Beyond the walled garden.

A visual essay in five chapters.

Jo Wood
Preface

The Walled Garden
Data visualization was tended in a walled garden.

It was a familiar and comforting place. Grass surrounded by a border planted with flowers, a shady corner, a formal ornamental patch. A short path led to a nursery where new plants were grown before being planted in the garden.

The garden was surrounded by trees. They too were comforting. Those who worked in the garden felt protected. They knew their place. They *belonged*.
Yet there was land beyond the trees.
A land both familiar and unfamiliar.

It wasn’t cultivated like the garden. Plants grew wild. Hills were adorned with cascades of rocks. Lakes of unknown depth and creatures unimagined. The land was unruly and beautiful.
Beyond the water were new places. Mountains yet to be explored.

Landscapes without walls.
Chapter I

Atomisation of design
It is in the nature of scientific endeavour to atomise our understanding. We strive to control, to isolate and to abstract. Bertin (1983) sought to apply this approach to design. He argued that if we can disaggregate design into atomic retinal variables and we are able to associate distinct objects with those variables, we can reassemble them in whatever combination suits our task.

Visual design becomes an activity of decomposition, combination and reaggregation.
The appeal of this approach is understandable. We abstract and simplify the world. We develop precise and controlled visual languages with which to express our abstractions.

And we hope designer and reader alike share a common understanding of that graphical language.
But it also confines us to a walled garden of definable objects and abstract geometric shapes sequentially modified in distinct data-driven channels.

How can we express more subtle and intertwined character in our visual languages?
Instead of ‘hue’ or ‘orientation’ or ‘size’ why shouldn’t data visualization designers be able to express data by or ‘sadness’ or ‘vertigo’ or ‘naivety’? Instead of depicting ‘locatable objects’ (Mackinlay, 1986), why can’t we shape our designs more holistically?

In short, we need more expressive pathways along which we explore visual design space.
Chapter II

Expression and Effect
Jock Mackinlay (1986) characterised visualization as a process of visual encoding and decoding via the notions of expressiveness and effectiveness. A transformation of information into and out of the visual realm via a graphical language.
Visualization is effective when we are able to decode a graphic language and infer the communicative intent of the designer. It is the principle that governed much of the foundational empirical work of Cleveland and McGill (1984).

That process is most reliable when that language is well understood by all parties. Consequently, in data visualization we tend toward simple, less ambiguous graphical convention.

Geometric primitives, Cartesian spaces, fixed colour palettes.
Yet in the visual arts we are more expressive using a much richer more diverse visual vocabulary to encode artistic intent.

Emotion, nuance, introspection, ambiguity, contradiction.

That expressiveness arrives bearing a cost. With a more sophisticated language, we demand more of the reader in their ability to decode the subtleties of visual languages.
The creator of a visual artifact experiences a tension between simplicity to support effectiveness and sophistication to support expressiveness.

That design tension places their work on a continuum.

A continuum that new technologies may be opening up to many more of us in new and surprising ways.
Chapter III

A new technology
The last two years have seen step change in the sophistication with which textual language that describes images may be modelled. Contrastive Language-Image Pretraining (CLIP) provides new ways to access vast repositories of graphical artifacts with natural language.

Machine effectiveness.

Large image collections can be aggregated and recombined via a diffusion process in a combinatorial explosion of possibility.

Machine expressiveness.

Together the CLIP-diffusion process (Kim et al 2021) allows us to guide image creation with both natural and graphical languages.

“A marble Greek statue in the middle of a Doric garden”
“An oil painting of a scenic view of the English Lake District…”

“…in spring with fields of daffodils.”

“…on a bright summer day.”

“…in rich autumn colours.”

“…in the depths of a snowy winter.”
We may exercise expressiveness not only with natural language but by seeding image generation with our own graphics.

This may be the image as a whole.
Or just part of it (inpainting and outpainting).
Chapter IV

But is it data visualization?
We might argue that these new text to image technologies are simply tools for pastiche ("a lonely hotel in the style of Edward Hopper"), or fleetingly amusing incongruities (the "avocado armchair"), or cliché ("busy spaceport on an alien planet").

They may instead present us with a future of more expressive data visualization. Where we are no longer constrained by "locatable objects" and atomic "retinal variables".

But in gaining expressiveness, might we lose their effectiveness, rendering our graphics devoid of meaningful interpretation?
What follows are some examples that might suggest how we can move data visualization into new more expressive terrain.

They are data visualizations in that their character is still shaped by data. They don’t rely on the skills of an artist to be expressive and could be generated at scale.
We might, for example, consider that expressive visualization allows us to convey emotion. So what if we wished to show data about emotion? By weighting linguistic expression of sentiment in the CLIP process, we control how strongly it is expressed in visual form.

We start with four ‘neutral’ images from the same visual and textual seed: “The hills and fells of the English Lake District drawn in watercolour and ink”
The phrase “angry and fearful” is mixed with the textual prompt that generates the image with a weighting of 25%.
50% “angry and fearful”
75% “angry and fearful”
A similar exercise with a different sentiment expressed. Can you identify what it is?

25% sentiment weighting.
50% sentiment weighting
75% sentiment weighting.
99% sentiment weighting
The relative strength of the image and text prompts that guide CLIP diffusion process and the ‘speed’ of movement through multi-dimension parameter space can itself be data-driven. This offers intriguing possibilities for new ‘channels’ in the data to graphic mapping.

We might, for example, use guidance strength to represent uncertainty.
Greater expressiveness allows us to blend figurative and abstract symbolisation in new ways.

What if a geological map were to look like the rocks it symbolised?
When Chernoff faces were proposed in 1973 for showing multivariate data, it was thought our ability to pre-attentively assess facial features might allow us to quickly process abstract face symbols carrying multivariate data (face shape, smiles/frowns, eye size etc.). In practice the limited graphical expressiveness of the time meant they met with little success.

Perhaps their time has now come.
Or perhaps expressive glyph visualization moves us into new uncharted waters in which swim more memorable data creatures.
Chapter V

New landscapes
Conventional data visualization is not about to end.

But it is about to change. While we can legitimately challenge the idea that AI is “intelligence” or that AI text models meaningfully understand language (Bender, 2021), there is no doubt that these new technologies present new possibilities for the visual languages we use to convey data and for the way we construct them.

Our walled garden remains home, but those distant lands beckon.
Appendices
DALL·E 2 with outpainting DALL·E 2 DALL·E 2 with outpainting
DALL·E 2 MidJourney V3 Disco Diffusion 5.2
DALL·E 2 with outpainting MidJourney V3 Disco Diffusion 5.2
DALL·E 2 with outpainting Disco Diffusion 5.6 with watercolorDiffusion 2 Disco Diffusion 5.2
DALL·E 2 with outpainting MidJourney and Disco Diffusion with watercolorDiffusion 2 Disco Diffusion 5.2
Disco Diffusion 5.6 with watercolorDiffusion 2 Disco Diffusion 5.2 and DALL·E 2 DALL·E 2
MidJourney V3 Disco Diffusion 5.2 Disco Diffusion 5.3
MidJourney V3 and Disco Diffusion 5.6 Disco Diffusion 5.2 DALL·E 2 with outpainting

All images produced via CLIP-Diffusion AI
References

