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Abstract

We study the recent progress on dynamic view synthesis (DVS) from monocular
video. Though existing approaches have demonstrated impressive results, we show
a discrepancy between the practical capture process and the existing experimental
protocols, which effectively leaks in multi-view signals during training. We
define effective multi-view factors (EMFs) to quantify the amount of multi-view
signal present in the input capture sequence based on the relative camera-scene
motion. We introduce two new metrics: co-visibility masked image metrics
and correspondence accuracy, which overcome the issue in existing protocols.
We also propose a new iPhone dataset that includes more diverse real-life
deformation sequences. Using our proposed experimental protocol, we show that
the state-of-the-art approaches observe a 1-2 dB drop in masked PSNR in the
absence of multi-view cues and 4-5 dB drop when modeling complex motion.
Code and data can be found at http://hangg7.com/dycheck.

1 Introduction

Dynamic scenes are ubiquitous in our everyday lives – people moving around, cats purring, and
trees swaying in the wind. The ability to capture 3D dynamic sequences in a “casual” manner,
particularly through monocular videos taken by a smartphone in an uncontrolled environment, will
be a cornerstone in scaling up 3D content creation, performance capture, and augmented reality.

Recent works have shown promising results in dynamic view synthesis (DVS) from a monocular
video [1, 2, 3, 4, 5, 6, 7, 8]. However, upon close inspection, we found that there is a discrepancy
between the problem statement and the experimental protocol employed. As illustrated in Figure 1,
the input data to these algorithms either contain frames that “teleport” between multiple camera
viewpoints at consecutive time steps, which is impractical to capture from a single camera, or depict
quasi-static scenes, which do not represent real-life dynamics.

In this paper, we provide a systematic means of characterizing the aforementioned discrepancy and
propose a better set of practices for model fitting and evaluation. Concretely, we introduce effective
multi-view factors (EMFs) to quantify the amount of multi-view signal in a monocular sequence
based on the relative camera-scene motion. With EMFs, we show that the current experimental
protocols operate under an effectively multi-view regime. For example, our analysis reveals that the
aforementioned practice of camera teleportation makes the existing capture setup akin to an Olympic
runner taking a video of a moving scene without introducing any motion blur.

The reason behind the existing experimental protocol is that monocular DVS is a challenging problem
that is also hard to evaluate. Unlike static novel-view synthesis where one may simply evaluate
on held-out views of the captured scene, in the dynamic case, since the scene changes over time,
evaluation requires another camera that observes the scene from a different viewpoint at the same
time. However, this means that the test views often contain regions that were never observed in the
input sequence. Camera teleportation, i.e., constructing a temporal sequence by alternating samples
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Figure 1: Visualizing the training data of existing benchmarks. Existing datasets operate under the effective
multi-view regime: The sequences either have (a) teleporting camera motion or (b) quasi-static scene motion.
These motions leak multi-view cues, e.g., the model can observe the human (1st column) and hands (last column)
at roughly the same pose from different viewpoints.

from different cameras, addresses this issue at the expense of introducing multi-view cues, which are
unavailable in the practical single-camera capture.

We propose two sets of metrics to overcome this challenge without the use of camera teleportation.
The first metric enables evaluating only on pixels that were seen in the input sequence by computing
the co-visibility of every test pixel. The proposed co-visibility mask can be used to compute masked
image metrics (PSNR, SSIM [9] and LPIPS [10]). While the masked image metrics measure the
quality of rendering, they do not directly measure the quality of the inferred scene deformation.
Thus, we also propose a second metric that evaluates the quality of established point correspondences
by the percentage of correctly transferred keypoints (PCK-T) [11]. The correspondences may be
evaluated between the input and test frames or even within the input frames, which enable evaluation
on sequences that are captured with only a single camera.

We conduct extensive evaluation on existing datasets [5, 7] as well as a new dataset that includes more
challenging motion and diverse scenes. When tested on existing datasets without camera teleportation,
the state-of-the-art methods observe a 1-2 dB drop in masked PSNR and ~5% drop in PCK-T. When
tested on complex motion with the proposed dataset, existing approaches observe another 4-5 dB
drop in masked PSNR and ~30% drop in PCK-T, suggesting a large room for improvement. We
encourage future works to report EMFs on new data and adopt our experimental protocol to evaluate
monocular DVS methods. Code and data are available at our project page.

2 Related work

Non-rigid structure from motion (NR-SfM). Traditional NR-SfM tackles the task of dynamic
3D inference by fitting parametric 3D morphable models [12, 13, 14, 15, 16, 17, 18, 19], or fusing
non-parametric depth scans of generic dynamic scenes [20, 21, 22, 23, 24]. All of these approaches
aim to recover accurate surface geometry at each time step and their performance is measured with
ground truth 3D geometry or 2D correspondences with PCK [25] when such ground truth is not
available. In this paper, we analyze recent dynamic view synthesis methods whose goal is to generate
a photo-realistic novel view. Due to their goal, these methods do not focus on evaluation against
ground truth 3D geometry, but we take inspiration from prior NR-SfM works to evaluate the quality
of the inferred 3D dynamic representation based on correspondences. We also draw inspiration from
previous NR-SfM work that analyzed camera/object speed and 3D reconstruction quality [26, 27].

Monocular dynamic neural radiance fields (dynamic NeRFs). Dynamic NeRFs reconstruct
moving scenes from multi-view inputs or given pre-defined deformation template [28, 29, 30, 31,
32, 33, 34, 35]. In contrast, there is a series of recent works that seek to synthesize high-quality novel
views of generic dynamic scenes given a monocular video [1, 2, 3, 4, 5, 6, 7, 8]. These works can
be classified into two categories: a deformed scene is directly modeled as a time-varying NeRF in the
world space [1, 4, 6] or as a NeRF in canonical space with a time-dependent deformation [2, 3, 5, 7, 8].
The evaluation protocol in these works inherit from the original static-scene NeRF [36] that quantify
the rendering quality of held-out viewpoints using image metrics, e.g., PSNR. However, in dynamic
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scenes, PSNR from an unseen camera view may not be meaningful since the novel view may include
regions that were never seen in the training view (unless the method can infer unseen regions using
learning based approaches). Existing approaches resolve this issue by incorporating views from mul-
tiple cameras during training, which we show results in an effectively multi-view setup. We introduce
metrics to measure the difficulties of an input sequence, a monocular dataset with new evaluation
protocol and metrics, which show that existing methods have a large room for improvement.

3 Effective multi-view in a monocular video

We consider the problem of dynamic view synthesis (DVS) from a monocular video. A monocular
dynamic capture consists of a single camera observing a moving scene. The lack of simultaneous
multi-view in the monocular video makes this problem more challenging compared to the multi-view
setting, such as reconstructing moving people from multiple cameras [30, 34, 37].

Contrary to the conventional perception that the effect of multi-view is binary for a capture (single
versus multiple cameras), we show that it can be characterized on a continuous spectrum. Our insight
is that a monocular sequence contains effective multi-view cues when the camera moves much faster
than the scene, though technically the underlying scene is observed only once at each time step.

3.1 Characterizing effective multi-view in a monocular video

Strict
multi-view

Slow cam.
Fast scene

Fast cam.
Slow scene
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Figure 2: The spectrum of effective multi-view in a monocular
video. A video captured by a single camera can still have multi-
view cues when the camera moves much faster than the scene.We
disentangle recent advances in DVS given a monocular video from
such phenomena.

Although a monocular video only
sees the scene from one viewpoint
at a time, depending on the capture
method, it can still contains cues that
are effectively similar to those cap-
tured by a multi-view camera rig,
which we call as effective multi-view.
As shown in Figure 2, when the scene
moves significantly slower than the
camera (to the far right end of the
axis), the same scene is observed from
multiple views, resulting in multi-
view capture. In this case, DVS re-
duces to a well-constrained multi-view stereo problem at each time step. Consider another case where
the camera moves significantly faster compared to the scene so that it observes roughly the same
scene from different viewpoints. As the camera motion approaches the infinity this again reduces
the monocular capture to a multi-view setup. We therefore propose to characterize the amount of
multi-view cues by the relative camera-scene motion.

3.2 Quantifying effective multi-view in a monocular video

For practicality, we propose two metrics, referred to as effective multi-view factors (EMFs). The
first metric, full EMF Ω is defined as the relative ratio between the motion magnitude of the camera
to the scene, which in theory characterizes the effective multi-view perfectly, but in practice can be
expensive and challenging to compute. The second metric, angular EMF ω is defined as the camera
angular velocity around the scene look-at point, which only considers the camera motion; while
approximate, it is easy to compute and characterizes object-centric captures well.

Full EMF Ω: ratio of camera-scene motion magnitude. Consider a monocular video of a moving
scene over a set of time steps T . At each discrete time t ∈ T , let the camera’s 3D location be
ot. We consider each point xt on the domain of observed scene surface S2t ⊂ R3. We define the
camera-scene motion as the expected relative ratio,

Ω = E
t,t+1∈T

[
E

xt∈S2t

[ ∥ot+1 − ot∥
∥xt+1 − xt∥

]]
, (1)

where the denominator xt+1−xt denotes the 3D scene flow and the the numerator ot+1−ot denotes
the 3D camera motion, both over one time step forward. The 3D scene flow can be estimated via the
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#Train cam. Duration FPS Depth Kpt. Sequences

D-NeRF [3] ~150 1− 3s 60 - - 8 MV
HyperNeRF [7] 2 8− 15s 15 - - 3 MV + 13 SV
Nerfies [5] 2 8− 15s 5/15 - - 4 MV
NSFF [4] 24 1− 3s 15/30 Estimated [39] - 8 MV
iPhone (proposed) 1 8− 15s 30/60 Lidar ✓ 7 MV + 7 SV

Table 1: Summary of the existing and proposed iPhone datasets. Existing datasets operate under the effective
multi-view regime, teleporting between multiple cameras during training to generate a synthetic monocular
video. Unlike previous protocols, the proposed iPhone dataset consists of dynamic sequences captured by a
single smoothly moving camera. It also has accompanying depth maps for training supervision and labeled
keypoints for evaluation. “MV” denotes multi-camera capture, and “SV” denotes single-camera capture.

2D dense optical flow field and the metric depth map when available, or monocular depth map from
off-the-shelf approaches [38, 39] in the general case. Please see the Appendix for more details. Note
that Ω in theory captures the effective multi-view factor for any sequence. However, in practice, 3D
scene flow estimation is an actively studied problem and may suffer from noisy or costly predictions.

Angular EMF ω: camera angular velocity. We introduce a second metric ω that is easy to
compute in practice. We make an additional assumption that the capture has a single look-at point
in world space, which often holds true, particularly for captures involving a single centered subject.
Specifically, given a look-at point a by triangulating the optical-axes of all cameras (as per [5]) and
the frame rate N , the camera angular velocity ω is computed as a scaled expectation,

ω = E
t,t+1∈T

[
arccos

( ⟨a− ot,a− ot+1⟩
∥a− ot∥ · ∥a− ot+1∥

)]
·N. (2)

Note that even though ω only considers the camera motion, it is indicative of effective multi-view in
the majority of existing captures, which we describe in Section 4.1.

For both Ω and ω, the larger the value, the more multi-view cue the sequence contains. For future
works introducing new input sequences, we recommend always reporting angular EMF for its
simplicity and reporting full EMF when possible. Next we inspect the existing experimentation
practices under the lens of effective multi-view.

4 Towards better experimentation practice

In this section, we reflect on the existing datasets and find that they operate under the effective
multi-view regime, with either teleporting camera motion or quasi-static scene motion. The reason
behind the existing protocol is that monocular DVS is challenging from both the modeling and
evaluation perspective. While the former challenge is well known, the latter is less studied, as we
expand below. To overcome the existing challenge in the evaluation and enable future research to
experiment with casually captured monocular video, we propose a better toolkit, including two new
metrics and a new dataset of complex motion in everyday lives.

4.1 Closer look at existing datasets

We investigate the datasets used for evaluation in D-NeRF [3], HyperNeRF [7], Nerfies [5], and
NSFF [4]. Table 1 shows their statistics. We evaluate the amount of effective multi-view cues via the
proposed EMFs, shown in Figure 3. We find that existing datasets have large EMF values on both
metrics. For example, the HyperNeRF dataset has an ω as large as ~200◦/s. To put these numbers in
context, a person imaging an object 3m away has to move at 1m/s to get an ω = 20◦/s (close to the
statistics in the proposed dataset). Some datasets exhibit ω higher than 120◦/s, which is equivalent to
a camera motion faster than the Olympic 100m sprint record, without incurring any motion blur.

Visualizing the actual training data shown in Figure 1 reveals that existing datasets feature
non-practical captures of either (1) teleporting/fast camera motion or (2) quasi-static/slow scene
motion. The former is not representative of practical captures from a hand-held camera, e.g., a
smartphone, while the latter is not representative of moving objects in daily life. Note that, out
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Figure 3: Statistics of effective multi-view factors (EMFs) across different datasets. Existing datasets have
high EMFs, indicating the abundance of multi-view cues during training (note that the y-axis is in log scale).
The proposed iPhone dataset features a single camera, capturing the moving scene with a smooth motion, and
thus has smaller EMFs. Our results help ground the difficulty of each dataset for DVS from a monocular video.

of the 23 multi-camera sequences that these prior works used for quantitative evaluation, 22 have
teleporting camera motion, and 1 has quasi-static scene motion – the CURLS sequence shown at
the 5th column in Figure 1. All 13 single-camera sequences from HyperNeRF [7] used for qualitative
evaluation have quasi-static scene motion.

Left cam. Right cam.

Moving scene
Capture seq.
Input seq.

Figure 4: Camera teleportation from a multi-
camera rig. As an example, we show the data
protocol used in Nerfies [5] and HyperNeRF [7].

The four datasets also share a similar data protocol
for generating effective multi-view input sequences
from the original multi-camera rig capture. In Fig-
ure 4, we illustrate the teleporting protocol used in
Nerfies [5] and HyperNeRF [7] as a canonical ex-
ample. They sample alternating frames from two
physical cameras (left and right in this case) mounted
on a rig to create the training data. NSFF [4] samples
alternating frames from 24 cameras based on the data
released from Yoon et al. [40]. D-NeRF [3] experi-
ments on synthetic dynamic scenes where cameras
are randomly placed on a fixed hemisphere at every time step, in effect teleporting between 100-200
cameras. We encourage you to visit our project page to view the input videos from these datasets.

Existing works adopt effective multi-view capture for two reasons. First, it makes monocular DVS
more tractable. Second, it enables evaluating novel view on the full image, without worrying about the
visibility of each test pixel, as all camera views were visible during training. We show this effect in Fig-
ure 5. When trained with camera teleportation (3rd column), the model can generate a high-quality full
image from the test view. However, when trained without camera teleportation (4th column), the model
struggles to hallucinate unseen pixels since NeRFs [5, 36] are not designed to predict completely
unseen portions of the scene, unless they are specifically trained for generalization [41]. Next, we pro-
pose new metrics that enable evaluation without using camera teleportation. Note that when the model
is trained without camera teleportation, the rendering quality also degrades, which we also evaluate.

4.2 Our proposed metrics

While the existing setup allows evaluating on the full rendered image from the test view, the perfor-
mance under such evaluation protocol, particularly with teleportation, confounds the efficacy of the
proposed approaches and the multi-view signal present in the input sequence. To evaluate with an
actual monocular setup, we propose two new metrics that evaluate only on seen pixels and measure
the correspondence accuracy of the predicted deformation.

Co-visibility masked image metrics. Existing works evaluate DVS models with image metrics on
the full image, e.g., PSNR, SSIM [9] and LPIPS [10], following novel-view synthesis evaluation on
static scenes [36]. However, in dynamic scenes, particularly for monocular capture with multi-camera
validation, the test view contains regions that may not have been observed at all by the training
camera. To circumvent this issue without resorting to camera teleportation, for each pixel in the test
image, we propose co-visibility masking, which tests how many times a test pixel has been observed
in the training images. Specifically, we use optical flow to compute correspondences between every
test image and the training images, and only keep test pixels that have enough correspondences in
the training images via thresholding. This results in a mask, illustrated in Figure 5, which we use
to confine the image metrics. We follow the common practice from the image generation literature
and adopt masked metrics, mPSNR and mLPIPS [42, 43]. Note that NSFF [4] adopts similar metrics
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Figure 5: Evaluation without teleportation with the co-visibility mask. Ω/ω metrics of the input sequence
are annotated on the top-left. Existing works avoid evaluating on unseen pixels by camera teleportation (3rd

column). Naively training with the non-teleporting (smooth) camera trajectory causes evaluation issues on the
full image (4th column), since a NeRF model cannot hallucinate unseen regions. We propose to only evaluate
seen regions during training by a co-visibility mask (we show non-visible regions in green at the last column).
Note that the model performs poorly on seen regions as well when trained without camera teleportation.
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Training view Test view Prediction [5] Source Kpt. Target Kpt. Pred. Kpt. [5]
Figure 6: High-quality novel-view synthesis does not imply accurate correspondence modeling. Ω/ω
metrics of the input sequence are shown on the top-left. The time steps of the ground-truth data and predictions
are shown on the bottom-left. Using Nerfies [5] as an example, we show that the model renders high-quality
results (3rd column) without modeling accurate correspondences (last column). Transferred keypoints are
colorized by a heatmap of end-point error, overlaid on the ground-truth target frame.

but for evaluating the rendering quality on foreground versus background regions. We additionally
report mSSIM by partial convolution [44], which only considers seen regions during its computation.
More details are in the Appendix. Using masked image metrics, we quantify the performance gap in
rendering when a model is trained with or without multi-view cues in Section 5.1.

Percentage of correctly transferred keypoints (PCK-T). Correspondences lie at the heart of
traditional non-rigid reconstruction [21], which is overlooked in the current image-based evaluation.
We propose to evaluate 2D correspondences across training frames with the percentage of correctly
transferred keypoints (PCK-T) [11], which directly evaluates the quality of the inferred deformation.
Specifically, we sparsely annotate 2D keypoints across input frames to ensure that each keypoint is
fully observed during training. For correspondence readout from existing methods, we use either root
finding [45] or scene flow chaining. Please see the Appendix for details on our keypoint annotation,
correspondence readout, and metric computation. As shown in Figure 6, evaluating correspondences
reveal that high quality image rendering does not necessarily result in accurate correspondences,
which indicates issues in the underlying surface, due to the ambiguous nature of the problem.

4.3 Proposed iPhone dataset

Existing datasets can be rectified by removing camera teleportation and evaluated using the proposed
metrics, as we do in Section 5.1. However, even after removing camera teleportation, the existing
datasets are still not representative of practical in-the-wild capture. First, the existing datasets are
limited in motion diversity. Second, the evaluation baseline in existing datasets is small, which can
hide issues in incorrect deformation and resulting geometry. For these reasons, we propose a new
dataset called the iPhone dataset shown in Figure 7. In contrast to existing datasets with repetitive
object motion, we collect 14 sequences featuring non-repetitive motion, from various categories
such as generic objects, humans, and pets. We deploy three cameras for multi-camera capture –
one hand-held moving camera for training and two static cameras of large baseline for evaluation.
Furthermore, our iPhone dataset comes with metric depth from the lidar sensors, which we use to
provide ground-truth depth for supervision. In Section 5.2, we show that depth supervision, together
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Figure 7: Capture setup and sampled sequences from our proposed iPhone dataset. The proposed iPhone
dataset has a single hand-held camera for training and multiple cameras with a large baseline for validation. It
has accompanying depth from the iPhone sensor and features diverse and complex real-life motions.

with other regularizations, is beneficial for training DVS models. Please see the Appendix for details
on our multi-camera capture setup, data processing, and more visualizations.

5 Reality check: re-evaluating the state of the art

In this section, we conduct a series of empirical studies to disentangle the recent progress in dynamic
view synthesis (DVS) given a monocular video from effective multi-view in the training data. We
evaluate current state-of-the-art methods when the effective multi-view factor (EMF) is low.

Existing approaches and baselines. We consider the following state-of-the-art approaches for
our empirical studies: NSFF [4], Nerfies [5] and HyperNeRF [7]. We choose them as canonical
examples for other approaches [1, 2, 3, 6, 8, 34, 35], discussed in Section 2. We also evaluate
time-conditioned NeRF (T-NeRF) as a common baseline [1, 3, 4]. Unlike the state-of-the-art methods,
it is not possible to extract correspondences from a T-NeRF. A summary of these methods can be
found in the Appendix.

Datasets. We evaluate on the existing datasets as well as the proposed dataset. For existing datasets,
we use the multi-camera captures accompanying Nerfies [5] and HyperNeRF [7] for evalulation. Due
to their similar capture protocol, we consider them as a single dataset in our experiment (denoted as
the Nerfies-HyperNeRF dataset). It consists of 7 sequences in total, which we augment with keypoint
annotations. Our dataset has 7 multi-camera captures and 7 single-camera captures. We evaluate
novel-view synthesis on the multi-camera captures and correspondence on all captures. Our data
adopts the data format from the Nerfies-HyperNeRF dataset, with additional support for depth and
correspondence labels. All videos are at 480p resolution and all dynamic scenes are inward-facing.

Masked image and correspondence metrics. Following Section 4.2, we evaluate co-visibility
masked image metrics and the correspondence metric. We report masked image metrics: mPSNR,
mSSIM [9, 44], and mLPIPS [4, 10, 42, 43]. We visualize the rendering results with the co-
visibility mask. For the correspondence metric, we report the percentage of correctly transferred
keypoints (PCK-T) [11] with threshold ratio α = 0.05. Additional visualizations of full image
rendering and inferred correspondences can be found in the Appendix.

Implementation details. We consolidate Nerfies [5] and HyperNeRF [7] in one codebase using
JAX [46]. Compared to the original official code releases, our implementation aligns all training
and evaluation details between models and allows correspondence readout. Our implementation
reproduces the quantitative results in the original papers. We implement T-NeRF in the same codebase.
For NSFF [4], we tried both the official code base [47] and a public third-party re-implementation [48],
where the former fails to converge on our proposed iPhone dataset while the latter works well. We
thus report results using the third-party re-implementation. However, note that both the original and
the third-party implementation represent the dynamic scene in normalized device coordinates (NDC).
As NDC is designed for forward-facing but not considered inward-facing scenes, layered artifacts
may appear due to its log-scale sampling rate in the world space, as shown in Figure 9. More details
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Figure 8: Impact of effective multi-view on the Nerfies-HyperNeRF dataset. Ω/ω metrics of the input
sequence are shown on the top-left. We compare the existing camera teleporting setting and our non-teleporting
setting. (Top): Quantitative results of different models using our proposed evaluation metrics. (Bottom):
Qualitative comparison using Nerfies as an example. Two settings use the same set of co-visibility masks
computed from common training images. Visualizations of other models are in the Appendix.
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Figure 9: Qualitative results on the Nerfies-HyperNeRF dataset without camera teleportation. Ω/ω metrics
of the input sequence are shown on the top-left. Existing approaches struggle at modeling dynamic regions.

about aligning the training procedure and remaining differences are provided in the Appendix. Code,
pretrained models, and data are available on the project page.

5.1 Reality check on the Nerfies-HyperNeRF dataset

Impact of effective multi-view. We first study the impact of effective multi-view on the Nerfies-
HyperNeRF [5, 7] dataset. In this experiment, we rectify the effective multi-view sequences by
only using the left camera during training as opposed to both the left and right cameras, illustrated
in Figure 4. We denote the original setting as “teleporting” and the rectified sequences as “non-
teleporting”. We train all approaches under these two settings with the same held-out validation
frames and same set of co-visibility masks computed from common training frames. In Figure 8
(Top), all methods perform better across all metrics when trained under the teleporting setting
compared to the non-teleporting one, with the exception of PCK-T for NSFF. We conjecture that
this is because that NSFF has additional optical flow supervision, which is more accurate without
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Ω = 1.30
ω = 51.53

mPSNR↑ mSSIM↑ mLPIPS↓ PCK-T↑

T-NeRF 21.55 0.595 0.297 -
NSFF [4] 19.53 0.521 0.471 0.422

Nerfies [5] 20.85 0.562 0.200 0.756

HyperNeRF [7] 21.16 0.565 0.192 0.764

Table 2: Benchmark results on the rectified Nerfies-
HyperNeRF dataset. Please see the Appendix for the
breakdown over 7 multi-camera sequences.

Ω = 0.24
ω = 15.18

mPSNR↑ mSSIM↑ mLPIPS↓ PCK-T↑

T-NeRF 16.96 0.577 0.379 -
NSFF [4] 15.46 0.551 0.396 0.256

Nerfies [5] 16.45 0.570 0.339 0.453

HyperNeRF [7] 16.81 0.569 0.332 0.400

Table 3: Benchmark results on the proposed iPhone
dataset. Please see the Appendix for the breakdown
over 7 multi-camera sequences of complex motion.
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Figure 10: Ablation study on improving the state of the art on the proposed iPhone dataset. Ω/ω metrics
of the input sequence are shown on the top-left. +B, +D, +S denotes random background compositing [32],
additional metric depth supervision [1, 4] from iPhone sensor, and surface sparsity regularizer [49], respectively.

camera teleportation. In Figure 8 (Bottom), we show qualitative results using Nerfies (we include
visualizations of the other methods in the Appendix). Without effective multi-view, Nerfies fails
at modeling physically plausible shape for broom and wires. Our results show that the effective
multi-view in the existing experimental protocol inflates the synthesis quality of prior methods, and
that truly monocular captures are more challenging.

Benchmark results without camera teleportation. In Table 2 and Figure 9, we report the quanti-
tative and qualitative results under the non-teleporting setting. Note that our implementation of the
T-NeRF baseline performs the best among all four evaluated models in terms of mPSNR and mSSIM.
In Figure 9, we confirm this result since T-NeRF renders high-quality novel view for both sequences.
HyperNeRF produces the most photorealistic renderings, measured by mLPIPS. However it also
produces distorted artifacts that do not align well with the ground truth (e.g., the incorrect shape in
the CHICKEN sequence).

5.2 Reality check on the proposed iPhone dataset

Ablation study on improving the state of the art. We find that existing methods perform poorly
out-of-the-box on the proposed iPhone dataset with more diverse and complex real-life motions. In
Figure 10 (Bottom), we demonstrate this finding with HyperNeRF [7] for it achieves the highest
mLPIPS metric on the Nerfies-HyperNeRF dataset. Shown in the 3rd column, HyperNeRF produces
visually implausible results with ghosting effects. Thus we explored incorporating additional regu-
larizations from recent advances in neural rendering. Concretely, we consider the following: (+B)
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Figure 11: Qualitative results on the proposed iPhone dataset. Ω/ω metrics of the input sequence are shown
on the top-left. The models shown here are trained with all the additional regularizations (+B+D+S) except
NSFF. However, existing approaches still struggle to produce high-quality results.

random background compositing [32]; (+D) a depth loss on the ray matching distance [1, 4]; and
(+S) a sparsity regularization for scene surface [49]. In Figure 10 (Top), we show quantitative results
from the ablation. In Figure 10 (Bottom), we show visualizations of the impact of each regularization.
Adding additional regularizations consistently boosts model performance. While we find the random
background compositing regularizations particularly helpful, extra depth supervision and surface
regularization further improve the quality, e.g., the fan region of the paper windmill.

Benchmarked results. In Figure 11, we show qualitative results from our benchmark using the
best model settings from the ablation study, denoted as “++”. Note that it is non-trivial to apply
the same enhancements to NSFF for its NDC formulation so we keep it as-is. We visualize the
lidar depth re-projection from the training view (1st column) to the test view (2nd column), as a
reference for qualitative comparison (3rd column). Note that the white region is occluded from the
input view, whereas the green region is occluded from the most of input video frames. We observe
that existing approaches do not handle complex deformation well. For example, all models fail at
fusing a valid human shape on the SPACE OUT sequence. In Table 3, we find a similar trend as in the
Nerfies-HyperNeRF dataset: the baseline T-NeRF performs the best in terms of mPSNR and mSSIM
while HyperNeRF produces the most photorealistic renderings in terms of mLPIPS. The overall
synthesis quality and correspondence accuracy of all methods drop considerably compared to the
results on the Nerfies-HyperNeRF dataset. Taking Nerfies as an example, it drops 4.4 dB in mPSNR,
69.6% in mLPIPS, and 40.1% in PCK-T. Our study suggests an opportunity for large improvement
when modeling complex motion.

6 Discussion and recommendation for future works

In this work, we expose issues in the common practice and establish systematic means to calibrate
performance metrics of existing and future works, in the spirit of papers like [50, 51, 52]. We
provide initial attempts toward characterizing the difficulty of a monocular video for dynamic
view synthesis (DVS) in terms of effective multi-view factors (EMFs). In practice, there are other
challenging factors such as variable appearance, lighting condition, motion complexity and more.
We leave their characterization for future works. We recommend future works to visualize the input
sequences and report EMFs when demonstrating the results. We also recommend future works to
evaluate the correspondence accuracy and strive for establishing better correspondences for DVS.
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