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Abstract

Quantum neural networks (QNNs) have become a leading paradigm for establish-1

ing near-term quantum applications in recent years. The trainability issue of QNNs2

has garnered extensive attention, spurring demand for a comprehensive analysis of3

QNNs in order to identify viable solutions. In this work, we propose a perspective4

that characterizes the trainability of QNNs based on their locality. We prove that5

the entire variation range of the loss function via adjusting any local quantum gate6

vanishes exponentially in the number of qubits with a high probability for a broad7

class of QNNs. This result reveals extra harsh constraints independent of gradi-8

ents and unifies the restrictions on gradient-based and gradient-free optimizations9

naturally. We showcase the validity of our results with numerical simulations of10

representative models and examples. Our findings, as a fundamental property of11

random quantum circuits, deepen the understanding of the role of locality in QNNs12

and serve as a guideline for assessing the effectiveness of diverse training strategies13

for quantum neural networks.14

1 Introduction15

Quantum computing is a rapidly growing technology that exploits quantum mechanics to solve16

intricate problems that classical computers cannot solve. With enormous efforts having been made17

to develop noisy intermediate scale quantum (NISQ) devices [1], current quantum devices have18

demonstrated the ability to achieve near-term quantum advantage for practical applications in key19

areas including many-body physics [2–4], chemistry [5], finance [6–8], and machine learning [9].20

Specifically, quantum machine learning (QML) represents an exciting, emerging interdisciplinary21

field that seeks to enhance machine learning algorithms by harnessing the inherent parallelism22

of quantum systems [10–20]. Quantum neural networks (QNNs) stand at the forefront of QML,23

capitalizing on the unprecedented potential of quantum computing to revolutionize data analysis and24

pattern recognition. Inspired by classical neural networks, QNNs employ quantum gates and quantum25

states as fundamental building blocks within their computational framework. These networks can be26

trained using a diverse range of methods, including gradient-based optimization techniques akin to27

classical neural network training [21–24].28

With the aim to show quantum advantage on certain tasks, a critical issue is whether QNNs can be29

extended to solve large-scale systems, i.e., scalability. Unfortunately, many studies point out that30

training of QNNs requires exponential resources with the system size under certain conditions [25–31

36]. Besides the practical limitations such as noises [29], even ideal quantum devices will suffer32

from the so-called barren plateau phenomenon [25], which is the quantum counterpart of vanishing33

gradient problem in classical machine learning. It was shown that the gradient of the cost function34

vanishes exponentially in the number of qubits with a high probability for a random initialized35

QNN with sufficient depth, analogous to the vanishing gradient issue in classical neural networks.36
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Figure 1: Training limitations from QNN locality. The left part depicts a PQC on n qubits
composed of local unitaries. The right part symbolically depicts the cost function on a classical
device vs. the local unitary highlighted in the left part. This work proves that the cost function will
fluctuate in an exponentially small range in the number of qubits with a high probability when we
vary an arbitrary local unitary within the QNN in certain cases.

Consequently, exponentially vanishing gradients demand exponential precision in the cost function37

measurement on a quantum device [37] to make progress in the gradient-based optimization, and38

hence an exponential complexity in the number of qubits.39

Several attempts have been made to avoid barren plateaus, such as higher order derivatives [38],40

gradient-free optimizers including gate-by-gate optimization [39, 40], proper initialization [41],41

pre-training including adaptive methods [42–46], QNN architectures [47, 48] and cost function42

choices [49, 50]. More efforts are needed to study the general effectiveness of these attempts [26, 27]43

and develop new strategies to improve the trainability and scalability of QNNs. As a guide for44

exploring effective training strategies, it is crucial to uncover the essential mechanisms behind the45

barren plateau phenomenon.46

However, few rigorous scaling results are known for generic QNNs besides phenomenological calcu-47

lations, i.e., gradient analyses and their descendent [26–28]. Instead of just the limited information of48

vicinity from gradient analyses, it would be quite helpful for designing efficient algorithms if we could49

gain information on the entire variation range of the cost function when adjusting a single [39, 40] or50

several parameters. Combined with the fact that parameters usually enter the circuit independently51

through local quantum gates, all of which motivate our work where we are chiefly concerned with the52

variation range of the cost function via varying a local unitary within a quantum circuit.53

In this work, we present a rigorous scaling theorem on the trainability of QNNs beyond gradients54

from the perspective of QNN locality. As summarized in Fig. 1, we prove that when varying a local55

unitary within a sufficiently random circuit, the expectation and variance of the variation range of56

the cost function vanish exponentially in the number of qubits. Then through simple derivations, we57

show that this theorem implies exponentially vanishing gradients and cost function differences, and58

hence unifies the restrictions on gradient-based and gradient-free optimizations. Meanwhile, this59

theorem further delivers extra meaningful information about the training landscapes and optimization60

possibilities of QNNs. In this sense, we obtain a fundamental limitation on QNN training. Next, we61

illustrate the applications of our theorem on representative QNN models, where a tighter bound for62

the fidelity-type cost function is provided specifically even with shallow random circuits. At last, we63

perform numerical simulations on these representative models, where the scaling exponents coincide64

with our analytical results almost precisely.65

Comparison with Previous Works. The advances of our results compared to previous works [25,66

27, 26, 28] exist in two aspects. Firstly, the exponentially vanishing quantity we claim is the entire67

variation range of the cost function in the whole parameter subspace corresponding to the local68

unitary. This provides constraints on multiple parameters at finite intervals simultaneously, instead of69

an infinitesimal vicinity or two fixed-parameter points. Secondly, our results are irrelevant with the70

parameterization of the local unitary like e−iΩθ used previously. Hence, our results are much more71

general whose only condition is the circuit locality and open a new avenue for analyzing the QNN72

trainability.73
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2 Preliminaries74

Quantum State. We first introduce basic concepts and notations in quantum computing. A pure75

single-qubit quantum state is a linear combination of two computational basis states, represented76

as |ϕ⟩ = α|0⟩+ β|1⟩ in Dirac notation, where α, β ∈ C, |α|2 + |β|2 = 1. Here, |0⟩ and |1⟩ denote77

the basis states [1, 0]T and [0, 1]T in the single-qubit space C2, respectively. The n-qubit space C2n78

is formed by the tensor product of n single-qubit spaces. Additionally, the quantum state can be79

represented by a positive semidefinite matrix, also known as a density matrix. The density matrix ρ80

of a pure state |ϕ⟩ consisting of n qubits is expressed as ρ = |ϕ⟩⟨ϕ|, where ⟨ϕ| = |ϕ⟩†. A general81

mixed quantum state is represented by ρ =
∑

k ck|ϕk⟩⟨ϕk|, where ck ∈ R,
∑

k ck = 1.82

Quantum Gate. Quantum gates are mathematically described as unitary operators. Common83

single-qubit gates include the Pauli rotations {RP (θ) = e−i θ
2P |P ∈ {X,Y, Z}}, which are in the84

matrix exponential form of Pauli matrices85

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (1)

Common two-qubit gates include controlled-X gate CNOT = I ⊕ X (⊕ is the direct sum) and86

controlled-Z gate CZ = I ⊕ Z, which can generate quantum entanglement among qubits.87

Quantum Measurement. Quantum measurement is a quantum operation to obtain information88

from the quantum system. For example, for a single-qubit state |ϕ⟩ = α|0⟩+ β|1⟩, the outcome of a89

computational basis measurement is either |0⟩ with probability |α|2 or |1⟩ with probability |β|2. This90

measurement operation can be mathematically referred to as the average of the observable O = Z91

under the state |ϕ⟩: ⟨ϕ|O|ϕ⟩ = tr[Z|ϕ⟩⟨ϕ|] = |α|2 − |β|2. Generally, quantum observables O are92

Hermitian matrices and O(1/ε2) times of measurements could give an ε∥O∥∞-error estimation to93

the value tr[Oρ], where ∥ · ∥∞ is the spectral norm of the matrix.94

Quantum Neural Network. While classical neural networks operate on classical bits and use95

classical logic gates, quantum neural networks (QNNs) use quantum bits, or qubits, and quantum gates96

to process and store information. QNNs are often described as parameterized quantum circuits (PQCs)97

that are composed of rotation gates with adjustable rotating angles. In general, a QNN takes the98

mathematical form U(θ) =
∏

µ Uµ(θµ)Wµ, where Uµ(θµ) = e−iθµΩµ denotes a parameterized gate,99

such as a single-qubit rotation gate with Ωµ representing a Hermitian operator, and Wµ corresponds100

to fixed gates like the CNOT gate and SWAP gate. Commonly used templates of QNNs include the101

hardware efficient ansatz, the alternating-layered ansatz, and the tensor-network-based ansatz [49, 51].102

Note that QNNs with intermediate classical controls such as QCNNs [52] can also be included in this103

general form theoretically.104

3 Limitations of Local Unitary Optimization in QNN105

We start by introducing a general setting of a QNN model used throughout our analysis. A hybrid106

quantum-classical framework in QML usually uses a classical optimizer to train a QNN, denoted by107

U, with an input state ρ by minimizing a task-dependent cost function C, which is typically chosen108

as the expectation value of some Hermitian operator H:109

CH,ρ(U) = tr(HUρU†). (2)

Note that other cost function forms can be regarded as compositions of observable expectations and110

some other classical post-processing functions. Here we focus on (2) for simplicity. Divide the whole111

qubit system into two parts A,B with m qubits and n−m qubits, respectively. Here m is a fixed112

constant not scaling with n so that we call A a local subsystem. The QNN U is often composed of113

local unitaries on real devices, such as the single-qubit rotation gates and the CNOT gate. We focus114

on a local unitary UA within U acting on subsystem A. As shown in Fig. 2, we denote the sub-circuit115

of U before UA as V1 and that behind UA as V2, such that U = V2(UA ⊗ IB)V1 where IB is the116

identity operator on B. V1, V2 and UA are independent of each other. We also remark that this circuit117

setting is sufficiently general to cover common representative QNN models, e.g., the variational118

quantum eigensolver, the quantum autoencoder, and the quantum state learning.119
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Figure 2: Partition of the QNN in our analysis. The QNN is decomposed as U = V2(UA ⊗ IB)V1
with an input state ρ and an observable H . A tunable local unitary UA is implemented by some local
quantum gates with the left and right parts assembled as V1 and V2.

To characterize the training landscape beyond the limited information of the vicinity from gradient120

analyses, we introduce a central quantity throughout this work, i.e., the variation range of the cost121

function via varying a local unitary.122

Definition 1 For a generic cost function CH,ρ(U) with a QNN U in Eq. (2), we define its variation123

range with given V1, V2 as124

∆H,ρ(V1, V2) := max
UA

CH,ρ(U)−min
UA

CH,ρ(U), (3)

where the maximum and minimum with respect to UA are taken over the unitary group U(2m) of125

degree 2m.126

The quantity ∆H,ρ(V1, V2) intuitively reflects the maximal possible influence that the local unitary127

UA can have on the cost function. We establish an upper bound on ∆H,ρ(V1, V2) in the sense of128

probability by Theorem 1, which thus delivers a limitation on optimizing an arbitrary local unitary.129

To be specific, we prove that if either V1, V2, or both match the Haar distribution up to the second130

moment, i.e., are sampled from unitary 2-designs [53], the expectation of ∆H,ρ(V1, V2) vanishes131

exponentially in the number of qubits. See Appendix A for preliminaries on unitary designs.132

Theorem 1 Suppose V1,V2 are ensembles from which V1, V2 are sampled, respectively. If either V1133

or V2, or both form unitary 2-designs, then for arbitrary H and ρ, the following inequality holds134

EV1,V2
[∆H,ρ(V1, V2)] ≤

w(H)

2n/2−3m−2
, (4)

where EV1,V2
denotes the expectation over V1,V2 independently. w(H) = λmax(H) − λmin(H)135

denotes the spectral width of H , where λmax(H) is the maximum eigenvalue of H and λmin(H) is136

the minimum.137

Theorem 1 demonstrates that the maximal influence of a local unitary within a random QNN on138

the cost function diminishes exponentially in the number of qubits, with a high probability. This139

inherent locality of QNN poses an exponential hardness of optimization in QNN training and we140

would like to make several remarks to better reveal the underlying implications of the theorem below.141

The main proof idea of Theorem 1 is to calculate the expectation value over V1,V2 separately. To142

tackle the maximization over UA, the main technique is to employ Hölder’s inequality to extract UA143

out and bound the remaining part with specific calculations of 2-design element-wise integrals. For144

the detailed proof, we defer to Appendix B.145

Remark 1 Firstly, due to the non-negativity and boundedness of the variation range, i.e., ∆H,ρ ∈146

[0, w(H)], the variance of ∆H,ρ can be bounded by its expectation timesw(H). Thus from Theorem 1147

we know that the variance also vanishes exponentially:148

VarV1,V2 [∆H,ρ(V1, V2)] ≤
w2(H)

2n/2−3m−2
. (5)

4



Note that w(H) ∈ O(poly(n)) holds for common VQAs. Moreover, Theorem 1 together with149

Markov’s inequality provides an exponentially small upper bound of the probability that ∆H,ρ(V1, V2)150

deviates from zero, i.e.,151

Pr[∆H,ρ(V1, V2) ≥ ϵ] ≤ 1

ϵ
· w(H)

2n/2−3m−2
,∀ϵ > 0. (6)

That is to say, the probability that ∆H,ρ is non-zero to some fixed precision is exponentially small.152

Remark 2 Secondly, we can even establish an exponentially small bound using Theorem 1 for the153

case where UA is a global unitary satisfying the parameter-shift rule [54–58]. Suppose UA = e−iθΩ154

with the Hermitian generator Ω satisfying Ω2 = I . Since Ω has only two different eigenvalues ±1,155

there exists a unitary W such that We−iθΩW † becomes a local unitary acting on a single qubit156

non-trivially. W and W † could be absorbed into the rest of the circuit with W †V1 or V2W still157

forming 2-designs [59]. Therefore, the proof for global unitaries satisfying the parameter-shift rule158

can be reduced back to the case of local unitaries.159

Remark 3 Moreover, it is worth noticing that the compact bound in (4) only involves the spectral160

width w(H) and does not depend on any detail of the Hermitian operator H . But if some specific161

structures about H are known, e.g., the Pauli decomposition of H , a tighter bound could be derived in162

Appendix B which depends on the coupling complexity of H . In addition, if the cost function reduces163

to the form of the fidelity between pure states, we could have a tighter bound with scaling O(2−n)164

in Proposition 2. Theorem 1 can be generalized to arbitrary dimensions besides qubit systems of165

dimension 2n, e.g., qutrit and qudit systems. The detailed proof is provided in Appendix B.166

In fact, Theorem 1 has a natural physical interpretation: the effect of a local operation on a physical167

observable will vanish exponentially after a chaotic evolution. Remarkably, the concept of local168

operations yielding minor global influences is a physically intuitive yet mathematically intricate169

notion. For instance, even a single-qubit unitary is enough to rotate an arbitrary n-qubit pure state to a170

new state with zero fidelity with the original one, showcasing local operations do make a great global171

influence. Hence, Theorem 1 may be invaluable as a rigorous formulation of the aforementioned172

argument within the domain of QNN training, elucidating the locality of QNNs.173

4 Unifying the Limitations on Training QNNs174

Here we briefly demonstrate how Theorem 1 unifies the restrictions on gradient-based [25, 27] and175

gradient-free optimizations [26, 28] in a more natural manner, and indicates the extra restrictions176

besides them on QNN training. In the following, we focus on a PQC applicable for Theorem 1 with177

M trainable parameters {θµ}Mµ=1 and denote the variation range of the cost function via varying θµ178

as ∆µ.179

Consider the gradient-based optimization first. On the one hand, in the case where the parameter-shift180

rule is valid [54–58], Theorem 1 can strictly deduce vanishing gradients. Suppose {θµ}Mµ=1 are181

applicable for the parameter-shift rule (e.g., hardware-efficient ansatzes). Namely, θµ enters the182

unitary e−iθµΩµ within the circuit where Ωµ is a Hermitian generator satisfying Ω2
µ = I . From183

Theorem 1 we know that the expectation of ∆µ vanishes exponentially. Therefore, the derivative184

∂µC := ∂C
∂θµ

with respect to θµ satisfies185

E[|∂µC|] = E
[∣∣∣C (

θ +
π

4
eµ

)
− C

(
θ − π

4
eµ

)∣∣∣] ≤ E[∆µ] ∈ O(2−n/2), (7)

where eµ is the unit vector in the parameter space corresponding to θµ. From Markov’s inequality as186

in (6), we know that the probability that the derivative ∂µC deviates from zero by a small constant is187

exponentially small.188

On the other hand, even in the absence of the parameter-shift rule, vanishing gradients could still be189

obtained approximately by the following arguments. Consider the vicinity of a random initialized190

parameter point where the linear approximation error is negligible, denoted as an ε-ball Bε of radius191

ε (here ε plays the same role as the learning rate). As shown in Fig. 3, the linearity in Bε together192

with Theorem 1 leads to193

E [|∂µC|] ≤ E
[
∆µ

2ε

]
∈ O(2−n/2 1

ε
), (8)
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Figure 3: Sketch of our results implying vanishing gradients. The left panel sketches the whole
training landscape with one of the parameters θµ as the x-axis, all of the other parameters {θν}ν ̸=µ as
the y-axis symbolically and the cost function value C as the z-axis. The right panel depicts a typical
sample of the z-x cross-section from the landscape on the left with variation range ∆µ. Up to the
linear approximation error, ∆µ serves as an upper bound for the absolute derivative |∂µC| times the
vicinity size 2ε.

up to the linear approximation error, where 1/ε is not an essential factor since it reflects the frequencies194

of the landscape fluctuation rather than magnitudes, similar to the role of the factor tr(V 2) in the195

expression of Var[∂µC] [25].196

For the gradient-free optimization based on the cost function difference between any two fixed197

parameter points θ′ and θ, Theorem 1 leads to198

E [|C(θ′)− C(θ)|] ≤ E

[
M∑
µ=1

∣∣∣C (
θ(µ)

)
− C

(
θ(µ−1)

)∣∣∣] ≤
M∑
µ=1

E [|∆µ|] ∈ O(M2−n/2), (9)

where θ(µ) = θ +
∑µ

ν=1 (θ
′
ν − θν) eν for µ = 1, ...,M and θ(µ) = θ for µ = 0. Thus, as long as199

the number of parameters satisfies M ∈ O(poly(n)), the cost function difference between any two200

points vanishes exponentially with a high probability, demanding an exponential precision to make201

progress in the gradient-free optimization.202

Furthermore, Theorem 1 goes beyond vanishing gradients and vanishing differences between two203

fixed points. The exponentially vanishing quantity claimed by Theorem 1 is the variation range of the204

cost function in the whole parameter subspace corresponding to a local unitary, e.g., the subspace of205

the 3 Euler angles in a single-qubit rotation gate from SU(2), or the subspace of the 15 parameters206

in a two-qubit rotation gate from SU(4), etc. This gives constraints on multiple parameters at finite207

intervals simultaneously, instead of a vicinity or two fixed parameter points.208

5 Application on Representative QNN Models209

To better illustrate the meaning of our findings in practice, we investigate the applications of Theorem 1210

on three representative QNN models, including the variational quantum eigensolver (VQE), quantum211

autoencoder, and quantum state learning. The corresponding numerical simulation results are212

summarized in Fig. 5.213

Application on VQE. The variational quantum eigensolver is the most famous implementation of a214

hybrid quantum-classical algorithm with the goal to prepare the ground state of a given Hamiltonian215

Ĥ of a physical system [60]. The cost function is the energy expectation with respect to an ansatz216

state U|0⟩, i.e.,217

CVQE(U) = ⟨0|U†ĤU|0⟩. (10)

For most physical models with local interactions, the spectral width is proportional to the system218

size, i.e., w(Ĥ) ∈ O(n). For common repeated-layer-type ansatzes, e.g., the hardware-efficient219

ansatzes [61], linear depth O(n) is enough to make a randomly initialized circuit to be a sample from220

an approximate 2-design ensemble [25, 62, 63]. Hence from Theorem 1 we know that ∆VQE(V1, V2)221

vanishes exponentially with a high probability for random circuits forming 2-designs. We conduct222
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Figure 4: Circuit setting of the quantum autoencoder. ρQR is the given state to be compressed and
σQ is the compressed state through the encoder U. The quantum autoencoder aims to train U such
that ρQR can be reconstructed from σQ with high fidelity through the decoder U† combined with an
ancilla zero state |0⟩⟨0|R. σR denotes the state of the discarded part after compression.

numerical simulations for the variation range of the VQE cost function ∆VQE using the 1-dimensional223

spin-1/2 antiferromagnetic Heisenberg model:224

Ĥ =
n∑

i=1

(XiXi+1 + YiYi+1 + ZiZi+1) , (11)

with periodic boundary condition, as shown in Fig. 5(a).225

Application on Quantum Autoencoder. The quantum autoencoder (QAE) is an approach for226

quantum data compression [64, 65]. As shown in Fig. 4, a QNN U is trained as an encoder to227

compress a given state ρQR on a bipartite system QR into a reduced state σQ = trR(UρQRU
†) on228

subsystem Q, such that ρQR can be reproduced from σQ by the decoder isometry ⟨0|RU† with a229

high fidelity. According to the monotonicity of the fidelity under partial trace, an easy-to-measure230

cost function could be reduced from the fidelity between ρQR and the reconstructed state as231

CQAE(U) := 1− tr
(
(|0⟩⟨0|R ⊗ IQ)UρQRU

†) , (12)
where the second term is exactly the fidelity between the state of the discarded part σR =232

trQ(UρQRU
†) and the zero state |0⟩R on subsystem R. The spectral width for the QAE cost233

function (12) is w(HQAE) = 1 with HQAE = IQR − |0⟩⟨0|R ⊗ IQ. Thus again from Theorem 1234

we know that ∆QAE(V1, V2) vanishes exponentially in the number of qubits, specifically with the235

scaling O(2−n/2) as shown in Fig. 5(b).236

Application on Quantum State Learning. The fidelity between pure states is a special case of the237

cost function in (2) with a low-rank observable. Many QML applications make use of fidelity as their238

cost functions [66–68]. Here we uniformly call them quantum state learning (QSL) tasks. Denote the239

input state as |ψ⟩ and the target state as |ϕ⟩. The QSL cost function can be written as240

CQSL(U) = 1− |⟨ϕ|U|ψ⟩|2 . (13)
Theorem 1 can be applied here with HQSL = I − |ϕ⟩⟨ϕ| and w(HQSL) = 1. Here a tighter bound241

for ∆QSL is provided in Proposition 2, which generally holds for the Bures fidelity. The proof of242

Proposition 2 is detailed in Appendix C.243

Proposition 2 If either V1 or V2, or both form unitary 1-designs, then for the variation range of the244

fidelity-type cost function ∆QSL, the following inequality holds245

EV1,V2
[∆QSL(V1, V2)] ≤

1

2n−2m
. (14)

Compared with Theorem 1, the bound O(2−n) becomes tighter and the demanded randomness246

becomes weaker in this special case. Notably, even a random circuit of constant depth is enough247

to form a 1-design, which is much shallower than 2-designs. Like in (5) and (6), the variance and248

the probability that ∆QSL deviates from zero also vanish exponentially, but only require random249

circuits forming unitary 1-designs. Moreover, still with 1-designs, Proposition 2 implies exponentially250

vanishing cost gradients and cost differences in the same way as Theorem 1, which may be considered251

as the underlying mechanism behind the severe barren plateaus for global cost functions even with252

shallow quantum circuits [49].253
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(Ĥ
)

(a)

1 ≈  2-design
2 ≈  2-design
1, 2 ≈  2-designs

Upper bound

2 3 4 5 6 7 8 9
the number of qubits n

10-1

100

V
1
,V

2
[∆

Q
A

E
(V

1
,V

2
)]

(b)

1 ≈  2-design
2 ≈  2-design
1, 2 ≈  2-designs

Upper bound

2 3 4 5 6 7 8 9
the number of qubits n

10-3

10-2

10-1

100

V
1
,V

2
[∆

Q
S
L
(V

1
,V

2
)]

(c)

1 =  1-design
2 =  1-design
1, 2 =  1-designs

Upper bound

Figure 5: Exponentially vanishing variation range of the cost function via varying a local unitary.
The data points represent the sample averages of the cost variation range ∆H,ρ via varying a single-
qubit unitary over the spectral width w(H) as a function of the number of qubits on semi-log plots.
Panel (a) and (b) correspond to the VQE with the 1-dimensional Heisenberg model and the quantum
autoencoder with one qubit discarded, respectively, where the error bars represent the standard
deviations over samples. Panel (c) corresponds to the quantum state learning with the cost function
being the fidelity with the zero state. Different legends stand for V1, V2 or both being approximate
2-designs in (a), (b) and 1-designs in (c). The dashed lines depict our theoretical upper bounds for the
three tasks where the scaling exponents show a good coincidence with the experimental results.

6 Numerical Simulations of Experiments254

Previously, we have theoretically shown that with a high probability, the maximal influence of a local255

unitary within a random QNN on the cost function will vanish exponentially in the number of qubits.256

We further demonstrate the validity of our results with numerical simulations of experiments on the257

three representative QNN models. All of these experimental results show the exponentially vanishing258

variation range in the number of qubits, which is consistent with Theorem 1 and Proposition 2.259

Circuit Setting. Consider subsystem A only containing a single qubit, namely m = 1, and260

parameterize the local unitaryUA ∈ U(2) with 3 Euler angles up to a global phase, i.e., UA(ϕ, θ, α) =261

Rz(ϕ)Ry(θ)Rz(α), where Ry and Rz are single-qubit rotation gates with generators being Y and262

Z Pauli matrices. To construct random circuits forming 2-designs as V1 or V2 used in the VQE and263

QAE examples, we employ the following hardware-efficient ansatz as in [25] for comparison.264

Ry(
π
4 ) RP1,1(θ1,1) • · · ·

Ry(
π
4 ) RP1,2

(θ1,2) • • · · ·

Ry(
π
4 ) RP1,3

(θ1,3) • • · · ·
· · · · · · · · · · · ·

Ry(
π
4 ) RP1,n

(θ1,n) • · · ·
×10n

(15)

A single layer of Ry(π/4) = exp(−iY π/8) gates are laid at the very beginning of the circuit to265

make the three rotation axes have equal status, then followed by 10× n repeated layers. Each layer266

consists of n single-qubit rotation gates RP (θ) on each qubit together with n− 1 controlled phase267

gates between nearest neighboring qubits aligned as a 1-dimensional array, where the rotation axes268

P ∈ {x, y, z} is chosen with uniform probability and θ ∈ [0, 2π) is also chosen uniformly. A such269

random circuit with O(n) repeated layers could be considered as an approximate 2-design (here we270

employ 10×n) [25, 62, 63]. Experimental results with different numbers of layers are also presented271

in Appendix D to show how the expectation of the cost variation range ∆H,ρ vanishes with the circuit272

depth. To construct random circuits forming 1-designs used in the QSL example, we just replace the273

repeated layers above with a single layer of SU(2) elements Rz(ϕ)Ry(θ)Rz(α) on each qubit with274

ϕ, θ, α ∈ [0, 2π) are chosen with uniform probability.275

Implementation Details. To compute maxUA
C and minUA

C in the definition of ∆H,ρ(V1, V2)276

with respect to UA, we employ the Adam optimizer to update UA iteratively until convergence for277
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each of the 100 samples of V1, V2. We consider the converged value as a good estimation with a278

tolerable error at least for circuits with a small number of qubits (≤ 10) and a modest depth (≤ 10×n).279

We repeat this procedure for different numbers of qubits and different statistics of V1 and V2, i.e., V1280

or V2 being a 2-design (1-design) while the other being identity.281

Numerical Results. We summarize the simulation results of the three examples in Fig. 5. The282

slopes of the lines imply the rates of exponential decay. The data points represent the sample averages283

of the cost variation range ∆H,ρ via varying UA over w(H), and the error bars represent the standard284

deviations over samples. We specially rescale the error bar in the QSL example as a quarter of the285

standard deviation for better presentation on semi-log plots. One can see that in all the cases, the286

expectations of ∆H,ρ(V1, V2) vanish exponentially in the number of qubits. The data lines are almost287

parallel to the dashed lines depicting the theoretical upper bounds. That is to say, the scaling behaviors288

almost coincide with the predictions from Theorem 1 and Proposition 2. These results suggest that289

while optimizing a local unitary within a random QNN, the cost function exhibits fluctuations within290

an exponentially small range relative to the number of qubits. It is this phenomenon that elucidates291

the vanishing gradient issue and contributes to the exponential difficulty of training as the QNN scales292

up. A detailed derivation can be found in Appendix B for the tighter task-dependent upper bounds293

used in Fig. 5(a) and (b).294

7 Conclusion and Discussion295

We have shown that the maximal possible influence of a local unitary within a QNN on the cost296

function vanishes exponentially in the number of qubits with a high probability. This finding unveils297

the exponential hardness associated with training QNNs as they scale up. The randomness required is298

just a 2-design for the generic cost function and a 1-design for the fidelity-type cost function, in spite299

that the integrand ∆H,ρ(V1, V2) is not necessarily a polynomial of degree at most 2 or 1 in the entries300

of V1 and V2. We remark that a 2-design circuit can be achieved approximately by only O(n) depth301

[25, 62, 63] for common repeated-layer-type ansatzes, e.g., the hardware-efficient ansatzes [61], and302

a 1-design circuit can be achieved more easily by only O(1) depth.303

From the perspective of quantum information theory, our results can be regarded as a basic property304

of random quantum circuits. That is, a local unitary within a random circuit of polynomial depth305

has an exponentially small impact on the expectation of physical observables, which is expected to306

have potential applications in other areas involving random quantum circuits. This property may also307

provide insight into QNN design to address the critical trainability issue.308

For the training of QNN, our results unify the restrictions on gradient-based and gradient-free309

optimizations in a natural way and hence can be regarded as the underlying mechanism behind the310

barren plateau phenomenon. Therefore, a fundamental limitation is unraveled in training QNNs,311

which can serve as a guide for designing better training strategies to improve the scalability of312

QNNs. A direct consequence is that the gate-by-gate optimization strategy [39, 40] is ineffective no313

matter what optimizers are utilized. Reparameterization within local unitaries is also unhelpful. For314

future research, it will be of great interest to explore potential solutions via proper initialization [41],315

pre-training including adaptive methods [42–46], circuit architectures [47, 48] and cost function316

choices [49, 50].317
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