
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A GENERALIST HANABI AGENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional multi-agent reinforcement learning (MARL) systems can develop co-
operative strategies through repeated interactions. However, these systems are
unable to perform well on any other setting than the one they have been trained
on, and struggle to successfully cooperate with unfamiliar collaborators. This is
particularly visible in the Hanabi benchmark, a popular 2-to-5 player coopera-
tive card-game which requires complex reasoning and precise assistance to other
agents. Current MARL agents for Hanabi can only learn one specific game-setting
(e.g., 2-player games), and play with the same algorithmic agents. This is in stark
contrast to humans, who can quickly adjust their strategies to work with unfamil-
iar partners or situations. In this paper, we introduce a generalist agent for Hanabi,
designed to overcome these limitations. We reformulate the task using text, as lan-
guage has been shown to improve transfer. We then propose a distributed MARL
algorithm that copes with the resulting dynamic observation- and action-space. In
doing so, our agent is the first that can play all game settings concurrently, and
extend strategies learned from one setting to other ones. As a consequence, our
agent also demonstrates the ability to collaborate with different algorithmic agents
—agents that are themselves unable to do so.

1 INTRODUCTION

Humans were able to thrive as a society through their ability to cooperate. Interactions among multi-
ple people or agents are essential components of various aspects of our lives, ranging from everyday
activities like commuting to work, to the functioning of fundamental institutions like governments
and economic markets. Through repeated interactions, humans can understand their partners, and
learn to reason from their perspective. Crucially, humans can generalize their reasonings towards
novel partners, in different situations. Artificial agents should be able to do the same for the suc-
cessful collaboration of artificial and hybrid systems (Dafoe et al., 2020). This is why defining
the problem of multi-agent cooperation nicely fits the multi-agent reinforcement learning (MARL)
paradigm, as artificial agents learn to collaborate together through repeated interactions, in the same
principled manner humans would.

In MARL, the game of Hanabi has emerged as a popular benchmark to assess the cooperative abil-
ities of learning agents (Bard et al., 2020). Hanabi is a partially-observable card game designed for
2 to 5 players, with approximately 290 unique player hands in the 5-player setting. Progressing in
the game requires intricate skills, including long-term planning, precise assistance through clues to
other agents, and complex reasoning. Adding to the complexity, players are required to infer the be-
liefs and intentions of their counterparts through theory of mind reasoning (Bard et al., 2020). All of
these characteristics are required in real-world multi-agent interactions, making Hanabi a challeng-
ing and relevant testbed for MARL. Moreover, Hu et al. (2020); Hu & Sadigh (2023) have shown
that agents performing well in Hanabi, particularly in zero-shot coordination, demonstrate improved
capabilities in human-AI collaborative scenarios.

A straightforward way to learn to play is through self-play (Tan, 1993; Tampuu et al., 2017; Foerster
et al., 2019). By repeatedly playing with oneself, an agent can learn conventions and effectively play
the game. Sadly, these conventions often do not apply to others, resulting in misunderstandings and
thus a drop in cooperation capabilities when paired with novel agents (Carroll et al., 2019). This is
of course undesired behavior. An important aspect of assessing an artificial agent’s performance is
thus to evaluate its cooperative abilities when paired with agent it has not trained with, i.e., zero-shot
coordination (ZSC). This means agents require to have a solid understanding of the game, and need

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

robust strategies that cope with unexpected decisions of their teammates. Moreover, if a strategy
is robust enough, it should provide a solid basis for variations of the task at hand. In Hanabi, for
example, the optimal strategy for a 3-player game is different from the one for a 2-player game, even
though the rules remain unchanged. However, using a robust 2-player strategy on a 3-player game
should still yield solid performance, even if not optimal.

Learning such robust strategies is precisely the goal of this paper. By sacrificing some of the perfor-
mance gains that come with learning a highly specialized but inflexible strategy, we design an agent
that can not only generalize across different types of partners, but also to different game settings.

A centerpiece of our work lies in the realisation that the representation of the Hanabi environment
the agents use to make decisions is highly structured, and thus inflexible. Changing the game setting
results in a completely different structure, severely hampering the potential transfer of knowledge
from one setting to another. This is the case for both observations of the game’s state – an abstract
encoding of bits – and actions the agent perform – a one-hot encoding for all action-combinations.
Thus, as a first contribution, we modify the representations of both the observation- and action-
spaces of Hanabi to make it more suitable for knowledge transfer. For this, we propose to use
natural language as a backbone for our representation. Language has been shown to be a successful
medium for transfer (Radford et al., 2019b; Brown et al., 2020), and using text for observations
and actions results in a representation that becomes agnostic to number of partners in play (i.e., the
setting of the game). This results in agents that learn on similar data-distributions, regardless of the
number of teammates in play.

Next, we propose a novel neural network architecture that combines language models (Devlin et al.,
2018b) and Deep Recurrent Relevance Q-network (DRRN) (He et al., 2015) to create an agent
robust towards the dynamic textual observation- and action-spaces. Integrating this architecture with
a distributed training regimen results in the Recurrent Replay Relevance Distributed DQN (R3D2)
algorithm, our main contribution. What is remarkable is that, even though R3D2 learns the game
of Hanabi through self-play, the simple fact of using a more abstract game representation and a
well-suited network architecture results in robust strategies that to not only successfully cooperate
with unseen R3D2 agents, but also – and perhaps more importantly – with completely different
algorithmic agents. Moreover, due to their dynamic network architecture, R3D2 agents that have
been trained on different player settings are able to collaborate together, even though they have
learned different strategies.

Finally, because of the player-agnostic nature of R3D2, R3D2 agents can change the number of
players in a game while they are learning, effectively enabling what we call variable-player learn-
ing, a multi-agent-specific variant of multi-task learning. By training with multiple combinations of
number of agents, R3D2 can extend the simpler 2-player strategies to the hardest 5-player setting.
In doing so, we have developed the first generalist Hanabi agent. To the best of our knowledge,
this is the first time that generalization across game settings has been investigated for Hanabi. We
argue this to be an essential component that defines robustness of behavior, and believe that general-
ization across game-settings is a promising research direction to evaluate policy robustness. While
we demonstrate our approach on Hanabi, our core technical contributions - text-based representa-
tion for better transfer, architecture for dynamic action/state spaces, and variable-player learning are
domain-agnostic advances that could benefit MARL applications in general.

2 RELATED WORK

MARL for Hanabi For successful collaboration, MARL agents require specific skills, such as
dealing with imperfect information, predicting the intentions of partners, and communicating valu-
able information to others. All of these skills are required to play the game of Hanabi, which is
why Bard et al. (2020) proposed the Hanabi challenge as a new frontier for AI research. The first
deep RL methods to learn winning strategies for Hanabi use self-play, combined with either a public
belief state (Foerster et al., 2019), or by explicitly providing additional information during train-
ing (Hu & Foerster, 2019). However, as observed by Hu et al. (2020), self-play agents learn highly
specialized conventions that are not transferable to novel partners. They introduce the concept of
zero-shot coordination (ZSC), where AI agents need to coordinate with partners they have never seen
before, and propose Other-Play for ZSC. Other-Play develops more robust strategies by leveraging
the presence of known symmetries in the underlying problem. However, the ZSC performance is

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

evaluated through cross-play, i.e., agents of the same learning algorithm but from independent train-
ing runs. While it is an important step towards generalization, cross-play is a cheap proxy to ZSC
with completely different AI agents or even human players. Multiple works have since proposed
ZSC-capable learners. Lupu et al. (2021); Nekoei et al. (2021) use population training with diverse
policies so agents train with a large pool of agents, thus encountering diverse behaviors and creating
robust strategies that generalize across the population. Lucas & Allen (2022) use intrinsic rewards
as an alternative way to promote diverse behaviors. As an alternative to diversity-based approaches,
Cui et al. (2021) propose to ground policies using hierarchies of agents, where a level-k agent learns
the best-response strategy to a level-k − 1 agent. Similarly, Hu et al. (2021b) propose to iteratively
optimize a policy against the optimal policy of the previous iteration. Through these hierarchies, the
agents observe different levels of reasoning and can fall back to lower-level reasoning when playing
with unknown partners. Both these works focus on the 2-player setting of Hanabi, and are unable to
generalize to higher player settings. Finally, Hu & Sadigh (2023) propose a framework where the
partner specifies what kind of strategy it expects the learning agent to play. Using pretrained large
language models (LLMs), a prior policy is generated conditioned on this specification, such that the
agent learns a strategy that is aligned with this policy. However, this prior policy is only conditioned
on other agents’ actions and heuristic instructions in contrast to our work where the language model
operates on both observations and action avoiding the need to design hand-coded instructions. In all
these works, agents need to learn how to play with others, on the same game-setting. In contrast,
our R3D2 agent can play on multiple game-settings at once, and play with agents trained on other
game-settings.

RL for text-based games Recent successes in RL and natural language processing (NLP) have
resulted in a surge of interest for developing RL agents based on text-based games. Examples in-
clude story-based games (Hausknecht et al., 2020), adventure games (Yin & May, 2019), and many
others (Yuan et al., 2018; Murugesan et al., 2020; Wang et al., 2022). In such environments, the
agent is presented with a textual description of a goal (Osborne et al., 2022). These interactive envi-
ronments offer challenging and realistic training that requires a solid understanding of the language
and the task. Moreover, connecting language with the physical world is critical to solving the task
(Bisk et al., 2020; Bender & Koller, 2020). To address these, researchers have developed several
RL-based agents that operate on text (He et al., 2015; Jain et al., 2019; Xu et al., 2020; Yuan et al.,
2018). Language models have been used to propose action candidates (Jang et al., 2021; Yao et al.,
2020; Singh et al., 2021; Sudhakar et al., 2023). While these environments allow for many different
and diverse behaviors and tasks, they focus on single-agent learning. For multi-agent systems, Park
et al. (2023) investigate generative agents interacting with each other and the world through text.
However, the focus of this work is to observe believable individual and emergent social behaviors
from these agents, no learning is involved.

Transfer Learning and Generalization in RL Transfer learning and generalization remain fun-
damental challenges in reinforcement learning, particularly in multi-agent settings where the com-
plexity of interactions compounds the difficulty. Traditional approaches to transfer in single-agent
RL often focus on learning representations that capture task-invariant features (Taylor & Stone,
2009; Finn et al., 2017) or developing curricula that gradually increase task complexity (Bengio
et al., 2009; Narvekar et al., 2020). These challenges are further amplified in multi-agent systems,
where agents must adapt not only to new tasks but also to different interaction patterns (Carbonell
& Veloso, 2006; Da Silva & Costa, 2019). Recent work has explored environment design as a
promising direction for improving transfer and generalization. Notably, Team et al. (2021) showed
that agents trained on a vast collection of procedurally generated games in XLand develop zero-
shot generalization to novel tasks. Dennis et al. (2020) demonstrate that automatically generating
training environments of progressively increasing complexity can lead to emergent behaviors that
transfer zero-shot to novel scenarios. Building on this, Samvelyan et al. (2023) propose MAESTRO,
which extends environment design to the multi-agent setting by creating scenarios that encourage
the emergence of coordination protocols. While these approaches focus on generating environments
to facilitate transfer, our work takes a different approach by reformulating the original environment
using language to enable generalization across different game configurations, building on recent
successes in using language for transfer in other domains (Andreas et al., 2017; Lee et al., 2022)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PRELIMINARIES

3.1 THE GAME OF HANABI

In Hanabi, 2-to-5 players work cooperatively to arrange cards in ascending order (from 1 to 5) for
each color (typically five colors: red, blue, green, white, and yellow). Each player is dealt a hand
of cards, but the twist is that they cannot see their own cards, only their teammates can see them.
Players take turns, and on each turn, a player must choose to perform one of three possible actions.
Either it gives a clue, plays a card, or discards a card. If the player gives a clue, it can provide one
piece of information to another player about their hand (e.g., ”These two cards are blue”). Giving
a clue costs a hint token, and there are 8 hint tokens available. Alternatively, the player can decide
to play a card, hoping it can be added to the sequence of cards on the table. If the card is correct
(i.e., it extends one of the color sequences in ascending order), it is successfully played. If the card
is wrong, it is discarded, and the team loses one of its 3 life tokens. Finally, the player can discard
a card from their hand to gain a hint token back. This action is necessary when hint tokens run
out, but it comes with the risk of discarding a crucial card. Each correctly arranged card results in
1 point, for a maximum of 25 points (all 5 cards of all 5 colors have been arranged correctly). The
game ends either when all cards are arranged, all life tokens have been used, or the deck is empty.

3.2 MULTI-AGENT REINFORCEMENT LEARNING

In Hanabi, each player is dealt a number of cards, which only the other players can see. As such,
Hanabi is a partially observable game: not all information is available to the player to make a
decision. Each turn, a player can decide to either play or discard a card, or to give a clue. Players
need to make decisions alone, making this a decentralized game. By playing cards in a specific
order, players gain points as a team. Hanabi is thus fully cooperative. In the MARL literature, such a
setting is modeled as a Decentralized Partially-Observable Markov Decision Process (Dec-POMDP
) (Bernstein et al., 2002; Nair et al., 2003), formally defined as a tuple G = {S,A, P,R,Ω, O,N, γ},
with the set of states S, the set of actions A, the transition function P , the reward function R, the
set of observations for each agent Ω, the observation function O, the number of agents N , and
γ as the discount factor. The game is partially observable, with oi ∼ O(o | i, s) as agent i ’s
observation of the global state, sampled from the (stochastic) observation function O. The game
is also fully cooperative, thus agents share the same reward r = R(s,a), conditioned on the joint
action a =

[
ai
]N
i=1

and the global state s. At each timestep t, all agents are at the state st. Each
agent has an action-observation history (AOH) τ it =

{
oi0, a

i
0, r

i
0, . . . , o

i
t

}
, and selects action ait using

a stochastic policy of the form πi
θ

(
ai | τ it

)
. The transition function P (s′ | st,at), conditioned on

the joint action and the global state, transitions to the next state st+1. Under the joint policy π,
we call V π(s) = E

∑
t [γ

trt | π, st = s] the value, i.e., the expected sum of discounted rewards
(or return). The policy that maximizes the value is said to be the optimal policy π∗ = maxπ V

π .
Closely related to the value is the Q-value Qπ(s, a) = E

∑
t [γ

trt | π, st = s, at = a].

In single-agent RL, Deep Q-Networks (DQN) (Mnih et al., 2015) learns Qθ, an approx-
imation of Q∗ with a neural network parametrized by θ. Qθ is learned by minimizing
(Qθ(s, a)− (r + γmaxa′ Qθ′(s′, a′)))

2, where Qθ′ is a copy of Qθ updated regularly to stabilize
learning. To extend DQN to the partially observable setting, Hausknecht & Stone (2015) propose
Deep Recurrent Q-Network (DRQN), which uses recurrent neural networks to estimate Q-values
based on the AOH, i.e., Qπ(τ, a) = E

∑
t [γ

trt | π, τt = τ, at = a]. This, combined with several
modern best practices on top of DQN, including double-DQN (Van Hasselt et al., 2016), a duel-
ing network architecture (Wang et al., 2016), prioritized experience replay (Schaul et al., 2016),
and a distributed training setup with parallel running environments (Horgan et al., 2018) result in
Recurrent Replay Distributed Deep Q-Networks (R2D2) (Kapturowski et al., 2019). Our proposed
algorithm, which we explain in section 4, uses R2D2 as its foundation. In MARL, a straightforward
strategy is to represent each agent as an independent single-agent learner, e.g., using R2D2. An
agent can then be trained through self-play (SP) with copies of itself (Tan, 1993; Tampuu et al.,
2017). Our proposed algorithm, R3D2, also uses SP to learn cooperative strategies.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 METHODOLOGY

We present Recurrent Replay Relevance Distributed DQN (R3D2), a generalist Hanabi agent that
adapts to novel partners and game-settings. R3D2 observes and interacts with its environment
through natural language, which is known to improve transfer of learned behavior to other tasks.
Through its network architecture R3D2 handles dynamic observation- and action-spaces. Combined
with a distributed training regimen, it allows R3D2 to jointly learn diverse strategies for 2-to-5 player
games, resulting in a robust, adaptive artificial player.

4.1 HANABI AS A TEXT-BASED GAME

As our first contribution, we frame Hanabi as a text-based game, due to recent successes of using
language as medium for transfer learning (Radford et al., 2019b; Brown et al., 2020).

In the original Hanabi environment (Bard et al., 2020), the observation is represented as a bitstring
encoding, i.e., a concatenation of bits representing the observation. To encode the game state as text,
we use a template, of which an example can be seen in Figure 1. The template starts by listing the
number of life and clue tokens, followed by a listing of the arranged cards, other players’ hands, and
the knowledge of the player’s own hand. It also includes the hints given to other players. While the
bitstring encoding captures all the information available for optimal gameplay, it greatly changes
depending on the setting (2-to-5-player games). In contrast, our text encoding appears intuitive, and
requires minimal modifications switching between game settings. Thus, it allows for state-space
generalization, i.e., learning policies across different settings becomes easier. For example, adding a
new hand to the game results in arbitrary modifications in the original bitstring encoding. In contrast,
the text encoding only appends relevant information to the observation.

Secondly, we modify the action-space. There are 3 types of actions: play a card, discard a card and
give a clue. Each type has a fixed number of concrete actions. A player can play or discard any of the
cards in their hand (e.g., ”I play card 1”). Or, a player can give a clue concerning a specific color or
rank to any other player (e.g., ”I reveal blue to player 2”). In the original environment, actions are
encoded as a one-hot encoding of all the possible action-combinations. Instead, we encode the action
with a keyword corresponding to the action-type, followed by the type’s parameter (e.g. reveal
blue 2). Clues are the only type of actions affected by a change in the number of players. With this
encoding, the agent can generalize the behavior for each action-type, and easily extend clue-actions
to other player settings. This motivates generalizations to actions not seen during training.

We select this template because it includes all the crucial information contained in the vectorized
observation. We also perform ablation studies on different components of the template to measure
its impact on the agent’s capability to predict optimal actions, which we show in Appendix A.4.
Using this textual version, we design an agent that takes advantage of this representation to improve
generalization across players and settings.

4.2 R3D2 AGENT: HANDLING DYNAMIC STATE AND ACTION SPACE

With the dynamic representation resulting from Hanabi’s text-based encoding, we propose an agent
architecture (shown in Figure 2) that incorporates a (pretrained) language model to encode obser-
vations and actions into observation- and action-embeddings. To do so, we take inspiration from
Deep Reinforcement Relevance Network (DRRN) (He et al., 2015), which propose a neural archi-
tecture for deep RL designed to handle action-spaces characterized by natural language. In contrast
to R2D2, which outputs a fixed vector of size |A|, DRRN encodes the action in a separate action-
embedding network. The corresponding Q-value is then computed as the inner product of the state-
and action-embeddings:

Q(s, a) = f(s)⊤g(a),

where f(s) is the state embedding and g(a) is the action embedding. In doing so, DRRN is able to
encode an arbitrary number of actions. Ma et al. (2022) also showed recently that attention-based
architectures that jointly process a featurized representation of observations and actions have a better
inductive bias for learning intuitive policies. As a downside, |A| separate forward passes need to be
performed on g to compute all Q-values of a specific state s.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

1 clue tokens available. 3 life to-
kens remaining. Fireworks dis-
play: Red 5, Yellow 4, Green
2, White 4, Blue 4. knowledge
about own hand: Green 5, Green
3, Unknown 5, Green X, Un-
known X. Player hand: Yellow
5, White 4, White 2, Yellow 1,
Green 2. Discards: Green 4 Red
2 Yellow 1 White 1 Red 1 White
1 Yellow 4 Green 1 Red 1 . . .

Figure 1: The template used
for textual observations in
Hanabi. It includes all nec-
essary information to play the
game, including life and clue
tokens, visible hands, dis-
carded cards, and hints.

2 clue tokens
available. 3 life
tokens
remaining.
...

I play card 1
L
S
T
M

L
S
T
M

FF

FF

TinyBERT (x2)

TinyBERT (x2)

Σ⊗ Qθ

Figure 2: An overview of the R3D2 architecture. R3D2 uses
a separate head for observations and actions. Each head starts
with 2 TinyBERT layers to encode the textual representation,
followed by a LSTM layer to encode the previous timesteps.
We use elementwise multiplication to combine both embed-
dings. This is then split into a separate value and advantage
head, before being summed together to obtain Qθ(τ, a).

In our case, Qθ depends on the AOH, resulting in a sequence of embeddings. This sequence is pro-
cessed by a Long Short-Term Memory (LSTM) network, followed by a two-layer perceptron (MLP)
to predict value and advantage estimates. These are then combined to estimate Q-values. We train
our R3D2 agent via self-play, similar to IQL-based baselines in the literature (Hu & Foerster, 2019)
to minimize the TD-loss. In section 6, we demonstrate that using an appropriate representation one
can enable self-play to learn cooperative behavior with other partners, without relying on complex
MARL methods.

The primary trainable components of R3D2 include the language model (LM), LSTM, and MLP. We
utilize a two-layer TinyBERT (Jiao et al., 2020) as the LM due to its optimal balance between perfor-
mance and inference time, which is crucial in RL settings with frequent interactions. Moreover, we
performed preliminary experiments with different small LM to confirm this choice (see section 5),
and to analyse the impact of pretrained weights, as well as the frequency at which to update the LM
(see section A.7.1). It is worth noting that larger text encoders could also be integrated; however,
the inference cost of large language models can become a bottleneck (Kaplan et al., 2020), which
remains an open area of research.

We follow the same training procedure as R2D2, by using large number of parallel environments to
gather trajectories and prioritized experience replay to sample transitions to update Qθ. Moreover,
we designed R3D2 to support environments with varying numbers of players, ranging from 2 to 5
participants. To achieve this, multiple parallel actors take actions in these settings, while a shared
replay buffer gathers the trajectories from all actors together. Although the agent itself is agnostic
to the number of players, we adapt the replay buffer to handle sequences of different lengths. To
address this, we pad the token trajectories with zeros, ensuring a consistent buffer structure across
all trajectories, regardless of the number of players.

5 LANGUAGE MODEL VARIANTS FOR HANABI

LMs have shown promising reasoning and planning capabilities Radford et al. (2019b); Brown et al.
(2020). Having a completely text-based game, one might expect a LM should be able to play the
Hanabi game successfully. Therefore, before testing our R3D2 agent, we evaluate several LMs on
the Hanabi tasks with the text-based Hanabi environment, to understand the difficulty of playing the
game of Hanabi for current LMs and establish a baseline for future improvements.

Prompting and low-rank adaptation fine-tuning Modern large LMs (LLMs) such as GPT-
4 (OpenAI, 2023) and LLaMA-2 (Touvron et al., 2023) showcase remarkable zero-shot or few-shot
generalization capacities, particularly in complex natural language tasks Kojima et al. (2022). First,
we prompt GPT-4 to select actions for Hanabi, providing the textual observation and legal moves
as context. Although it successfully avoids losing life tokens for extended periods, it struggles with
optimal planning, limiting its ability to achieve scores higher than 3 or 4. Details about the var-
ious system prompts and game scores are available in Appendix A.1 and A.3. Next, we analyze
how well a LLM fine-tuned on expert data would perform. For this, we fine-tune LLaMA-7B us-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

ing low-rank adaptation (LoRA) (Hu et al., 2021a) on a dataset of expert data collected using an
Off-Belief Learning agent (Hu et al., 2021b). Despite this tuning, the model performs poorly based
on gameplay scores. Hu & Sadigh (2023) further supports the observation that current large LLMs
are still far from independently solving Hanabi. For more detailed experimental results, we refer
to Appendix A.3. These initial experiments seem to indicate that LLMs as-is are not sufficient to
properly play Hanabi, and that learning to coordinate is required.

Full fine-tuning Next we considered full fine-tuning of small LMs. Therefore, we focused on two
types of language models—classifiers and generative models—serving as agents in the text-based
Hanabi environment. We compare the impact of BERT-like architectures, i.e., BERT (Devlin et al.,
2018a) and DistilBERT (Sanh et al., 2019), with the GPT-2 (Radford et al., 2019a) (classifier and
generative) architecture.

BERT

Distil
BERT

GPT2-cla
ssif

ier

GPT2-generation

Language Models

0

5

10

15

20

25

Ga
m

e
Sc

or
e

Figure 3: The evaluation of language
models performance as an agent is con-
ducted via gameplay score, measured
across various language models with
1200 game runs.

To benchmark the performance, we select the optimal
checkpoint for each LM based on gameplay scores. The
best checkpoint is then subjected to 1200 runs in the Han-
abi environment to handle variance and randomness, as
depicted in Figure 3. Both the BERT and DistilBERT
models demonstrate a commendable performance in the
Hanabi gameplay, achieving a maximum score of 23 out
of a possible 25. Their average gameplay scores hover
around 10 during the gameplay. The GPT2-generative
model has better top-k test accuracy. However, it fails
short compared to the classification-based model in the
overall gameplay score with ∼ 4.5. We further tried using
different percentages of training datasets to understand
the role of data. Compared to 10% or less, when using
25% of the data, there is a sharp increase in the gameplay
score. However, the performance plateaus for both 75%
and 100% are indicative of reaching a saturation point.
Also, we tried different BERT variants, and all are satu-
rated to the same game score irrespective of the increase
in the parameter size. Finally, we also investigated the role of discarding information in the ob-
servation and found it didn’t help much in the gameplay score. Refer to appendix A.4 for detailed
ablation results on language models. Since the BERT architecture results in a higher performance
than GPT-2, we use a BERT-like network in our R3D2 agent.

6 EXPERIMENTS

In this section, we analyse the generalization performance of R3D2 on Hanabi. Hanabi is a chal-
lenging task, which requires to learn conventions with other players to reach a high score. When
changing the number of players participating in a game, the strategy to reach a high score changes,
even though the rules of the game remain the same. For example, the number of allowed clues
remains 8 in a 2-player and 5-player setting, despite having more players that require hints in the
5-player setting. Despite requiring to change strategies, some of the learned conventions remain the
same, and should be transferable from one setting to another. For example, providing the clue “this
card is a card of rank 5” tells the player that they absolutely cannot discard that card, as there is
only one such a card for each color, and it is required to play it to reach a maximum score. We aim
to learn how specialized the conventions of agents that have played together during training are, by
evaluating them in a ZSC fashion with agents they have never encountered before. We also aim to
evaluate just how much these conventions can be carried on from one setting to another, by pairing
agents that have been trained on different settings together. Finally, since our R3D2 agent is flexible
enough to play on any setting of the game, we also train our R3D2 agent on all game settings at
the same time. We assess the benefits of playing on more diverse types of gameplay, and how this
improves the agent’s cooperation abilities with others.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6.1 EXPERIMENTAL SETUP

We train single-setting R3D2 agents for each setting, i.e., from 2-player games to 5-player games.
We call these agents R3D2-S (single setting). Analogously, we call R3D2-M (multiple settings) the
R3D2 agent trained on all game-settings concurrently. For comparison, we train 3 different baselines
on the original, vectorial version of the Hanabi environment. The first baseline is Independent Q-
Learning (IQL) (Tan, 1993; Tampuu et al., 2017). IQL is still frequently used as a baseline for
Hanabi, as it serves as the foundation of many state-of-the-art MARL Hanabi algorithms, including
the other baselines we use in this work. We call this baseline R2D2 as it is based on R2D2 agents
trained independently through self-play. It shows strong performance with its training partners,
having learned highly specialized conventions through self-play. However, this also means that it
typically does not play well with other partners, who do not necessarily follow the same conventions.
For our second baseline, we use Other-Play (OP) (Hu et al., 2020). In Hanabi, playing a game with
permuted colors of the cards does not change the game, i.e., there exist symmetries in the game
that the policy should be invariant to. OP learns such policies by exploiting known symmetries
of the Dec-POMDP. This avoids over-specialized conventions that would break on different, but
symmetrical (and thus equivalent) states of the game. We call this R2D2-based OP agent: R2D2-
OP. Our final baseline is Off-Belief Learning (OBL) (Hu et al., 2021b). OBL assumes past actions
where taken by a fixed policy, different from its own. OBL then converges to an optimal grounded
policy, which can in turn be used to ground a higher-level policy. In our experiments, we use OBL
after 4 levels of grounding, as this is the highest level of grounding used in their original work.
To highlight that this baseline is also R2D2 based, we call it R2D2-OBL. All these 3 baselines
are value-based, learning a Qθ network. To ensure a fair comparison with R3D2, all baselines use
R2D2 as a basis, which contains several modern best practices for learning Qθ. Note that although
we train and test R3D2 in settings ranging from 2 to 5 players, we utilized R2D2-OP and R2D2-
OBL checkpoints from the original paper, which focused exclusively on the 2-player setting, as it
was the only configuration examined in those studies. To isolate the contributions of our two key
innovations - using language models for state representation and handling dynamic action spaces
- we created an intermediate baseline called R2D2-text. This agent combines R2D2’s fixed action
space with R3D2’s text-based state representation.

All baselines use the same neural network architecture, a recurrent neural network which takes a
vectorial observation as input and outputs the Q-values for all possible actions. Details about the
network architecture and hyperparameters are described in Appendix A.5.1. Each agent is trained
for 2000 epochs with each epoch corresponding to 500 batch updates. For each experiment, we run
three different seeds. For each evaluation setup, we define the performance of a team of agents as
the average performance over 1000 games.

6.2 ZERO SHOT COORDINATION TO NOVEL SETTINGS

2p
-SPM-XP

2p
-XP

3p
-XP

4p
-XP

5p
-XP R

0

5

10

15

20

25

Sc
or

e

Zero-shot
transfer

Eval: 2 Players setting

3p
-SPM-XP

2p
-XP

3p
-XP

4p
-XP

5p
-XP R

0

5

10

15

20

25
Eval: 3 Players setting

4p
-SPM-XP

2p
-XP

3p
-XP

4p
-XP

5p
-XP R

0

5

10

15

20

25
Eval: 4 Players setting

5p
-SPM-XP

2p
-XP

3p
-XP

4p
-XP

5p
-XP R

0

5

10

15

20

25
Eval: 5 Players setting

Random Agent
R2D2
R2D2-text
R3D2
R3D2-M

Training setting

Figure 4: Policy Transfer - Zeroshot setting. Each subplot shows the evaluation setting for a n-player
game. Each bar combines 0 < i < n agents trained on a different setting, with n− i players trained
on n-player games. R3D2 agents demonstrate strong zero-shot generalization to novel settings.
Moreover, R2D2-text seems to be unable to match R3D2’s transfer performance specially when
transferring from a setting with large number of actions to smaller action space.
As a first set of experiments, to showcase our agent’s ability to transfer policies across varying
configurations, we evaluate its performance in different game settings. For a game with n-players,
we select a subset i < n of players that have been trained on n-player games, and we pair them with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

players that have been trained on m-player games (each player is a different seed). By aggregating
all subsets 0 < i < n, we can assess how well the agents of m-player games generalize to n-
player games in a zero-shot manner. Each combination of n and m is shown in Figure 4. As a
reference point, we showcase the self-play (SP) performance of R3D2 (leftmost bar on each plot).
Finally, we also showcase the cross-play performance of n-player agents combined with R3D2-M
(in blue). Finally, note that, when n = m, this results in standard intra-cross-play (e.g., 5p-XP on
the rightmost plot).

We make several observations. First, unsurprisingly, increasing the number of players results in
lower overall performance, as strategies become more complex. Next, R3D2-M learns competitive
strategies for all settings despite receiving the same training budget as single-setting algorithms,
and is able to play well with single-setting players. This shows that knowledge from one setting is
useful for other ones, and that the network architecture used by R3D2 allows for effective transfer of
knowledge across settings. Additionally, R2D2-text is unable to match R3D2’s transfer performance
specially when transferring from a setting with large number of actions to smaller action space.
Finally, R3D2’s standard cross-play scores remain high, despite using self-play during training. The
cross-play scores drop compared to self-play as the number of players increase, but that it because
this results in more unique players playing together for the first time. in comparison, R2D2-text
systematically has a lower cross-play score than R3D2, despite having the same action-space as
during training. This shows that, while textual observations help for learning generalizable policies,
incorporating dynamic action-spaces is inportant as well for same-setting scenarios. We refer to
Appendix A.6 for additional comparisons on cross-play.

6.3 ZERO SHOT COORDINATION TO NOVEL PARTNERS

IQL OP OBL R3D2-S R3D2-M0

5

10

15

20

25

Sc
or

es

SP
Intra-XP
Inter-XP

Figure 5: Selfplay, intra-XP and inter-XP
performance in 2-player setting averaged
across three independent seeds per method.
R3D2 achieves significantly better inter-XP
compared to the baselines while maintaining
a competitive SP and intra-XP.

IQL OP OBL R3D2-S R3D2-M
Agent 1

IQL

OP

OBL

R3D2-S

R3D2-M

Ag
en

t 2

23.8 18.8 11.7 15.1 13.6 16.0 4.1 3.6 3.5 8.5 6.3 7.4 7.6 6.4 7.8

23.6 16.8 17.1 17.6 13.5 4.7 3.7 3.3 6.8 5.4 6.3 7.1 6.5 7.4

23.8 16.9 14.2 14.9 3.4 2.8 3.0 6.1 5.6 6.4 6.5 5.5 6.9

23.6 13.9 13.3 6.9 6.2 5.8 8.7 7.2 7.8 8.4 6.6 9.3

23.4 10.9 2.4 2.9 2.5 6.4 5.3 6.0 7.0 5.2 5.9

23.0 4.5 4.4 4.4 8.0 6.6 5.3 7.7 6.4 7.7

24.2 24.1 24.1 11.4 9.9 11.4 9.4 9.2 9.3

24.2 24.1 11.2 9.7 11.5 9.2 8.7 8.9

24.2 11.4 10.7 10.4 9.5 9.8 9.7

23.7 23.7 23.7 22.7 21.8 22.3

23.7 23.6 22.6 21.6 22.2

23.6 22.6 21.5 22.0

21.8 20.2 21.4

20.5 20.6

21.2 2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0
22.5

Figure 6: 2 player zero-shot coordina-
tion matrix between different methods and
three independent seeds per method. R3D2
achieves better inter-XP with IQL, R2D2-
OBL and R2D2-OP.

Now, we compare the robustness of R3D2’s learned policies when partnered with novel agents, for
the same game setting (i.e., cross-play) with other baselines. We not only compare the coopera-
tion capabilities of different seeds of the same learning algorithm, but also of different algorithms
with each other. We make 2-player teams composed of all combinations of seeds of all training
algorithms, and evaluate their performance. The aggregated scores are shown in Figure 5. As a
reference, we also show the performance when playing in self-play (SP) mode. The results of each
individual combination of teammates results in the matrix of scores shown in figure 6. We note
that the submatrices highlighted in red concern intra-algorithmic cross-play (intra-XP) (with their
diagonal comparisons of the same seed, which is equivalent to self-play), while all other compar-
isons concern inter-algorithmic cross-play (inter-XP). We start with the observation that R2D2 and
R2D2-OP exhibit a lower intra-XP performance than self-play. While this is expected for R2D2,
it is surprising for R2D2-OP, which is explicitly designed to cooperate well in the intra-XP setting.
We believe this is because some of R2D2-OP’s runs might not have exploited the environment sym-
metries well enough. The inconsistent behavior of R2D2-OP agents were also reported in Hu et al.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(2020). Since this is the way R2D2-OP learns robust policies, failing to exploit these symmetries
would results in a training procedure similar to R2D2. This would explain lower intra-XP scores,
and would also explain why R2D2-OP cooperates surprisingly well with R2D2 in the inter-XP set-
ting. On the other hand, R3D2’s intra-XP performance is on par with self-play, even though it has
been trained through self-play, similarly as R2D2. While R2D2’s performance quickly degrades
when paired with other seeds, this is not the case for R3D2, which confirms that self-play can lead
to robust strategies, provided they use the appropriate representation. We believe that R2D2-OP, by
exploiting known symmetries of the game, learns that different permutations of the vectorial version
of Hanabi are equivalent. Trying to make sense of this vectorial representation thus contributes to
R2D2-OP’s cross-play abilities. In contrast, in our textual representation, symmetrical observations
are the same but for a few tokens. Symmetries are thus implicitly tackled by R3D2.

The aggregated scores are shown in Figure 5. In general, while our agents achieve competitive per-
formance in self-play and intra-XP, R3D2-based agents demonstrate superior inter-XP performance
when paired with R2D2-OBL agents. This suggests R3D2 learns more robust and general strategies,
in contrast to R2D2 and R2D2-OP which tend to learn brittle, specialized conventions. The strong
performance with R2D2-OBL, which is known for learning human-compatible strategies (Hu et al.,
2021b), indicates that R3D2 develops more natural and transferable coordination patterns. Inter-
estingly, R3D2-M seems better at inter-XP than R3D2-S. Having been trained on multiple settings,
R3D2-M has experienced more diverse strategies during training. We surmise that this diversity
allows R3D2-M to be prepared to a wider range of novel policies, leading to higher overall collab-
oration. Next, we note that R2D2-OBL collaborates better with R3D2 than any other baseline. We
thus ask ourselves if it is R2D2-OBL that is flexible enough to adapt to R3D2 or the opposite. We
aim to answer this question by comparing their performance with R2D2, the least flexible policy.
When R2D2-OBL is paired with R2D2, their score is lower than when R3D2-S is paired with R2D2.
Thus, R3D2-S seems to have a more flexible policy than R2D2-OBL. An analogous analysis can be
made for R2D2-OP, where R3D2-S paired with R2D2-OP achieves a higher score than R2D2-OBL
with R2D2-OP. Results shown in Figure 6 clearly demonstrate that R3D2, even though trained using
self-play, learns more robust policies than methods that explicitly aim to learn policies for ZSC.

7 CONCLUSION AND FUTURE WORK

In this work, we show that learning through self-play can lead to robust policies, provided that the
learning agent is trained with an adequate representation. We propose Recurrent Replay Relevance
Distributed DQN (R3D2), that plays Hanabi with a textual representation of the game, and a player-
agnostic neural network architecture. R3D2’s intra-algorithmic cross-play score is on par with its
self-play score, a first for Hanabi agents learning through self-play. Moreover, our experiments
show that pairing R3D2 agents from different settings together can lead to collaborative success,
with agents having been trained on more complicated settings being more capable in general than
agents that have been trained on simpler settings, with less players in the game. Additionally, R3D2’s
player-agnostic architecture facilitates variable-player learning, enabling it to generalize strategies
across various settings. This opens a new research avenue for exploring generalization across game
settings, in addition to coordination with novel partners in MARL for complex cooperative games
such as Hanabi.

Our approach, leveraging embedding and language models, is naturally adaptable to other text-based
tasks. However, we acknowledge certain limitations - environments with continuous state/action
spaces (like robotic control) or image-based inputs would require domain-specific adaptations. How-
ever, recent advances in language models are expanding the possibilities. For instance, Llama-2’s
specialized tokenizer demonstrates remarkable performance on numerical tasks by decomposing
numbers into digit sequences (Touvron et al., 2023). An interesting direction for future work in-
volves enhancing inter-setting cross-play evaluation, which we introduced and see as having signif-
icant potential. This area allows for further exploration of robustness by improving agents’ adapt-
ability across different game settings. Expanding the evaluation to include various combinations of
replaced agents and different algorithms could yield deeper insights. Additionally, while Zero-Shot
Coordination serves as a useful benchmark, it may lack realism. Exploring few-shot coordina-
tion could be a promising research direction, where agents quickly adapt to new environments and
partners, striving for consensus and effective collaboration in minimal episodes, offering a more
dynamic approach to agent interaction in complex scenarios.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In International Conference on Machine Learning, pp. 166–175. PMLR, 2017.

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

Emily M. Bender and Alexander Koller. Climbing towards NLU: On meaning, form, and under-
standing in the age of data. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 5185–5198, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.463. URL https://aclanthology.org/
2020.acl-main.463.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th International Conference on Machine Learning, pp. 41–48, 2009.

Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of Operations Research, 27(4):
819–840, 2002.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.
wandb.com/. Software available from wandb.com.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob Andreas, Yoshua Bengio, Joyce Chai, Mirella
Lapata, Angeliki Lazaridou, Jonathan May, Aleksandr Nisnevich, Nicolas Pinto, and Joseph
Turian. Experience grounds language. In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP), pp. 8718–8735, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.703. URL
https://aclanthology.org/2020.emnlp-main.703.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jana Carbonell and Manuela Veloso. Transfer learning in multi-agent systems through parallel
transfer. In International Conference on Machine Learning Workshop on Structural Knowledge
Transfer for Machine Learning, 2006.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in Neural
Information Processing Systems, 32, 2019.

Brandon Cui, Hengyuan Hu, Luis Pineda, and Jakob Foerster. K-level reasoning for zero-shot co-
ordination in hanabi. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 8215–8228.
Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/
2021/file/4547dff5fd7604f18c8ee32cf3da41d7-Paper.pdf.

Felipe Leno Da Silva and Anna Helena Reali Costa. A survey on transfer learning for multiagent
reinforcement learning systems. Journal of Artificial Intelligence Research, 64:645–703, 2019.

Allan Dafoe, Edward Hughes, Yoram Bachrach, Tantum Collins, Kevin R McKee, Joel Z
Leibo, Kate Larson, and Thore Graepel. Open problems in cooperative ai. arXiv preprint
arXiv:2012.08630, 2020.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. In Advances in Neural Information Processing Systems, volume 33, pp. 13049–13061,
2020.

11

https://aclanthology.org/2020.acl-main.463
https://aclanthology.org/2020.acl-main.463
https://www.wandb.com/
https://www.wandb.com/
https://aclanthology.org/2020.emnlp-main.703
https://proceedings.neurips.cc/paper/2021/file/4547dff5fd7604f18c8ee32cf3da41d7-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4547dff5fd7604f18c8ee32cf3da41d7-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018a. URL
http://arxiv.org/abs/1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018b.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. CoRR, abs/1703.03400, 2017. URL http://arxiv.org/abs/1703.
03400.

Jakob Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon Whiteson,
Matthew Botvinick, and Michael Bowling. Bayesian action decoder for deep multi-agent re-
inforcement learning. In International Conference on Machine Learning, pp. 1942–1951. PMLR,
2019.

Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In
2015 aaai fall symposium series, 2015.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan. Inter-
active fiction games: A colossal adventure. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(05):7903–7910, Apr. 2020. doi: 10.1609/aaai.v34i05.6297. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/6297.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Ostendorf. Deep
reinforcement learning with a natural language action space. arXiv: Artificial Intelligence, 2015.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Has-
selt, and David Silver. Distributed prioritized experience replay. In International Conference on
Learning Representations, 2018.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021a.

Hengyuan Hu and Jakob N Foerster. Simplified action decoder for deep multi-agent reinforcement
learning. arXiv preprint arXiv:1912.02288, 2019.

Hengyuan Hu and Dorsa Sadigh. Language instructed reinforcement learning for human-ai coordi-
nation, 2023.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “Other-play” for zero-shot
coordination. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pp. 4399–4410. PMLR, 13–18 Jul 2020.

Hengyuan Hu, Adam Lerer, Brandon Cui, Luis Pineda, Noam Brown, and Jakob Foerster. Off-
belief learning. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
4369–4379. PMLR, 18–24 Jul 2021b. URL https://proceedings.mlr.press/v139/
hu21c.html.

Hengyuan Hu, Adam Lerer, Brandon Cui, Luis Pineda, David J. Wu, Noam Brown, and Jakob N.
Foerster. Off-belief learning. CoRR, abs/2103.04000, 2021c. URL https://arxiv.org/
abs/2103.04000.

Vishal Jain, William Fedus, H. Larochelle, Doina Precup, and Marc G. Bellemare. Algorithmic
improvements for deep reinforcement learning applied to interactive fiction. In AAAI Conference
on Artificial Intelligence, 2019.

Youngsoo Jang, Seokin Seo, Jongmin Lee, and Kee-Eung Kim. Monte-carlo planning and learning
with language action value estimates. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=7_G8JySGecm.

12

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
https://ojs.aaai.org/index.php/AAAI/article/view/6297
https://ojs.aaai.org/index.php/AAAI/article/view/6297
https://proceedings.mlr.press/v139/hu21c.html
https://proceedings.mlr.press/v139/hu21c.html
https://arxiv.org/abs/2103.04000
https://arxiv.org/abs/2103.04000
https://openreview.net/forum?id=7_G8JySGecm

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xin Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing: Findings, pp. 4163–4174, 2020.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent ex-
perience replay in distributed reinforcement learning. In International Conference on Learning
Representations, 2019.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Wenlong Lee, Abhishek Agrawal, and Jitendra Malik. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. In International Conference on Machine
Learning, pp. 12648–12671. PMLR, 2022.

Keane Lucas and Ross E. Allen. Any-play: An intrinsic augmentation for zero-shot coordination,
2022. URL https://arxiv.org/abs/2201.12436.

Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot
coordination. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
7204–7213. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
lupu21a.html.

Mingwei Ma, Jizhou Liu, Samuel Sokota, Max Kleiman-Weiner, and Jakob N. Foerster. Learning
to coordinate with humans using action features. CoRR, abs/2201.12658, 2022. URL https:
//arxiv.org/abs/2201.12658.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Keerthiram Murugesan, Mattia Atzeni, Pushkar Shukla, Mrinmaya Sachan, Pavan Kapanipathi, and
Kartik Talamadupula. Enhancing text-based reinforcement learning agents with commonsense
knowledge. CoRR, abs/2005.00811, 2020. URL https://arxiv.org/abs/2005.00811.

Ranjit Nair, Milind Tambe, Makoto Yokoo, David Pynadath, and Stacy Marsella. Taming decentral-
ized pomdps: Towards efficient policy computation for multiagent settings. In Proceedings of the
18th International Joint Conference on Artificial Intelligence (IJCAI), pp. 705–711, 2003.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. Journal of
Machine Learning Research, 21(181):1–50, 2020.

Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron Courville, and Sarath Chandar. Continuous coor-
dination as a realistic scenario for lifelong learning. In International Conference on Machine
Learning, pp. 8016–8024. PMLR, 2021.

OpenAI. GPT-4 Technical Report. arXiv e-prints, art. arXiv:2303.08774, March 2023. doi: 10.
48550/arXiv.2303.08774.

Philip Osborne, Heido Nõmm, and André Freitas. A survey of text games for reinforcement learning
informed by natural language. Transactions of the Association for Computational Linguistics, 10:
873–887, 2022. doi: 10.1162/tacl a 00495. URL https://aclanthology.org/2022.
tacl-1.51.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023.

13

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2201.12436
https://proceedings.mlr.press/v139/lupu21a.html
https://proceedings.mlr.press/v139/lupu21a.html
https://arxiv.org/abs/2201.12658
https://arxiv.org/abs/2201.12658
https://arxiv.org/abs/2005.00811
https://aclanthology.org/2022.tacl-1.51
https://aclanthology.org/2022.tacl-1.51

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019a. URL https://api.
semanticscholar.org/CorpusID:160025533.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019b.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro,
Fabio Petroni, Heinrich Kuttler, Edward Grefenstette, and Tim Rocktäschel. Maestro: Open-
ended environment design for multi-agent reinforcement learning. In International Conference
on Learning Representations, 2023.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019. URL http://
arxiv.org/abs/1910.01108.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2016.

Ishika Singh, Gargi Singh, and Ashutosh Modi. Pre-trained language models as prior knowledge for
playing text-based games. ArXiv, abs/2107.08408, 2021.

Arjun Vaithilingam Sudhakar, Prasanna Parthasarathi, Janarthanan Rajendran, and Sarath Chan-
dar. Language model-in-the-loop: Data optimal approach to learn-to-recommend actions in text
games, 2023.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning.
PloS one, 12(4):e0172395, 2017.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings
of the tenth international conference on machine learning, pp. 330–337, 1993.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(7), 2009.

OpenEnded Learning Team, Andrew K Lampinen, Stephanie CY Roy, Ishita Patel, Shagun Sodhani,
Andrea Banino, et al. Open-ended learning leads to generally capable agents. arXiv preprint
arXiv:2107.12808, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models.
arXiv e-prints, art. arXiv:2307.09288, July 2023. doi: 10.48550/arXiv.2307.09288.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1), 2016.

Ruoyao Wang, Peter Alexander Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. Sci-
enceworld: Is your agent smarter than a 5th grader? In Conference on Empirical Methods in
Natural Language Processing, 2022.

14

https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International Conference on Machine
Learning, pp. 1995–2003. PMLR, 2016.

Yunqiu Xu, Ling Chen, Meng Fang, Yang Wang, and Chengqi Zhang. Deep reinforcement learning
with transformers for text adventure games. 2020 IEEE Conference on Games (CoG), pp. 65–72,
2020.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and Karthik Narasimhan. Keep CALM and explore:
Language models for action generation in text-based games. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pp. 8736–8754, Online,
November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.
704. URL https://aclanthology.org/2020.emnlp-main.704.

Xusen Yin and Jonathan May. Learn how to cook a new recipe in a new house: Using map familiar-
ization, curriculum learning, and bandit feedback to learn families of text-based adventure games,
2019. URL https://arxiv.org/abs/1908.04777.

Xingdi Yuan, Marc-Alexandre Côté, Alessandro Sordoni, Romain Laroche, Remi Tachet des
Combes, Matthew J. Hausknecht, and Adam Trischler. Counting to explore and generalize in text-
based games. CoRR, abs/1806.11525, 2018. URL http://arxiv.org/abs/1806.11525.

15

https://aclanthology.org/2020.emnlp-main.704
https://arxiv.org/abs/1908.04777
http://arxiv.org/abs/1806.11525

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROMPTING DETAILS

System prompt 1: ”You are an expert Hanabi player”

System prompt 2: ”You are an expert Hanabi player focused on maximizing team coordination
and achieving high scores with minimal mistakes. Follow these principles: Efficient Clue-Giving:
Provide clues that give maximum information, using finesse and double clues to benefit multiple
players. Deduction: Track played/discarded cards and deduce your own cards based on clues and
game state. Avoid discarding critical cards. Disciplined Play: Play and discard safely, minimiz-
ing risk while optimizing the team’s progress. Team Coordination: Follow team conventions and
use subtle cues (timing, actions) to communicate intent without verbal clues. Score Maximization:
Manage clue tokens and pace the game to ensure enough clues for critical moments.”

A.2 DATASET DETAILS

0 2000 4000 6000 8000 10000 12000
Count

Discard 4
Play 0
Play 3

Reveal player +1 rank 1
Play 1
Play 4

Reveal player +1 rank 2
Play 2

Reveal player +1 rank 3
Discard 0

Reveal player +1 rank 4
Reveal player +1 color W

Discard 2
Reveal player +1 color B

Discard 3
Reveal player +1 rank 5
Reveal player +1 color R
Reveal player +1 color G

Discard 1
Reveal player +1 color Y

Ac
tio

ns

Figure 7: Visualizing the number of ac-
tions available in the dataset to create a
diverse dataset of Hanabi gameplay in
the form of text.

The dataset is acquired through self-play mode, utilizing a
pre-trained OBL agent in the Hanabi game. Trajectories
are filtered selectively with a gameplay score exceeding
20. Then, these trajectories are broken down into state-
action pairs to suit language model training. During the
initial data exploration, we found the action categories
are imbalanced as shown in 7, hence the language model
overfits to discard 4 based on the confusion matrix for
the prediction. To avoid that, we did categorical sampling
consisting of 2200 samples per action type, aggregating to
44, 000 instances. Then we checked for duplicate states
and dropped them, there were approximately 100 dupli-
cates as this could mislead the model’s learning. After
which, 10% of the dataset is reserved for testing by ran-
dom sampling. Further, the dataset is split into 90% for
train and 10% for validation.

A.2.1 LANGUAGE MODEL SETUP

The model’s finetuning process begins with a set of train-
ing instances, denoted as (S,A) drawn from the dataset D where S ∈ {s0, s1, .., sn} and A ∈
{a0, a1, .., an}. Within this set, s and a represent a state and its corresponding noisy labelled ac-
tion, respectively, and n represents the number of examples in the dataset. The training objective of
BERT, DistilBERT, GPT2-Classifier is,

LCCE = − 1

N

N∑
i=1

C∑
j=1

aij log(âij) (1)

Where N is the batch size. C is the number of classes. aij is the true probability of class j for the
i-th example in the batch and âij is the predicted probability of class j for the i-th example in the
batch.

The training objective of GPT-2 Generative is to minimize the cross-entropy loss, denoted as L, and
do the finetuning of the model. The cross-entropy loss is mathematically defined as follows:

LLLM = −E(S,A)∼D log p(A|S) (2)

Where p(S|A) represents the conditional probability of predicting an action A, given the state S.
The goal is to optimize these parameters, by minimizing the cross-entropy loss. We finetune the
model to generate responses that better align with Hanabi game. The learning graph of validation
accuracy with the game play score for each epoch is logged to understand the trend in the Figure
8(a,b). Mostly the Validation score and game score is getting saturated at around 4th epoch.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10
Epochs

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Va
lid

at
io

n
Ac

cu
ra

cy

BERT
DistilBERT
GPT2-classifier
GPT2-generative

0 2 4 6 8 10
Epochs

0

2

4

6

8

10

Ga
m

e
Sc

or
e

BERT
DistilBERT
GPT2-classifier
GPT2-generative

Figure 8: Learning graph for (a) Validation accuracy plotted against(b) Game play score, for each
epoch for different language model providing insights into the observed trends during the training
process.

Table 1: GPT-4 performance with different system prompts on text-based Hanabi averaged over 3
seeds.

Method System Prompt 1 System Prompt 2

GPT-4 3.0 ± 0.0 2.34 ± 0.27

A.3 HOW GOOD LLMS ARE IN PLAYING HANABI?

First, we evaluate GPT-4’s ability to play Hanabi using our text-based format. While GPT-4 demon-
strates basic game understanding by avoiding catastrophic moves, it achieves only rudimentary
scores of 3 points out of 25 (1), highlighting the limitations of pure language models in strategic
planning.

To adapt the LLaMA to the gameplay, we use Low-Rank Adaptation, or LoRA (Hu et al., 2021a),
which learns a low-rank decomposition matrices into each layer of the transformer architecture and
freezes the pre-trained model weights. Thereby, significantly reducing the trainable parameters. We
conducted fine-tuning experiments with LLaMA-7B weights with classifier using varying data sizes
[200, 500, 1000] and LoRA ranks [32, 64, 128] for 10 epoch. Despite these parameter variations,
the gameplay scores remained suboptimal level of around one as shown in 9. This highlights the
challenges in achieving effective gameplay performance for current large languge model on playing
hanabi.

32 64 128
LoRA Rank

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Va
lid

at
io

n
Ac

cu
ra

cy

Datasize
200
500
1K

32 64 128
LoRA Rank

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ga
m

e
Pl

ay
 S

co
re

Datasize
200
500
1K

Figure 9: Evaluation of Low-Rank Adaptation (LoRA) in LLaMA-7B finetuning, showcasing the
impact on a) Validation Accuracy and b) Game Play Score. The experiments involve varying data
sizes [200, 500, 1000] and LoRA ranks [32, 64, 128].

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.4 ABLATION STUDIES

A.4.1 THE ROLE OF SCALING THE DATASET AND DIFFERENT MODEL VARIANTS

The dataset size emerges as a pivotal factor influencing gameplay scores. As the amount of training
data increases there is a gradual increase in validation and the gameplay score. When the training
percentage is equal to or less than 10% the games scores were poor ranging around 1 out of 25.
In contrast, the gameplay score sharply increases when using 25% of the data as shown in 10b.
Nevertheless, the performance plateaus at a game play score of approximately 9 for both 75% and
100% , indicative of reaching a saturation point, affirming the sufficiency of the dataset size for
effective model training.

0.01 0.03 0.1 0.25 0.5 0.75 1.0
Amount of Training Data

0.0

0.1

0.2

0.3

0.4

0.5

BE
RT

 -
Va

lid
at

io
n

Ac
cu

ra
cy

0.01 0.03 0.1 0.25 0.5 0.75 1.0
Amount of Training Data

0

2

4

6

8

10

BE
RT

 -
Ga

m
e

Pl
ay

 S
co

re

BERT-large BERT-base DistilBERT-base
Model Name

0

2

4

6

8

10

Av
er

ag
e

Ga
m

ep
la

y
Sc

or
e

Figure 10: Analysis of the impact of training data amount on BERT, examining a) BERT Validation
Accuracy, b) BERT Game Play Score across different percentages of training data, and c) BERT
model variants with varying parameter sizes.

In our experimentation, we varied the model parameter sizes—ranging from DistilBERT with 66M
parameters to BERT-base-uncased with 110M parameters and BERT-large-uncased with 340M pa-
rameters. We observed that DistilBERT achieves a competitive gameplay score of approximately
8.7 after 600 game runs 10c. On top of the performance considering the fast inference and low
memory usage, DistilBERT was chosen as a candidate for integration with reinforcement learning
through distillation.

A.4.2 THE ROLE OF DISCARD INFORMATION

DistilBERT BERT
Model Type

0

2

4

6

8

Ga
m

e
Pl

ay
 S

co
re

Type of Discard
With Discard
Without Discard

Figure 11: Evaluation of the discard
pile’s role in the game is assessed by
comparing game scores with the pres-
ence and absence of the discard pile in
the observation during training.

We examined the impact of incorporating the discard
pile into the observation. Surprisingly, we discovered
that utilizing the discard pile did not contribute to any
improvement in game scores as show in the Figure 11.
Rather, it resulted in a doubling of the sequence length
of the language model. Given the need for fast inference
in the reinforcement learning pipeline, we opted to ex-
clude discard pile information from the observation dur-
ing both language model training and inference. Nonethe-
less, there is a potential for heuristic-based approaches,
to explore the idea of creating derived information from
from the discard pile, potentially leading to a more con-
cise sequence length and better game score.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.5 TRAINING DETAILS

A.5.1 R3D2 TRAINING SETUP

Here we provide all the experiment details and hyper-parameteres used to train R3D2 agents.

Table 2: Hyper-Parameters for R3D2 agents.

Hyper-parameters Value

replay buffer related
burn in frames 10,000
replay buffer size 50,000
priority exponent 0.9
priority weight 0.6
max trajectory length 80

optimization
optimizer Adam
lr 6.25e-05
eps 1.5e-05
grad clip 5
batchsize 64

Q learning
n step 1 (R3D2)
discount factor 0.999
target network sync interval 2500
exploration ϵ ϵ0 . . . ϵn, where ϵi = 0.11+7i/(n−1), n = 80

A.6 ZERO-SHOT COORDINATION TO NOVEL PARTNERS

To demonstrate R3D2’s robustness, we report self-play and intra-XP performances of R3D2, IQL,
and OP trained on 3-, 4-, 5-player game settings in Figure 12. IQL and OP achieve high self-play
scores but perform poorly in cross-play. R3D2 variants, particularly R3D2-S, demonstrate more
consistent performance across both metrics, maintaining scores above 15 points in all scenarios
despite the general decline in performance as player count increases. R3D2-M This suggests that
R3D2’s training approach leads to more robust and adaptable agents, though at a slight cost to self-
play performance compared to IQL and OP.

IQL OP R3D2-M R3D2-S0

5

10

15

20

25

Sc
or

e

3 Players setting

IQL OP R3D2-M R3D2-S0

5

10

15

20

25
4 Players setting

IQL OP R3D2-M R3D2-S0

5

10

15

20

25
5 Players setting

SP
Intra-XP

Method

Figure 12: Performance comparison across different settings. The table shows both self-play (SP)
and intra-cross-play (Intra-XP) scores for different methods in 3- , 4- and 5-player Hanabi settings.
While IQL and OP achieve high SP scores but fail in Intra-XP, both R3D2 variants maintain consis-
tent performance across both metrics, with R3D2-S showing particularly strong results.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.7 ABLATION STUDIES ON THE ROLE LANGUAGE MODELING

To better understand the impact of different components in R3D2, we conduct a series of abla-
tion studies examining the role of language model pre-training, update frequency, and architectural
choices. These experiments help isolate the contributions of our key innovations and validate our
design decisions.

A.7.1 LM INITIALIZATION AND UPDATE FREQUENCY

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Training Steps ×105

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sc
or

e

Pretrained LM
Random LM

(a) Pretrained vs random LM
weights

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Training Steps ×105

0

5

10

15

20

Sc
or

e

LM update frequency=1
LM update frequency=2
LM update frequency=5
LM update frequency=10

(b) Frequency of updating the
LM

R3D2 R2D2-text R2D20

5

10

15

20

25

Sc
or

es

SP
Intra-XP

(c) R3D2 vs R2D2-text vs R2D2
Figure 13: Impact of pre-trained weights and update frequency on learning efficiency. (a) Per-
formance difference between R3D2 agents trained with pre-trained language model (LM) weights
versus randomly initialized LM weights, showing significant improvements in sample efficiency
with pre-trained weights. (b) The effect of varying the frequency of LM updates, highlighting that
frequent updates are critical for effective learning in the Hanabi environment.

We train two R3D2 agents in a 2-player Hanabi setting: one using a pre-trained language model
(LM) and the other with the same architecture but randomly initialized LM weights. Figure 13a
shows that learning from pre-trained weights significantly improves the sample efficiency. Addi-
tionally, we test updating the LM less frequently with periods of 1, 2, 5, and 10 training steps per
LM update to examine whether the original pre-trained weights provide sufficient representations
for playing Hanabi or if fine-tuning is necessary. Our results, presented in Figure 13b, indicate that
updating the LM parameters is essential for effective learning.

A.7.2 DOES THE R3D2 PERFORMANCE COMES FROM LANGUAGE MODEL OR THE
ARCHITECTURE?

As shown in Figure 13c, while R2D2-text achieves better intra-XP performance than the original
R2D2, it still falls short of R3D2’s capabilities. R3D2 matches R2D2’s strong self-play performance
while significantly outperforming both baselines in intra-XP scenarios. These results demonstrate
that both innovations are crucial: text representation alone provides some benefits for generalization,
but the combination with dynamic action space processing is necessary to achieve robust transfer to
novel partners.

A.8 R3D2 VS R3D2-M AS THE FIXED PARTNER

Building upon our previous analysis in Figure 4, where we demonstrated R3D2’s zero-shot transfer
capabilities with at least one specialized agent, we further investigate the generalization capabilities
of our multi-task variant, R3D2-M. We conduct a comparative analysis by positioning R3D2-M as
the fixed partner and evaluating its cross-play performance with partners trained across different
game settings. Figure 14 presents the performance comparison between R3D2 and R3D2-M when
paired with R3D2-S partners trained on various settings (indicated on the x-axis). The results reveal
comparable performance patterns between the two variants, with R3D2 exhibiting superior perfor-
mance in certain scenarios (e.g., 2-player setting) while R3D2-M demonstrates stronger capabilities
in others (e.g., 5-player setting). This balanced performance profile suggests that R3D2-M main-
tains robust generalization capabilities, achieving performance levels comparable to its single-task
counterpart, R3D2-S, despite being trained on multiple settings simultaneously.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

2p
-xp

3p
-xp

4p
-xp

5p
-xp

0

5

10

15

20

25

Sc
or

e

2p Setting

2p
-xp

3p
-xp

4p
-xp

5p
-xp

0

5

10

15

20

25 3p Setting

2p
-xp

3p
-xp

4p
-xp

5p
-xp

0

5

10

15

20

25 4p Setting

2p
-xp

3p
-xp

4p
-xp

5p
-xp

0

5

10

15

20

25 5p Setting
R3D2-M vs R3D2-S
R3D2-S vs R3D2-S

Outsider Agent

Figure 14: Policy Transfer - Zeroshot setting. Each subplot shows the evaluation setting for a n-
player game. Each bar combines 0 < i < n agents trained on a different setting, with n − i
players trained on n-player games. Comparing R3D2 and R3D2-M’s cross-play performance with
R3D2-S partners trained on different settings (Figure 14), we observe complementary strengths:
R3D2 excels in 2-player settings while R3D2-M performs better in 5-player scenarios. Despite
being trained on multiple settings simultaneously, R3D2-M achieves comparable performance to its
single-task counterpart, demonstrating robust generalization capabilities.

A.9 SOFTWARE DETAILS

The code was implemented using PyTorch, and pre-trained language models were loaded using
Huggingface. To gain insights for this paper, we employed Weights & Biases (Biewald, 2020) for
experiment tracking and visualizations. Lastly, plots are created using the seaborn package. For RL
algorithms, we used OBL agent (Hu et al., 2021c) to collect the expert trajectory and forked official
instruct-rl codebase1 to train the algorithm. We will provide the codebase, as well as all trained
models upon acceptance.

1https://github.com/hengyuan-hu/instruct-rl/tree/main

21

https://github.com/hengyuan-hu/instruct-rl/tree/main
https://github.com/hengyuan-hu/instruct-rl/tree/main

	Introduction
	Related Work
	Preliminaries
	The game of Hanabi
	Multi-Agent Reinforcement Learning

	Methodology
	Hanabi as a text-based game
	R3D2 Agent: Handling dynamic state and action space

	Language model variants for Hanabi
	Experiments
	Experimental setup
	Zero Shot Coordination to novel settings
	Zero Shot Coordination to novel partners

	Conclusion and Future work
	Appendix
	Prompting details
	Dataset details
	Language Model setup

	How Good LLMs are in playing Hanabi?
	Ablation studies
	The role of scaling the dataset and different model variants
	The role of discard information

	Training details
	R3D2 training setup

	Zero-shot Coordination to novel partners
	Ablation studies on the role language modeling
	LM initialization and update frequency
	Does the R3D2 performance comes from language model or the architecture?

	R3D2 vs R3D2-M as the fixed partner
	Software details

