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ABSTRACT

We contribute an unsupervised method that effectively learns disentangled content
and style representations from sequences of observations. Unlike most disentangle-
ment algorithms that rely on domain-specific labels or knowledge, our method is
based on the insight of domain-general statistical differences between content and
style — content varies more among different fragments within a sample but main-
tains an invariant vocabulary across data samples, whereas style remains relatively
invariant within a sample but exhibits more significant variation across different
samples. We integrate such inductive bias into an encoder-decoder architecture
and name our method after V3 (variance-versus-invariance). Experimental results
show that V3 generalizes across multiple domains and modalities, successfully
learning disentangled content and style representations, such as pitch and timbre
from music audio, digit and color from images of hand-written digits, and action
and character appearance from simple animations. V3 demonstrates strong disen-
tanglement performance compared to existing unsupervised methods, along with
superior out-of-distribution generalization under few-shot adaptation compared
to supervised counterparts. Lastly, symbolic-level interpretability emerges in the
learned content codebook, forging a near one-to-one alignment between machine
representation and human knowledge.1

1 INTRODUCTION

Learning abstract concepts is an essential part of human intelligence. Even without any label
supervision, we humans can abstract rich observations with great variety into a category, and such
capability generalizes across different domains and modalities. For example, we can effortlessly
perceive a picture of a “cat” captured at any angle or set against any background, we can perceive the
symbolic number “8” from an image irrespective of its color or writing style variations, and we can
perceive an abstract pitch class “A” from an acoustic signal regardless of its timbre. These concepts
form the fundamental vocabulary of our languages—be they natural, mathematical, or musical—and
underpin effective and interpretable communication in everyday life.

Our goal is to emulate such abstraction capability using machine learning. We choose a content-style
representation disentanglement approach as we believe that representation disentanglement offers
a more complete picture of abstraction—concepts that matter more in communication, such as an
“8” in a written phone number or a note pitch “A” in a folk song, are usually perceived as content,
while the associated variations that often matter less in context, such as the written style of a digit
or the singing style of a song, are perceived as style. In addition, content is usually symbolized and
associated with rigid labels, as we need precise control over it during communication. E.g., to write
“8” as “9” in a phone number or to sing an “A” as “B” in a performance can be a fatal error. In
comparison, though style can also be described discretely, such as an “italic” writing or a “tenor”
voice, a variation over it is usually much more tolerable.

In the machine learning literature, significant progress has recently been made in content-style
disentanglement for various tasks, including disentangling objects from backgrounds (Hong et al.,
2023), characters from fonts (Liu et al., 2018; Xie et al., 2021), pitch from timbre (Lu et al., 2019;
Bonnici et al., 2022), and phonemes from speaker identity (Qian et al., 2019; Li et al., 2021). However,

1Demo can be found at https://v3-content-style.github.io/V3-demo/.
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Figure 1: An illustration of the variance-versus-invariance constraints of content and style.

most existing models are either limited to specific domains (Yingzhen and Mandt, 2018; Bai et al.,
2021; Luo et al., 2022) or rely heavily on domain-specific knowledge as implicit supervision. The
supervision forms can be explicit content or style labels (Liu et al., 2017; Zhu et al., 2017; Park
et al., 2020; Karras et al., 2019; Choi et al., 2020; Bonnici et al., 2022; Patashnik et al., 2021; Kwon
and Ye, 2022), pre-trained content or style representations (Qian et al., 2020b; 2019), or paired data
showcasing the same content rendered in different styles or vice versa (Isola et al., 2017; Sangkloy
et al., 2017). In addition, the disentangled representations often fell short in generalizing to new
contents or styles, and they lack interpretability at a symbolic level and do not align well with human
perceptions (Zhang et al., 2021; Nauta et al., 2023).

To address the aforementioned challenges, achieving more generalizable and interpretable disentan-
glement in an unsupervised manner, we introduce V3 (variance-versus-invariance). V3 disentangles
content and style by leveraging meta-level prior knowledge about their inherent statistical differences.
As shown in Figure 1, our design principle is based on the observation that content and style display
distinct patterns of variation—content undergoes frequent changes within different fragments of a
sample yet maintains a consistent vocabulary across data samples, whereas style remains relatively
stable within a sample but exhibits more significant variation across different samples.

In this paper, we adopt the vector-quantized autoencoder architecture and incorporate variance-
versus-invariance constraints to guide the learning of latent representations that capture content-style
distinctions. We demonstrate that V3 effectively generalizes across distinct areas: disentangling
pitches and timbres from musical data, disentangling numbers and ink colors from images of digits,
and disentangling character actions and appearances from game video clips. Experimental results
show that our approach achieves more robust content-style disentanglement than unsupervised
baselines, and outperforms even supervised methods in out-of-distribution (OOD) generalization and
few-shot learning for discriminative tasks. Lastly, symbolic-level interpretability emerges with a near
one-to-one alignment between the vector-quantized codebook and human knowledge, an outcome
not yet seen in previous studies. In summary, our contributions are as follows:

• Unsupervised content-style disentanglement: We introduce V3, an unsupervised method
leveraging meta-level inductive bias to disentangle content and style representations, without
requiring paired data, content or style labels, or domain-specific assumptions.

• Out-of-distribution generalization: As a result of successful content-style disentanglement,
V3 shows better out-of-distribution generalization capabilities compared to supervised
methods in few-shot settings, that is, recognizing content when presented with only a few
examples of unseen styles.

• Emergence of interpretable symbols: Given the availability of semantic segmentations,
V3 can foster the development of interpretable content symbols that closely align with
human knowledge.

2
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2 RELATED WORK

The content-style disentanglement as well as the related style transfer problem has been well explored
in computer vision, especially in the context of image-to-image translation. Early works mostly
require paired data of the same content with different styles (Isola et al., 2017; Sangkloy et al., 2017),
until the introduction of domain transfer networks that can learn style transfer functions without
paired data (Zhu et al., 2017; Liu et al., 2017; Taigman et al., 2016; Bousmalis et al., 2017; Park et al.,
2020; Choi et al., 2018; 2020; Karras et al., 2019; Xie et al., 2022a;b). Although these methods are
unsupervised in the sense that they do not require paired data, they still require concrete labels of
styles to identify source and target domains, and there are no fully interpretable representations of
either content or style.

A similar trajectory of research has also been followed in other domains including speech Qian et al.
(2019); Kameoka et al. (2018); Kaneko et al. (2019); Wu et al. (2023) and music Lu et al. (2019);
Bonnici et al. (2022); Luo et al. (2022); Lin et al. (2023); Zhang et al. (2024); Lin et al. (2021). To
mitigate the requirement for supervision, some methods utilize domain-specific knowledge and have
achieved better disentanglement results, including X-vectors of speakers Qian et al. (2019; 2020a),
the close relation between fundamental frequency and content in audio Qian et al. (2020a;b), or
pre-defined style or content representations Yang et al. (2019); Wang et al. (2020; 2022).

Pure unsupervised learning for content and style disentanglement has not been well explored. Notable
attempts include mutual information-based methods such as InfoGAN and mutual information neural
estimation (MINE) (Chen et al., 2016; Belghazi et al., 2018; Poole et al., 2019; Tjandra et al., 2020a;
Zhang and Dixon, 2023), and low-dimensional representation learning with physical symmetry (Liu
et al., 2023). But these methods often suffer from the training stability issue or have to follow a
low-dimensionality setup. Disentangled Sequential Autoencoder (DSAE) and its variants leverage
the nature of content and style to learn their representations at different scales, but their applications
are limited to purely sequential data with a static style (Hsu et al., 2017; Yingzhen and Mandt, 2018;
Bai et al., 2021; Luo et al., 2022; 2024).

A technique often associated with learned content is vector quantization (VQ) (Van Den Oord et al.,
2017). Recent efforts have built language models on top of VQ codes for long-term generation,
indicating the association between VQ codebook and the underlying information content (Yan et al.,
2021; Tan et al., 2021; Copet et al., 2024; Garcia et al., 2023; Tjandra et al., 2020a;b; Vali and
Bäckström, 2023). A noticeable characteristic of these studies is the use of large codebooks, which
limits the interpretability of representations. We borrow the idea of a small codebook size from
categorical representations (Chen et al., 2016; Ji et al., 2019), targeting a more concise and unified
content code across different styles, while keeping the high-dimensional nature of VQ representations.

3 METHODOLOGY

Considering a dataset consisting of N data samples, where each sample contains L fragments, we
aim to learn each fragment’s content and style representation with the inductive bias illustrated in
Figure 1. Intuitively, the fragments within each data sample have a relatively frequently-changing
content and a relatively stable style. For different data samples, the style exhibits significant variations
and their content more or less keeps a consistent vocabulary. In the following, we first introduce
the autoencoder architecture V3 is built upon, then the variability statistics to quantify the changing
patterns of content and style, and the proposed variance-versus-invariance constraints.

3.1 MODEL ARCHITECTURE

The model architecture of V3 is illustrated in Figure 2. Let X = {xij}N×L be the dataset, where
xij corresponds to the j-th fragment of the i-th sample. We use an autoencoder architecture to learn
the representations of xij . The encoder encodes the input data xij to the latent space, which is split
into to zc

ij and zs
ij . We use vector quantization as the dictionary learning method for content. Every

content representation zc
ij is quantized to the nearest atom in a codebook of size K as z̃c

ij . The
decoder integrates z̃c

ij and zs
ij and reconstructs the fragment x̂ij . The overall loss function is the

weighted sum of three terms:
L = Lrec + αLvq + βLV3. (1)

3
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VQ

Codebook

DecoderEncoder

Figure 2: The model architecture of V3. Left: The autoencoder has two branches for content and
style respectively, where the content branch has a VQ layer at the encoder output. Right: the V3
constraints, where double-dashed arrows represent measuring the variability by νk(·), and solid
arrows represent taking the average.

Here, Lrec is the reconstruction loss of X and Lvq is the VQ commit loss (Van Den Oord et al., 2017):

Lrec =
1

N × L

N∑
i=1

L∑
j=1

∥xij − x̂ij∥2, (2)

Lvq =
1

N × L

N∑
i=1

L∑
j=1

∥zc
ij − sg(z̃c

ij)∥2, (3)

where sg(·) is the stop gradient operation of the straight-through optimization. The final term LV3

is the proposed regularization method to ensure unsupervised content-style disentanglement, which
we introduce in the rest part of this section. (For more details of the model architecture and data
representations, we refer the readers to Appendix B.)

3.2 VARIABILITY STATISTICS

We define four statistics to measure the degree of variability in accordance with the four edges of
Figure 1. These statistics are based on a backbone variability measurement νk(·), where k represents
the dimension along which variability is computed. In this paper, we define νk(·) as the mean pairwise
distance (MPD). Formally, for a vector z of length D,

νDi=1(zi) := MPDD
i=1(zi) =

1

D(D − 1)

D∑
i=1

D∑
j=1,j ̸=i

∥zi − zj∥2. (4)

The motivation for using MPD is that it is more sensitive to multi-peak distributions than standard
deviation, which is preferred when learning diverse content symbols in a sample. We compare
different choices of νk(·) in Appendix D.

Content variability within a sample (Vc
f ). We first compute the variability of content along the

fragment axis and take the average along the sample axis. The value is the average of content codes
before and after vector quantization:

Vc
f =

1

2N

N∑
i=1

νLj=1(z
c
ij) +

1

2N

N∑
i=1

νLj=1(z̃
c
ij). (5)
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Content variability across samples (Vc
s ). Theoretically, we aim to measure the consistency of

codebook usage distribution along the sample axis, which is not differentiable. In practice, we
compute the center of the content code along the fragment axis and measure the variability of the
centers along the sample axis. It serves as a proxy of codebook utilization. Also, we consider both
content codes before and after vector quantization:

Vc
s =

1

2
νNi=1

( 1
L

L∑
j=1

zc
ij

)
+

1

2
νNi=1

( 1
L

L∑
j=1

z̃c
ij

)
. (6)

Style variability within a sample (Vs
f ). We compute the variability of style representations among

fragments and take its mean across all samples:

Vs
f =

1

N

N∑
i=1

νLj=1(z
s
ij). (7)

Style variability across samples (Vs
s ). We compute the average style representation along the

fragment axis and measure its variability along the sample axis:

Vs
s = νNi=1

( 1
L

L∑
j=1

zs
ij

)
. (8)

3.3 VARIANCE-VERSUS-INVARIANCE (V3) CONSTRAINTS

With the variability statistics, we can formalize the general relationship between content and style
along the sample or fragment axis:

• Content should be more variable within samples than across samples, i.e., Vc
f ≫ Vc

s .

• Style should be more variable across samples than within samples, i.e., Vs
s ≫ V f

s .

• Within a sample, content should be more variable than style, i.e, Vc
f ≫ Vs

f .

• Across samples, style should be more variable than content, i.e., Vs
s ≫ Vc

s .

We quantify the above contrasts as regularization terms, using the hinge function to cut off gradient
back-propagation when the ratio between two variability statistics reaches a certain threshold r > 1,
which stands for relativity (Bardes et al., 2022):

Lcontent = max(0, 1− Vc
f

r · Vc
s

), (Vc
f ≫ Vc

s ) (9)

Lstyle = max(0, 1− Vs
s

r · Vs
f

), (Vs
s ≫ Vs

f ) (10)

Lfragment = max(0, 1− Vc
f

r · Vs
f

), (Vc
f ≫ Vs

f ) (11)

Lsample = max(0, 1− Vs
s

r · Vc
s

). (Vs
s ≫ Vc

s ) (12)

We obtain the V3 regularization term (used in Equation 1) by summing up the four terms:

LV3 = Lcontent + Lstyle + Lfragment + Lsample. (13)

4 EXPERIMENTS

We evaluate V3 on both synthetic and real data to evaluate its effectiveness and generalizability
in different domains and scenarios, covering audio, image and video data. The highlight of this
section is that V3 effectively learns disentangled representations of content and style, performs well

5
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Table 1: Evaluation of digit and color disentanglement on PhoneNums using latent retrieval. Values
are reported in percentage.

Method K

Content Style

PR-AUC Best F1 PR-AUC Best F1

zc ↑ zs ↓ zc ↑ zs ↓ zc ↓ zs ↑ zc ↓ zs ↑

V3
10 83.2 12.8 84.1 18.5 14.9 95.4 22.6 91.0
20 93.0 11.6 92.9 18.2 11.9 93.9 22.7 89.9
40 86.3 10.9 83.4 18.0 15.5 95.3 22.9 93.0

MINE-based
10 33.8 21.6 36.0 30.8 14.0 35.5 22.7 38.6
20 41.9 25.0 49.5 25.4 22.2 37.5 33.2 39.0
40 46.8 23.8 49.8 28.0 26.6 37.7 27.6 48.8

Cycle loss
10 55.1 25.4 64.3 27.8 17.0 33.1 22.6 37.4
20 52.0 23.6 58.5 29.2 18.2 35.9 23.4 38.8
40 53.8 20.7 62.8 22.4 19.3 31.6 24.5 35.8

β-VAE - 24.9 27.0 25.6 30.5

EC2-VAE (c) - 95.2 11.5 95.1 18.0 16.8 57.7 22.6 57.2
EC2-VAE (c & s) - 95.2 13.6 95.1 19.6 25.2 96.2 31.0 91.0

on out-of-distribution generalization, and the discrete content representations manifest symbolic-
level interpretability that aligns well with human knowledge. We also provide additional results in
Appendix C, and the ablation study in Appendix D.

We compare V3 with three unsupervised baselines: 1) an unsupervised content-style disentanglement
based on MINE (Tjandra et al., 2020a), and 2) a 2-branch autoencoder similar to our architecture
choice, but trained with the cycle consistency loss after decoding and encoding shuffled combinations
of z̃c and zs (Zhu et al., 2017). 3) a vanilla β-VAE (Higgins et al., 2017). Additionally, we compare
with two methods with label supervision: 1) a weakly-supervised method for disentanglement named
EC2-VAE, in which the model is trained to predict the correct content labels from zc

ij as a replacement
of the VQ layer, and the decoder is trained to reconstruct inputs from zs

ij and ground truth content
labels (Yang et al., 2019; Wang et al., 2020), and 2) a fully supervised variant of EC2-VAE provided
with both content and style labels, in which the model learns to predict both content and style from
their latent representations. We denote them as EC2-VAE (c) and EC2-VAE (c & s) respectively. All
reported results are the average of three best-performing checkpoints on validation sets. We provide
further details of model architectures in Appendix B.

4.1 DATASETS

Written Phone Numbers Dataset (PhoneNums): We synthesize an image dataset of written digit
strings on light backgrounds using 8 different ink colors, mimicking a scenario of handwritten phone
numbers. The order of digits is random. All images are diversified with noises, blur, and foreground
and background color jitters. Models should learn digits and colors as content and style.

Monophonic Instrument Notes Dataset (InsNotes): We synthesize a dataset consisting of 16kHz
monophonic music audio of 12 different instruments playing 12 different pitches in an octave. Every
pitch is played for one second with a random velocity and amplitude envelope. The audio files are
then normalized and processed to magnitude spectrograms. Models should learn pitches and timbres
as content and style, respectively.

Street View House Numbers (SVHN) (Netzer et al., 2011): We select all images with more than
one digit from the SVHN dataset. We crop the images to the bounding boxes of the digits and resize
them to 32×48. Models should learn digits as content, their fonts, texture and colors as style. Note
that the styles can be seen as from a continuous space, and the fonts in SVHN are very diverse.

Sprites with Actions Dataset (Sprites) (ope; Yingzhen and Mandt, 2018): The Sprites dataset
contains animated cartoon characters with random appearances. We use a modified version of the
dataset taking video sequences of characters performing 9 different actions in random order. Models
should learn the actions as content and appearances as style. Note that the styles can be seen as from
a continuous space.

6
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Table 2: Evaluation of pitch and timbre disentanglement on InsNotes using latent retrieval. Values
are reported in percentage.

Method K

Content Style

PR-AUC Best F1 PR-AUC Best F1

zc ↑ zs ↓ zc ↑ zs ↓ zc ↓ zs ↑ zc ↓ zs ↑

V3
12 89.9 8.9 90.1 15.1 9.3 87.5 15.0 88.0
24 76.2 8.7 80.0 14.2 12.8 68.9 20.3 70.0
48 72.2 8.4 74.4 14.2 12.3 72.2 22.0 71.5

MINE-based
12 56.4 7.61 62.0 14.2 10.3 61.4 16.9 63.7
24 50.5 8.5 59.1 14.9 14.7 53.4 19.5 51.4
48 44.6 10.2 54.0 16.5 13.8 52.1 18.3 49.7

Cycle loss
12 49.7 8.7 57.9 15.2 10.7 12.7 18.2 19.0
24 47.0 8.7 54.5 15.2 14.2 18.9 19.4 23.1
48 42.4 8.0 49.4 14.5 16.2 20.0 22.4 24.4

β-VAE - 18.1 20.8 12.2 19.0

EC2-VAE (c) - 83.2 8.0 86.2 14.2 10.7 60.0 16.9 62.8
EC2-VAE (c & s) - 90.4 7.9 90.4 14.2 11.1 90.5 18.0 90.4

Librispeech Clean 100 Hours (Libri100) (Panayotov et al., 2015): Librispeech is a large-scale
multi-speaker corpus of read English speech in various accents. We use the “clean” pool of the
Librispeech dataset, where we select the 100-hour subset for training. We align the audio to 39
phonemes (24 consonants and 15 vowels) using ground truth transcriptions with the Montreal Forced
Aligner (McAuliffe et al., 2017), then extract 80-dimensional log-mel spectrograms and resize them
to a length of 64 frames. Models should learn phonemes as content and speakers’ voice as style. The
styles are considered as from a continuous space as the speakers’ voices are very diverse.

4.2 RESULTS OF CONTENT-STYLE DISENTANGLEMENT

On PhoneNums and InsNotes where concrete style labels are available, we evaluate the models’
content-style disentanglement ability by conducting a retrieval experiment to examine the nearest
neighbors of every input zc and zs using ground truth content and style labels, evaluated by the
area under the precision-recall curve (PR-AUC) and the best F1 score. We experiment with different
codebook sizes K to allow different levels of vocabulary redundancy. The results are shown in
Table 1 and Table 2. We see that V3 outperforms unsupervised baselines on both datasets, and the
performance is consistent across different codebook sizes K. V3 also outperforms EC2-VAE (c)
in the style retrieval task, which indicates that V3 learns better-disentangled style representations
containing less content information. Visualizations of content and style latent representations learned
by V3 also show clearer grouping compared to baselines, for which we refer readers to Appendix C.1.

On SVHN and Sprites where there are no style labels, we evaluate the models’ disentanglement
ability by linear probing on the learned representations to predict content labels. We also compare
with a linear classifier on raw input features. The classifier layer is trained for one epoch before
evaluated on the test set. On both datasets we allow a 100% content vocabulary redundancy, resulting
in K = 20 for SVHN and K = 18 for Sprites. The resulting accuracies are shown in Table 3 and

Table 3: Linear probing accuracies (in %) for
content (digit) classification on SVHN.

Method K zc ↑ zs ↓
V3 20 40.6 18.5
MINE-based 20 36.0 20.8
Cycle loss 20 16.8 21.2
β-VAE - 21.8
Raw input - 21.4

EC2-VAE (c) - 97.0 21.2

Table 4: Linear probing accuracies (in %) for
content (action) classification on Sprites.

Method K zc ↑ zs ↓
V3 18 88.2 20.2
MINE-based 18 79.1 22.2
Cycle loss 18 86.4 39.7
β-VAE - 33.2
Raw input - 99.0

EC2-VAE (c) - 99.8 15.7

7
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Table 5: Linear probing accuracies (in %) for
content (phoneme) classification on Libri100.

Method K zc ↑ zs ↓
V3 80 52.1 40.4
MINE-based 80 28.6 51.6
Cycle loss 80 16.1 50.5
β-VAE - 11.0
Raw input - 31.8

Table 6: Speaker verification equal error rates
(in %) with average embedding on Libri100.

Method K zc ↑ zs ↓
V3 80 49.5 42.5
MINE-based 80 49.9 45.2
Cycle loss 80 49.8 45.9
β-VAE - 50.0
Raw input - 47.1

Table 4. V3 outperforms unsupervised baselines on both datasets, only trailing behind the weakly
supervised EC2-VAE (c) as the latter’s zc space is optimized for discriminative task.

On Libri100, we evaluate the disentanglement ability by linear probing on the learned representations
to predict content labels, as well as conducting a vanilla speaker verification experiment using the
average embeddings of fragments in every utterance. We also allow a content vocabulary redundancy
of about 100% (K = 80). The results are shown in Table 5 and Table 6. The content and style
embeddings learned by V3 shows better performance on their respective tasks and lower performance
on the other task, indicating that V3 learns better disentangled representations.

4.3 CONTENT CLASSIFICATION ON OUT-OF-DISTRIBUTION STYLES

We further evaluate the generalization ability of V3 on PhoneNums and InsNotes by testing the
models’ content classification performance on a special test set with only unseen styles, provided with
few-shot examples. We focus on comparing V3 with the weakly supervised method EC2-VAE (c) and
a pure CNN classifier to evaluate the generalization ability introduced by latent disentanglement. In
the n-shot settings, models are presented with n samples of each content and new style combination.
All models are continuously trained on new samples until performance stops improving. For V3,
we choose the V3 versions with no codebook redundancy for comparison (K = 10 for PhoneNums,
K = 12 for InsNotes) as they show a one-to-one mapping from codebook entries to content labels
(see Section 4.4 and Appendix C.2 for details). We first align the learned codebook entries to ground
truth content labels, and obtain classification results by the encoded content representations zc. For
EC2-VAE, we try two different continuous training strategies: 1) using pseudo content labels from its
own predictions for self-boosting, as well as training the reconstruction loss, and 2) only optimize
the reconstruction loss. Additionally, we compare with EC2-VAE and the CNN classifier provided
with labels in continuous training. The results are shown in Table 7. Although V3 might fall behind
supervised methods in the 0-shot setting, it comes to the lead in few-shot settings on both datasets as
the number of extra samples increases. This indicates that V3 can learn by itself to make sense of
unseen styles with only a few examples, an ability that emerges from learning representations and
disentangled interpretable factors.

Table 7: Content classification accuracies (in %) on data with OOD styles.

Pretraining Continuous Training PhoneNums InsNotes

Method Supervision Supervision Self-boost 0-shot 1-shot 5-shot 10-shot 0-shot 1-shot 5-shot 10-shot

V3 No No No 57.8 91.3 97.1 99.0 90.5 97.6 97.8 99.2
EC2-VAE (c) Yes No No 84.2 92.1 92.2 92.7 87.1 87.2 89.4 91.2
EC2-VAE (c) Yes No Yes 84.2 91.8 92.1 92.4 87.1 94.6 95.0 95.1
CNN Classifier Yes No No 59.5 59.5 59.5 59.5 92.6 92.6 92.6 92.6
CNN Classifier Yes No Yes 59.5 80.2 82.2 82.7 92.6 87.6 85.9 85.3

EC2-VAE (c) Yes Yes No 84.2 94.6 98.8 99.2 87.1 97.7 98.9 99.8
CNN Classifier Yes Yes No 59.5 81.2 82.4 83.5 92.6 91.9 91.3 89.1

4.4 RESULTS OF SYMBOLIC CONTENT INTERPRETABILITY

We notice that interpretable symbols emerge in the learned codebook of V3, showing its ability of ab-
stracting concepts from information. To evaluate the interpretability of learned content representations
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Table 8: Quantitative results of codebook interpretability on datasets with discrete style labels. Values
are reported in percentage.

Method
PhoneNums InsNotes

K Acc. ↑ σ ↓ K Acc. ↑ σ ↓

V3
10 89.2 0.6 12 99.8 0.1
20 99.7 1.8 24 92.9 2.2
40 99.9 4.5 48 90.2 4.5

MINE-based
10 40.9 8.1 12 13.8 3.8
20 25.6 9.8 24 29.4 8.9
40 50.6 6.2 48 26.9 3.6

Cycle loss
10 71.0 3.7 12 27.5 11.4
20 89.6 4.3 24 28.5 11.9
40 99.9 4.1 48 18.2 6.2

Table 9: Quantitative results of codebook interpretability on datasets without discrete style labels.
Values are reported in percentage.

Method
SVHN Sprites Libri100

K Acc. ↑ K Acc. ↑ K Acc. ↑
V3 20 47.6 18 98.5 80 24.7
MINE-based 20 26.0 18 38.3 80 10.8
Cycle loss 20 20.1 18 82.0 80 10.5

quantitatively, we propose two metrics: the learned content codebook accuracy and standard deviation
among styles. We first align codebook entries to the ground truth content labels by their distributions
on content labels, and then calculate the accuracy of codebook entries’ distribution regarding their
aligned labels. A well learned interpretable codebook should have entries concentrated on content
labels they are aligned with, thus showing high accuracy. Also, as a good symbol is a symbol of
consensus, on datasets with discrete style labels, we also quantify different styles’ discrepancy of
codebook entries distribution on content labels using the standard deviation (σ) of confusion matrices
between codebook entries and content labels, as shown in Table 8. For datasets with no discrete style
labels, we report the accuracy of codebook entries in Table 9. Visualizations of confusion matrices
between the codebook and ground truth content labels can be found in Appendix C.2.

From Table 8 and Table 9, we observe that V3 shows good codebook interpretability by representing
content labels with consistent codebook entries, and the consistency is kept well among styles. Table 8
also shows that V3 shows good codebook interpretability with or without vocabulary redundancy,
indicating V3 does not rely on the knowledge of the number of content classes to learn interpretable
symbols.

Qualitatively, we perform content and style recombination by traversing all content codebook entries
and decoding them with a fixed style representation. If the learned codebook has good interpretability,
the decoding results of recombined content and style representations should show meaningful content
changes, and retain consistent styles. Here, we focus on comparing the recombination results of V3
and baselines on SVHN, where we first encode zs from example fragments, and then recombine it
with all K content codebook entries. More experiment results on PhoneNums and InsNotes can be
found in Appendix C.2 and our demo website.

From Figure 3, we observe that V3 generates images with clear content changes and consistent styles
when recombining content and style representations. Although images generated by V3 may not
cover all possible contents as many of them never appear in the training set in the given styles, the
content are almost all recognizable digits and V3 can even “imagine” reasonably what a digit would
look like in a new font and color. In contrast, the baselines generate images with either mixed content
and style information, or very subtle changes in content that are hard to interpret. This comparison
not only validates the interpretability of V3’s learned codebook resulted from successful content-style
disentanglement, but also demonstrates the potential of V3 in style transfer and content editing tasks.
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V3 MINE-based Cycle losssource

Figure 3: Comparison of generated images by recombining zs from given sources in SVHN and all
zc in the learned codebook.

5 LIMITATION

We have identified several limitations in our V3 method that necessitate further investigation. First,
while V3 achieves good disentanglement and symbolic interpretability, it is not flawless — samples of
different contents (say images of “8" and “9") may be projected into the same latent code. Inspired by
human learning, which effectively integrates both mode-1 and mode-2 cognitive processes, we aim to
enhance V3 by incorporating certain feedback or reinforcement. This adaptation could also facilitate
the application of V3 to more complex domains such as general image or video. Additionally, V3 is
currently optimized to disentangle content and style from data samples that include defined fragments.
Extending this capability to unsegmented data of large vocabularies, such as continuous audio,
represents a significant area for future development. Furthermore, V3 assumes that content elements
do not overlap, which does not hold in cases of polyphonic music or mixed audio. Addressing this
challenge will require a more sophisticated approach that considers the hierarchical nature of content.

6 CONCLUSION

In conclusion, we contributed an unsupervised content-style disentanglement method named V3. V3’s
inductive bias is domain-general, intuitive, and concise, solely based on the meta-level insight of the
statistical difference between content and style, i.e., their distinct variance-invariance patterns reflected
both within and across data samples. Experiment results showed that V3 not only outperforms the
baselines in terms of content-style disentanglement, but also demonstrates superior generalizability
on OOD styles compared to supervised methods, and achieves high interpretability of learned content
symbols. The effectiveness of V3 generalizes across different domains, including audio, image, and
video. We believe that V3 has the potential to be applied to emergent knowledge in general, and we
plan to extend our method to more complex tasks and domains in the future.
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APPENDICES

The appendix is structured into 5 main parts. Appendix A provides specifics about the datasets
involved in the paper. Appendix B presents implementation and training details of V3 and baseline
methods. Appendix C provides additional experiment results and especially visualizations for better
understanding. Appendix D presents an ablation study on the V3 model. Finally, we provide an
analysis on learning content and style in Appendix E.

A DATASET DETAILS

A.1 PHONENUMS

The written phone numbers dataset is designed to represent a clear content and style separation to
human. We use the Kristen ITC font for the style because its digits look similar to handwritten digits
and are easy to distinguish. We render the digits from 0 to 9 on a light background of RGB (10, 10,
10) using the foreground colors listed in Table 10. For more randomness, we first jitter the foreground

Table 10: List of instruments and their corresponding MIDI program numbers.

RGB Values # Color
(10, 10, 10) Black
(10, 10, 250) Blue
(10, 130, 10) Green
(250, 10, 10) Red

(10, 130, 130) Teal
(130, 10, 130) Purple
(250, 165, 10) Orange
(165, 50, 50) Brown

and background colors by a noise from -2 to 2 along every channel, then add a small Gaussian noise.
We then translate all digits vertically or horizontally by a random number of pixels between -2 and 2.
Lastly, we add a random Gaussian blur effect. Our dataset contains 100000 images in total, each of
which has 10 digits. The dataset is split into the train set, validation set, and test set with a ratio of
8:1:1. Some samples of the dataset can be viewed in Figure. 4

Figure 4: Example data in the written digit string dataset.

A.2 INSNOTES

In InsNotes, we collect monophonic music audio played by different instruments. This dataset is also
designed based on the understanding that this domain exhibits content and style concepts that are
clear to human - music pitches and instrument timbres. The dataset consists of monophonic music
audio rendered from 12 instruments playing 12 different pitches in an octave, which corresponds to
MIDI numbers from 60 to 71. All the instruments selected have little exponential decays, so their
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timbres can be well represented with short audio samples. We list the instruments involved as well as
the specific MIDI program selected in Table 11.

Table 11: List of instruments and their corresponding MIDI program numbers.

Program # Instrument
19 Pipe organ
21 Accordion
22 Harmonica
41 Viola
52 Choir aahs
56 Trumpet
59 Muted trumpet
64 Soprano sax
68 Oboe
71 Clarinet
72 Piccolo
75 Pan flute

For every instrument, we play every pitch for one second one by one with a random velocity between
80 and 120 until every pitch is played 10 times. We synthesize 100 such takes at 16kHz using a
soundfont library for each instrument and further diversify every note by adding a random amplitude
envelope to each note. The added amplitude envelope is either a linear curve or a sinusoidal curve,
starting and ending at a random amplitude factor between 0.8 and 1.2. The audio files are then
normalized and processed with short-time Fourier transform (STFT) with the FFT size of 1024 and
hop size of 512 to obtain the magnitude spectrograms, which results in a 512× 32 matrix for each
note. To avoid possible overlap between adjacent notes, we add a 0.056 second pause in between,
resulting in one transition frame in the spectrogram. Our dataset contains 1200 audio files in total,
each of which has 120 notes. The dataset is split into the train set, validation set, and test set with a
ratio of 8:1:1.

A.3 SVHN

The Street View House Numbers (SVHN) dataset is a real-world dataset that contains images of house
numbers collected from Google Street View, and digit-level bounding boxes (Netzer et al., 2011).
Examples of the dataset can be viewed in Figure 5. The dataset originally consists of 73257 digits for
training, 26032 digits for testing, and 531131 additional, somewhat less difficult samples, as the extra
partition. We split the extra partition into additional training, validation and testing sets with a ratio of
8:1:1. For the content-style disentanglement task, we select all images with at least two labeled digits,
and resize the bounding boxes to 32× 48 pixels. The dataset is preprocessed by normalizing the pixel
values to the range of [0, 1]. Compared to PhoneNums, although both being image datasets with
digits as content, SVHN is significantly more challenging for the following reasons: 1) The digits
in SVHN can be very blurry compared to that in PhoneNums; 2) The digits in SVHN come with
more flexible styles in a totally continuous space, involving different fonts, thicknesses, inclinations,
colors, and so on; 3) In every SVHN image, the style variation among digits can be more significant
than that in PhoneNums, as there can be environmental factors like shadows; 4) The bounding boxes
are not always tight, clean and complete, and the digits are not always centered in the image; 6) The
classes are very imbalanced. Almost all images come with an 0, 1 or 2 but very few of them have 8
or 9; 5) Most importantly, house numbers are generally very short strings. Among images with at
least two digits, 57.6% of them have exactly two digits, which means for most styles, there is not
a full coverage of all digits, and during training, V3 only has a highly incomplete view of the full
content vocabulary. We choose SVHN to demonstrate the robustness of V3 in learning content and
style disentanglement in a much more challenging setting.

A.4 SPRITES

The original Sprites dataset, collected from ope and adopted by Yingzhen and Mandt (2018), contains
animated cartoon characters in the pixel graphic style with random appearances and actions. The
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Figure 5: Example data in the original SVHN dataset. The digits in the images are bounded by the
red boxes.

original Sprites dataset contains animations of six different actions in four perspectives. We collect
the Sprites with Actions dataset used in this study by selecting 3 distinct actions in 3 perspectives,
resulting in 9 different actions in total, and rendering videos of characters performing actions from
these 9 categories randomly, using the critical frames from each action animation. The dataset
contains 2160 videos in total, each of which has 9 frames. The characters differ in their hair, body,
top and bottom, forming 2160 unique characters in total. We use 80% of the characters for training
and the rest for validation and testing. Examples of the dataset can be viewed in the right of Figure. 1.

A.5 LIBRI100

The Libri100 dataset is a subset of the LibriSpeech dataset (Panayotov et al., 2015), containing the
“train-clean-100”, “dev-clean”, and “test-clean” subsets. There are 331 different speakers in total,
in which 165 are female and 166 are male. There are no overlapping speakers between the train,
validation, and test divisions. Given audio files and ground truth transcriptions, we align the audio
with the 39 phonemes used in English using the Montreal Forced Aligner (McAuliffe et al., 2017).
After normalizing the cropped fragments, we extract the mel spectrograms with a window size of
16ms, hop size of 5ms, and 80 mel bands. The 39 phonemes are indexed as shown in Table 12.

Table 12: List of phonemes with their indices.

Index Phoneme Index Phoneme Index Phoneme
0 eh 13 ao 26 l
1 z 14 ey 27 k
2 s 15 hh 28 m
3 uw 16 y 29 ch
4 aw 17 f 30 ng
5 oy 18 r 31 t
6 dx 19 g 32 w
7 dh 20 v 33 ae
8 uh 21 ah 34 iy
9 aa 22 er 35 th
10 d 23 ow 36 ay
11 p 24 sh 37 ih
12 n 25 b 38 jh
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B IMPLEMENTATION DETAILS

B.1 MODEL ARCHITECTURE

On InsNotes, we instantiate V3 model using a ResNet18 encoder and a ResNet18T decoder with
bottlenecks (He et al., 2016). In the encoder, the number of channels in the first convolutional layer is
set to 64, and gradually increase to 512 in the last layer. The first half of the encoder uses a kernel
size of 7 and the second half uses a kernel size of 3. The decoder is symmetric to the encoder. The
latent dimension is set to 512. The total number of trainable parameters is 57M.

On PhoneNums and Sprites, we instantiate V3 model using a ResNet encoder and a ResNetT decoder
half deep as the pitch and timbre learning task. Similarly, the number of channels in the first
convolutional layer is set to 32, and gradually increase to 256 in the last layer. The first half of the
encoder uses a kernel size of 5 and the second half uses a kernel size of 3. The decoder is symmetric
to the encoder. The latent dimension is set to 512. The total number of trainable parameters is 17M.

On SVHN, we add one more ResNet layer in every ResBlock on top of the ResNet encoder used in
PhoneNums and Sprites. The number of channels in the first convolutional layer is set to 64, and
gradually increase to 512 in the last layer. The first half of the encoder uses a kernel size of 5 and the
second half uses a kernel size of 3. The decoder is symmetric to the encoder. The latent dimension is
set to 768. The total number of trainable parameters is 37M.

On Libri100, we use a similar architecture as InsNotes, but with a maximum number of channels of
256. We deepen the encoder with 2 more ResNet blocks in each layer. The total number of trainable
parameters is 24M.

We use the same neural network architecture as V3 for the MINE-based baseline and the cycle
loss-based baseline, except that the style branch of the MINE-based method has a variational latent
layer. For the MINE-based baseline, we use a 3-layer multi-layer perceptron with 512 hidden units to
estimate the mutual information. For the supervised baselines EC2-VAE (c), we replace the VQ layer
of the content branch with a linear layer projecting to the dimension of prediction logits. Besides,
the encoder output of the style branch are mean and log variance vectors instead of representation
vectors, which means the style branch is a variational autoencoder (VAE) (Kingma and Welling,
2013). For the fully supervised baseline EC2-VAE (c/s), we project the reparameterized style vectors
to the dimension of prediction logits.

B.2 TRAINING DETAILS

For all models, we use the Adam optimizer with a learning rate of 0.001 (Kingma and Ba, 2014). The
fragment sizes on PhoneNums, InsNotes, SVHN and Sprites are set to 10, 12, 2 and 6, respectively.
The relativity r is set to 15, 15, 5, 10 and 5 on PhoneNums, InsNotes, SVHN, Sprites and Libri100,
respectively (Generally, we recommend setting a higher r, such as 15, on datasets with clean content
and style separation, and setting a lower r, such as 5, on more complex datasets where reconstruction
might need to be emphasized more.). The V3 loss weight β is set to 1 on InsNotes task, and 0.1
in other datasets. For all VQ-based models, we update the codebooks using exponential moving
average with a decay rate of 0.95 (Van Den Oord et al., 2017). The commitment loss weight α is
set to 0.01. On PhoneNums and InsNotes, we set a threshold of n

10K for dead code relaunching to
improve codebook utilization, where n is total the number of fragments in a batch. For MINE-based
baseline models, we update the MINE network once every global iteration using the Adam optimizer
and adaptive gradient scaling Tjandra et al. (2020a); Belghazi et al. (2018). The learning rate of the
MINE network is set to 0.0002.

We train all models using an exponential decay learning rate scheduler, and take the model with the
best validation loss as the final model. All models are trained on a single Nvidia RTX 4090 GPU.
The V3 loss should decay to zero within a few epochs after training starts. All supervised learning
methods converge within 2 hours, while the converging time of all unsupervised learning methods
differs from 5 hours to 24 hours.
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V3 MINE-based Cycle loss

Content

Style

Weakly supervised Fully supervisedEC2-VAE (c) EC2-VAE (c & s)

Figure 6: t-SNE visualization of the learned digit (content) and color (style) representations on
PhoneNums when there is no codebook redundancy (K = 10).

K=20 K=20 K=20

Content

Style

K=40 K=40

V3 Cycle loss 

K=40

MINE-based

Figure 7: t-SNE visualization of the learned digit (content) and color (style) representations on
PhoneNums when the codebooks are redundant.

V3 MINE-based Cycle loss

Content

Style

EC2-VAE (c) EC2-VAE (c & s)

Figure 8: t-SNE visualization of the learned pitch (content) and timbre (style) representations on
InsNotes when there is no codebook redundancy (K = 12).

C MORE EXPERIMENT RESULTS

In this part, we provide extra experiment results in addition to the results in Section 4. We will focus
more on the visualizations of the learned content and style representations, and the alignment between
the learned codebooks and the ground truth content labels.
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Content

Style

K=24 K=24 K=24K=48 K=48

V3 Cycle loss 

K=48

MINE-based

Figure 9: t-SNE visualization of the learned pitch (content) and timbre (style) representations on
InsNotes when the codebooks are redundant.

C.1 RESULTS OF CONTENT-STYLE DISENTANGLEMENT

This section provides 3-dimensional t-SNE visualization results of the learning content and style
representations in support of Section 4.2. We show that on different datasets and under different K
settings, content and style representations learned by V3 show the clearest groupings compared to
baselines, and the groupings match well with ground truth content and style labels.

On PhoneNums, we first visualize with t-SNE the learned content and style representations when
there is no codebook redundancy (K = 10), and color them by the ground truth content or style
labels. We set K = 12 for learning digits and colors. The results are shown in Figure 6. We can see
that V3 learns clearer content and style representations in groups compared to unsupervised baselines.
When the codebooks contain redundancy, the results are shown in Figure 7. We can see that V3 still
achieves the clearest content and style grouping.

On InsNotes, the visualizations of zc and zs when K = 12 are shown in Figure 8, and the visualiza-
tions when codebook is redundant are shown in Figure 9. Both results also show V3 groups content
and style better than baselines.

On SVHN, the visualizations of zc are shown in Figure 10. Since SVHN does not have discrete style
labels, we only show the grouping of content representations. V3 is trained at K = 20. Although not
as good as the results shown in Figure 6 on PhoneNums, V3 still achieves the best grouping of digits
with learned content representations among unsupervised methods.

Content

V3 Cycle loss MINE-based

Figure 10: t-SNE visualization of the learned content (digit) representations on SVHN.

On Sprites, there is no discrete style label either. Figure 11 shows the t-SNE visualizations of zc, and
V3 is trained at K = 18. Both V3 and Cycle loss achieve good content grouping, but it is observable
that some clusters of the cycle loss zc have broken into several subclusters, indicating that there is
still content and style entanglement. This is also supported by Section 4.2.
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Content

V3 Cycle loss MINE-based

Figure 11: t-SNE visualization of the learned content (action) representations on Sprites.

C.2 RESULTS OF SYMBOLIC CONTENT INTERPRETABILITY

This section provides intuitive visualizations about how the learned content codebook entries align
with ground truth content labels in Section 4.4. We first collect frequencies of every content encoded
to every codebook entri, and then permute the codebook to make the confusion matrix look like an
eye for a clear alignment. Then we plot heatmaps of confusion matrices between codebook entries
(vertical axes) and content labels (horizontal axes).

On PhoneNums and InsNotes, we plot the confusion matrices under different K settings in Figure 12
and Figure 13, respectively. The results show V3 achieves the clearest symbol interpretability in all
K settings. Results on SVHN and Sprites are shown in Figure 14 and Figure 15. On Sprites, both V3
and cycle loss learns codebooks with good interpretability, but V3 still has fewer misclassifications.
Although V3 does not learn a clear on-to-one codebook entry to content label mapping on SVHN, it
still shows a clearer alignment relationship than other methods. An interesting fact is the order of
learning we observe during training — V3 usually first distinguish 0 and 1, then start to understand
2 is different, then 3. It often confuses between 5 and 6 and between 1 and 7, and it usually fails
to learn 8 and 9. This human-like learning trajectory might be subject to both the ratio of content
classes and their pairwise similarities in shape. The similar phenomenon is observed in the confusion
matrices on Libri100 as shown in Figure 16. V3 confuses between “z” and “s”, and between “n” and
“ng”, which are phonetically similar. However, V3 distinguishes between consonants and vowels well.

K=20 K=20 K=20K=40 K=40

V3 Cycle loss 

K=40

MINE-based

0.0

0.2

0.4

0.6

0.8

1.0K=10 K=10 K=10

Figure 12: Confusion matrices of learned codebooks on PhoneNums. The horizontal axes show digit
labels from “0” to “9”, and the vertical axes show codebook atoms sorted by ground truth digit labels.
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Figure 13: Confusion matrices of learned codebooks on InsNotes. The horizontal axes show pitch
labels from “C” to “B”, and the vertical axes show codebook atoms sorted by ground truth pitch
labels.

V3 Cycle loss MINE-based
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Figure 14: Confusion matrices of learned codebooks on SVHN. The horizontal axes show digit labels
from “0” to “9”, and the vertical axes show codebook atoms sorted by ground truth digit labels.

To further investigate the disentanglement ability of models, we perform latent representation re-
combination using the trained models. Figure 3 has already demonstrated the results on SVHN of
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MINE-based Cycle lossV3 

Figure 15: Confusion matrices of learned codebooks on InsNotes. The horizontal axes are different
action labels, and the vertical axes show codebook atoms sorted by ground truth action labels.

MINE-based Cycle lossV3 

Figure 16: Confusion matrices of learned codebooks on Libri100. The horizontal axes are different
phoneme labels, and the vertical axes show codebook atoms sorted by ground truth phoneme labels.

decoding a fixed zs with every zc. Here we show the results on PhoneNums, where instead of using
a fixed zs encoded from an example, we compute the mean zs of all fragments from a class as its
style representations for decoding. We select the V3 model with K = 10, align codebook entries
with digit labels, and enumerate all combinations of zc and zs. We present the results in Figure 17.
Compared to baselines, V3 can fairly well reconstruct the involved 8 colors and the digits from 0 to 9,
even though it is not informed with any discrete labels during training. In contrast, the MINE-based
baseline and the cycle loss baseline fail to distinguish the digits, although the color reconstruction is
not bad. They generate blurry digits that look like “5”, “8” or “6”, which are the most conservative
choices. As for results on the music dataset InsNotes, we refer you to our web demo page for an
interactive experience.
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Figure 17: Comparison of generated digits by recombining content and style latents using unsuper-
vised methods trained on PhoneNums.

D ABLATION STUDY

For ablation, we experiment with another type of variability measurement νk(·), which is standard
deviation (SD). Besides, we train four variants of V3, each without one of the four regularization
terms defined in Equation 9-12. We conduct experiments on PhoneNums and InsNotes, two datasets
with style labels available, and evaluate the content and style disentanglement performances. The
results are reported in Table 13 and Table 14. It can be seen that νk = SD does not work as well as
νk = MPD, which can be explained by its weakness in constraining multi-peak content distributions
within samples. It is also worth noting that V3 sometimes performs fairly well even when discarding
one of its terms. In these cases, we observe a decrease in the discarded loss even if we do not
explicitly optimize for it. We suspect this is due to the robustness of V3 constraints as reflected in the
symmetric relationships among the four losses—we can enforce three relations, and the fourth one
may fall into the right place automatically. However, in practice, it is difficult to tell the one term to
free beforehand as it is also related to detailed content and style variations in specific domains. As a
result, the V3 constraints as a whole shows robust performance across domains.

Table 13: Ablation study of V3 settings on content-style disentanglement performance on PhoneNums.
Values are reported in percentage.

Method K

Content Style

PR-AUC Best F1 PR-AUC Best F1

zc ↑ zs ↓ zc ↑ zs ↓ zc ↓ zs ↑ zc ↓ zs ↑
V3 10 83.2 12.8 84.1 18.5 14.9 95.4 22.6 91.0
V3 (νk = SD) 10 42.7 17.9 53.5 21.5 18.2 49.9 24.7 51.6
V3 (w/o Lcontent) 10 43.8 13.8 51.2 18.9 18.1 90.8 22.4 87.5
V3 (w/o Lstyle) 10 64.6 13.2 70.3 18.7 17.7 87.8 24.5 83.9
V3 (w/o Lfragment) 10 96.3 11.7 98.9 17.9 15.9 90.1 23.2 88.5
V3 (w/o Lsample) 10 47.0 12.7 57.8 18.9 15.4 88.4 24.7 85.3

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 14: Ablation study of V3 settings on content-style disentanglement performance on InsNotes.
Values are reported in percentage.

Method K

Content Style

PR-AUC Best F1 PR-AUC Best F1

zc ↑ vzs ↓ zc ↑ zs ↓ zc ↓ zs ↑ zc ↓ zs ↑
V3 12 89.9 8.9 90.1 15.1 9.3 87.5 15.0 88.0
V3 (νk = SD) 12 12.9 9.9 17.5 15.0 16.3 24.7 24.1 36.5
V3 (w/o Lcontent) 12 19.2 9.3 28.0 14.3 13.6 66.2 19.0 68.4
V3 (w/o Lstyle) 12 72.1 8.9 14.2 84.0 13.7 78.7 23.6 79.0
V3 (w/o Lfragment) 12 26.0 12.1 35.7 17.6 13.5 53.7 20.1 56.7
V3 (w/o Lsample) 12 86.4 7.9 89.3 14.2 11.3 50.7 19.4 56.2

E DISCUSSION

Connection between Content-Style Disentanglement and OOD Generalizability: Disentangle-
ment can intuitively boost OOD generalization for several key reasons. By separating different factors,
like content and style, the model can focus on the important features without getting distracted by
irrelevant variations. This separation makes the model more robust to changes. For instance, if the
style changes in an OOD sample while the content remains similar, the model might still recognize
and process the content effectively. Additionally, disentangled representations often lead to more
generalized features, enabling the model to identify important patterns that are invariant across differ-
ent distributions. This property facilitates easier transfer learning because models with disentangled
representations can be more readily fine-tuned for new tasks, as supported by our experiments in
Section 4.3.

Connection between Content-Style Disentanglement and Symbolic Interpretability: In Sec-
tion 4.2 and Section 4.4, we separately examined content-style disentanglement and symbolic-
level interpretability. This discussion now seeks to understand how these elements are intercon-
nected—specifically, whether V3’s disentangled representation space inherently improves symbolic-
level interpretability.

The transition from purely observational data to symbolic representation remains an open question in
cognitive science and artificial intelligence. We suggest that robust content-style disentanglement
is closely linked to better symbolic interpretability, as evidenced in tables 1 to 4, 8 and 9. These
figures show that both V3 and supervised methods, which achieve better disentanglement, also
provide superior interpretability compared to methods less effective in disentanglement (supervised
classification — while it is not — can here be viewed as another form of interpretable VQ symbols).
Additionally, as illustrated in Figures 3 and 5 , well-disentangled style spaces (meaning they contain
less content information) see well-formed clusters, which can facilitate straightforward postprocessing
for discrete and symbolic labeling.

V3 and related works: We explicate the difference and connection between V3 and several other
most relevant works as below.

• InfoGAN (Chen et al., 2016): InfoGAN is similar to our approach in that both models learn
interpretable representations and decouple these representations from the data. However,
there are several key differences: 1) Each representation in InfoGAN is of very low di-
mensionality; 3) The specific aspects learned are less controllable, while V3 focuses on
learning the distinctions of content and style; 3) GAN is known to be less unstable in training
than autoencoders and VAEs, and it is a framework more for generative modeling than
representation learning.

• DSAE and variants (Hsu et al., 2017; Yingzhen and Mandt, 2018; Bai et al., 2021; Luo et al.,
2022; 2024): DSAE shares similar insights with V3 regarding the intrinsic relationship
between content and style, but it primarily focuses on the invariability of style and the
variability of content within a sample, giving less attention to the invariability of content
vocabulary and the variability of style across a broader scope. Other distinctions include:
1) DSAE focuses on learning a fixed style representation for a whole sample, which may
struggle with samples where the style varies, such as singing performances that feature
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both chest voise and falsetto, or instrument performances with multiple articulations; 2)
The DSAE family requires access to the entire sequence when encoding style; 3) Most
importantly, the content learned in DSAE is context-dependent, while V3 emphasizes on
learning more universal content representations.

• VICReg (Bardes et al., 2022): V3 has a similar form of loss function as VICReg, and
both models leverage variance and invariance among entities to help training representation
learning frameworks. In fact, we draw on their mathematical representations and the idea
of using regularization to prevent latent representation from collapsing, a concept also
advocated by LeCun (2022).
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