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Abstract

Pre-trained language models (PLMs) cannot001
well recall rich factual knowledge of enti-002
ties exhibited in large-scale corpora, especially003
those rare entities. In this paper, we propose to004
build a simple but effective Pluggable Entity005
Lookup Table (PELT) on demand by aggregat-006
ing the entity’s output representations of mul-007
tiple occurrences in the corpora. PELT can008
be compatibly plugged as inputs to infuse sup-009
plemental entity knowledge into PLMs. Com-010
pared to previous knowledge-enhanced PLMs,011
PELT only requires 2‰∼5% pre-computation012
with capability of acquiring knowledge from013
out-of-domain corpora for domain adaptation014
scenario. The experiments on knowledge-015
related tasks demonstrate that our method,016
PELT, can flexibly and effectively transfer017
entity knowledge from related corpora into018
PLMs. We will make all the data and codes019
publicly available to facilitate future research.020

1 Introduction021

Recent advance in pre-trained language models022

(PLMs) has achieved promising improvements in023

various downstream tasks (Devlin et al., 2019; Liu024

et al., 2019). Some latest works reveal that PLMs025

can automatically acquire knowledge from large-026

scale corpora via self-supervised pre-training and027

then encode the learned knowledge into their model028

parameters (Tenney et al., 2019; Petroni et al.,029

2019; Roberts et al., 2020). However, due to the030

limited capacity of vocabulary, existing PLMs face031

the challenge of recalling the factual knowledge032

from their parameters, especially for those rare en-033

tities (Gao et al., 2019a; Wang et al., 2021a).034

To improve PLMs’ capability of entity under-035

standing, a straightforward solution is to exploit036

an external entity embedding acquired from the037

knowledge graph (KG) (Zhang et al., 2019; Liu038

et al., 2020; Wang et al., 2020), the entity descrip-039

tion (Peters et al., 2019), or the corpora (Pörner040

Model #Ent Pre-Comp. D-Adapt

Zhang et al. (2019) 5.0M ∼160h No
Wang et al. (2021b) 4.6M ∼3,400h No
Yamada et al. (2020) 0.5M ∼3,800h No
PELT (our model) 4.6M 7h Yes

Table 1: Comparison of recent knowledge-enhanced
PLMs. We report the pre-computation of BASE mod-
els on Wikipedia entities on a V100 GPU. Pre-Comp.:
Pre-computation; D-Adapt: Domain Adaptation.

et al., 2020). In order to make use of the ex- 041

ternal knowledge, these models usually learn to 042

align the external entity embedding (Bordes et al., 043

2013; Yamada et al., 2016) to the their original 044

word embedding. However, previous works ignore 045

to explore entity embedding from the PLM itself, 046

which makes their learned embedding mapping is 047

not available in the domain-adaptation. Other re- 048

cent works attempt to infuse knowledge into PLMs’ 049

parameters by extra pre-training, such as learning 050

to build an additional entity vocabulary from the 051

corpora (Yamada et al., 2020; Févry et al., 2020), or 052

adopting entity-related pre-training tasks to inten- 053

sify the entity representation (Xiong et al., 2020; 054

Sun et al., 2020; Wang et al., 2021b). However, 055

their huge pre-computation increases the cost of 056

extending or updating the customized vocabulary 057

for various downstream tasks. 058

In this paper, we introduce a simple but effec- 059

tive Pluggable Entity Lookup Table (PELT) to in- 060

fuse knowledge into PLMs. To be specific, we 061

first revisit the connection between PLMs’ input 062

features and output representations for masked lan- 063

guage modeling. Based on this, given a new corpus, 064

we aggregate the output representations of masked 065

tokens from the entity’s occurrences, to recover 066

an elaborate entity embedding from a well-trained 067

PLM. Benefiting from the compatibility and flex- 068

ibility of the constructed embedding, we can di- 069

rectly insert them into the corresponding positions 070

of the input sequence to provide supplemental en- 071
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tity knowledge. As shown in Table 1, our method072

merely consumes 2‰∼5% pre-computation com-073

pared with previous works, and it also supports the074

vocabulary from different domains simultaneously.075

We conduct experiments on two knowledge-076

related tasks, including knowledge probe and rela-077

tion classification, across two domains (Wikipedia078

and biomedical publication). Experimental results079

show that PLMs with PELT can consistently and080

significantly outperform the corresponding vanilla081

models. In addition, the entity embedding obtained082

from multiple domains are compatible with the083

original word embedding and can be applied and084

transferred swiftly.085

2 Methodology086

In this section, we first revisit the masked language087

modeling pre-training objective. After that, we088

introduce the pluggable entity lookup table and089

explain how to apply it to incorporate knowledge090

into PLMs.091

2.1 Revisit Masked Language Modeling092

PLMs conduct self-supervised pre-training tasks,093

such as masked language modeling (MLM) (De-094

vlin et al., 2019), to learn the semantic and syntac-095

tic knowledge from the large-scale unlabeled cor-096

pora (Rogers et al., 2020). MLM can be regarded097

as a kind of cloze task, which requires the model to098

predict the missing tokens based on its contextual099

representation. Formally, given a sequence of to-100

kens X = (x1, x2, . . . , xn), with xi substituted by101

[MASK], PLMs, such as BERT, first take tokens’102

word embedding and position embedding as input103

and obtain the contextual representation:104

H = Enc(LayerNorm(E(X) + P )), (1)105

where Enc(·) denotes a deep bidirectional Trans-106

former encoder, LayerNorm(·) denotes layer nor-107

malization (Ba et al., 2016), E ∈ R|V |×D is the108

word embedding matrix, V is the word vocabu-109

lary, P is the absolute position embedding and110

H = (h1,h2, . . . ,hn) is the contextual represen-111

tation. After that, BERT applies a feed-forward112

layer (FFN) and layer normalization on the contex-113

tual representation to compute the output represen-114

tation of xi:115

rxi = LayerNorm(FFN(hi)). (2)116

Since the weights in the softmax layer and word117

embeddings are tied in BERT, the model calculate118

WTO regards [MASK] has 
become a global epidemic.

[MASK] is the disease caused 
by severe acute respiratory.

PLM 
Encoding

Masked Token’s
Output Rep.

Entity
Embedding

Covid-19

Covid-19 
Occurring Sentence

Figure 1: An illustration of the our PELT.

the product of rxi and the input word embedding 119

matrix to further compute xi’s cross-entropy loss 120

among all the words: 121

L = −
∑

log Pr(xi|rxi)

= −
∑

log
exp(E(xi)Trxi)∑

wj∈V exp(E(wj)
Trxi)

.
(3) 122

2.2 Construct Pluggable Entity Embedding 123

Due to the training efficiency, the vocabulary sizes 124

in existing PLMs typically range from 30K to 60K 125

subword units, and thus PLMs have to disperse the 126

information of massive entities into their subword 127

embeddings. Through revisiting the MLM loss in 128

Eq. 3, we could intuitively observe that the word 129

embedding and the output representation of BERT 130

are located in the same vector space. Hence, we are 131

able to recover the entity embedding from BERT’s 132

output representations to infuse their contextual- 133

ized knowledge to the model. 134

To be specific, given a general or domain- 135

specific corpus, we design to build the lookup table 136

for entities that occurs in the downstream tasks on 137

demand. For an entity e, such as a Wikidata entity 138

or a proper noun entity, we construct its embedding 139

E(e) as follows: 140

Direction A feasible method to add entity e to 141

the vocabulary of PLM is to optimize its embed- 142

ding E(e) for the MLM loss with other parameters 143

frozen. We collect the sentences Se that contain 144

entity e and substitute it with [MASK]. The total 145

influence of E(e) to the MLM loss in Se can be 146

formulated as: 147

L(e) = −
∑
xi∈Se

log Pr(e|rxi)

=
∑
xi∈Se

logZxi − E(e)T
∑
xi∈Se

rxi ,
(4) 148

where Zxi =
∑

wj∈V ∪{e} exp(E(wj)
Trxi), xi is 149

the replaced masked token for entity e and rxi is 150

the PLM’s output representation of xi. 151
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Compared with the total impact of the entire152

vocabulary onZxi , E(e) has a much smaller impact.153

If we ignore the minor effect of E(e) on Zxi , the154

optimal solution of E(e) for L(e) is proportional155

to
∑

xi∈Se
rxi . Hence, we set E(e) as:156

E(e) = C ·
∑
xi∈Se

rxi , (5)157

where C denotes the scaling factor.158

Practically, E(e) also serves as the negative log-159

likelihood of other words’ MLM loss (Kong et al.,160

2020). However, Gao et al. (2019a) indicates that161

the gradient from such negative log-likelihood will162

push all words to a uniformly negative direction,163

which weakens the quality of rare words’ represen-164

tation. Here, we ignore this negative term and ob-165

tain the informative entity embedding from Eq. 5.166

Norm We define p(e) as the position embedding167

for entity e. Since the layer normalization in Eq. 1168

makes the norm |E(e) + p(e)| to D
1
2 , we find that169

the norm |E(e)| has little effect on the input feature170

of the encoder in use. Therefore, we set the norm171

of all the entity embeddings as a constant L. Then,172

we evaluate the model with different L on the un-173

supervised knowledge probe task and choose the174

best L for those fine-tuning tasks.175

2.3 Infuse Entity Knowledge into PLMs176

Since the entity embedding we obtained and the177

original word embedding are both obtained from178

the masked language modeling objective, the entity179

can be regarded as a special input token. To infuse180

entity knowledge into PLMs, we apply a pair of181

bracket to enclose the constructed entity embed-182

ding and then insert it after the original entity’s183

subwords. For example, the original input,184

Steve Job works for [MASK].185

becomes186

Steve Job (Steven_Job) works for [MASK].187

Here, the entity Steven_Job adopts our constructed188

entity embedding and other words use their original189

embedding. We simply convey the modified input190

to the PLM for encoding without any additional191

structures or parameters.192

A note on entity links In previous section, we193

hypothesize that we know the entity linking annota-194

tions for the involved string name. In practice, we195

can obtain the gold entity links provided by some196

datasets like FewRel 1.0. For the datasets where the197

linking annotations are not available, we employ a 198

heuristic string match for entity linking1. 199

3 Experiment 200

3.1 Implementation Details 201

We choose RoBERTaBase (Liu et al., 2019), a well- 202

optimized PLM, as our baseline model and we 203

equip it with our constructed entity embedding to 204

obtain the PELT model. We adopt Wikipedia and 205

biomedical S2ORC (Lo et al., 2020) as the domain- 206

specific corpora and split them into sentences with 207

NLTK (Xue, 2011). For Wikipedia, we adopt a 208

heuristic entity linking strategy with the help of 209

hyperlink annotations. For the used FewRel 1.0 210

and Wiki80 datasets, we directly use the annotated 211

linking information. For other datasets, we link the 212

given entity name through a simple string match. 213

For each necessary entity, we first extract up to 256 214

sentences containing the entity from the corpora. 215

After that, we construct the entity embedding ac- 216

cording to Section 2.2. In the fine-tuning process, 217

we freeze the constructed embeddings as an lookup 218

table. We run all the fine-tuning experiments with 219

5 different seeds and report the average score. 220

3.2 Baselines 221

We select two of the most representative entity- 222

aware baselines, which adopt an external entity 223

embedding or an entity-related pre-training task: 224

(1) ERNIE (Zhang et al., 2019) involves the entity 225

embedding learned from Wikidata relation (Bordes 226

et al., 2013). We adopt the RoBERTa version of 227

ERNIE provided by Wang et al. (2021b); (2) KE- 228

PLER (Wang et al., 2021b) encodes textual entity 229

description into entity embedding and learns fact 230

triples and language modeling simultaneously. 231

3.3 Relation Classification 232

Relation Classification (RC) aims to predict the 233

relationship between two entities in a given text. 234

We evaluate the models on two scenarios, the few- 235

shot setting and the full-data setting. 236

The few-shot setting focuses on long-tail rela- 237

tions without sufficient training instances. We eval- 238

uate models on FewRel 1.0 (Han et al., 2018) and 239

FewRel 2.0 (Gao et al., 2019b). FewRel 1.0 con- 240

tains instances with Wikidata facts and FewRel 241

2.0 involves a biomedical-domain test set to ex- 242

amine the ability of domain adaptation. In the 243

1Details are shown in the Appendix.
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Model Extern KG FewRel 1.0 FewRel 2.0
5-1 5-5 10-1 10-5 5-1 5-5 10-1 10-5

ERNIE† X 92.7±0.2 97.9±0.0 87.7±0.4 96.1±0.1 66.4±1.6 88.2±0.5 51.2±0.7 80.1±1.0

KEPLER X 90.8±0.1 96.9±0.1 85.1±0.1 94.2±0.1 74.0±1.0 89.2±0.2 61.7±0.1 82.1±0.1

RoBERTa - 90.4±0.3 96.2±0.0 84.2±0.5 93.9±0.1 71.2±2.1 89.4±0.2 53.3±0.8 83.1±0.4

PELT - 92.7±0.3 97.5±0.0 87.5±0.3 95.4±0.1 75.0±1.3 92.1±0.2 60.4±1.1 85.6±0.2

Table 2: The accuracy on the FewRel dataset. N -K indicates theN -wayK-shot configuration. Both of FewRel 1.0
and FewRel 2.0 are trained on the Wikipedia domain, and FewRel 2.0 is tested on the biomedical domain. ERNIE†

has seen facts in the FewRel 1.0 test set during pre-training. We report standard deviations as subscripts.

Model 1% 10% 100%

ERNIE 66.4±0.4 87.7±0.2 93.4±0.1

KEPLER 62.3±1.0 85.4±0.2 91.7±0.1

RoBERTa 59.8±1.7 85.7±0.2 91.7±0.1

PELT 65.6±1.0 88.3±0.3 93.4±0.1

Table 3: The accuracy on the test set of Wiki80.
1%/ 10% indicate using 1%/ 10% supervised training
data respectively.

N -way K-shot setting, models are required to cat-244

egorize the query as one of the existing N rela-245

tions, each of which contains K supporting sam-246

ples. We choose the state-of-the-art few-shot frame-247

work Proto (Snell et al., 2017) with different PLM248

encoders for evaluation. For the full-data setting,249

we evaluate models on the Wiki80, which contains250

80 relation types from Wikidata. We also add 1%251

and 10% settings, meaning using only 1% / 10%252

data of the training sets.253

As shown in Table 2 and Table 3, on FewRel254

1.0 and Wiki80 in Wikipedia domain, RoBERTa255

with PELT beats the RoBERTa model by a large256

margin (e.g. +3.3% on 10way-1shot), and it even257

achieves comparable performance with ERNIE,258

which has access to the knowledge graph. Our259

model also gains huge improvements on FewRel260

2.0 in the biomedical domain (e.g. +7.1% on261

10way-1shot), while the entity-aware baselines262

have little advance in most settings. Compared with263

most existing entity-aware PLMs which merely ob-264

tain domain-specific knowledge in the pre-training265

phase, our proposed pluggable entity lookup table266

can dynamically update the models’ knowledge267

from the out-of-domain corpus on demand.268

3.4 Knowledge Probe269

We conduct experiments on a widely-used knowl-270

edge probe dataset, LAMA (Petroni et al., 2019).271

It applies cloze-style questions to examine PLMs’272

ability on recalling facts from their parameters. For273

example, given a question template Paris is the cap-274

Model LAMA LAMA-UHN

G-RE T-REx G-RE T-REx

ERNIE 10.0 24.9 5.9 19.4
KEPLER 5.5 23.4 2.5 15.4

RoBERTa 5.4 24.7 2.2 17.0
PELT 6.4 27.5 2.8 19.3

Table 4: Mean P@1 on the knowledge probe bench-
mark. G-RE: Google-RE.

Model [0,10) [10,50) [50,100) [100,+)

RoBERTa 18.1 21.1 25.8 26.1
PELT 21.9 24.8 29.0 28.7

Table 5: Mean P@1 on T-Rex with respect to the sub-
ject entity’s frequency in Wikipedia.

ital of [MASK], PLMs are required to predict the 275

masked token properly. In this paper, we not only 276

use Gooogle-RE and T-REx (ElSahar et al., 2018) 277

which focus on factual knowledge, but also evalu- 278

ate models on LAMA-UHN (Pörner et al., 2020) 279

which filters out the easy questionable templates. 280

As shown in Table 4, without any pre-training, 281

the PELT model can directly absorb the entity 282

knowledge from the extended input sequence to 283

recall more factual knowledge, which demonstrates 284

that the entity embeddings we constructed are com- 285

patible with original word embeddings. 286

Effect of Entity Frequency Table 5 shows the 287

P@1 results with respect to the entity frequency. 288

While RoBERTa performs worse on rare entities 289

than frequent entities, PELT brings a substantial 290

improvement on rare entities, i.e., near 3.8 mean 291

P@1 gains on entities that occur less than 50 times. 292

4 Conclusion and Future work 293

In this paper, we propose PELT, a flexible entity 294

lookup table, to incorporate up-to-date knowledge 295

into PLMs. By constructing entity embeddings on 296

demand, PLMs with PELT can recall rich factual 297

knowledge to help downstream tasks. 298
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A Heuristic String Match for Entity 501

Linking 502

For the Wikipedia, we first create a mapping from 503

the anchor texts with hyperlinks to their referent 504

Wikipedia pages. After that, We employ a heuristic 505

string matching to link other potential entities to 506

their pages. 507

For preparation, we collect the aliases of the 508

entity from the redirect page of Wikipedia and the 509

relation between entities from the hyperlink. Then, 510

we apply spaCy 2 to recognize the entity name in 511

the text. An entity name in the text may refer to 512

multiple entities of the same alias. We utilize the 513

relation of the linked entity page to maintain an 514

available entity page set for entity disambiguation . 515

Details of the heuristic string matching are 516

shown in Algorithm 1, we match the entity name to 517

surrounding entity page of the current page as close 518

2https://spacy.io/

6

https://doi.org/10.18653/v1/2020.findings-emnlp.71
https://doi.org/10.18653/v1/2020.findings-emnlp.71
https://doi.org/10.18653/v1/2020.findings-emnlp.71
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://transacl.org/ojs/index.php/tacl/article/view/2257
https://transacl.org/ojs/index.php/tacl/article/view/2257
https://transacl.org/ojs/index.php/tacl/article/view/2257
https://proceedings.neurips.cc/paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html
https://doi.org/10.18653/v1/2020.coling-main.327
https://doi.org/10.18653/v1/2020.coling-main.327
https://doi.org/10.18653/v1/2020.coling-main.327
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://doi.org/10.18653/v1/2021.acl-long.251
https://doi.org/10.18653/v1/2021.acl-long.251
https://doi.org/10.18653/v1/2021.acl-long.251
https://doi.org/10.18653/v1/2021.acl-long.251
https://doi.org/10.18653/v1/2021.acl-long.251
http://arxiv.org/abs/2002.01808
http://arxiv.org/abs/2002.01808
http://arxiv.org/abs/2002.01808
https://transacl.org/ojs/index.php/tacl/article/view/2447
https://transacl.org/ojs/index.php/tacl/article/view/2447
https://transacl.org/ojs/index.php/tacl/article/view/2447
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://doi.org/10.1017/S1351324910000306
https://doi.org/10.1017/S1351324910000306
https://doi.org/10.1017/S1351324910000306
https://doi.org/10.1017/S1351324910000306
https://doi.org/10.1017/S1351324910000306
https://doi.org/10.1017/S1351324910000306
https://doi.org/10.1017/S1351324910000306
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/k16-1025
https://doi.org/10.18653/v1/k16-1025
https://doi.org/10.18653/v1/k16-1025
https://doi.org/10.18653/v1/k16-1025
https://doi.org/10.18653/v1/k16-1025
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://spacy.io/


Algorithm 1 Heuristic string match for entity dis-
ambiguation
S ⇐ { the linked entity page in anchor text}
E ⇐ { potential entity name in text}
repeat
S′ ⇐ { the neighbor entity pages that have
hyperlink or Wikidata relation with pages in
S}
E′ ⇐ {e|e ∈ E and e can be uniquely linked
to entity page in S′ by string matching }
E ⇐ E − E′
S ⇐ E′

until S = φ

as possible. e will release all the source code and519

models with the pre-processed Wikipedia dataset.520

For other datases, we adopt a simple string match521

for entity linking.522

B Training Configuration523

We train all the models with Adam opti-524

mizer (Kingma and Ba, 2015), 10% warming up525

steps and maximum 128 input tokens. Detailed526

training hyper-parameters are shown in Table 6.527

For Wiki80, KBP37 and ChemProt, we run ex-528

periments with 5 different seeds (42, 43, 44, 45, 46)529

and report the average scores and the standard de-530

viations. And we run the 1% and 10% experiments531

with 5-25 times epochs as that of the 100% experi-532

ment.533

For FewRel, we search the batch size534

among [4, 8, 32] and search the training step in535

[1500, 2000, 2500]. We evaluate models every 250536

on validation and save the model with best perfor-537

mance for testing. With our hyper-parameter tun-538

ing, the results of baselines in FewRel significantly539

outperforms that reported by KEPLER (Wang et al.,540

2021b).541

Dataset Epoch Train Step BSZ LR

MLM - 2,000 8192 1e-4
Wiki80 5 - 32 3e-5
KBP37 5 - 32 3e-5
ChemProt 5 - 32 3e-5
FewRel 1.0 - 2500 32 2e-5
FewRel 2.0 - 1500 32 2e-5

Table 6: Training Hyper-parameters. BSZ: Batch size;
LR: Learning rate.
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