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ABSTRACT

In many contextual sequential decision-making scenarios, such as dose-finding
clinical trials for new drugs or personalized news article recommendation systems in
social media, each action can simultaneously carry both benefits and potential harm.
This could manifest as efficacy versus side effects in clinical trials, or increased
user engagement versus the risk of radicalization and psychological distress in
news recommendation. These multifaceted situations can be modeled using the
multi-armed bandit (MAB) framework. Given the intricate balance of positive and
negative outcomes in these contexts, there is a compelling need to develop methods
which can maximize benefits while limiting harm within the MAB framework. This
paper aims to address this gap. The primary contributions of this paper are two-fold:
(i) We propose a novel contextual MAB model with the objective of optimizing
reward potential while maintaining certain harm constraints. In this model both
rewards and harm are governed by a generalized linear model with coefficients
that vary based on the contextual variables. This flexibility allows the model to be
broadly applicable for a wide range of scenarios. (ii) Building on our proposed
generalized linear contextual MAB model, we develop an ϵt-greedy-based policy.
This policy is designed to strike an effective balance between the dual objectives
of exploration-exploitation to achieve the desired trade-off between benefit and
harm. We demonstrate that this policy achieves a sublinear O(

√
T log T ) regret.

Extensive experimental results are presented to support our theoretical analyses
and validate the effectiveness of our proposed model and policy.

1 INTRODUCTION

The multi-armed bandit (MAB) problem is a classic framework in reinforcement learning, in which
an agent makes sequential decisions to choose from multiple “arms” in each round, with each arm
providing a stochastic reward. The objective is to find a strategy that maximizes the cumulative reward
over a sequence of decisions. The fundamental issue is how to balance exploration (trying different
arms to gain information) and exploitation (using the best option to maximize the reward). Various
algorithms have been proposed to solve the MAB problem, such as ϵt-greedy, upper confidence
bound (UCB), and Thompson sampling, each offering different balances between exploration and
exploitation. See for example Lattimore & Szepesvári (2020) and Slivkins (2019) for a thorough
review.

The contextual multi-armed bandit (CMAB) problem extends the MAB framework by allowing each
arm’s expected reward to depend on some contextual variables. The CMAB problem has applications
in numerous domains such as recommendation systems, personalized web services, and clinical trials.
For example, within a news recommendation system, the articles to recommend (the arms) aim for
the reward of a high click-through rate, which hinges on user-specific factors (the context) such as
past clicking behavior. Similarly, in a clinical trial setting, the drug dosage (the arms) yields the
reward of prolonged survival time, which depends on the patient-specific contextual information such
as age, gender, and overall health status. See Lee et al. (2020) and Li et al. (2010).

In many practical scenarios, opting for a specific arm can result in both rewards and potential harm,
and a focus on maximizing rewards alone might lead to unfavorable outcomes. For instance, within a
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news recommendation system, promoting content similar to those that have previously elicited clicks
from a particular user might yield a high click-through rate. However, this could also cultivate an
echo chamber, causing emotional and psychological distress, polarize society, and even radicalize
the user base. (see Comstock & Platania (2017); Houston et al. (2018)). Similarly, in a clinical
trial context, a higher dosage may produce a positive outcome for the disease being treated (such as
reducing tumor size), but it could also introduce more side effects, potentially harming the patient’s
overall health. Many efforts have been made to adopt MAB design in dose-finding clinical trials. See
Aziz et al. (2021) and Villar et al. (2015) for example.

To tackle these challenging and intricate practical issues, we need to explore the CMAB problem
jointly considering both rewards and harm at the same time. In the MAB literature, there have
been discussions around the related topic of the multi-objective multi-armed Bandit (MOMAB),
where the agent is assumed to have multiple objectives and a reward vector is revealed after each
arm pull (see, for example, Drugan & Nowe (2013)). However, in recent MOMAB literature,
the most popular approach, namely Pareto optimal front, cannot provide a safety guarantee. The
safety-constrained MAB problems, on the other hand, poses some unrealistic assumptions. This
motivates us to develop a framework to handle contextual multi-armed bandit problems with two
opposing objectives, thus filling a gap in the literature. Surprisingly, by merely introducing a second
objective, the possibility to reduce the problem to linear and apply LinUCB as in Li et al. (2017)
for single objective has been ruled out. We specifically model the mean reward and harm of each
arm using two separate varying coefficient generalized linear models, with the coefficients being
dependent on the contextual variables. This framework is flexible enough to manage both discrete and
continuous arms. We employ the Maximum Likelihood method for parameter estimation and develop
an ϵt-greedy algorithm with a harm function to address the exploration-exploitation trade-off. We
prove the consistency of our parameter estimates and demonstrate that our ϵt-greedy algorithm can
achieve optimal regret. An extensive simulation study has been conducted which shows the superior
performance of our proposed approach.

The rest of the paper is organized as follows. In Section 2, we provide a quick overview on related
work, thus putting our work into comparative perspectives. In Section 3, we introduce the system
model and problem formulation. Section 4 presents the our MAB policy design, which is followed
by its main theoretical results. Section 5 demonstrates our numerical experiments and Section 6
concludes this paper.

2 RELATED WORK

In this section, we provide a quick overview on several related areas in the literature: 1) generalized
linear bandit problems, 2) multi-objective bandits, 3) varying coefficient models, and 4) safety-
constrained bandit problems, thus highlighting the differences and contributions of our work.

1) Generalized linear bandit problems: Generalized linear bandit problems with a single objective
have been studied by Filippi et al. (2010), Li et al. (2017) and Kveton et al. (2020), who showed
the advantage of generalized linear bandits over linear contextual bandits. Specifically, Filippi
et al. (2010) studied stochastic generalized linear bandit and proposed algorithm called GLM-UCB,
which achieves a regret of Õ(

√
T ) after T rounds. Li et al. (2017) further considered contextual

generalized linear bandit and demonstrated an Õ(
√
T ) regret for their UCB-GLM algorithm as well

as Õ(
√
T logK) regret for SupCB-GLM algorithm, following the idea of Auer (2002) to create

independent samples.

2) Multi-objective bandits: Drugan & Nowe (2013) introduced a stochastic multi objective multi-
armed bandit (MOMAB) framework. UCB algorithms for MOMAB under both scalarized regret
and Pareto regret have been proposed. Furthermore, Lu et al. (2019) considered multi-objective
generalized linear bandit problems, where each arm possesses a feature that serves as the independent
variable in the generalized linear model. This concept aligns with the approach inAziz et al. (2021),
who modeled toxicity and efficacy as a function of dose level in dosage finding clinical trials.

To highlight the difference in constructing context x and feature of the arm u, a brief summary of the
literature in CMAB and MOMAB is given in Table 1. As shown in Table 1, Filippi et al. (2010); Li
et al. (2017) used another notion of context xt,k that is varying not only in rounds but also across
arms. This notion is general but may impose difficulty on the practical meaning of the context. For
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Table 1: Different formulations: t represents rounds, k represents arms, x represents context, u
represents feature of the arms and η represents parameter. µ(·) is a generic notation for mean
function.

Algorithm Mean Fuction Context Changes w/ t Per-arm Context Feature for Arms

9; 18 µ(xt,k, η) ✓ ✓ ✗
10 µ(xt, ηk) ✓ ✗ ✗
3; 20 µ(uk, η) - - ✓
Our work µ(xt, uk, η) ✓ ✗ ✓

example, at a certain round t, patient information xt should not change when they are assigned
different treatments (arms).

Another observation is the direct use of Pareto optimality, which is the current focus of MOMAB,
does not provide a safety guarantee. An arm with both high harm and high reward may fall in the
Pareto optimal front. However, a high harm may be unacceptable.

3) Varying coefficient models: Hastie & Tibshirani (1993) introduced varying coefficient models,
which empower flexible estimation of regression models by allowing the coefficients to vary as
smooth functions of other auxiliary variables. Varying coefficient models encompass a broad range
of models, including generalized linear models, dynamic generalized linear models, and generalized
additive models. Varying coefficient models are adopted in this paper to include a wide range of
models rather than to propose a specific formulation.

4) Safety-constrained bandit problems: Another line of research that addresses the safety concerns
in bandit problems can be found, for example, in (Amani et al., 2020). However, rather than observing
both reward and harm as in this paper, only the reward is observed in (Amani et al., 2020). With
only one set of responses available, parameters in safety constraints are assumed to be a known
linear transformation of the parameters in the reward model. On a related note, Kazerouni et al.
(2017) considered a conservative bandit setup with a known safe policy to serve as the baseline
without modeling harm explicitly. Rather, the estimated optimal arm is pulled when it outperforms
the baseline policy by a certain degree.

To the best of our knowledge, this paper is the first to apply varying coefficient models to GLM
bandit problems. We show an O(

√
T log T ) regret upper bound for a scalarized regret. This is the

first regret bound for ϵt-greedy algorithm in multi-objective generalized linear bandit. This result
matches the state-of-the-art single-objective regret bound O(

√
T log T ) for UCB-GLM algorithm

presented in the work of Li et al. (2017).

3 SYSTEM MODEL AND PROBLEM FORMULATION

Consider a stochastic bandit setting with K arms, which could represent dosage level in clinical trials
or the level of controversial news recommendation amount. Suppose the K arms form a discrete
sampling from a continuous domain. Therefore, each arm is associated with a feature uk that is
constant through the experiment. Without loss of generality, we can let u = (u1, · · · , uK) with
u1 ≤ u2 ≤ · · · ≤ uK to represent the K arms. For example, in news recommendation systems, u
could be the proportion of controversial content recommended to users. In clinical trials for new
drugs, u may be the effective toxicity or efficacy assigned by physicians.

In each time step t ∈ {1, · · · , T}, the learner receives a context Xt, pulls an arm At from {1, · · · ,K}
and observes two outcomes: a harm effect Yt and a reward Zt. Depending on the context Xt, each
arm has a harm distribution Pk,t and a reward distribution Qk,t. Suppose that Yt ∼ PAt,t and
Zt ∼ QAt,t independently. Let pk,t and qk,t be the expectations of Pk,t and Qk,t, respectively.

We assume the context, harm outcome and reward are all bounded random variables with ∥Xt∥ ≤ r
for some positive real number r, Yt ∈ [0, 1] and Zt ∈ [0, 1]. Here ∥ · ∥ denotes the ℓ2 norm.
For a positive definite matirx A, we let ∥x∥A :=

√
xTAx denote the norm defined by A. The

minimum and maximum eigen values of A are written as λmin(A) and λmax(A), respectively.
Finally, 1 : n := {1, 2, · · · , n}. Next, we define the unique features of our MAB model.
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1) Definition of the best arm: Due to the existence of two metrics, in this paper, we define the best
arm k∗(t) at round t as:

k∗(t) = min{argmax
k

{qk,t − λ(pk,t − θ)+}}, (1)

where min is taken to break ties, x+ is the positive part of x, θ is a pre-determined threshold for harm
expectation, and λ > 0 is the penalty for choosing an arm with harm expectation larger than θ. Both
θ and λ can be specified by practitioners based on their goals.

Therefore, a linear scalarization based on the penalty can be used to define the regret

RT =

T∑
t=1

{(q∗t − qAt,t) + λ(pAt,t − θ)+ − λ(p∗t − θ)+}, (2)

where q∗t = qk∗(t),t is the expected rewards of the best arm k∗(t), p∗t = pk∗(t),t is the expected harm
of arm k∗(t).

It is also insightful to consider other alternatives of the best arm definition. For example, one may
desire to define the best arm as

k′(t) = min{k : qk,t = max
l:pl,t≤θ

ql,t} (3)

and choose k̂′(t) = min{k : q̂k,t = maxl:p̂l,t≤θ q̂l,t} during the trial. This approach is adopted by
Lee et al. (2020) and Aziz et al. (2021) in the pure exploration problem. Note that the best arm
definition in equation 1 is an attempt to solve equation 3 approximately. When λ = ∞, the best arm
defined in equation 1 will be the same as equation 3. Therefore, If we are strictly conservative about
the harm, the definition in equation 3 would be more desirable. The effect of λ-values on the chosen
arm’s harm probability is provided in the Appendix, showing equation 1 is a good approximation to
equation 3 when λ is large. At the same time, the penalty term in equation 1 allows a soft constraint
on harm when we are not absolutely strict about it. In addition, if we take threshold θ = 0, then
equation 1 imposes penalty whenever there is harm effect, but equation 3 will give an empty set.
Overall, we believe the best arm definition equation 1 provides more generality.
Remark 3.1. Under equation 3, k′(t) does not necessarily yield the largest qk′(t),t−(λ(pk′(t),t−θ)+
among all {qk,t − (λ(pk,t − θ)+}Kk=1, so the regret equation 2 may admit negative terms and does
not suit the best arm definition in equation 3.

2) Varying coefficient generalized linear models for harm and benefits: A generalized linear
model for the harm takes uk as the covariate, and it is common to assume that the expectation of
harm increases with uk. We consider the parameters in the GLM to vary with the context x. When
the learner receiving context x ∈ Rd, if arm k is pulled, the expectation of harm p is given by

p(x, k;β) = g(ζ(x, k;β))), (4)
ζ(x, k;β) = b0(x;β0) + b1(x;β1)uk, (5)

where g is the inverse of link function for harm model, ζ denotes the systematic component, uk

is the feature associated with arm k, and b0(x;β0) and b1(x;β1) are functional coefficients. If
b0(x;β0) ≡ b0 and b1(x;β1) ≡ b1 for some constants b0 and b1, it is the common generalized linear
model.

For now, we assume parametric models b0(x) = Φ(x)Tβ0 and b1(x) = Φ(x)Tβ1 for some known
transformation Φ(·) from Rd to Rd1 . It is interesting future work to extend Φ(·) to a spline basis to
allow more flexible models.

The link function g−1 for generalized linear models is a monotone increasing function. Based on the
distribution of the response, different link functions can be used. For example, the canonical link
function for Gaussian distributed response is the identity link g−1(x) = x, and the canonical link
function for Bernoulli response is the logit link g−1(x) = log

x

1− x
.

The conditional distribution of harm Yt given context Xt and arm At is from the exponential family
in classic generalized linear models. The conditional density of Yt|(Xt = x,At = k) can be written
as

f(y|x, k) = exp{ϕ[yζ(x, k;β)−my(ζ(x, k;β))] + c(y, ϕ)},
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where ϕ is the known dispersion parameter, my(ζ) satisfies m′
y(ζ(x, k;β)) = p(x, k;β) =

E(Yt|Xt = x,At = k), and c(y, ϕ) is the normalization function that does not involve ζ.

Conditioning on {X1, A1, X2, A2, · · · , Xt, At}, Y1, Y2, · · · , Yt are independent. The log-likelihood
function of β can be written as:

ℓt(β) =

t∑
s=1

{ϕ[Ysζ(Xs, As;β)−my(ζ(Xs, As;β))] + c(Ys, ϕ)}

= ϕ

t∑
s=1

[Ysζ(Xs, As;β)−my(ζ(Xs, As;β))] + constant.

As a result, the MLE of β can be defined as

β̂t = argmax
β

t∑
s=1

[Ysζ(Xs, As;β)−my(ζ(Xs, As;β))]. (6)

In this paper, we let

Yt = p(Xt, At;β) + e
(y)
t ,

where {e(y)t }Tt=1 are independent zero-mean sub-Gaussian noise that is independent of Xt and At.
Note that if Yt|(Xt, At) follows Gaussian, Bernoulli or any bounded distribution, e(y)t can be shown
to be sub-Gaussian.

Similar to the harm model, we assume for expected reward q,

q(x, k; γ) = h(ξ(x, k; γ)), (7)

ξ(x, k; γ) = c0(x; γ0) + c1(x; γ1)uk + c2(x; γ2)u
2
k, (8)

where h is the inverse of the link function for reward model, ξ denotes the systematic component,
c0(x), c1(x) and c2(x) are functional coefficients. We use a quadratic model to allow non-monotonic
changes as k increases. An increasing-plateau model may also be considered, see more possible
models in Pinheiro et al. (2014) for example. Here we also use parametric models c0(x) = Ψ(x)T γ0,
c1(x) = Ψ(x)T γ1 and c2(x) = Ψ(x)T γ2 with a known transformation Ψ(·) : Rd → Rd2 .

Similarly, the MLE for γ can be expressed as

γ̂t = argmax
γ

t∑
s=1

[Zsξ(Xs, As; γ)−mz(ξ(Xs, As; γ))], (9)

for m′
z(ξ(x, k; γ)) = q(x, k; γ). The reward model can be written as Zt = q(Xt, At; γ) + e

(z)
t ,

where {e(z)t }Tt=1 are independent zero-mean sub-Gaussian noise.

Let β = (βT
0 , β

T
1 )

T , γ = (γT
0 , γ

T
1 , γ

T
2 )

T , and η = (βT , γT )T denote all the parameters of interest.

The varying coefficient models are a natural extension to Aziz et al. (2021) and Lu et al. (2019),
who only define uk to characterize the arms rather than utilize information Xt about the task of each
round.

Except the boundedness of context, harm and reward, the following assumptions on the smoothness
of link functions are needed in order to establish the bound on regret.

A1: κy := inf
∥x∥≤r,

∥β′−β∥≤1

g′(ζ(x, k;β′)) > 0 and κz := inf
∥x∥≤r,

∥γ′−γ∥≤1

h′(ξ(x, k; γ′)) > 0.

A2: g and h are twice differentiable. The first and second derivatives of g are bounded from
above by Lg and Mg, and the first and second derivatives of h are bounded from above by
Lh and Mh, respectively.
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Assumptions A1 and A2 have been used by Li et al. (2017). A1 controls the local behavior of g′ and
h′ when using parameter value β′ and γ′ near the true parameter value β and γ. A1 is necessary for
the convergence of parameter estimates. It is easy to verify A1 and A2 hold for identity link and logit
link. Specifically, for identity link, L = 1 and M = 0. For logit link L = M = 1/4.

Since we assume parametric models Φ(·) and Ψ(·), the linear predictors for harm and reward can be
written as

ζ(x, k;β) = (Φ(x)T , ukΦ(x)
T )β,

ξ(x, k; γ) = (Ψ(x)T , ukΨ(x)T , u2
kΨ(x)T )γ.

Define Wt = (Φ(Xt)
T , uAt

Φ(Xt)
T )T ∈ R2d1 and Vt = (Ψ(Xt)

T , uAt
Ψ(Xt)

T , u2
At
Ψ(Xt)

T )T ∈
R3d2 , the design matrices for harm and reward model up to round t can be represented as
(W1,W2, · · · ,Wt)

T and (V1, V2, · · · , Vt)
T .

The boundedness of ∥Wt∥ and ∥Vt∥ can be verified as long as the transformations Φ(·) and Ψ(·) are
continuous, and max

1≤k≤K
uk < ∞. Without loss of generality, we assume Wt and Vt are normalized:

A3: ∥Wt∥ ≤ 1 and ∥Vt∥ ≤ 1 for all 1 ≤ t ≤ T.

A4: E[WtW
T
t ] and E[VtV

T
t ] are positive definite.

4 POLICY DESIGN AND MAIN RESULTS

In this paper, we propose an ϵt-greedy-based algorithm for solving the problem. To obtain an initial
estimate of η, each arm is pulled m rounds at the beginning of the experiment. In clinical trials,
however, the initialization and exploration should be more carefully designed to avoid exposing
patients to high toxicity, see Aziz et al. (2021) for using an “admissible set” or “admissible doses” for
example.

Algorithm 1: ϵt-greedy Algorithm with harm penalty
input: Time horizon T , exploration rate ϵt ∈ (0, 1), penalty λ ∈ (0,∞), harm threshold
θ ∈ (0, 1), initialization rounds m

for t = 1, · · · ,m×K do
Sample from each arm m times, record context Xt and response Yt, Zt

end
for t = m×K + 1, · · · , T do

Obtain maximum likelihood estimate η̂t−1 based on X1:t−1, A1:t−1, Y1:t−1 and Z1:t−1 as in
equation 6 and equation 9

Identify best arm k̂t = argmax
k

q(Xt, k; γ̂t−1)− λ(p(Xt, k; β̂t−1)− θ)+

Sample from k̂t w.p. 1− ϵt +
ϵt
K

,

and sample from arms in {1, · · · ,K}\{k̂t} w.p.
ϵt
K

Record context Xt, choice At and responses Yt, Zt

end
output: Parameter estimates η̂T

Shrinking exploration probability ϵt = min
{
1, C

log t

t

}
is taken as suggested by Cesa-Bianchi &

Fischer (1998) with constant C > 0.

The single-objective setting in (Li et al., 2017) allows a straightforward application of LinUCB based
on the linear systematic component. However, the two-objective setup in our paper already precludes
the possibility to directly reduce the problem to a linear case. Specifically, in the single-objective case,
since the link function h(ξ) is monotonically increasing in ξ, as long as ξ(x, k; γ) ≥ ξ(x, j; γ) for
arms k, j, we know h(ξ(x, k; γ)) ≥ h(ξ(x, j; γ)). Thus, it suffices to find the arm k that maximizes
ξ(x, k; γ) as well as design an upper confidence bound for ξ(xt, k; γ). However, our scalarized
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reward in equation 2 is no longer monotone in ξ or ζ , so the problem cannot be decomposed into two
linear pieces and dealt with separately.

To establish an upper bound for regret of Algorithm 1, it is essential to show convergence of parameter
estimates. Recall Theorem 1 from Li et al. (2017) for convergence of parameter estimates. For
simplicity, we state the theorem for Wt and Yt. Note that the result also holds for Vt and Zt.

Lemma 1 (Theorem 1 in (Li et al., 2017)). Define Gt =
t∑

s=1
WsW

T
s , and let δ > 0 be given.

Furthermore, assume that

λmin(Gt) ≥
512M2

gσ
2
y

κ4
y

(
4d21 + log

1

δ

)
. (10)

Then, with probability at least 1−3δ, the maximum likelihood estimator β̂t satisfies, for any w ∈ R2d1 ,

|wT (β̂t − β)| ≤ σy

κy

√
log(1/δ)∥w∥G−1

t
. (11)

Condition equation 10 is satisfied when there is a sufficient number of independent samples collected
in a trial of the multi-armed bandit problem. The sample size needed for equation 10 to hold is also
stated in Li et al. (2017) and is proficed in the Appendix in order for our work to be self-contained.

Based on the statistical property of parameter estimates, the theorem below shows an O(
√
T log T )

regret bound.
Theorem 1. Let τ = m×K denote the number of initialization rounds. If we run the Algorithm 1
with

τ = max


(
C1

√
2d1 + C2

√
log(2/δ)

λmin(Σ1)

)2

+
2B1

λmin(Σ1)
,

(
C1

√
3d2 + C2

√
log(2/δ)

λmin(Σ2)

)2

+
2B2

λmin(Σ2)

 ,

then with probability at least 1− 3δ, the regret of the algorithm is upper bounded by
RT ≤ (1 + λ)τ (I)

+ (1 + λ)

(
C
(log T )2

2
− C

(log τ)2

2
+

√
T − τ

2
log

1

δ

)
(II)

+ 2λLg
σy

κy

√
4d1(T − τ) log

6

δ
log

T

2d1
+ 2Lh

σz

κz

√
6d2(T − τ) log

6

δ
log

T

3d2
. (III)

Here, we may choose

B1 = max

{
1,

512M2
gσ

2
y

κ4
y

(
4d21 + log

6

δ

)}
,

B2 = max

{
1,

512M2
hσ

2
z

κ4
z

(
9d22 + log

6

δ

)}
,

and the second moments Σ1 := E[WtW
T
t ] and Σ2 := E[VtV

T
t ] exist following Assumption A3.

Sketch of proof. The regret RT can be decomposed into three parts: regret from exploration round 1
to τ (I), regret from exploration rounds (II) and regret from greedy rounds (III).

For the regret at time step t, q∗t − qAt,t + λ(pAt,t − θ)+ − λ(p∗t − θ)+ ≤ 1 + λ always holds since
pk,t, qk,t ∈ [0, 1]. Therefore, the sum of regret from round 1 to τ is bounded by (1 + λ)τ .

The probability of exploration ϵt = C
log t

t
is shrinking with round t. Thus, by the Hoeffding’s

inequality, the number of exploration rounds is bounded from above by C
(log T )2

2
− C

(log τ)2

2
+√

T − τ

2
log

1

δ
w.p. at least 1− δ, resulting in term (II) in the regret bound.
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If the algorithm does not explore at round t, due to the greedy characteristic, we have

h(V T
t γ̂t−1)− λ(g(WT

t β̂t−1)− θ)+ ≥ h(V T
t∗ γ̂t−1)− λ(g(WT

t∗ β̂t−1)− θ)+,

which implies

h(V T
t∗ γ)− h(V T

t γ) + λ(g(WT
t β)− θ)+ − λ(g(WT

t∗β)− θ)+

≤h(V T
t∗ γ)− h(V T

t γ) + λ(g(WT
t β)− θ)+ − λ(g(WT

t∗β)− θ)+

+h(V T
t γ̂t−1)− λ(g(WT

t β̂t−1)− θ)+ − h(V T
t∗ γ̂t−1) + λ(g(WT

t∗ β̂t−1)− θ)+

≤Lh|V T
t∗ (γ̂t−1 − γ)|+ Lh|V T

t (γ̂t−1 − γ)|+ λLg|WT
t (β̂t−1 − β)|+ λLg|WT

t∗(β̂t−1 − β)|,

and the last line can be bounded using Lemmas 1 and 4 to obtain the third part of the regret bound.
Due to space limitation, the detailed proof is deferred to the Appendix.

5 NUMERICAL EXPERIMENTS

We test the varying coefficient model against four baseline models in 100 trials. In each trial,
we run the algorithms for T = 5, 000 rounds. K = 7 arms are used in the simulation with
u = (0.1, 0.2, · · · , 0.7). The penalty is chosen to be λ = 1, and harm threshold θ = 0.33.

1) Methods for comparison: We consider four baseline methods, all of which under the ϵt-greedy
framework. The first baseline method ignores the harm effect, and only targets at maximizing the
reward. The second baseline method ignores the context, which means the functional coefficients are
all treated as constants.

The third one is to learn K separate models independently for each of the K arms. This method is
used in Goldenshluger & Zeevi (2013). In this method, we assume arm k has parameters β(k) and γ(k)

with harm model p(x, β(k)) = g(xTβ(k)) and reward model q(x, γ(k)) = h(xT γ(k)). When running
the algorithm, only data from the history of arm k is used to estimate β̂

(k)
t and γ̂

(k)
t . Therefore, for

arms j ̸= k, the parameters β(j), γ(j) and β(k), γ(k) are learned separately.

The fourth baseline method under consideration is to bin the continuous context into N categories
C1, · · · , CN , then learn a context-free model within each category. The binned context is considered
by Perchet & Rigollet (2013) and Li et al. (2019). For x belonging to category Ci, we assume there
are parameters β(i) ∈ R2 and γ(i) ∈ R3, and model expected harm as p(x, uk;β

(i)) = (1, uk)β
(i) as

well as expected reward q(x, uk; γ
(i)) = (1, uk, u

2
k)γ

(i). When context Xt arrives, we first decide
which category Xt belongs to, say Ci, then use history data {1 ≤ s ≤ t− 1 : Xs ∈ Ci} to estimate
β̂
(i)
t and γ̂

(i)
t . N = 3 categories are used in the simulation.

2) Data generation: We consider a simple example where x ∈ R1, and Φ(x) = Ψ(x) = (1, x)T

for the varying coefficient model. The context Xt is simulated i.i.d. from a Uniform distribution on
[0, 1]. The harm Yt and reward Zt are Bernoulli random variables with mean functions specified by
equation 4 and equation 7, respectively. The inverse link functions g and h are both expit functions.
The surfaces for the expectation of harm and reward are given in Figure 1.

We also run the oracle method, where the true β and γ values are known, to identify the best arm in
each round. For the five methods under comparison, we report the regret of each method in Figure 2
(a). Figure 2 (b) gives the count

∑t
s=1 I{ps > θ} for the chisen arm, reflecting the safety feature

of each method. Due to space limit, more details on computation as well as additional results on
different λ-value are deferred to the Appendix.

The advantage of varying coefficient models becomes evident when examining the results depicted
in both plots. In Figure 2(a), the regret for varying coefficient models is constantly lower than the
other four methods. In Figure 2(b), the varying coefficient model is also comparable with the oracle
method on the safety side. These results emphasize the effectiveness of varying coefficient models in
making more informed and advantageous decisions.
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(a) Surface of expectation of harm on
feature u and context x.

(b) Surface of expectation of reward on
feature u and context x.

Figure 1: Note reward is not monotonely increasing with level (u), but harm is assumed to be
monotone in level (u).

(a) (b)

Figure 2: (a) The cumulative regret averaged across 100 trials. (b)To reflect the safety feature of each
method, we calculate how many times the method chooses an arm with harm probability p > θ up to
round t. Then the count is averaged over 100 trials.

6 CONCLUSION

In this paper, we considered a new contextual multi-armed bandit framework, where both benefits
and harm are the consequence of pulling an arm. By including the penalty of harm in the regret
formulation, we balanced between maximizing benefits and controlling harmful outcomes. Our
proposed model used contextual variables to construct the varying coefficient generalized linear
model, allowing flexible model specification. We proposed an ϵt-greedy algorithm to make decisions
sequentially. We established an O(

√
T log T ) regret bound for the proposed ϵt-greedy algorithm

under varying coefficient generalized linear models. Compared to the baseline models, varying
coefficient models have shown an advantage in both minimizing regret and controlling harm. The
varying coefficient models successfully captured the connection between arms and utilized the
information provided by contextual variables. To allow greater model flexibility, the functional
coefficients may be estimated by nonparametric methods instead of parametric models. The statistical
properties of such nonparametric estimations are worth investigating. Also, the MLE of η becomes
computationally expensive as the time horizton T increases. Online update of parameters is worth
considering for large T to further promote the applicability of the proposed method. See Chen
et al. (2021) for example. Another approach to tackle the balance of benefit and harm is the Pareto
optimality, which may be adapted more carefully if safety guarantee is needed. Finally, in the current
analysis of regret, the convergence of parameter estimates was solely based on the initialization
rounds. However, ϵt-greedy algorithm collects more independent samples during the exploration. A
careful analysis to utilize the independent samples in exploration may lead to a better regret bound.
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