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Abstract
MR fingerprinting (MRF) is a framework to simultaneously quantify multiple tissue prop-
erties. Acquisition parameters are varied pseudo-randomly and each signal evolution is
matched with a dictionary of simulated entries. However, dictionary methods are com-
putationally and memory intensive. Deep learners (DL) are capable of mapping complex
MRF signal evolutions to a quantitative parametric space, reducing the computational
requirements and reconstruction time; yet fail to perform as well in the setting of noise.
Drawing from natural language processing (NLP) we proposed a transfer learning (TL)
model to improve MRF parametric estimates with realistic noise levels. The weights of a
network trained on clean data are used to instantiate the weights of a noisy model. The
model is constrained to learn noise invariant features, by freezing the last layer. Signal
evolutions were modeled using a recurrent neural network (RNN) to reconstruct T1, T2,
and the apparent di↵usion coe�cient (ADC). Compared to a model trained with noise,
but without TL our approached resulted in a 15% reduction in mean squared error (MSE).
Monte Carlo simulations performed at varying SNR (10-60 dB) showed our method yielded
losses comparable to the clean model at higher SNRs and proved more robust in the setting
of noise at lower SNRs.
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1. Introduction

MRF is a framework for quantifying multiple biophysical properties simultaneously, rapidly,
with maps inherently co-registered.(Ma et al., 2013). Parametric mapping is achieved by
pseudo-randomly varying acquisition parameters and matching the MRF signal evolutions
with a dictionary of simulated entries. Dictionary matching methods remain computa-
tionally and memory intensive; scale exponentially with the number of parameters to be
reconstructed, and su↵er from discretization. DL methods have yielded promising results
in MRF (Cohen et al., 2018); yet do not perform as well in the setting of noise. Further,

c� 2022 A. Finkelstein, C. Liao, X. Cao & J. Zhong.



Transfer Learning Mediated Noise Invariant MR Fingerprinting

confounders, such as the influence of ADC on T2 in MRF-FISP experiments are typically
unaccounted for (Kobayashi and Terada, 2019).

In this work we modelled the MRF signal using a recurrent neural network (RNN). The
di↵usion encoding strength and ADC were also modelled in our approach, which has been
shown to improve T2 estimation (Kobayashi and Terada, 2019). To improve performance
in the setting of noise we proposed a transfer learning (TL) model, which has been shown to
improve classification performance in NLP experiments (Zhang et al., 2020). The weights
of a clean model were used to instantiate the weights of a noisy model. The final regression
layer was frozen to constrain the model to learn noise invariant features, thereby improving
the robustness of the model. We expect that this approach will help with other quantitative
MRI tasks where Rician noise is a common problem, and expand MRF to include more
parameters.

2. Methods

MRF signals were simulated for a set of combinations of T1 (10-4000 ms), T2 (10-3000
ms), and ADC (0.5-3e-9 m2/s), for which T2 < T1. 3.12e5 instances were used for training
and 7.8e4 instances used for validation. Networks were trained to convergence using a
supercomputing cluster at the University of Rochester, using an NVIDIA A100 GPU. All
networks were based on the proposed architecture, composed of 3 stacked GRUs, with 100
hidden units in the final hidden state. A final fully connected layer was used to generate T1,
T2, and ADC. All networks were trained using the Adam optimizer with an initial learning
rate (lr) of 5e-5 and the L2 loss optimized.

A clean model was trained without noise and used as the base model for TL. Noisy
models were trained with 1 % standard deviation complex gaussian noise. TL was im-
plemented for the final network by instantiating the weights of the TL network with the
weights of the clean network (Zhang et al., 2020). The final fc layer was frozen, while the
weights of the GRU layers were modified using the same lr as the clean model. All models
were evaluated using a numerical brain phantom with complex gaussian noise added at 40
dB. The normalized root mean square error (NRMSE) and mean absolute percentage error
(MAPE) were calculated for each reconstruction. Monte Carlo simulations were performed
across 100 iterations for variable SNR (10-60 dB), and the MAPE calculated at each SNR.

3. Results

TL resulted in a 15% reduction in MSE compared to the noisy model without TL by the
end of training (Figure 1a). Parametric maps were less noisy, with lower NRMSE and
MAPE for T1 and T2 maps compared to the noisy model. TL models were more robust
in the setting of noise, evinced by Monte Carlo simulations and recapitulated the accuracy
achieved with the clean model at higher SNR (Figure 1b).
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Figure 1: (a) Loss curve of training (solid line) and test (dashed line) data. (b) Results of
Monte Carlo Simulations for T1, T2, and ADC across variable SNR (10-60 dB).

Table 1: NRMSE and MAPE reported for numerical brain phantom with 40 dB noise.

Model Metric T1 T2 ADC

Clean
NRMSE
MAPE

0.004
0.009

0.038
0.058

0.012
0.022

Noisy without TL
NRMSE
MAPE

0.015
0.048

0.200
0.398

0.044
0.052

Noisy with TL
NRMSE
MAPE

0.007
0.018

0.183
0.263

0.047
0.060

4. Conclusions

We showed that TL results in improved reconstruction accuracy and robust parametric
estimates, compared to DL models with noise and no TL. We also showed in silico that
ADC may be reliably reconstructed in the presence of T1 and T2, which has be shown to be
a confounder in MRF-FISP experiments in previous work (Kobayashi and Terada, 2019).
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