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Abstract

Recent work has shown that simple linear models can outperform several Transformer based
approaches in long term time-series forecasting. Motivated by this, we propose a Multi-layer
Perceptron (MLP) based encoder-decoder model, Time-series Dense Encoder (TiDE), for
long-term time-series forecasting that enjoys the simplicity and speed of linear models while
also being able to handle covariates and non-linear dependencies. Theoretically, we prove
that the simplest linear analogue of our model can achieve near optimal error rate for linear
dynamical systems (LDS) under some assumptions. Empirically, we show that our method
can match or outperform prior approaches on popular long-term time-series forecasting
benchmarks while being 5-10x faster than the best Transformer based model.

1 Introduction

Long-term forecasting, which is to predict several steps into the future given a long context or look-back, is
one of the most fundamental problems in time series analysis, with broad applications in energy, finance, and
transportation. Deep learning models (Wu et al., 2021; Nie et al., 2022) have emerged as a popular approach
for forecasting rich, multivariate, time series data, often outperforming classical statistical approaches such
as ARIMA or GARCH (Box et al., 2015). In several forecasting competitions such as the M5 competition
(Makridakis et al., 2020) and IARAI Traffic4cast contest (Kreil et al., 2020), almost all the winning solutions
are based on deep neural networks.

Author names are arranged in alphabetical order of last names.
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Various neural network architectures have been explored for forecasting, ranging from recurrent neural
networks to convolutional networks to graph neural networks. For sequence modeling tasks in domains such as
language, speech and vision, Transformers (Vaswani et al., 2017) have emerged as the most successful model,
even outperforming recurrent neural networks (LSTMs)(Hochreiter and Schmidhuber, 1997). Subsequently,
there has been a surge of Transformer-based forecasting papers (Wu et al., 2021; Zhou et al., 2021; 2022) in
the time-series community that have claimed state-of-the-art (SoTA) forecasting performance for long-horizon
tasks. However, recent work (Zeng et al., 2023) has shown that these Transformerss-based architectures
may not be as powerful as one might expect for time series forecasting, and can be easily outperformed by
a simple linear model on forecasting benchmarks. Such a linear model however has deficiencies since it is
ill-suited for modeling non-linear dependencies among the time-series sequence and the time-independent
covariates. Indeed, a very recent paper (Nie et al., 2022) proposed a new Transformer-based architecture that
obtains SoTA performance for deep neural networks on the standard multivariate forecasting benchmarks.

In this paper, we present a simple and effective deep learning architecture for long-term forecasting that
obtains superior performance when compared to existing SoTA neural network based models on the time
series forecasting benchmarks. Our Multi-Layer Perceptron (MLP)-based model is embarrassingly simple
without any self-attention, recurrent or convolutional mechanism. Therefore, it enjoys a linear computational
scaling in terms of the context and horizon lengths unlike many Transformer-based solutions.

The main contributions of this work are as follows:

• We propose the Time-series Dense Encoder (TiDE) model architecture for long-term time series
forecasting. TiDE encodes the past of a time-series along with covariates using dense MLPs and
then decodes time-series along with future covariates, again using dense MLPs.

• We analyze a simplified linear analogue of our model and prove that this linear model can achieve
near optimal error rate in linear dynamical systems (LDS) (Kalman, 1963) when the design matrix
of the LDS has maximum singular value bounded away from 1. We empirically verify this on a
simulated dataset where the linear model outperforms LSTMs and Transformers.

• On popular real-world long-term forecasting benchmarks, our model achieves better or similar
performance compared to prior neural network based baselines (>10% lower Mean Squared Error on
the largest dataset). At the same time, TiDE is 5x faster in terms of inference and more than 10x
faster in training when compared to the best Transformer based model.

2 Background and Related Work

Models for long-term forecasting can be broadly divided into either multivariate models or univariate models.

Multivariate models use the past of all the interrelated time-series variables and predict the future of all
the time-series as a joint function of those pasts. This includes the classical VAR models (Zivot and Wang,
2006). We will mostly focus on the prior work on neural network based models for long-term forecasting.
LongTrans (Li et al., 2019a) uses attention layer with LogSparse design to capture local information with near
linear space and computational complexity. Informer (Zhou et al., 2021) uses the ProbSparse self-attention
mechanism to achieve sub-quadratic dependency on the length of the context. Autoformer (Wu et al., 2021)
uses trend and seasonal decomposition with sub-quadratic self attention mechanism. FEDFormer (Zhou et al.,
2022) uses a frequency enchanced structure while Pyraformer (Liu et al., 2021) uses pyramidal self-attention
that has linear complexity and can attend to different granularities. The common theme among the above
works is the use of sub-quadratic approximations for the full self attention mechanism, that have been also
been used in other domains (Wang et al., 2020).

On the other hand, univariate models predict the future of a time-series variable as a function of only the
past of the same time-series and covariate features. In other words, the past of other time-series is not part
of the input during inference. There are two kinds of univariate models, local and global. Local univariate
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models are usually trained per time-series variable and inference is done per time-series as well. Different
variables have different models. Classical models like AR, ARIMA, exponential smoothing models (McKenzie,
1984) and the Box-Jenkins methodology (Box and Jenkins, 1968) belong in this category. We would refer the
reader to (Box et al., 2015) for an in depth discussion of these methods.

Global univariate models ignore the variable information and train one shared model for all the time series
on the whole dataset. This category mainly includes deep learning based architectures like (Salinas et al.,
2020). In the context of long-term forecasting, recently it was observed that a simple linear global univariate
model can outperform the transformer based multivariate approaches for long-term forecasting (Zeng et al.,
2023). DLinear (Zeng et al., 2023) learns a linear mapping from context to horizon, pointing to deficiencies in
sub-quadratic approximations to the self-attention mechanism. Indeed, a very recent model, PatchTST (Nie
et al., 2022) has shown that feeding contiguous patches of time-series as tokens to the vanilla self-attention
mechanism can beat the performance of DLinear in long-term forecasting benchmarks. MLPs have been used
for time-series forecasting in the popular N-BEATS model (Oreshkin et al.) and later extended in a follow up
work (Challu et al., 2023) that uses multi-rate sampling for better efficiency. However, these methods do not
explicitly mention supporting covariates and fall short of PatchTST in long-horizon benchmarks.

Recent work has improved the efficacy of RNNs (Kag et al., 2020; Lukoševičius and Uselis, 2022; Rusch
and Mishra, 2020; Li et al., 2019b) and applied parameter efficient SSMs (Gu et al.; Gupta et al., 2022) to
modeling long range dependencies in sequences. They have demonstrated improvement over some transformer
based architectures on sequence modeling benchmarks including speech and 1-D pixel level image classification
tasks. We compare our method to S4 model (Gu et al.), which is the only such method that has been applied
to global univariate and global multivariate forecasting.

Note that all categories of models can be fairly compared on the task of multivariate long-term forecasting if
they are evaluated on the same test set for the same task, which is the protocol that we follow in Section 5.

3 Problem Setting

Before we describe the problem setting we will need to setup some general notation.

3.1 Notation

We will denote matrices by bold capital letters like X ∈ RN×T . The slice notation i : j denotes the set
{i, i+ 1, · · · j} and [n] := {1, 2, · · · , n}. The individual rows and columns are always treated as column vectors
unless otherwise specified. We can also use sets to select sub-matrices i.e X[I,J ] denotes the sub-matrix
with rows in I and columns in J . X[:, j] means selecting the j-th column while X[i, :] means the i-th row.
The notation [v; u] will denote the concatenation of the two column vectors and the same notation can be
used for matrices along a dimension.

3.2 Multivariate Forecasting

In this section we first abstract out the core problem in long-term multivariate forecasting. There are N
time-series in the dataset. The look-back of the i-th time-series will be denoted by y(i)

1:L, while the horizon is
denoted by y(i)

L+1:L+H . The task of the forecaster is to predict the horizon time-points given access to the
look-back.

In many forecasting scenarios, there might be dynamic and static covariates that are known in advance. With
slight abuse of notation, we will use x

(i)
t ∈ Rr to denote the r-dimensional dynamic covariates of time-series i

at time t. For instance, they can be global covariates (common to all time-series) such as day of the week,
holidays etc or specific to a time-series for instance the discount of a particular product on a particular day
in a demand forecasting use case. We can also have static attributes of a time-series denoted by a(i) such as
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features of a product in retail that do not change with time. In many applications, these covariates are vital
for accurate forecasting and a good model architecture should have provisions to handle them.

The forecaster can be thought of as a function that maps the history y(i)
1:L, the dynamic covariates x

(i)
1:L+H

and the static attributes a(i) to an accurate prediction of the future, i.e.,

f :
({

y(i)
1:L

}N

i=1
,
{

x
(i)
1:L+H

}N

i=1
,
{

a(i)
}N

i=1

)
−→

{
ŷ(i)

L+1:L+H

}N

i=1
. (1)

The accuracy of the prediction will be measured by a metric that quantifies their closeness to the actual
values. For instance, if the metric is Mean Squared Error (MSE), then the goodness of fit is measured by,

MSE
({

y(i)
L+1:L+H

}N

i=1
,
{

ŷ(i)
L+1:L+H

}N

i=1

)
= 1
NH

N∑
i=1

∥∥∥y(i)
L+1:L+H − ŷ(i)

L+1:L+H

∥∥∥2

2
. (2)

4 Model

Recently, it has been observed that simple linear models (Zeng et al., 2023) can outperform Transformers
based models in several long-term forecasting benchmarks. On the other hand, linear models will fall short
when there are inherent non-linearities in the dependence of the future on the past. Furthermore, linear
models would not be able to model the dependence of the prediction on the covariates as evidenced by the
fact that (Zeng et al., 2023) do not use time-covariates as they hurt performance.

In this section, we introduce a simple and efficient MLP based architecture for long-term time-series forecasting.
In our model we add non-linearities in the form of MLPs in a manner that can handle past data and covariates.
The model is dubbed TiDE (Time-series Dense Encoder) as it encodes the past of a time-series along with
covariates using dense MLP’s and then decodes the encoded time-series along with future covariates.

An overview of our architecture has been presented in Figure 1. Our model is applied in a channel independent
manner (the term was used in (Nie et al., 2022)) i.e the input to the model is the past and covariates of one
time-series at a time

(
y(i)

1:L,x
(i)
1:L,a

(i)
)
and it maps it to the prediction of that time-series ŷ(i)

L+1:L+H . Note
that the weights of the model are trained globally using the whole dataset. A key component in our model is
the MLP residual block towards the right of the figure.

Residual Block. We use the residual block as the basic layer in our architecture. It is an MLP with one
hidden layer with ReLU activation. It also has a skip connection that is fully linear. We use dropout on the
linear layer that maps the hidden layer to the output and also use layer norm at the output.

We separate the model into encoding and decoding sections. The encoding section has a novel feature
projection step followed by a dense MLP encoder. The decoder section consists of a dense decoder followed
by a novel temporal decoder. Note that the dense encoder (green block with ne layers) and decoder blocks
(yellow block with nd layers) in Figure 1 can be merged into a single block. For the sake of exposition we keep
them separate as we tune the hidden layer size in the two blocks separately. Also the last layer of the decoder
block is unique in the sense that its output dimension needs to be H × p before the reshape operation.

4.1 Encoding

The task of the encoding step is to map the past and the covariates of a time-series to a dense representation
of the features. The encoding in our model has two key steps.

Feature Projection. We use a residual block to map x
(i)
t at each time-step (both in the look-back and the

horizon) into a lower dimensional projection of size r̃ � r (temporalWidth). This operation can be described
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Figure 1: Overview of TiDE architecture. The dynamic covariates per time-point are mapped to a lower
dimensional space using a feature projection step. Then the encoder combines the look-back along with the
projected covariates with the static attributes to form an encoding. The decoder maps this encoding to a
vector per time-step in the horizon. Then a temporal decoder combines this vector (per time-step) with the
projected features of that time-step in the horizon to form the final predictions. We also add a global linear
residual connection from the look-back to the horizon.

as,

x̃
(i)
t = ResidualBlock

(
x

(i)
t

)
. (3)

This is essentially a dimensionality reduction step since flattening the dynamic covariates for the whole
look-back and horizon would lead to an input vector of size (L+H)r which can be prohibitively large. On
the other hand, flattening the reduced features would only lead to a dimension of (L+H)r̃.

Dense Encoder. As the input to the dense encoder, we stack and flatten all the past and future projected
covariates, concatenate them with the static attributes and the past of the time-series. Then we map them to
an embedding using an encoder which contains multiple residual blocks. This can be written as,

e(i) = Encoder
(

y(i)
1:L; x̃

(i)
1:L+H ; a(i)

)
(4)
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The encoder internal layer sizes are all set to hiddenSize and the total number of layers in the encoder is set
to ne (numEncoderLayers).

4.2 Decoding

The decoding in our model maps the encoded hidden representations into future predictions of time series. It
also comprises of two operations, dense decoder and temporal decoder.

Dense Decoder. The first decoding unit is a stacking of several residual blocks like the encoder with the
same hidden layer sizes. It takes as an input the encoding e(i) and maps it to a vector g(i) of size H × p
where p is the decoderOutputDim. This vector is then reshaped to a matrix D(i) ∈ Rd×H . The t-th column
i.e d

(i)
t can be thought of as the decoded vector for the t-th time-period in the horizon for all t ∈ [H]. This

whole operation can be described as,

g(i) = Decoder
(

e(i)
)
∈ Rp.H

D(i) = Reshape
(

g(i)
)
∈ Rp×H .

The number of layers in the dense decoder is nd (numDecoderLayers).

Temporal Decoder. Finally, we use the temporal decoder to generate the final predictions. The temporal
decoder is just a residual block with output size 1 that maps the decoded vector d

(i)
t at t-th horizon time-step

concatenated with the projected covariates x̃
(i)
L+t i.e

ŷ(i)
L+t = TemporalDecoder

(
d

(i)
t ; x̃

(i)
L+t

)
∀t ∈ [H].

This operation adds a "highway" from the future covariates at time-step L+ t to the prediction at time-step
L+ t. This can be useful if some covariates have a strong direct effect on a particular time-step’s actual value.
For instance, in retail demand forecasting a holiday like Mother’s day might strongly affect the sales of certain
gift items. Such signals can be lost or take longer for the model to learn in absence of such a highway. We
denote the hyperparameter controlling the hidden size of the temporal decoder as temporalDecoderHidden.

Finally, we add a global residual connection that linearly maps the look-back y(i)
1:L to a vector the size of the

horizon which is added to the prediction ŷ(i)
L+1:L+H . This ensures that a purely linear model like the one

in (Zeng et al., 2023) is always a subclass of our model.

Training and Evaluation. The model is trained using mini-batch gradient descent where each batch
consists of a batchSize number of time-series and the corresponding look-back and horizon time-points. We
use MSE as the training loss. Each epoch consists of all look-back and horizon pairs that can be constructed
from the training period i.e. two mini-batches can have overlapping time-points. This was standard practice
in all prior work on long-term forecasting (Zeng et al., 2023; Liu et al., 2021; Wu et al., 2021; Li et al., 2019a).

The model is evaluated on a test set on every (look-back, horizon) pair that can be constructed from the test
set. This is usually known as rolling validation/evaluation. A similar evaluation on a validation set can be
used optionally used to tune parameters for model selection.

5 Experimental Results

In this section we present our main experimental results on popular long-term forecasting benchmarks. We
also perform an ablation study that shows the usefulness of the temporal decoder.
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5.1 Long-Term Time-Series Forecasting

Datasets. We use seven commonly used long-term forecasting benchmark datasets: Weather, Traffic,
Electricity and 4 ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2). We refer the reader to (Wu et al., 2021)
for a detailed discussion on the datasets. In Table 1 we provide some statistics about the datasets. Note
that Traffic and Electricity are the largest datasets with > 800 and > 300 time-series each having tens of
thousands of time-points. Since we are only interested in long-term forecasting results in this section, we
omit the shorter horizon ILI dataset.

Dataset #Time-Series #Time-Points Frequency
Electricity 321 26304 1 Hour
Traffic 862 17544 1 Hour
Weather 21 52696 10 Minutes
ETTh1 7 17420 1 Hour
ETTh2 7 17420 1 Hour
ETTm1 7 69680 15 Minutes
ETTm2 7 69680 15 Minutes

Table 1: Summary of datasets.

Baselines and Setup. We choose SOTA Transformers based models for time-series including Fed-
former (Zhou et al., 2022), Autoformer (Wu et al., 2021), Informer (Zhou et al., 2021), Pyraformer (Liu et al.,
2021) and LongTrans (Li et al., 2019a). Recently, DLinear (Zeng et al., 2023) showed that simple linear
models can outperform the above methods and therefore DLinear serves as an important baseline. We include
N-HiTS (Challu et al., 2023) which is an improvement over the famous NBeats (Oreshkin et al.) model.
Finally we compare with PatchTST (Nie et al., 2022) where they showed that vanilla Transformers applied
to time-series patches can be very effective. The results for all Transformer based baselines are reported
from (Nie et al., 2022).

For each method, the look-back window was tuned in {24, 48, 96, 192, 336, 720}. We report the DLinear
numbers directly from the original paper (Zeng et al., 2023). For our method we always use context length of
720 for all horizon lengths in {96, 192, 336, 720}. All models were trained using MSE as the training loss. In
all the datasets, the train:validation:test ratio is 7:1:2 as dictated by prior work. Note that all the experiments
are performed on standard normalized datasets (using the mean and the standard deviations in the training
period) in order to be consitent with prior work (Wu et al., 2021).

Our Model. We use the architecture described in Figure 1. We tune our hyper-parameters using the
validation set rolling validation error. We provide details about our hyper-parameters in Appendix B.3. As
global dynamic covariates, we use simple time-derived features like minute of the hour, hour of the day, day
of the week etc which are normalized similar to (Alexandrov et al., 2020). Note that these features were
turned off in DLinear since it was observed to hurt the performance of the linear model, however our model
can easily handle such features. Our model is trained in Tensorflow (Abadi, 2016) and we optimize using
the default settings of the Adam optimizer (Kingma and Ba, 2014). We provide our implementation in the
supplementary with scripts to reproduce the results in Table 2.

Results. We present Mean Squared Error (MSE) and Mean Absolute Error (MSE) for all datasets and
methods in Table 2. For our model we report the mean metric out of 5 independent runs for each setting.
The bold-faced numbers are from the best model or within statistical significance of the best model in terms
of two standard error intervals. Note that different predictive statistics are optimal for different target
metrics (Awasthi et al., 2021; Gneiting, 2011) and therefore we should look at a target metric that is closely

1Note that there was a bug in the original test dataloader that affected the result significantly in smaller datasets like ETTh1
and ETTh2. We report the PatchTST results after correcting this bug in the dataloader.
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Models TiDE PatchTST/64 N-HiTS DLinear FEDformer Autoformer Informer Pyraformer LogTrans
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea
th
er 96 0.166 0.222 0.149 0.198 0.158 0.195 0.176 0.237 0.238 0.314 0.249 0.329 0.354 0.405 0.896 0.556 0.458 0.490

192 0.209 0.263 0.194 0.241 0.211 0.247 0.220 0.282 0.275 0.329 0.325 0.370 0.419 0.434 0.622 0.624 0.658 0.589
336 0.254 0.301 0.245 0.282 0.274 0.300 0.265 0.319 0.339 0.377 0.351 0.391 0.583 0.543 0.739 0.753 0.797 0.652
720 0.313 0.340 0.314 0.334 0.401 0.413 0.323 0.362 0.389 0.409 0.415 0.426 0.916 0.705 1.004 0.934 0.869 0.675

Tr
affi

c 96 0.336 0.253 0.360 0.249 0.402 0.282 0.410 0.282 0.576 0.359 0.597 0.371 0.733 0.410 2.085 0.468 0.684 0.384
192 0.346 0.257 0.379 0.256 0.420 0.297 0.423 0.287 0.610 0.380 0.607 0.382 0.777 0.435 0.867 0.467 0.685 0.390
336 0.355 0.260 0.392 0.264 0.448 0.313 0.436 0.296 0.608 0.375 0.623 0.387 0.776 0.434 0.869 0.469 0.734 0.408
720 0.386 0.273 0.432 0.286 0.539 0.353 0.466 0.315 0.621 0.375 0.639 0.395 0.827 0.466 0.881 0.473 0.717 0.396

El
ec
tr
ic
ity 96 0.132 0.229 0.129 0.222 0.147 0.249 0.140 0.237 0.186 0.302 0.196 0.313 0.304 0.393 0.386 0.449 0.258 0.357

192 0.147 0.243 0.147 0.240 0.167 0.269 0.153 0.249 0.197 0.311 0.211 0.324 0.327 0.417 0.386 0.443 0.266 0.368
336 0.161 0.261 0.163 0.259 0.186 0.290 0.169 0.267 0.213 0.328 0.214 0.327 0.333 0.422 0.378 0.443 0.280 0.380
720 0.196 0.294 0.197 0.290 0.243 0.340 0.203 0.301 0.233 0.344 0.236 0.342 0.351 0.427 0.376 0.445 0.283 0.376

ET
T
h1

96 0.375 0.398 0.379 0.401 0.378 0.393 0.375 0.399 0.376 0.415 0.435 0.446 0.941 0.769 0.664 0.612 0.878 0.740
192 0.412 0.422 0.413 0.429 0.427 0.436 0.412 0.420 0.423 0.446 0.456 0.457 1.007 0.786 0.790 0.681 1.037 0.824
336 0.435 0.433 0.435 0.436 0.458 0.484 0.439 0.443 0.444 0.462 0.486 0.487 1.038 0.784 0.891 0.738 1.238 0.932
720 0.454 0.465 0.446 0.464 0.472 0.561 0.501 0.490 0.469 0.492 0.515 0.517 1.144 0.857 0.963 0.782 1.135 0.852

ET
T
h2

96 0.270 0.336 0.274 0.337 0.274 0.345 0.289 0.353 0.332 0.374 0.332 0.368 1.549 0.952 0.645 0.597 2.116 1.197
192 0.332 0.380 0.338 0.376 0.353 0.401 0.383 0.418 0.407 0.446 0.426 0.434 3.792 1.542 0.788 0.683 4.315 1.635
336 0.360 0.407 0.363 0.397 0.382 0.425 0.448 0.465 0.400 0.447 0.477 0.479 4.215 1.642 0.907 0.747 1.124 1.604
720 0.419 0.451 0.393 0.430 0.625 0.557 0.605 0.551 0.412 0.469 0.453 0.490 3.656 1.619 0.963 0.783 3.188 1.540

ET
T
m
1 96 0.306 0.349 0.293 0.346 0.302 0.350 0.299 0.343 0.326 0.390 0.510 0.492 0.626 0.560 0.543 0.510 0.600 0.546

192 0.335 0.366 0.333 0.370 0.347 0.383 0.335 0.365 0.365 0.415 0.514 0.495 0.725 0.619 0.557 0.537 0.837 0.700
336 0.364 0.384 0.369 0.392 0.369 0.402 0.369 0.386 0.392 0.425 0.510 0.492 1.005 0.741 0.754 0.655 1.124 0.832
720 0.413 0.413 0.416 0.420 0.431 0.441 0.425 0.421 0.446 0.458 0.527 0.493 1.133 0.845 0.908 0.724 1.153 0.820

ET
T
m
2 96 0.161 0.251 0.166 0.256 0.176 0.255 0.167 0.260 0.180 0.271 0.205 0.293 0.355 0.462 0.435 0.507 0.768 0.642

192 0.215 0.289 0.223 0.296 0.245 0.305 0.224 0.303 0.252 0.318 0.278 0.336 0.595 0.586 0.730 0.673 0.989 0.757
336 0.267 0.326 0.274 0.329 0.295 0.346 0.281 0.342 0.324 0.364 0.343 0.379 1.270 0.871 1.201 0.845 1.334 0.872
720 0.352 0.383 0.362 0.385 0.401 0.413 0.397 0.421 0.410 0.420 0.414 0.419 3.001 1.267 3.625 1.451 3.048 1.328

Table 2: Multivariate long-term forecasting results with our model. T ∈ {96, 192, 336, 720} for all datasets.
The best results including the ones that cannot be statistically distinguished from the best mean numbers
are in bold. We calculate standard error intervals for our method over 5 runs. The rest of the numbers are
taken from the results from (Nie et al., 2022)1. All metrics are reported on standard normalized datasets.
We provide the standard errors for our method in Table 5 in Appendix B.

aligned with the training loss in this case. Since all models were trained using MSE let us focus on that
column for comparisons.

We can see that TiDE, PatchTST, N-HiTS and DLinear are much better than the other baselines in all
datasets. This can be attributed to the fact that sub-quadratic approximations to the full self-attention
mechanism is perhaps not best suited for long term forecasting. The same was observed in the PatchTST (Nie
et al., 2022) where it was shown that full self attention over patches was much more effective even when
applied in a channel dependent manner. For a more in depth discussion about the pitfalls of sub-quadratic
attention approximation in the context of forecasting, we refer the reader to Section 3 of (Zeng et al., 2023).
In Appendix A, we prove that a linear analogue of our model can be optimal for predicting linear dynamical
systems when compared against sequence models, thus shedding some light on why our model and even
simpler models like DLinear can be so competitive for long context and/or horizon forecasting.

Further, we outperform DLinear significantly in all settings except for horizon 192 in ETTh1 where the
performances are equal. This shows the value of the additional non-linearity in our model. In some datasets
like Weather and ETTh1, N-HiTS performs similar to TiDE and PatchTST for horizon 96, but fails to uphold
the performance for longer horizons. In all datasets except Weather, we either outperform PatchTST or
perform within its statistical significance for most horizons. In the Weather dataset, PatchTST peforms the
best for horizons 96-336 while our model is the most performant for horizon 720. In the biggest dataset
(Traffic), we significantly outperform PatchTST in all settings. For instance, for horizon 720 our prediction is
10.6% better than PatchTST in MSE. We provide additional results in Appendix B.1 including a comparison
with the S4 model (Gu et al.) in Table 6.
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5.2 Demand Forecasting

In order to showcase our model’s ability to handle static attrubutes and complex dynamic covariates we
use the M5 forecasting competition benchmarks (Makridakis et al., 2022). We follow the convention in the
example notebook2 released by the authors of (Alexandrov et al., 2020). The dataset consists of more than
30k time-series with static attributes like hierarchical categories and dynamic covariates like promotions.
More details of the setup are available in Appendix B.1.

We present the competition metric (WRMSSE) results on the test set corresponding to the private leader-board
in Table 3. We compare with DeepAR (Salinas et al., 2020) whose implementation can handle all covariates
and also PatchTST (the best model from Table 2). Note that the implementation of PatchTST (Nie et al.,
2022) does not handle covariates. We report the score over 3 independent runs along with the corresponding
standard errors. We can see that PatchTST performs poorly as it does not use covariates. Our model using
all the covariates outperforms DeepAR (that also uses all the covariates) by as much as 20%. For the sake of
ablation, we also provide the metric for our model that uses only date derived features as covariates. There is
a degradation in performance from not using the dataset specific covariates but even so this version of the
model also outperforms the other baselines.

Model Covariates Test WRMSSE
TiDE Static + Dynamic 0.611± 0.009
TiDE Date only 0.637± 0.005
DeepAR Static + Dynamic 0.789± 0.025
PatchTST None 0.976± 0.014

Table 3: M5 forecasting results on the private test set. We report the competition metric (averaged across
three runs) for each model. We also list the covariates used by all models.

5.3 Training and Inference Efficiency

Look-back (L)

6.00E+02

8.00E+02
1.00E+03

2.00E+03

192 336 720 1440 2880

TiDE PatchTST

(a) Inference time per batch in microseconds

Look-back (L)

50

100

500

1000

192 336 720 1440 2880

TiDE PatchTST

(b) Training time for one epoch in seconds.

Figure 2: In (a) we show the inference time per batch on the electricity dataset. In (b) we show the
corresponding training times for one epoch. In both the figures the y-axis is plotted in log-scale. Note that
the PatchTST model ran out of GPU memory for look-back L ≥ 1440.

In the previous section we have seen that TiDE outperforms all methods except PatchTST by a large margin
while it performs better or comparable to PatchTST in all datasets except Weather. Next, we would like to
demonstrate that TiDE is much more efficient than PatchTST in terms of both training and inference times.

2https://github.com/awslabs/gluonts/blob/dev/examples/m5_gluonts_template.ipynb
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Firstly, we would like to note that inference scales as Õ(neh
2 + hL) for the encoder in TiDE, where ne is the

number of layers in the encoder, h is the hidden size of the internal layers and L is the look-back. On the
other hand, inference in PatchTST encoder would scale as Õ(KnaL

2/P 2), where K is the size of the key in
self-attention, P is the patch-size and na is the number of attention layers. The quadratic scaling in L can be
prohibitive for very long contexts. Also, the amount of memory required is quadratic in L for the vanilla
Transformer architecture used in PatchTST 3.

We demonstrate these effects in practice in Figure 2. For the comparison to be fair we carry out the experiment
using the data loader in the Autoformer (Wu et al., 2021) code base that was used in all subsequent papers.
We use the electricity dataset with batch size 8, that is each batch has a shape of 8× 321× L because the
electricity dataset has 321 time-series. We report the inference time for one batch and the training time for
one epoch for TiDE and PatchTST as the look-back (L) is increased from 192 to 2880. We can see that there
is an order of magnitude difference in inference time. The differences in training time is even more stark
with PatchTST being much more sensitive to the look-back size. Further PatchTST runs out of memory
for L ≥ 1440. Thus our model achieves better or similar accuracy while being much more computation and
memory efficient. All the experiments in this section were performed using a single NVIDIA T4 GPU on the
same machine with 64 core Intel(R) Xeon(R) CPU @ 2.30GHz.

5.4 Ablation Study

Temporal Decoder. The use of the temporal decoder for adaptation to future covariates is perhaps one of
the most interesting components of our model. Therefore in this section we would like to show the usefulness
of that component with a semi-synthetic example using the electricity dataset.

Figure 3: We plot the actuals vs the predictions from TiDE with and without the temporal decoder after just
one epoch of training on the modified electricity dataset. The red part of the horizontal line indicates an
event of Type A occuring.

We derive a new dataset from the electricity dataset, where we add numerical features for two kinds of events.
When an event of Type A occurs the value of a time-series is increased by a factor which is uniformly chosen

3Note that sub-quadratic memory attention mechanism does exist (Dao et al., 2022) but has not been used in PatchTST.
The quadratic computation seems to be unavoidable since approximations like Pyraformer seem to perform much worse than
PatchTST.
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between [3, 3.2]. When an event of Type B occurs the value of a time-series is decreased by a factor which is
uniformly chosen between [2, 2.2]. Only 80% of the time-series are affected by these events and the time-series
id’s that fall in this bracket are chosen randomly. There are 4 numerical covariates that indicate Type A
and 4 that indicate Type B. When Type A event occurs the Type A covariates are drawn from an isotropic
Gaussian with mean [1.0, 2.0, 2.0, 1.0] and variance 0.1 for every coordinate. On the other hand in the absence
of Type A events Type A covariates are drawn from an isotropic Gaussian with mean [0.0, 0.0, 0.0, 0.0]. Thus
these covariates serve as noisy indicators of the event. We follow a similar pattern for Type B events and
covariates but with different means. Whenever these events occur they occur for 24 contiguous hours.

In order to showcase that the use of the temporal decoder can learn such patterns derived from the covariates
faster, we plot the predictions from the TiDE model with and without the temporal decoder after just one
epoch of training on the modified electricity dataset in Figure 3. The red part of the horizontal line indicates
the occurrence of Type A events. We can see that the use of temporal decoder has a slight advantage during
that time-period. But more importantly, in the time instances following the event the model without the
temporal decoder is thrown off possibly because it has not yet readjusted its past to what it should have
been without the event. This effect is negligible in the model which uses the temporal decoder, even after
just one epoch of training.

Figure 4: We plot the Test MSE on the traffic dataset
as a function of different context sizes for three different
horizon length tasks. Each plot is an average of 5 runs
with the 2 standard error interval plotted.

Models TiDE TiDE (no res.)

Electricity

96 0.132± 0.003 0.229± 0.001 0.136± 0.001 0.235± 0.002
192 0.147± 0.003 0.243± 0.001 0.153± 0.001 0.253± 0.001
336 0.161± 0.001 0.261± 0.002 0.172± 0.003 0.274± 0.002
720 0.196± 0.002 0.294± 0.001 0.196± 0.003 0.295± 0.002

Figure 5: We perform an ablation study by presenting
results from our model without any residual connec-
tions, on the electricity benchmark. We average over 5
runs for all the numbers and present the corresponding
standard errors.

Context Size. In Figure 4 we study the dependence of prediction accuracy with context size on the Traffic
dataset. We plot the results for multiple horizon length tasks and show that in all cases our methods
performance becomes better with increasing context size as expected. This is contrast to some of the
transformer based methods like Fedformer, Informer as shown in (Zeng et al., 2023).

Residual Connections. In Table 5 we perform an ablation study of the residual connections on the
electricity dataset. In the model dubbed TiDE (no res) we remove all the residual connections including
the ones in the residual block as well as the global linear residual connection. In horizons 96-336 we see a
statistically significant drop in performance without the residual connections.

6 Conclusion

We propose a simple MLP based encoder decoder model that matches or supersedes the performance of prior
neural network baselines on popular long-term forecasting benchmarks. At the same time, our model is 5-10x
faster than the best Transformer based baselines. Our study shows that self attention might not be necessary
to learn the periodicity and trend patterns at least for these long-term forecasting benchmarks.
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Our theoretical analysis partly explains why this could be the case by proving that linear models can achieve
near optimal rate when the ground truth is generated from a linear dynamical system. However, for future
work it would be interesting to rigorously analyze MLPs and Transformer (including non-linearity) under
some simple mathematical model for time-series data and potentially quantify the (dis)advantages of these
architectures for different levels of seasonality and trends. Also, note that transformers are generally more
parameter efficient than MLPs while being much more memory and compute intensive. This could be a
limitation while training extremely large scale pre-trained models but the benefits of that line of work are not
immediately clear in time-series forecasting and is beyond the scope of this work.
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A Theoretical Analysis under Linear Dynamical Systems

To gain insights into our design, we will now analyze the simplest linear analogue of our model. In our model
if all the residual connections are active and the size of the encoding is greater than or equal to the length of
the horizon, then it reduces to a linear map from the context and the covariates to the horizon. We study
this version for the case when the data is generated from a Linear Dynamical System (LDS), that has been
a popular mathematical model for systems evolving with time (Kalman, 1963). We will prove that under
some conditions, a linear model that maps the past and the covariates of a finite context to the future can be
optimal for prediction in a LDS.

A.1 Theoretical Results

We formally define a linear dynamical system (LDS) as follows,
Definition A.1. A linear dynamical system (LDS) is a map from a sequence of input vectors x1, . . . , xT ∈ Rn

to output (response) vectors y1, . . . , yT ∈ Rm of the form

ht+1 = Aht +Bxt + ηt (5)
yt = Cht +Dxt + ξt, (6)

where h0, . . . , hT ∈ Rd is a sequence of hidden states, A,B,C,D are matrices of appropriate dimension, and
ηt ∈ Rd, ξt ∈ Rm are (possibly stochastic) noise vectors. The xt’s can be thought of as covariates for the
time-series yt.

Given an LDS with parameter Θ = (A,B,C,D, h0 = 0), we define the LDS predictor as follows,
Definition A.2 (LDS predictor).

ŷt = yt−1 + (CB +D)xt −Dxt−1 +
t−1∑
i=1

C(Ai −Ai−1)Bxt−i (7)

For a fixed sequence length T , we consider a roll-out of the system {(xt, yt)}T
t=1 to be a single example. In

particular, we define (X = (x1, y1, . . . , xT−1, yT−1, xT ), Y = yT ) where X contains be the full information
that is available for the model to predict observation yT . Trained on N i.i.d. samples {(Xi, Yi)}, the goal of
the model is to predict Yi from Xi.

We assume the samples satisfy ‖xt‖2, ‖yt‖2 ≤ c for a constant c. We compete against the class of functions
in H restricted to contain LDSs with parameters Θ = (A,B,C,D, h0 = 0) such that 0 4 A 4 γ · I where
γ < 1 is a constant and ‖B‖F , ‖C‖F , ‖D‖F ≤ c for an absolute constant c. For error metrics, we consider
squared loss function `X,Y = ‖h(x1, y1, . . . , xT−1, yT−1, xT )− yT ‖2. For an empirical sample set S, let
`S(h) = 1

|S|
∑

(X,Y )∈S `X,Y (h). Similarly, for a distribution D, let `D(h) = E(X,Y )∼D[`X,Y (h)].

Now we define our auto-regressive hypothesis class. Let X̃ ∈ R(k+1)n+m be the concatenated vector[
xt−k xt−k+1 · · · xt−1 xt yt−1

]
,

and fM (X̃) = MX̃,M ∈ Rm×(k+1)n+m. Our hypothesis class is defined as Ĥ = {fM |‖M‖F ≤ O(1)}.

We are ready to state our main theorem.
Proposition A.3 (Generalization bound of learning LDS with auto-regressive algorithm). Choose any ε > 0.
Let S = {(Xi, Yi)}N

i=1 be a set of i.i.d. training samples from a distribution D. Let ĥ := argminh∈Ĥ `S(h)
with a choice of k = Θ(log(1/ε)). Let h∗ := argminh∗∈H `D(h) be the loss minimizer over the set of LDS
predictors. Then, with probability at least 1− δ, it holds that

`D(ĥ)−min
h∈H

`D(h) ≤ ε+
O
(

log(1/ε)
√

log 1/δ
)

√
N

.
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The above result shows that the linear autoregressive predictor with a short look-back window is competitive
against the best LDS predictor where the largest eigenvalue of the transition matrix A is strictly smaller
than 1. In Appendix A.2 we compare linear models with LSTM’s and Transformers on long-term forecasting
tasks on data generated by LDS, thus validating our theoretical results.

Proof of Proposition A.3. The proof proceeds as follows: First we show that an auto-regressive model with
look by window length Ω(log(1/ε)) can approximate an LDS with error ε. Second, we prove a simple bound on
the Rademacher complexity of the class of auto-regressive model we considered, which implies a generalization
bound of our algorithm. Combining both results yields our main result.

Proposition A.4 (Approximating LDS with auto-regressive model). Let ŷT be the predictions made by
an LDS Θ = (A,B,C,D, h0 = 0). Then, for any ε > 0, with a choice of k = Ω(log(1/ε)), there exists an
MΘ ∈ Rm×(k+1)n+m such that ∥∥MΘX̃ − yT

∥∥2 ≤ ‖ŷT − yT ‖2 + ε.

Proof. This proposition is an analog of Theorem 3 in (Hazan et al., 2017). We construct MΘ as the block
matrix [

M (k−1) M (k−2) · · · M (1) M (x′) M (x) M (y)
]
,

where the blocks’ dimensions are chosen to align with X̃t, the concatenated vector[
xt−k xt−k+1 · · · xt−1 xt yt−1

]
,

so that the prediction is the block matrix-vector product

MΘX̃t =
k−1∑
j=1

M (j)xt−1−j +M (x′)xt−1 +M (x)xt +M (y)yt−1.

Our construction is as follows:

• M (j) = C(Aj+1 −Aj)B, for each 1 ≤ j ≤ k − 1.

• M (x′) = C(A− I)B −D, M (x) = CB +D, M (y) = Im×m.

The prediction of the LDS is by definition

ŷt = yt−1 + (CB +D)xt −Dxt−1 +
t−1∑
i=1

C(Ai −Ai−1)Bxt−i

We conclude that

ŷt = MΘX̃t +
T∑

i=k+2
C(Ai −Ai−1)Bxt−i.

This implies ∥∥MΘX̃t − yt

∥∥2

≤‖ŷt − yt‖2 + 2‖ŷt − yt‖

∥∥∥∥∥
T∑

i=k+2
C(Ai −Ai−1)Bxt−i

∥∥∥∥∥+

∥∥∥∥∥
T∑

i=k+2
C(Ai −Ai−1)Bxt−i

∥∥∥∥∥
2

≤‖ŷt − yt‖2 +O(γ
k+2 + γ2k+4

1− γ ) ≤ ‖ŷt − yt‖+ ε
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The empirical Rademacher complexity of Ĥ on N samples, with this restriction that ‖M‖ = O(1), satisfies

RN (Ĥ) ≤ O
(

1√
N

)
.

It’s easy to check that ‖MΘ‖F ≤ O
(√∑k

i=0 γ
i

)
= O(1), which falls in the feasible set of our algorithm. The

maximum loss `max of the hypothesis in model class Ĥ is bounded by O(k). The lipschitz constant of loss
function in the matrix M is Gmax ≤

∥∥MX̃t − yt

∥∥
2 ·
∥∥X̃t

∥∥
2 ≤ O(k)

With all of these facts in hand, a standard Rademacher complexity-dependent generalization bound holds in
the improper hypothesis class Ĥ (see, e.g. (Bartlett and Mendelson, 2002)):

Lemma A.5 (Generalization via Rademacher complexity). With probability at least 1− δ, it holds that

`D(ĥ)− `D(ĥ∗) ≤ GmaxRN (Ĥ) + `max

√
8 ln 2/δ
N

With the stated choice of k, an upper bound for the RHS of Lemma A.5 is

O
(

log(1/ε)
√

log 1/δ
)

√
N

.

Combining this with the approximation result (Proposition A.4) yields the theorem.

A.2 Experimental Results on Synthetic Datasets

Dataset. We evaluate several models on a synthetic dataset generated from a linear dynamical system. The
transition matrix A is a 30× 30 dimension Wishart random matrix normalized to have operator norm equals
0.95. The noise ηt in the state transition follows from a 30-dimensional Gaussian distribution. The input
at each time-step xt follows from a 5-dimensional standard Gaussian distribution, which is observable to
the model. Finally, We add seasonality of 6 different periodicity by adding cosine signal as the input to the
linear dynamical system, but hidden from the prediction model. We generate 4 different time series which
shares the same model parameter, input xt and seasonality input, with the only difference coming from the
randomness in the state transition. We set look-back window to be length 320, and horizon also to length 320.
For each time-series, we use the first 1640 steps for training, next 740 steps for validation, and the final 740
steps for testing, which results in 4000 examples for training, 400 examples for validation, and 400 examples
for testing.

Baselines and Setup. We evaluate three models on our synthetic dataset: linear, long short-term memory
(LSTM) and Transformer. Our linear model is a direct linear map between the history in look-back window
and future. We use a one layer LSTM with dimension 128. For Transformer, we use a two layer self-attention
layers with dimension 128, combined with a one hidden layer feed-forward network with 128 hidden units.

Results. We present Mean Squared Error (MSE) for all models in Table 4. For all models, we report the
mean and standard deviation out of 3 independent runs for each setting. The bold-faced numbers are from
the best model or within statistical significance of the best model in terms of two standard error intervals.
We also plot the actuals (ground truth) vs the predictions from Linear, LSTM and Transformer models. We
see that Transformer captures the lower frequency seasonality of the time-series but seems to not be able to
leverage the inputs/covariates to predict the short term variation of the value, LSTM seems to not capture
the trend/seasonality correctly, while Linear model’s prediction is the closest to the truth, which matches the
metric result in Table 4.
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Model MSE
Linear 0.510± 0.001
LSTM 1.455± 0.455
Transformer 0.731± 0.041

Table 4: Mean Squared Error (MSE) of Linear, LSTM and Transformer models on synthetic time-series.

Figure 6: We plot the actuals vs the predictions from Linear, LSTM and Transformer models.

B More Experimental Details

B.1 Additional Experiments

Comparison against S4. In Table 6 we present the results of our model along side that of the S4 model (Gu
et al.). The numbers of S4 are directly taken from Table-14 of the original paper. It can be seen that TiDE
vastly outperforms the S4 model on the time-series benchmarks.

M5 Forecasting. We will now provide more details about the M5 forecasting experiments. We follow the
setup used in the notebook linked in Section 5 that was released by the authors of (Alexandrov et al., 2020).
The list of dynamic features include date derived features, promotion features like snap_CA, snap_TX,
snap_WI, even_type_1 and event_type_2. It also includes static attributes like category_id, store_id,
department_id and item_id. The categorical features are embedded into learnable embeddings.

DeepAR (Salinas et al., 2020) has suggested using the zero-inflated negative binomial loss likelihood as the
loss function for sparse count data in the dataset. Therefore we use this loss function for our model and the
DeepAR model. All models are trained to a maximum of 100 epochs with an early stopping patience of 5.

B.2 Data Loader

Each training batch consists of a look-back Y [B, t− L : t− 1] and a horizon Y [B, t : t+H − 1]. Here, t can
range from L+ 1 to H steps before the end of the training set. B denotes the indices of the time-series in
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Models TiDE

Electricity

96 0.132± 0.003 0.229± 0.001
192 0.147± 0.003 0.243± 0.001
336 0.161± 0.001 0.261± 0.002
720 0.196± 0.002 0.294± 0.001

Traffic

96 0.336± 0.001 0.253± 0.001
192 0.346± 0.001 0.257± 0.002
336 0.355± 0.001 0.260± 0.001
720 0.386± 0.002 0.273± 0.0005

Weather

96 0.166± 0.0005 0.222± 0.0005
192 0.209± 0.002 0.263± 0.0001
336 0.254± 0.002 0.301± 0.0001
720 0.313± 0.001 0.340± 0.0002

ETTm2

96 0.161± 0.0002 0.251± 0.0003
192 0.215± 0.0001 0.289± 0.0004
336 0.267± 0.0001 0.326± 0.0002
720 0.352± 0.0002 0.383± 0.0002

ETTm1

96 0.306± 0.0001 0.349± 0.0002
192 0.335± 0.0002 0.366± 0.0002
336 0.364± 0.0004 0.384± 0.0001
720 0.413± 0.0001 0.413± 0.0001

ETTh1

96 0.375± 0.0003 0.398± 0.0002
192 0.412± 0.0002 0.422± 0.0001
336 0.435± 0.0001 0.433± 0.0001
720 0.454± 0.0003 0.465± 0.0001

ETTh2

96 0.270± 0.0005 0.336± 0.0007
192 0.332± 0.001 0.380± 0.002
336 0.360± 0.001 0.407± 0.001
720 0.419± 0.005 0.451± 0.002

Table 5: We provide standard error bars for our method over 5 independent runs.
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Models TiDE S4
Metric MSE MAE MSE MAE

Weather 336 0.254 0.301 0.531 0.539
720 0.313 0.340 0.578 0.578

ETTh1 336 0.435 0.433 1.407 0.910
720 0.454 0.465 1.162 0.842

ETTh2 336 0.360 0.407 0.531 0.539
720 0.419 0.451 2.650 1.340

Electricity 336 0.161 0.261 0.531 0.539
720 0.196 0.294 0.578 0.578

Table 6: We benchmark our model’s performance against that of S4. The S4 results are taken from Table 14
of the original paper (Gu et al.).

the batch and the batchSize can be set as a hyper-parameter. When batchSize is greater than N , all the
time-series are loaded in a batch.

We also load time derived features as covariates. The time-stamps corresponding to time-indices t−L : t+H−1
are converted to periodic features like minute of the hour, hour of the day, day of the week etc normalized to
the scale [−0.5, 0.5] as done in GluonTS (Alexandrov et al., 2020). In total we have 8 such features, many of
which can stay constant depending on the granularity of the dataset.

B.3 Hyperparameters

Recall that in Section 4, we had the following hyper-parameters temporalWidth, hiddenSize,
numEncoderLayers, numDecoderLayers, decoderOutputDim and temporalDecoderHidden. We also have
hyper-parameters layerNorm and dropoutLevel that denote the global model level layer norm on/off and
the probability of dropout. We also tune the maximum learningRate which is the input to a cosine decay
learning rate schedule. In all our experiments batchSize is fixed to 512 and temporalWidth is fixed to 4. We
also tune whether reversible instance normalization (Kim et al., 2021) is turned on or off. The tuning range
of the hparams are provided in Table 7. We use the validation loss to tune the hyper-parameters per dataset.

Parameter Range
hiddenSize [256, 512, 1024]

numEncoderLayers [1, 2, 3]
numDecoderLayers [1, 2, 3]
decoderOutputDim [4, 8, 16, 32]

temporalDecoderHidden [32, 64, 128]
dropoutLevel [0.0, 0.1, 0.2, 0.3, 0.5]

layerNorm [True, False]
learningRate Log-scale in [1e-5, 1e-2]

revIn [True, False]

Table 7: Ranges of different hyper-paramaters

We report the specific hyper-parameters chosen for each dataset in Table 8.
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Dataset hiddenSize numEncoderLayers numDecoderLayers decoderOutputDim temporalDecoderHidden dropoutLevel layerNorm learningRate revIn

Traffic 256 1 1 16 64 0.3 False 6.55e-5 True
Electricity 1024 2 2 8 64 0.5 True 9.99e-4 False
ETTm1 1024 1 1 8 128 0.5 True 8.39e-5 False
ETTm2 512 2 2 16 128 0.0 True 2.52e-4 True
ETTh1 256 2 2 8 128 0.3 True 3.82e-5 True
ETTh2 512 2 2 32 16 0.2 True 2.24e-4 True
Weather 512 1 1 8 16 0.0 True 3.01e-5 False

Table 8: The hyper-parameters for different experimental settings.
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