous control using generalized advantage estimation. CoRR, abs/1506.02438, 2015. URL
https://api.semanticscholar.org/CorpusID:3075448.

11

http://arxiv.org/abs/1704.03732
http://arxiv.org/abs/1606.03476
https://doi.org/10.1145/3687272.3688298
https://proceedings.mlr.press/v80/kang18a.html
https://doi.org/10.1145/2001576.2001606
https://openreview.net/forum?id=30C9AWBW49
https://www.mdpi.com/1999-4893/16/5/235
https://www.mdpi.com/1999-4893/16/5/235
https://arxiv.org/abs/1312.5602
https://ojs.aaai.org/index.php/AIIDE/article/view/7438
https://ojs.aaai.org/index.php/AIIDE/article/view/7438
https://www.mdpi.com/2076-3417/13/14/8249
https://www.mdpi.com/2076-3417/13/14/8249
https://api.semanticscholar.org/CorpusID:3075448

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region
policy optimization, 2017a. URL https://arxiv.org/abs/1502.05477.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017b. URL http://arxiv.org/abs/
1707.06347.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen
Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm. CoRR, abs/1712.01815, 2017. URL http://arxiv.org/abs/
1712.01815.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

John Sweller. Cognitive load theory, learning difficulty, and instructional design. Learn-
ing and Instruction, 4(4):295–312, 1994. ISSN 0959-4752. doi: https://doi.org/10.
1016/0959-4752(94)90003-5. URL https://www.sciencedirect.com/science/
article/pii/0959475294900035.

Leonid Nisonovich Vaserstein. Markov processes over denumerable products of spaces, describing
large systems of automata. Problemy Peredachi Informatsii, 5(3):64–72, 1969.

Matej Vecerı́k, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nico-
las Heess, Thomas Rothörl, Thomas Lampe, and Martin A. Riedmiller. Leveraging demon-
strations for deep reinforcement learning on robotics problems with sparse rewards. CoRR,
abs/1707.08817, 2017. URL http://arxiv.org/abs/1707.08817.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Aga-
piou, Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard,
David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, To-
bias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver
Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and
David Silver. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Na-
ture, 575(7782):350–354, Nov 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1724-z. URL
https://doi.org/10.1038/s41586-019-1724-z.

Guan Yang, Minghuan Liu, Weijun Hong, Weinan Zhang, Fei Fang, Guangjun Zeng, and Yue Lin.
Perfectdou: Dominating doudizhu with perfect information distillation, 2024. URL https:
//arxiv.org/abs/2203.16406.

Deheng Ye, Guibin Chen, Wen Zhang, Sheng Chen, Bo Yuan, Bo Liu, Jia Chen, Zhao Liu, Fuhao
Qiu, Hongsheng Yu, Yinyuting Yin, Bei Shi, Liang Wang, Tengfei Shi, Qiang Fu, Wei Yang,
Lanxiao Huang, and Wei Liu. Towards playing full MOBA games with deep reinforcement learn-
ing. CoRR, abs/2011.12692, 2020. URL https://arxiv.org/abs/2011.12692.

Maryam Zare, Parham M. Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey of imitation
learning: Algorithms, recent developments, and challenges. IEEE Transactions on Cybernetics,
54(12):7173–7186, 2024. doi: 10.1109/TCYB.2024.3395626.

Enmin Zhao, Renye Yan, Jinqiu Li, Kai Li, and Junliang Xing. Alphaholdem: High-performance
artificial intelligence for heads-up no-limit poker via end-to-end reinforcement learning. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 36(4):4689–4697, Jun. 2022. doi: 10.
1609/aaai.v36i4.20394. URL https://ojs.aaai.org/index.php/AAAI/article/
view/20394.

Haoyu Zhou, Haifeng Zhang, Yushan Zhou, Xinchao Wang, and Wenxin Li. Botzone: an online
multi-agent competitive platform for ai education. In Proceedings of the 23rd Annual ACM Con-
ference on Innovation and Technology in Computer Science Education, ITiCSE 2018, pp. 33–38,
New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450357074. doi:
10.1145/3197091.3197099. URL https://doi.org/10.1145/3197091.3197099.

12

https://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://www.sciencedirect.com/science/article/pii/0959475294900035
https://www.sciencedirect.com/science/article/pii/0959475294900035
http://arxiv.org/abs/1707.08817
https://doi.org/10.1038/s41586-019-1724-z
https://arxiv.org/abs/2203.16406
https://arxiv.org/abs/2203.16406
https://arxiv.org/abs/2011.12692
https://ojs.aaai.org/index.php/AAAI/article/view/20394
https://ojs.aaai.org/index.php/AAAI/article/view/20394
https://doi.org/10.1145/3197091.3197099

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Learning sparse rewarded tasks from sub-
optimal demonstrations. CoRR, abs/2004.00530, 2020. URL https://arxiv.org/abs/
2004.00530.

Zifeng Zhuang, Kun Lei, Jinxin Liu, Donglin Wang, and Yilang Guo. Behavior proximal policy
optimization, 2023. URL https://arxiv.org/abs/2302.11312.

A PROOF OF THEOREM 2

Proof. We study the effect of MPPO’s offline objective when clipping is not activated. Define
1a=x as 1 if action a = x, else 0, then πT (a|st) = 1a=at Then ∀(st, at) ∈ τi, the next iteration
policy π′

S(at|st) = πS(at|st) + α∇πS(at|st)
πT (at|st) AπT

(st, at), where α is a constant. The change in
2Dpolicy(πS , πT) =

∑
a |πT (a|st), πS(a|st)| is:∑

a

(|πT (a|st), π′
S(a|st)|−|πT (a|st), πS(a|st)|)=

∑
a=at

(πS(a|st)−π′
S(a|st))+

∑
a̸=at

(π′
S(a|st)−πS(a|st))

= πS(at|st)− π′
S(at|st) + πS(at|st)− π′

S(at|st) = −2α
∇πS(at|st)

1a=at

AπT (st, at)

−α∇πS(at|st)
1a=at

AπT
<0 as α>0, thus Dpolicy(πS , πT) decreases as training progresses if AπT is positive.

B PSEUDOCODE OF MPPO

Algorithm 1 Mixed Proximal Policy Optimization
Input: Collections of Demonstrations: D = {τ1, τ2, ...τN},
Actor policy: πθ, Critic policy: Vϕ, Demo Indicator: d

1: for n=1,2,... do
2: if Demo Indicator d ∼ U(0, 1) < β then
3: sample τi = {(st, at)}Tt=0 ∼ D
4: Initialize environment
5: for t=0,1,...,T do
6: retrieve action at ∈ {at}Tt=0 from τi
7: estimate state value with Vϕ

8: send trajectories with positive returns to learner
9: end for

10: else
11: Randomly initialize environment
12: for t=0,1,...,T do
13: sample action at ∼ πθ

14: estimate state value with Vϕ

15: send all trajectories to learner
16: end for
17: end if
18: calculate advantage with GAE
19: update Vϕ and πθ with MPPO loss equation 4
20: end for

C MCR MAHJONG ENVIRONMENT DESCRIPTION

Mahjong is a four-player tile-based tabletop game involving imperfect information. The complexity
of imperfect-information games can be quantified by information sets, which refer to game states that
players are unable to differentiate based on their own observations. The average size of information

13

https://arxiv.org/abs/2004.00530
https://arxiv.org/abs/2004.00530
https://arxiv.org/abs/2302.11312

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 5: Basics of Mahjong. A). All the Mahjong tiles. There are four identical copies for each tile.
B). Examples of Chow, Pung, and Kong. Only suited tiles are available for Chow. C). Example of the
GWP. D). Examples of special winning patterns, the special patterns are seperated and underscored.

sets in Mahjong is approximately 1048, rendering it a considerably more complex game to solve
compared to Heads-Up Texas Hold’em, where the average size of information sets is around 103.
To enhance the readability of this paper, we highlight the terminologies used in Mahjong with bold
texts, and we differentiate scoring patterns with italicized texts.

In Mahjong, there are 144 tiles, as depicted in Figure 5A. Despite the existence of numerous rule
variants, the general rules of Mahjong remain the same. At a broad level, Mahjong is a pattern-
matching game. Each player starts with 13 tiles that are only visible to themselves, and they take
turns to draw and discard one tile until one completes a winning pattern with a 14th tile. The general
winning pattern (GWP) of 14 tiles consists of four melds and a pair, as shown in Fig. 5C. A meld
can be in the form of Chow, Pung, or Kong, as shown in Fig. 5B. Besides drawing all the tiles
by themselves, players have the option to take the tile just discarded by another player instead of
drawing one to form a meld or declare a win.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C.1 OFFICIAL INTERNATIONAL MAHJONG

Official International Mahjong, also known as Mahjong Competition Rules (MCR), is a Mahjong
variant aiming to enhance the game’s complexity and competitiveness while weakening its gambling
nature. It specifies 81 scoring patterns, which range from 1 to 88 points. In addition to forming the
general winning pattern (GWP), players must accumulate at least 8 points by matching at least one
scoring pattern in order to declare a win. Among the 81 patterns, 56 are highly valued and are
referred to as major patterns, since most winning hands usually include at least one of them. Some
special patterns do not adhere to the GWP, such as Seven Pairs, Thirteen Orphans, and Knitted
Straight, as illustrated in Fig 5D.

The final scores of each player depend on the winner’s fan value and the provider of the 14th winning
tile. Specifically, if the winner makes a winning hand of x fans by drawing a tile themselves, they
receive 8 + x points from the other three players. Instead, if the 14th winning tile comes from
another player, either discarded or added to the promoted pung, the winning player receives 8 + x
points from the provider of this tile, and only 8 points from the other two players.

C.2 MCR AS AN ENVIRONMENT

As an environment, MCR exhibits several unique characteristics that pose challenges to algorithms.

First, the 8-point-to-win rule of MCR adds an additional requirement to the hand patterns. This
requirement excludes many hand patterns that would otherwise be valid GWPs. Agents must be
capable of distinguishing between valid and invalid hand patterns to achieve a high level of per-
formance.In addition, the various scoring patterns of MCR render the environment multi-goaled.
Although most patterns comply with the GWPs, some special patterns do not. Notably, in many
situations, these special patterns can be the closest and easiest goals to pursue. These special pat-
terns add to the diverse choices of goals other than GWPs and thus require effective exploration by
agents.

Besides, the state transitions of Mahjong can be approximately represented by a directed acyclic
graph. To win a game, agents are expected to make around 10 to 40 consecutive decisions. Mis-
takes or poorly sampled actions in Mahjong can lead to much worse game states and are hard to
recover from, such as destroying some melds. Such a property of Mahjong conflicts with the need
for exploration and poses additional challenges to learning-based agents. Furthermore, Mahjong
involves high randomness and uncertainty from drawing tiles to opponent moves. During gameplay,
newly encountered game states are rarely seen during training, and it is difficult and impractical to
measure the similarity between states to draw on past experience. Thus, Mahjong predominantly
presents out-of-distribution (OOD) states to its agents and imposes high demands on its agents’
generalization capabilities.

C.3 REWARD SETTING FOR MCR MAHJONG ENVIRONMENT

In MCR Mahjong environment, we implement dense rewards to encourage agents to approach a
winning hand more quickly, by incorporating Shanten Distance to calculate the reward in each
step. Shanten Distance measures the minimum distance between the agents’ current hand and any
valid winning pattern. Thus, agents receive a small positive reward by decreasing Shanten Distance
and a small penalty by increasing Shanten Distance.

Additionally, MCR Mahjong environment differentiates between winning by self-drawing and win-
ning with a tile from other players. Agents will receive higher rewards if they win by self-drawing,
and other players will receive the same penalty for losing. Otherwise, it will receive a positive re-
ward, but the player who played the last tile will receive a larger penalty to discourage reckless play.
Table 7 presents the reward settigns for MCR Mahjong Environment.

D EXPERIMENT SETUP AND CONFIGURATIONS

We conducted our experiments on Intel Xeon Gold 6348 CPU@2.6GHz platform with one Nvidia
GeForce 3080 GPU and 1024GB RAM. For the software platform, we use Python 3.9.16, CUDA
12.4, Pytorch 2.5.1, and PyMahjongGB 1.2.0 on Ubuntu 20.04.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Tables 8, 9, and 10 present the experimental configurations for the Blackjack, Maze, and MCR
Mahjong environments, respectively. These configurations were determined via manual parameter
searching and comparative analysis of results upon agent convergence. For the MPPO students in
the MCR Mahjong environment, as they continue training from behavior-cloning checkpoints, their
policy networks are frozen for the first 1000 GPU iterations to fit the value networks alone without
breaking the policy.

Table 7: Reward Settings for MCR Environment
Agent Event Value
Flat Step Penalty -0.0006
Decrease in Shanten Distance 0.07
Increase in Shanten Distance -0.07
Win by Self-drawing 0.8
Win with Other Player’s tile 0.6
Game Lost -0.2
Game Lost with playing the final tile -0.5
Nobody Wins 0

Table 8: BlackJack Experiment Configuration
Entry Setting Entry Setting

Replay Buffer Iteration Per
-Size 4100 -Model Sync 1

GAE Lambda 0.98 Entropy Coeff 0
Batch Size 4096 Entropy Decay 1

Policy Coeff 1 Value Coeff 0.1
Gamma 1 Learning Rate 1e-2

PPO Epoch 3 PPO Clip 0.05
Normal Actor 76 LfD Actor 4

Gail/Sail Gail/Sail
-Discriminator -Learning Rate 1e-5
-Steps/Iteration 8 Run Duration 1 hour

Table 9: Maze Experiment Configuration
Entry Setting Entry Setting

Replay Buffer Iteration Per
-Size 8200 -Model Sync 1

GAE Lambda 0.98 Entropy Coeff 0
Batch Size 8192 Entropy Decay 1

Policy Coeff 1 Value Coeff 0.5
Gamma 1 Learning Rate 5e-5

PPO Epoch 3 PPO Clip 0.05
Normal Actor 75 LfD Actor 5

Gail/Sail Gail/Sail
-Discriminator -Learning Rate 1e-5
-Steps/Iteration 8 -Run Duration 1 hour

Table 10: MCR Mahjong Experiment Configura-
tion

Entry Setting Entry Setting
Replay Buffer Iteration Per

-Size 4100 -Model Sync 1
GAE Lambda 0.98 Entropy Coeff 1.5e-1

Batch Size 4096 Entropy Decay 0.99998
Policy Coeff 1 Value Coeff 1

Gamma 1 Learning Rate 1e-5
PPO Epoch 5 PPO Clip 0.05

Normal Actor 70 LfD Actor 10
Gail/Sail Gail/Sail

-Discriminator -Learning Rate 1e-5
-Steps/Iteration 5 Run Duration 7 Days

E WIN RATE CURVES

Figure 6 presents the win rate curves for all experimental runs in the ablation study and compar-
ative study. For each environment, we use Bot A to generate demonstration trajectories, which
are utilized by all variants of MPPO in the ablation study and by all methods in the comparative
study, except for PPO. For experiments in Mahjong environment, all methods are initialized with
behavior-cloning checkpoints except DQfD, which has its own behavior-cloning pre-training phase
before reinforcement learning.

It should be noted that the ”win rate” metric presented in this section refers to the win rate of games
generated during training, which differs from the win rates reported in the experiment section of
the main text. During training, actors sample from action distributions of behavior policies, while
during testing, actors always take the action with the highest logit value. In our original experiments,
the sample generation rate and the sample consumption rate were recorded at fixed time intervals;
however, to compare the performance of different algorithms, these metrics have been converted to
accumulated sample consumption.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 6: Win Rate Curves During Training

F USE OF LARGE LANGUAGE MODEL

In the preparation of this manuscript, the author utilized a large language model (LLM) for the
purpose of text polishing and refinement. This includes improving grammar, sentence structure, and
overall clarity. The author remains solely responsible for the entire academic content, including all
ideas, arguments, and conclusions presented herein.

17

	Introduction
	Related Works
	Preliminaries
	Proposed Algorithm
	Experiments
	Blackjack
	Maze Navigation
	Mahjong

	Ablation and Comparative Study
	Conclusion
	Proof of Theorem 2
	Pseudocode of MPPO
	MCR Mahjong Environment Description
	Official International Mahjong
	MCR as an Environment
	Reward Setting for MCR Mahjong Environment

	Experiment Setup and Configurations
	Win Rate Curves
	Use of Large Language Model

