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ABSTRACT

Traditional multi-agent reinforcement learning (MARL) systems can develop co-
operative strategies through repeated interactions. However, these systems are
unable to perform well on any other setting than the one they have been trained
on, and struggle to successfully cooperate with unfamiliar collaborators. This is
particularly visible in the Hanabi benchmark, a popular 2-to-5 player coopera-
tive card-game which requires complex reasoning and precise assistance to other
agents. Current MARL agents for Hanabi can only learn one specific game-setting
(e.g., 2-player games), and play with the same algorithmic agents. This is in stark
contrast to humans, who can quickly adjust their strategies to work with unfamil-
iar partners or situations. In this paper, we introduce a generalist agent for Hanabi,
designed to overcome these limitations. We reformulate the task using text, as lan-
guage has been shown to improve transfer. We then propose a distributed MARL
algorithm that copes with the resulting dynamic observation- and action-space. In
doing so, our agent is the first that can play all game settings concurrently, and
extend strategies learned from one setting to other ones. As a consequence, our
agent also demonstrates the ability to collaborate with different algorithmic agents
—agents that are themselves unable to do so.

1 INTRODUCTION

Humans were able to thrive as a society through their ability to cooperate. Interactions among multi-
ple people or agents are essential components of various aspects of our lives, ranging from everyday
activities like commuting to work, to the functioning of fundamental institutions like governments
and economic markets. Through repeated interactions, humans can understand their partners, and
learn to reason from their perspective. Crucially, humans can generalize their reasonings towards
novel partners, in different situations. Artificial agents should be able to do the same for the suc-
cessful collaboration of artificial and hybrid systems (Dafoe et al., 2020). This is why defining
the problem of multi-agent cooperation nicely fits the multi-agent reinforcement learning (MARL)
paradigm, as artificial agents learn to collaborate together through repeated interactions, in the same
principled manner humans would.

In MARL, the game of Hanabi has emerged as a popular benchmark to assess the cooperative abil-
ities of learning agents (Bard et al., 2020). Hanabi is a partially-observable card game designed for
2 to 5 players, with approximately 290 unique player hands in the 5-player setting. Progressing in
the game requires intricate skills, including long-term planning, precise assistance through clues to
other agents, and complex reasoning. Adding to the complexity, players are required to infer the be-
liefs and intentions of their counterparts through theory of mind reasoning (Bard et al., 2020). All of
these characteristics are required in real-world multi-agent interactions, making Hanabi a challeng-
ing and relevant testbed for MARL. Moreover, Hu et al. (2020); Hu & Sadigh (2023) have shown
that agents performing well in Hanabi, particularly in zero-shot coordination, demonstrate improved
capabilities in human-AI collaborative scenarios.

A straightforward way to learn to play is through self-play (Tan, 1993; Tampuu et al., 2017; Foerster
et al., 2019). By repeatedly playing with oneself, an agent can learn conventions and effectively play
the game. Sadly, these conventions often do not apply to others, resulting in misunderstandings and
thus a drop in cooperation capabilities when paired with novel agents (Carroll et al., 2019). This is
of course undesired behavior. An important aspect of assessing an artificial agent’s performance is
thus to evaluate its cooperative abilities when paired with agent it has not trained with, i.e., zero-shot
coordination (ZSC). This means agents require to have a solid understanding of the game, and need
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robust strategies that cope with unexpected decisions of their teammates. Moreover, if a strategy
is robust enough, it should provide a solid basis for variations of the task at hand. In Hanabi, for
example, the optimal strategy for a 3-player game is different from the one for a 2-player game, even
though the rules remain unchanged. However, using a robust 2-player strategy on a 3-player game
should still yield solid performance, even if not optimal.

Learning such robust strategies is precisely the goal of this paper. By sacrificing some of the perfor-
mance gains that come with learning a highly specialized but inflexible strategy, we design an agent
that can not only generalize across different types of partners, but also to different game settings.

A centerpiece of our work lies in the realisation that the representation of the Hanabi environment
the agents use to make decisions is highly structured, and thus inflexible. Changing the game setting
results in a completely different structure, severely hampering the potential transfer of knowledge
from one setting to another. This is the case for both observations of the game’s state – an abstract
encoding of bits – and actions the agent perform – a one-hot encoding for all action-combinations.
Thus, as a first contribution, we modify the representations of both the observation- and action-
spaces of Hanabi to make it more suitable for knowledge transfer. For this, we propose to use
natural language as a backbone for our representation. Language has been shown to be a successful
medium for transfer (Radford et al., 2019b; Brown et al., 2020), and using text for observations
and actions results in a representation that becomes agnostic to number of partners in play (i.e., the
setting of the game). This results in agents that learn on similar data-distributions, regardless of the
number of teammates in play.

Next, we propose a novel neural network architecture that combines language models (Devlin et al.,
2018b) and Deep Recurrent Relevance Q-network (DRRN) (He et al., 2015) to create an agent
robust towards the dynamic textual observation- and action-spaces. Integrating this architecture with
a distributed training regimen results in the Recurrent Replay Relevance Distributed DQN (R3D2)
algorithm, our main contribution. What is remarkable is that, even though R3D2 learns the game
of Hanabi through self-play, the simple fact of using a more abstract game representation and a
well-suited network architecture results in robust strategies that to not only successfully cooperate
with unseen R3D2 agents, but also – and perhaps more importantly – with completely different
algorithmic agents. Moreover, due to their dynamic network architecture, R3D2 agents that have
been trained on different player settings are able to collaborate together, even though they have
learned different strategies.

Finally, because of the player-agnostic nature of R3D2, R3D2 agents can change the number of
players in a game while they are learning, effectively enabling what we call variable-player learn-
ing, a multi-agent-specific variant of multi-task learning. By training with multiple combinations of
number of agents, R3D2 can extend the simpler 2-player strategies to the hardest 5-player setting.
In doing so, we have developed the first generalist Hanabi agent. To the best of our knowledge,
this is the first time that generalization across game settings has been investigated for Hanabi. We
argue this to be an essential component that defines robustness of behavior, and believe that general-
ization across game-settings is a promising research direction to evaluate policy robustness. While
we demonstrate our approach on Hanabi, our core technical contributions - text-based representa-
tion for better transfer, architecture for dynamic action/state spaces, and variable-player learning are
domain-agnostic advances that could benefit MARL applications in general.

2 RELATED WORK

MARL for Hanabi For successful collaboration, MARL agents require specific skills, such as
dealing with imperfect information, predicting the intentions of partners, and communicating valu-
able information to others. All of these skills are required to play the game of Hanabi, which is
why Bard et al. (2020) proposed the Hanabi challenge as a new frontier for AI research. The first
deep RL methods to learn winning strategies for Hanabi use self-play, combined with either a public
belief state (Foerster et al., 2019), or by explicitly providing additional information during train-
ing (Hu & Foerster, 2019). However, as observed by Hu et al. (2020), self-play agents learn highly
specialized conventions that are not transferable to novel partners. They introduce the concept of
zero-shot coordination (ZSC), where AI agents need to coordinate with partners they have never seen
before, and propose Other-Play for ZSC. Other-Play develops more robust strategies by leveraging
the presence of known symmetries in the underlying problem. However, the ZSC performance is
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evaluated through cross-play, i.e., agents of the same learning algorithm but from independent train-
ing runs. While it is an important step towards generalization, cross-play is a cheap proxy to ZSC
with completely different AI agents or even human players. Multiple works have since proposed
ZSC-capable learners. Lupu et al. (2021); Nekoei et al. (2021) use population training with diverse
policies so agents train with a large pool of agents, thus encountering diverse behaviors and creating
robust strategies that generalize across the population. Lucas & Allen (2022) use intrinsic rewards
as an alternative way to promote diverse behaviors. As an alternative to diversity-based approaches,
Cui et al. (2021) propose to ground policies using hierarchies of agents, where a level-k agent learns
the best-response strategy to a level-k − 1 agent. Similarly, Hu et al. (2021b) propose to iteratively
optimize a policy against the optimal policy of the previous iteration. Through these hierarchies, the
agents observe different levels of reasoning and can fall back to lower-level reasoning when playing
with unknown partners. Both these works focus on the 2-player setting of Hanabi, and are unable to
generalize to higher player settings. Finally, Hu & Sadigh (2023) propose a framework where the
partner specifies what kind of strategy it expects the learning agent to play. Using pretrained large
language models (LLMs), a prior policy is generated conditioned on this specification, such that the
agent learns a strategy that is aligned with this policy. However, this prior policy is only conditioned
on other agents’ actions and heuristic instructions in contrast to our work where the language model
operates on both observations and action avoiding the need to design hand-coded instructions. In all
these works, agents need to learn how to play with others, on the same game-setting. In contrast,
our R3D2 agent can play on multiple game-settings at once, and play with agents trained on other
game-settings.

RL for text-based games Recent successes in RL and natural language processing (NLP) have
resulted in a surge of interest for developing RL agents based on text-based games. Examples in-
clude story-based games (Hausknecht et al., 2020), adventure games (Yin & May, 2019), and many
others (Yuan et al., 2018; Murugesan et al., 2020; Wang et al., 2022). In such environments, the
agent is presented with a textual description of a goal (Osborne et al., 2022). These interactive envi-
ronments offer challenging and realistic training that requires a solid understanding of the language
and the task. Moreover, connecting language with the physical world is critical to solving the task
(Bisk et al., 2020; Bender & Koller, 2020). To address these, researchers have developed several
RL-based agents that operate on text (He et al., 2015; Jain et al., 2019; Xu et al., 2020; Yuan et al.,
2018). Language models have been used to propose action candidates (Jang et al., 2021; Yao et al.,
2020; Singh et al., 2021; Sudhakar et al., 2023). While these environments allow for many different
and diverse behaviors and tasks, they focus on single-agent learning. For multi-agent systems, Park
et al. (2023) investigate generative agents interacting with each other and the world through text.
However, the focus of this work is to observe believable individual and emergent social behaviors
from these agents, no learning is involved.

Transfer Learning and Generalization in RL Transfer learning and generalization remain fun-
damental challenges in reinforcement learning, particularly in multi-agent settings where the com-
plexity of interactions compounds the difficulty. Traditional approaches to transfer in single-agent
RL often focus on learning representations that capture task-invariant features (Taylor & Stone,
2009; Finn et al., 2017) or developing curricula that gradually increase task complexity (Bengio
et al., 2009; Narvekar et al., 2020). These challenges are further amplified in multi-agent systems,
where agents must adapt not only to new tasks but also to different interaction patterns (Carbonell
& Veloso, 2006; Da Silva & Costa, 2019). Recent work has explored environment design as a
promising direction for improving transfer and generalization. Notably, Team et al. (2021) showed
that agents trained on a vast collection of procedurally generated games in XLand develop zero-
shot generalization to novel tasks. Dennis et al. (2020) demonstrate that automatically generating
training environments of progressively increasing complexity can lead to emergent behaviors that
transfer zero-shot to novel scenarios. Building on this, Samvelyan et al. (2023) propose MAESTRO,
which extends environment design to the multi-agent setting by creating scenarios that encourage
the emergence of coordination protocols. While these approaches focus on generating environments
to facilitate transfer, our work takes a different approach by reformulating the original environment
using language to enable generalization across different game configurations, building on recent
successes in using language for transfer in other domains (Andreas et al., 2017; Lee et al., 2022)
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3 PRELIMINARIES

3.1 THE GAME OF HANABI

In Hanabi, 2-to-5 players work cooperatively to arrange cards in ascending order (from 1 to 5) for
each color (typically five colors: red, blue, green, white, and yellow). Each player is dealt a hand
of cards, but the twist is that they cannot see their own cards, only their teammates can see them.
Players take turns, and on each turn, a player must choose to perform one of three possible actions.
Either it gives a clue, plays a card, or discards a card. If the player gives a clue, it can provide one
piece of information to another player about their hand (e.g., ”These two cards are blue”). Giving
a clue costs a hint token, and there are 8 hint tokens available. Alternatively, the player can decide
to play a card, hoping it can be added to the sequence of cards on the table. If the card is correct
(i.e., it extends one of the color sequences in ascending order), it is successfully played. If the card
is wrong, it is discarded, and the team loses one of its 3 life tokens. Finally, the player can discard
a card from their hand to gain a hint token back. This action is necessary when hint tokens run
out, but it comes with the risk of discarding a crucial card. Each correctly arranged card results in
1 point, for a maximum of 25 points (all 5 cards of all 5 colors have been arranged correctly). The
game ends either when all cards are arranged, all life tokens have been used, or the deck is empty.

3.2 MULTI-AGENT REINFORCEMENT LEARNING

In Hanabi, each player is dealt a number of cards, which only the other players can see. As such,
Hanabi is a partially observable game: not all information is available to the player to make a
decision. Each turn, a player can decide to either play or discard a card, or to give a clue. Players
need to make decisions alone, making this a decentralized game. By playing cards in a specific
order, players gain points as a team. Hanabi is thus fully cooperative. In the MARL literature, such a
setting is modeled as a Decentralized Partially-Observable Markov Decision Process (Dec-POMDP
) (Bernstein et al., 2002; Nair et al., 2003), formally defined as a tuple G = {S,A, P,R,Ω, O,N, γ},
with the set of states S, the set of actions A, the transition function P , the reward function R, the
set of observations for each agent Ω, the observation function O, the number of agents N , and
γ as the discount factor. The game is partially observable, with oi ∼ O(o | i, s) as agent i ’s
observation of the global state, sampled from the (stochastic) observation function O. The game
is also fully cooperative, thus agents share the same reward r = R(s,a), conditioned on the joint
action a =

[
ai
]N
i=1

and the global state s. At each timestep t, all agents are at the state st. Each
agent has an action-observation history (AOH) τ it =

{
oi0, a

i
0, r

i
0, . . . , o

i
t

}
, and selects action ait using

a stochastic policy of the form πi
θ

(
ai | τ it

)
. The transition function P (s′ | st,at), conditioned on

the joint action and the global state, transitions to the next state st+1. Under the joint policy π,
we call V π(s) = E

∑
t [γ

trt | π, st = s] the value, i.e., the expected sum of discounted rewards
(or return). The policy that maximizes the value is said to be the optimal policy π∗ = maxπ V

π .
Closely related to the value is the Q-value Qπ(s, a) = E

∑
t [γ

trt | π, st = s, at = a].

In single-agent RL, Deep Q-Networks (DQN) (Mnih et al., 2015) learns Qθ, an approx-
imation of Q∗ with a neural network parametrized by θ. Qθ is learned by minimizing
(Qθ(s, a)− (r + γmaxa′ Qθ′(s′, a′)))

2, where Qθ′ is a copy of Qθ updated regularly to stabilize
learning. To extend DQN to the partially observable setting, Hausknecht & Stone (2015) propose
Deep Recurrent Q-Network (DRQN), which uses recurrent neural networks to estimate Q-values
based on the AOH, i.e., Qπ(τ, a) = E

∑
t [γ

trt | π, τt = τ, at = a]. This, combined with several
modern best practices on top of DQN, including double-DQN (Van Hasselt et al., 2016), a duel-
ing network architecture (Wang et al., 2016), prioritized experience replay (Schaul et al., 2016),
and a distributed training setup with parallel running environments (Horgan et al., 2018) result in
Recurrent Replay Distributed Deep Q-Networks (R2D2) (Kapturowski et al., 2019). Our proposed
algorithm, which we explain in section 4, uses R2D2 as its foundation. In MARL, a straightforward
strategy is to represent each agent as an independent single-agent learner, e.g., using R2D2. An
agent can then be trained through self-play (SP) with copies of itself (Tan, 1993; Tampuu et al.,
2017). Our proposed algorithm, R3D2, also uses SP to learn cooperative strategies.
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4 METHODOLOGY

We present Recurrent Replay Relevance Distributed DQN (R3D2), a generalist Hanabi agent that
adapts to novel partners and game-settings. R3D2 observes and interacts with its environment
through natural language, which is known to improve transfer of learned behavior to other tasks.
Through its network architecture R3D2 handles dynamic observation- and action-spaces. Combined
with a distributed training regimen, it allows R3D2 to jointly learn diverse strategies for 2-to-5 player
games, resulting in a robust, adaptive artificial player.

4.1 HANABI AS A TEXT-BASED GAME

As our first contribution, we frame Hanabi as a text-based game, due to recent successes of using
language as medium for transfer learning (Radford et al., 2019b; Brown et al., 2020).

In the original Hanabi environment (Bard et al., 2020), the observation is represented as a bitstring
encoding, i.e., a concatenation of bits representing the observation. To encode the game state as text,
we use a template, of which an example can be seen in Figure 1. The template starts by listing the
number of life and clue tokens, followed by a listing of the arranged cards, other players’ hands, and
the knowledge of the player’s own hand. It also includes the hints given to other players. While the
bitstring encoding captures all the information available for optimal gameplay, it greatly changes
depending on the setting (2-to-5-player games). In contrast, our text encoding appears intuitive, and
requires minimal modifications switching between game settings. Thus, it allows for state-space
generalization, i.e., learning policies across different settings becomes easier. For example, adding a
new hand to the game results in arbitrary modifications in the original bitstring encoding. In contrast,
the text encoding only appends relevant information to the observation.

Secondly, we modify the action-space. There are 3 types of actions: play a card, discard a card and
give a clue. Each type has a fixed number of concrete actions. A player can play or discard any of the
cards in their hand (e.g., ”I play card 1”). Or, a player can give a clue concerning a specific color or
rank to any other player (e.g., ”I reveal blue to player 2”). In the original environment, actions are
encoded as a one-hot encoding of all the possible action-combinations. Instead, we encode the action
with a keyword corresponding to the action-type, followed by the type’s parameter (e.g. reveal
blue 2). Clues are the only type of actions affected by a change in the number of players. With this
encoding, the agent can generalize the behavior for each action-type, and easily extend clue-actions
to other player settings. This motivates generalizations to actions not seen during training.

We select this template because it includes all the crucial information contained in the vectorized
observation. We also perform ablation studies on different components of the template to measure
its impact on the agent’s capability to predict optimal actions, which we show in Appendix A.4.
Using this textual version, we design an agent that takes advantage of this representation to improve
generalization across players and settings.

4.2 R3D2 AGENT: HANDLING DYNAMIC STATE AND ACTION SPACE

With the dynamic representation resulting from Hanabi’s text-based encoding, we propose an agent
architecture (shown in Figure 2) that incorporates a (pretrained) language model to encode obser-
vations and actions into observation- and action-embeddings. To do so, we take inspiration from
Deep Reinforcement Relevance Network (DRRN) (He et al., 2015), which propose a neural archi-
tecture for deep RL designed to handle action-spaces characterized by natural language. In contrast
to R2D2, which outputs a fixed vector of size |A|, DRRN encodes the action in a separate action-
embedding network. The corresponding Q-value is then computed as the inner product of the state-
and action-embeddings:

Q(s, a) = f(s)⊤g(a),

where f(s) is the state embedding and g(a) is the action embedding. In doing so, DRRN is able to
encode an arbitrary number of actions. Ma et al. (2022) also showed recently that attention-based
architectures that jointly process a featurized representation of observations and actions have a better
inductive bias for learning intuitive policies. As a downside, |A| separate forward passes need to be
performed on g to compute all Q-values of a specific state s.
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1 clue tokens available. 3 life to-
kens remaining. Fireworks dis-
play: Red 5, Yellow 4, Green
2, White 4, Blue 4. knowledge
about own hand: Green 5, Green
3, Unknown 5, Green X, Un-
known X. Player hand: Yellow
5, White 4, White 2, Yellow 1,
Green 2. Discards: Green 4 Red
2 Yellow 1 White 1 Red 1 White
1 Yellow 4 Green 1 Red 1 . . .

Figure 1: The template used
for textual observations in
Hanabi. It includes all nec-
essary information to play the
game, including life and clue
tokens, visible hands, dis-
carded cards, and hints.

2 clue tokens 
available. 3 life 
tokens 
remaining.
...

I play card 1
L
S
T
M

L
S
T
M

FF

FF

TinyBERT (x2)

TinyBERT (x2)

Σ⊗ Qθ

Figure 2: An overview of the R3D2 architecture. R3D2 uses
a separate head for observations and actions. Each head starts
with 2 TinyBERT layers to encode the textual representation,
followed by a LSTM layer to encode the previous timesteps.
We use elementwise multiplication to combine both embed-
dings. This is then split into a separate value and advantage
head, before being summed together to obtain Qθ(τ, a).

In our case, Qθ depends on the AOH, resulting in a sequence of embeddings. This sequence is pro-
cessed by a Long Short-Term Memory (LSTM) network, followed by a two-layer perceptron (MLP)
to predict value and advantage estimates. These are then combined to estimate Q-values. We train
our R3D2 agent via self-play, similar to IQL-based baselines in the literature (Hu & Foerster, 2019)
to minimize the TD-loss. In section 6, we demonstrate that using an appropriate representation one
can enable self-play to learn cooperative behavior with other partners, without relying on complex
MARL methods.

The primary trainable components of R3D2 include the language model (LM), LSTM, and MLP. We
utilize a two-layer TinyBERT (Jiao et al., 2020) as the LM due to its optimal balance between perfor-
mance and inference time, which is crucial in RL settings with frequent interactions. Moreover, we
performed preliminary experiments with different small LM to confirm this choice (see section 5),
and to analyse the impact of pretrained weights, as well as the frequency at which to update the LM
(see section A.7.1). It is worth noting that larger text encoders could also be integrated; however,
the inference cost of large language models can become a bottleneck (Kaplan et al., 2020), which
remains an open area of research.

We follow the same training procedure as R2D2, by using large number of parallel environments to
gather trajectories and prioritized experience replay to sample transitions to update Qθ. Moreover,
we designed R3D2 to support environments with varying numbers of players, ranging from 2 to 5
participants. To achieve this, multiple parallel actors take actions in these settings, while a shared
replay buffer gathers the trajectories from all actors together. Although the agent itself is agnostic
to the number of players, we adapt the replay buffer to handle sequences of different lengths. To
address this, we pad the token trajectories with zeros, ensuring a consistent buffer structure across
all trajectories, regardless of the number of players.

5 LANGUAGE MODEL VARIANTS FOR HANABI

LMs have shown promising reasoning and planning capabilities Radford et al. (2019b); Brown et al.
(2020). Having a completely text-based game, one might expect a LM should be able to play the
Hanabi game successfully. Therefore, before testing our R3D2 agent, we evaluate several LMs on
the Hanabi tasks with the text-based Hanabi environment, to understand the difficulty of playing the
game of Hanabi for current LMs and establish a baseline for future improvements.

Prompting and low-rank adaptation fine-tuning Modern large LMs (LLMs) such as GPT-
4 (OpenAI, 2023) and LLaMA-2 (Touvron et al., 2023) showcase remarkable zero-shot or few-shot
generalization capacities, particularly in complex natural language tasks Kojima et al. (2022). First,
we prompt GPT-4 to select actions for Hanabi, providing the textual observation and legal moves
as context. Although it successfully avoids losing life tokens for extended periods, it struggles with
optimal planning, limiting its ability to achieve scores higher than 3 or 4. Details about the var-
ious system prompts and game scores are available in Appendix A.1 and A.3. Next, we analyze
how well a LLM fine-tuned on expert data would perform. For this, we fine-tune LLaMA-7B us-
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ing low-rank adaptation (LoRA) (Hu et al., 2021a) on a dataset of expert data collected using an
Off-Belief Learning agent (Hu et al., 2021b). Despite this tuning, the model performs poorly based
on gameplay scores. Hu & Sadigh (2023) further supports the observation that current large LLMs
are still far from independently solving Hanabi. For more detailed experimental results, we refer
to Appendix A.3. These initial experiments seem to indicate that LLMs as-is are not sufficient to
properly play Hanabi, and that learning to coordinate is required.

Full fine-tuning Next we considered full fine-tuning of small LMs. Therefore, we focused on two
types of language models—classifiers and generative models—serving as agents in the text-based
Hanabi environment. We compare the impact of BERT-like architectures, i.e., BERT (Devlin et al.,
2018a) and DistilBERT (Sanh et al., 2019), with the GPT-2 (Radford et al., 2019a) (classifier and
generative) architecture.

BERT

Distil
BERT

GPT2-cla
ssif

ier

GPT2-generation

Language Models

0

5

10

15

20

25

Ga
m

e 
Sc

or
e

Figure 3: The evaluation of language
models performance as an agent is con-
ducted via gameplay score, measured
across various language models with
1200 game runs.

To benchmark the performance, we select the optimal
checkpoint for each LM based on gameplay scores. The
best checkpoint is then subjected to 1200 runs in the Han-
abi environment to handle variance and randomness, as
depicted in Figure 3. Both the BERT and DistilBERT
models demonstrate a commendable performance in the
Hanabi gameplay, achieving a maximum score of 23 out
of a possible 25. Their average gameplay scores hover
around 10 during the gameplay. The GPT2-generative
model has better top-k test accuracy. However, it fails
short compared to the classification-based model in the
overall gameplay score with ∼ 4.5. We further tried using
different percentages of training datasets to understand
the role of data. Compared to 10% or less, when using
25% of the data, there is a sharp increase in the gameplay
score. However, the performance plateaus for both 75%
and 100% are indicative of reaching a saturation point.
Also, we tried different BERT variants, and all are satu-
rated to the same game score irrespective of the increase
in the parameter size. Finally, we also investigated the role of discarding information in the ob-
servation and found it didn’t help much in the gameplay score. Refer to appendix A.4 for detailed
ablation results on language models. Since the BERT architecture results in a higher performance
than GPT-2, we use a BERT-like network in our R3D2 agent.

6 EXPERIMENTS

In this section, we analyse the generalization performance of R3D2 on Hanabi. Hanabi is a chal-
lenging task, which requires to learn conventions with other players to reach a high score. When
changing the number of players participating in a game, the strategy to reach a high score changes,
even though the rules of the game remain the same. For example, the number of allowed clues
remains 8 in a 2-player and 5-player setting, despite having more players that require hints in the
5-player setting. Despite requiring to change strategies, some of the learned conventions remain the
same, and should be transferable from one setting to another. For example, providing the clue “this
card is a card of rank 5” tells the player that they absolutely cannot discard that card, as there is
only one such a card for each color, and it is required to play it to reach a maximum score. We aim
to learn how specialized the conventions of agents that have played together during training are, by
evaluating them in a ZSC fashion with agents they have never encountered before. We also aim to
evaluate just how much these conventions can be carried on from one setting to another, by pairing
agents that have been trained on different settings together. Finally, since our R3D2 agent is flexible
enough to play on any setting of the game, we also train our R3D2 agent on all game settings at
the same time. We assess the benefits of playing on more diverse types of gameplay, and how this
improves the agent’s cooperation abilities with others.
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6.1 EXPERIMENTAL SETUP

We train single-setting R3D2 agents for each setting, i.e., from 2-player games to 5-player games.
We call these agents R3D2-S (single setting). Analogously, we call R3D2-M (multiple settings) the
R3D2 agent trained on all game-settings concurrently. For comparison, we train 3 different baselines
on the original, vectorial version of the Hanabi environment. The first baseline is Independent Q-
Learning (IQL) (Tan, 1993; Tampuu et al., 2017). IQL is still frequently used as a baseline for
Hanabi, as it serves as the foundation of many state-of-the-art MARL Hanabi algorithms, including
the other baselines we use in this work. We call this baseline R2D2 as it is based on R2D2 agents
trained independently through self-play. It shows strong performance with its training partners,
having learned highly specialized conventions through self-play. However, this also means that it
typically does not play well with other partners, who do not necessarily follow the same conventions.
For our second baseline, we use Other-Play (OP) (Hu et al., 2020). In Hanabi, playing a game with
permuted colors of the cards does not change the game, i.e., there exist symmetries in the game
that the policy should be invariant to. OP learns such policies by exploiting known symmetries
of the Dec-POMDP. This avoids over-specialized conventions that would break on different, but
symmetrical (and thus equivalent) states of the game. We call this R2D2-based OP agent: R2D2-
OP. Our final baseline is Off-Belief Learning (OBL) (Hu et al., 2021b). OBL assumes past actions
where taken by a fixed policy, different from its own. OBL then converges to an optimal grounded
policy, which can in turn be used to ground a higher-level policy. In our experiments, we use OBL
after 4 levels of grounding, as this is the highest level of grounding used in their original work.
To highlight that this baseline is also R2D2 based, we call it R2D2-OBL. All these 3 baselines
are value-based, learning a Qθ network. To ensure a fair comparison with R3D2, all baselines use
R2D2 as a basis, which contains several modern best practices for learning Qθ. Note that although
we train and test R3D2 in settings ranging from 2 to 5 players, we utilized R2D2-OP and R2D2-
OBL checkpoints from the original paper, which focused exclusively on the 2-player setting, as it
was the only configuration examined in those studies. To isolate the contributions of our two key
innovations - using language models for state representation and handling dynamic action spaces
- we created an intermediate baseline called R2D2-text. This agent combines R2D2’s fixed action
space with R3D2’s text-based state representation.

All baselines use the same neural network architecture, a recurrent neural network which takes a
vectorial observation as input and outputs the Q-values for all possible actions. Details about the
network architecture and hyperparameters are described in Appendix A.5.1. Each agent is trained
for 2000 epochs with each epoch corresponding to 500 batch updates. For each experiment, we run
three different seeds. For each evaluation setup, we define the performance of a team of agents as
the average performance over 1000 games.

6.2 ZERO SHOT COORDINATION TO NOVEL SETTINGS
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Figure 4: Policy Transfer - Zeroshot setting. Each subplot shows the evaluation setting for a n-player
game. Each bar combines 0 < i < n agents trained on a different setting, with n− i players trained
on n-player games. R3D2 agents demonstrate strong zero-shot generalization to novel settings.
Moreover, R2D2-text seems to be unable to match R3D2’s transfer performance specially when
transferring from a setting with large number of actions to smaller action space.
As a first set of experiments, to showcase our agent’s ability to transfer policies across varying
configurations, we evaluate its performance in different game settings. For a game with n-players,
we select a subset i < n of players that have been trained on n-player games, and we pair them with
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players that have been trained on m-player games (each player is a different seed). By aggregating
all subsets 0 < i < n, we can assess how well the agents of m-player games generalize to n-
player games in a zero-shot manner. Each combination of n and m is shown in Figure 4. As a
reference point, we showcase the self-play (SP) performance of R3D2 (leftmost bar on each plot).
Finally, we also showcase the cross-play performance of n-player agents combined with R3D2-M
(in blue). Finally, note that, when n = m, this results in standard intra-cross-play (e.g., 5p-XP on
the rightmost plot).

We make several observations. First, unsurprisingly, increasing the number of players results in
lower overall performance, as strategies become more complex. Next, R3D2-M learns competitive
strategies for all settings despite receiving the same training budget as single-setting algorithms,
and is able to play well with single-setting players. This shows that knowledge from one setting is
useful for other ones, and that the network architecture used by R3D2 allows for effective transfer of
knowledge across settings. Additionally, R2D2-text is unable to match R3D2’s transfer performance
specially when transferring from a setting with large number of actions to smaller action space.
Finally, R3D2’s standard cross-play scores remain high, despite using self-play during training. The
cross-play scores drop compared to self-play as the number of players increase, but that it because
this results in more unique players playing together for the first time. in comparison, R2D2-text
systematically has a lower cross-play score than R3D2, despite having the same action-space as
during training. This shows that, while textual observations help for learning generalizable policies,
incorporating dynamic action-spaces is inportant as well for same-setting scenarios. We refer to
Appendix A.6 for additional comparisons on cross-play.

6.3 ZERO SHOT COORDINATION TO NOVEL PARTNERS
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Figure 5: Selfplay, intra-XP and inter-XP
performance in 2-player setting averaged
across three independent seeds per method.
R3D2 achieves significantly better inter-XP
compared to the baselines while maintaining
a competitive SP and intra-XP.
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Figure 6: 2 player zero-shot coordina-
tion matrix between different methods and
three independent seeds per method. R3D2
achieves better inter-XP with IQL, R2D2-
OBL and R2D2-OP.

Now, we compare the robustness of R3D2’s learned policies when partnered with novel agents, for
the same game setting (i.e., cross-play) with other baselines. We not only compare the coopera-
tion capabilities of different seeds of the same learning algorithm, but also of different algorithms
with each other. We make 2-player teams composed of all combinations of seeds of all training
algorithms, and evaluate their performance. The aggregated scores are shown in Figure 5. As a
reference, we also show the performance when playing in self-play (SP) mode. The results of each
individual combination of teammates results in the matrix of scores shown in figure 6. We note
that the submatrices highlighted in red concern intra-algorithmic cross-play (intra-XP) (with their
diagonal comparisons of the same seed, which is equivalent to self-play), while all other compar-
isons concern inter-algorithmic cross-play (inter-XP). We start with the observation that R2D2 and
R2D2-OP exhibit a lower intra-XP performance than self-play. While this is expected for R2D2,
it is surprising for R2D2-OP, which is explicitly designed to cooperate well in the intra-XP setting.
We believe this is because some of R2D2-OP’s runs might not have exploited the environment sym-
metries well enough. The inconsistent behavior of R2D2-OP agents were also reported in Hu et al.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(2020). Since this is the way R2D2-OP learns robust policies, failing to exploit these symmetries
would results in a training procedure similar to R2D2. This would explain lower intra-XP scores,
and would also explain why R2D2-OP cooperates surprisingly well with R2D2 in the inter-XP set-
ting. On the other hand, R3D2’s intra-XP performance is on par with self-play, even though it has
been trained through self-play, similarly as R2D2. While R2D2’s performance quickly degrades
when paired with other seeds, this is not the case for R3D2, which confirms that self-play can lead
to robust strategies, provided they use the appropriate representation. We believe that R2D2-OP, by
exploiting known symmetries of the game, learns that different permutations of the vectorial version
of Hanabi are equivalent. Trying to make sense of this vectorial representation thus contributes to
R2D2-OP’s cross-play abilities. In contrast, in our textual representation, symmetrical observations
are the same but for a few tokens. Symmetries are thus implicitly tackled by R3D2.

The aggregated scores are shown in Figure 5. In general, while our agents achieve competitive per-
formance in self-play and intra-XP, R3D2-based agents demonstrate superior inter-XP performance
when paired with R2D2-OBL agents. This suggests R3D2 learns more robust and general strategies,
in contrast to R2D2 and R2D2-OP which tend to learn brittle, specialized conventions. The strong
performance with R2D2-OBL, which is known for learning human-compatible strategies (Hu et al.,
2021b), indicates that R3D2 develops more natural and transferable coordination patterns. Inter-
estingly, R3D2-M seems better at inter-XP than R3D2-S. Having been trained on multiple settings,
R3D2-M has experienced more diverse strategies during training. We surmise that this diversity
allows R3D2-M to be prepared to a wider range of novel policies, leading to higher overall collab-
oration. Next, we note that R2D2-OBL collaborates better with R3D2 than any other baseline. We
thus ask ourselves if it is R2D2-OBL that is flexible enough to adapt to R3D2 or the opposite. We
aim to answer this question by comparing their performance with R2D2, the least flexible policy.
When R2D2-OBL is paired with R2D2, their score is lower than when R3D2-S is paired with R2D2.
Thus, R3D2-S seems to have a more flexible policy than R2D2-OBL. An analogous analysis can be
made for R2D2-OP, where R3D2-S paired with R2D2-OP achieves a higher score than R2D2-OBL
with R2D2-OP. Results shown in Figure 6 clearly demonstrate that R3D2, even though trained using
self-play, learns more robust policies than methods that explicitly aim to learn policies for ZSC.

7 CONCLUSION AND FUTURE WORK

In this work, we show that learning through self-play can lead to robust policies, provided that the
learning agent is trained with an adequate representation. We propose Recurrent Replay Relevance
Distributed DQN (R3D2), that plays Hanabi with a textual representation of the game, and a player-
agnostic neural network architecture. R3D2’s intra-algorithmic cross-play score is on par with its
self-play score, a first for Hanabi agents learning through self-play. Moreover, our experiments
show that pairing R3D2 agents from different settings together can lead to collaborative success,
with agents having been trained on more complicated settings being more capable in general than
agents that have been trained on simpler settings, with less players in the game. Additionally, R3D2’s
player-agnostic architecture facilitates variable-player learning, enabling it to generalize strategies
across various settings. This opens a new research avenue for exploring generalization across game
settings, in addition to coordination with novel partners in MARL for complex cooperative games
such as Hanabi.

Our approach, leveraging embedding and language models, is naturally adaptable to other text-based
tasks. However, we acknowledge certain limitations - environments with continuous state/action
spaces (like robotic control) or image-based inputs would require domain-specific adaptations. How-
ever, recent advances in language models are expanding the possibilities. For instance, Llama-2’s
specialized tokenizer demonstrates remarkable performance on numerical tasks by decomposing
numbers into digit sequences (Touvron et al., 2023). An interesting direction for future work in-
volves enhancing inter-setting cross-play evaluation, which we introduced and see as having signif-
icant potential. This area allows for further exploration of robustness by improving agents’ adapt-
ability across different game settings. Expanding the evaluation to include various combinations of
replaced agents and different algorithms could yield deeper insights. Additionally, while Zero-Shot
Coordination serves as a useful benchmark, it may lack realism. Exploring few-shot coordina-
tion could be a promising research direction, where agents quickly adapt to new environments and
partners, striving for consensus and effective collaboration in minimal episodes, offering a more
dynamic approach to agent interaction in complex scenarios.
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A APPENDIX

A.1 PROMPTING DETAILS

System prompt 1: ”You are an expert Hanabi player”

System prompt 2: ”You are an expert Hanabi player focused on maximizing team coordination
and achieving high scores with minimal mistakes. Follow these principles: Efficient Clue-Giving:
Provide clues that give maximum information, using finesse and double clues to benefit multiple
players. Deduction: Track played/discarded cards and deduce your own cards based on clues and
game state. Avoid discarding critical cards. Disciplined Play: Play and discard safely, minimiz-
ing risk while optimizing the team’s progress. Team Coordination: Follow team conventions and
use subtle cues (timing, actions) to communicate intent without verbal clues. Score Maximization:
Manage clue tokens and pace the game to ensure enough clues for critical moments.”

A.2 DATASET DETAILS
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Figure 7: Visualizing the number of ac-
tions available in the dataset to create a
diverse dataset of Hanabi gameplay in
the form of text.

The dataset is acquired through self-play mode, utilizing a
pre-trained OBL agent in the Hanabi game. Trajectories
are filtered selectively with a gameplay score exceeding
20. Then, these trajectories are broken down into state-
action pairs to suit language model training. During the
initial data exploration, we found the action categories
are imbalanced as shown in 7, hence the language model
overfits to discard 4 based on the confusion matrix for
the prediction. To avoid that, we did categorical sampling
consisting of 2200 samples per action type, aggregating to
44, 000 instances. Then we checked for duplicate states
and dropped them, there were approximately 100 dupli-
cates as this could mislead the model’s learning. After
which, 10% of the dataset is reserved for testing by ran-
dom sampling. Further, the dataset is split into 90% for
train and 10% for validation.

A.2.1 LANGUAGE MODEL SETUP

The model’s finetuning process begins with a set of train-
ing instances, denoted as (S,A) drawn from the dataset D where S ∈ {s0, s1, .., sn} and A ∈
{a0, a1, .., an}. Within this set, s and a represent a state and its corresponding noisy labelled ac-
tion, respectively, and n represents the number of examples in the dataset. The training objective of
BERT, DistilBERT, GPT2-Classifier is,

LCCE = − 1

N

N∑
i=1

C∑
j=1

aij log(âij) (1)

Where N is the batch size. C is the number of classes. aij is the true probability of class j for the
i-th example in the batch and âij is the predicted probability of class j for the i-th example in the
batch.

The training objective of GPT-2 Generative is to minimize the cross-entropy loss, denoted as L, and
do the finetuning of the model. The cross-entropy loss is mathematically defined as follows:

LLLM = −E(S,A)∼D log p(A|S) (2)

Where p(S|A) represents the conditional probability of predicting an action A, given the state S.
The goal is to optimize these parameters, by minimizing the cross-entropy loss. We finetune the
model to generate responses that better align with Hanabi game. The learning graph of validation
accuracy with the game play score for each epoch is logged to understand the trend in the Figure
8(a,b). Mostly the Validation score and game score is getting saturated at around 4th epoch.
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Figure 8: Learning graph for (a) Validation accuracy plotted against(b) Game play score, for each
epoch for different language model providing insights into the observed trends during the training
process.

Table 1: GPT-4 performance with different system prompts on text-based Hanabi averaged over 3
seeds.

Method System Prompt 1 System Prompt 2

GPT-4 3.0 ± 0.0 2.34 ± 0.27

A.3 HOW GOOD LLMS ARE IN PLAYING HANABI?

First, we evaluate GPT-4’s ability to play Hanabi using our text-based format. While GPT-4 demon-
strates basic game understanding by avoiding catastrophic moves, it achieves only rudimentary
scores of 3 points out of 25 (1), highlighting the limitations of pure language models in strategic
planning.

To adapt the LLaMA to the gameplay, we use Low-Rank Adaptation, or LoRA (Hu et al., 2021a),
which learns a low-rank decomposition matrices into each layer of the transformer architecture and
freezes the pre-trained model weights. Thereby, significantly reducing the trainable parameters. We
conducted fine-tuning experiments with LLaMA-7B weights with classifier using varying data sizes
[200, 500, 1000] and LoRA ranks [32, 64, 128] for 10 epoch. Despite these parameter variations,
the gameplay scores remained suboptimal level of around one as shown in 9. This highlights the
challenges in achieving effective gameplay performance for current large languge model on playing
hanabi.
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Figure 9: Evaluation of Low-Rank Adaptation (LoRA) in LLaMA-7B finetuning, showcasing the
impact on a) Validation Accuracy and b) Game Play Score. The experiments involve varying data
sizes [200, 500, 1000] and LoRA ranks [32, 64, 128].
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A.4 ABLATION STUDIES

A.4.1 THE ROLE OF SCALING THE DATASET AND DIFFERENT MODEL VARIANTS

The dataset size emerges as a pivotal factor influencing gameplay scores. As the amount of training
data increases there is a gradual increase in validation and the gameplay score. When the training
percentage is equal to or less than 10% the games scores were poor ranging around 1 out of 25.
In contrast, the gameplay score sharply increases when using 25% of the data as shown in 10b.
Nevertheless, the performance plateaus at a game play score of approximately 9 for both 75% and
100% , indicative of reaching a saturation point, affirming the sufficiency of the dataset size for
effective model training.
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Figure 10: Analysis of the impact of training data amount on BERT, examining a) BERT Validation
Accuracy, b) BERT Game Play Score across different percentages of training data, and c) BERT
model variants with varying parameter sizes.

In our experimentation, we varied the model parameter sizes—ranging from DistilBERT with 66M
parameters to BERT-base-uncased with 110M parameters and BERT-large-uncased with 340M pa-
rameters. We observed that DistilBERT achieves a competitive gameplay score of approximately
8.7 after 600 game runs 10c. On top of the performance considering the fast inference and low
memory usage, DistilBERT was chosen as a candidate for integration with reinforcement learning
through distillation.

A.4.2 THE ROLE OF DISCARD INFORMATION
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Figure 11: Evaluation of the discard
pile’s role in the game is assessed by
comparing game scores with the pres-
ence and absence of the discard pile in
the observation during training.

We examined the impact of incorporating the discard
pile into the observation. Surprisingly, we discovered
that utilizing the discard pile did not contribute to any
improvement in game scores as show in the Figure 11.
Rather, it resulted in a doubling of the sequence length
of the language model. Given the need for fast inference
in the reinforcement learning pipeline, we opted to ex-
clude discard pile information from the observation dur-
ing both language model training and inference. Nonethe-
less, there is a potential for heuristic-based approaches,
to explore the idea of creating derived information from
from the discard pile, potentially leading to a more con-
cise sequence length and better game score.
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A.5 TRAINING DETAILS

A.5.1 R3D2 TRAINING SETUP

Here we provide all the experiment details and hyper-parameteres used to train R3D2 agents.

Table 2: Hyper-Parameters for R3D2 agents.

Hyper-parameters Value

# replay buffer related
burn in frames 10,000
replay buffer size 50,000
priority exponent 0.9
priority weight 0.6
max trajectory length 80

# optimization
optimizer Adam
lr 6.25e-05
eps 1.5e-05
grad clip 5
batchsize 64

# Q learning
n step 1 (R3D2)
discount factor 0.999
target network sync interval 2500
exploration ϵ ϵ0 . . . ϵn, where ϵi = 0.11+7i/(n−1), n = 80

A.6 ZERO-SHOT COORDINATION TO NOVEL PARTNERS

To demonstrate R3D2’s robustness, we report self-play and intra-XP performances of R3D2, IQL,
and OP trained on 3-, 4-, 5-player game settings in Figure 12. IQL and OP achieve high self-play
scores but perform poorly in cross-play. R3D2 variants, particularly R3D2-S, demonstrate more
consistent performance across both metrics, maintaining scores above 15 points in all scenarios
despite the general decline in performance as player count increases. R3D2-M This suggests that
R3D2’s training approach leads to more robust and adaptable agents, though at a slight cost to self-
play performance compared to IQL and OP.
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Figure 12: Performance comparison across different settings. The table shows both self-play (SP)
and intra-cross-play (Intra-XP) scores for different methods in 3- , 4- and 5-player Hanabi settings.
While IQL and OP achieve high SP scores but fail in Intra-XP, both R3D2 variants maintain consis-
tent performance across both metrics, with R3D2-S showing particularly strong results.
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A.7 ABLATION STUDIES ON THE ROLE LANGUAGE MODELING

To better understand the impact of different components in R3D2, we conduct a series of abla-
tion studies examining the role of language model pre-training, update frequency, and architectural
choices. These experiments help isolate the contributions of our key innovations and validate our
design decisions.

A.7.1 LM INITIALIZATION AND UPDATE FREQUENCY
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(a) Pretrained vs random LM
weights
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(c) R3D2 vs R2D2-text vs R2D2
Figure 13: Impact of pre-trained weights and update frequency on learning efficiency. (a) Per-
formance difference between R3D2 agents trained with pre-trained language model (LM) weights
versus randomly initialized LM weights, showing significant improvements in sample efficiency
with pre-trained weights. (b) The effect of varying the frequency of LM updates, highlighting that
frequent updates are critical for effective learning in the Hanabi environment.

We train two R3D2 agents in a 2-player Hanabi setting: one using a pre-trained language model
(LM) and the other with the same architecture but randomly initialized LM weights. Figure 13a
shows that learning from pre-trained weights significantly improves the sample efficiency. Addi-
tionally, we test updating the LM less frequently with periods of 1, 2, 5, and 10 training steps per
LM update to examine whether the original pre-trained weights provide sufficient representations
for playing Hanabi or if fine-tuning is necessary. Our results, presented in Figure 13b, indicate that
updating the LM parameters is essential for effective learning.

A.7.2 DOES THE R3D2 PERFORMANCE COMES FROM LANGUAGE MODEL OR THE
ARCHITECTURE?

As shown in Figure 13c, while R2D2-text achieves better intra-XP performance than the original
R2D2, it still falls short of R3D2’s capabilities. R3D2 matches R2D2’s strong self-play performance
while significantly outperforming both baselines in intra-XP scenarios. These results demonstrate
that both innovations are crucial: text representation alone provides some benefits for generalization,
but the combination with dynamic action space processing is necessary to achieve robust transfer to
novel partners.

A.8 R3D2 VS R3D2-M AS THE FIXED PARTNER

Building upon our previous analysis in Figure 4, where we demonstrated R3D2’s zero-shot transfer
capabilities with at least one specialized agent, we further investigate the generalization capabilities
of our multi-task variant, R3D2-M. We conduct a comparative analysis by positioning R3D2-M as
the fixed partner and evaluating its cross-play performance with partners trained across different
game settings. Figure 14 presents the performance comparison between R3D2 and R3D2-M when
paired with R3D2-S partners trained on various settings (indicated on the x-axis). The results reveal
comparable performance patterns between the two variants, with R3D2 exhibiting superior perfor-
mance in certain scenarios (e.g., 2-player setting) while R3D2-M demonstrates stronger capabilities
in others (e.g., 5-player setting). This balanced performance profile suggests that R3D2-M main-
tains robust generalization capabilities, achieving performance levels comparable to its single-task
counterpart, R3D2-S, despite being trained on multiple settings simultaneously.
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Figure 14: Policy Transfer - Zeroshot setting. Each subplot shows the evaluation setting for a n-
player game. Each bar combines 0 < i < n agents trained on a different setting, with n − i
players trained on n-player games. Comparing R3D2 and R3D2-M’s cross-play performance with
R3D2-S partners trained on different settings (Figure 14), we observe complementary strengths:
R3D2 excels in 2-player settings while R3D2-M performs better in 5-player scenarios. Despite
being trained on multiple settings simultaneously, R3D2-M achieves comparable performance to its
single-task counterpart, demonstrating robust generalization capabilities.

A.9 SOFTWARE DETAILS

The code was implemented using PyTorch, and pre-trained language models were loaded using
Huggingface. To gain insights for this paper, we employed Weights & Biases (Biewald, 2020) for
experiment tracking and visualizations. Lastly, plots are created using the seaborn package. For RL
algorithms, we used OBL agent (Hu et al., 2021c) to collect the expert trajectory and forked official
instruct-rl codebase1 to train the algorithm. We will provide the codebase, as well as all trained
models upon acceptance.

1https://github.com/hengyuan-hu/instruct-rl/tree/main
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