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Figure 1: Left: Performance plot on First-Sentence-Retrieval task revealing compact nature of image
tokens in representing long content. Right: Radar chart demonstrating the superior performance of
the SEEKER (ours) model across both short and long-context multimodal tasks.

ABSTRACT

The rapid progress in Multimodal Large Language Models (MLLMs) has signifi-
cantly advanced their ability to process and understand complex visual and textual
information. However, the integration of multiple images and extensive textual
contexts remains a challenge due to the inherent limitation of the models’ capacity
to handle long input sequences efficiently. In this paper, we introduce SEEKER, a
multimodal large language model designed to tackle this issue. SEEKER aims to op-
timize the compact encoding of long text by compressing the text sequence into the
visual pixel space via images, enabling the model to handle long text within a fixed
token-length budget efficiently. Our empirical experiments on six long-context
multimodal tasks demonstrate that SEEKER can leverage fewer image tokens to
convey the same amount of textual information compared with the OCR-based
approach, and is more efficient in understanding long-form multimodal input and
generating long-form textual output, outperforming all existing proprietary and
open-source MLLMs by large margins.

1 INTRODUCTION

The success of Large Language Models (LLMs) |OpenAl| (2022); Touvron et al.| (2023b); Bai et al.
(2023a); DeepSeek-Al et al.| (2024)) has significantly impacted various fields, notably Multimodal
Large Language Models (MLLMs) (OpenAl (2023b)); Liu et al.| (2023c)); Bai et al.|(2023b); |Lu et al.
(2024). And there is a burgeoning interest in enhancing LL.Ms to handle longer context Xiong
et al.|(2023); (Chen et al.[(2024); Jin et al.| (2024), for example, the recent GPT-40 |OpenAll (2024)
can support up to 128k tokens, paving the way to unlock many real-world applications from long-
document understanding, summarization to document translation, among others.

In many applications involving long-form documents that integrate images and text, there is a
significant demand for the strong long-context understanding ability of MLLMs. As shown in
Figure 2] the long context in the multimodal domain falls into two main categories: 1) long-form
inputs consisting of multiple text-rich images, and 2) long-form text outputs. In the first category,
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Figure 2: Long Multimodal Context Task mainly consists of two elements: 1) long image sequence
and text input and 2) long text output.

multiple images increase the context length with image tokens and additional text tokens if the images
are text-rich. This requires the model to efficiently integrate textual data with multiple images and
reason across them. In the second category, the model must produce coherent and attentive long
responses to the input context, avoiding irrelevant or hallucinated content and minimizing reliance on
the model knowledge without considering the specific multimodal context.

The existing MLLMs [Liu et al.| (2023cga)); Lu et al.| (2024) leverage pretrained LLMs |Chiang
et al.[(2023)); Touvron et al.|(2023a) and inherit their advanced language understanding capabilities.
Although these MLLMs demonstrate strong performance across various vision-language bench-
marks |[Liu et al.|(2024b); [Yu et al.| (2023)), their effectiveness in long-form multimodal contexts is less
explored. This issue becomes significant in tasks with very long input or output, which may exceed
the context length limit (e.g., 2048 tokens for LLaMA) and increase computational overhead.

While only a few MLLMs |OpenAl| (2023b); McKinzie et al.[(2024) are capable of handling multiple
images in the multimodal context, efficiency emerges as another critical challenge. “A picture is
worth a thousand words”, for human, it is more natural to fully utilize our bandwidth to process an
image than words. However, this might not be the case for models. In this paper, we aim to represent
information in a more compact form, enabling conveying more information within the same context
length. Specifically, we investigate the “visual token representation” as an alternative to text tokens,
and introduce SEEKER, an efficient method for managing long contexts within a constrained length
budget. This approach allows us to process more context within a fixed token length.

As shown in Figure 3] an OCR-based approach might yield 10k tokens from an eight-page document
for the LLM with a context limit of 8k tokens. While, SEEKER processes each of the eight pages as
separate images, converting them into 576 tokens each. This generates a total of 4, 608 tokens for the
whole document, which are then fed into the SEEKER model for reasoning and generation.

To the best of our knowledge, SEEKER is the first to address this in the long-context MLLMs by
employing a compact tokenization strategy that leverages visual tokens for textual information,
thus reducing the number of tokens required and enabling the processing of longer texts without
additional computation overhead. SEEKER’s design allows for sophisticated reasoning across multiple
images. By interleaving image tokens with textual data, SEEKER can preserve context coherence
and continuity across extended sequences, enabling more effective interpretation and integration
of visual data in scenarios where traditional text-based models may struggle. To sum up, our main
contributions are as follows:

* We present SEEKER, a novel approach to leverage the visual tokens to represent both image and
text information in long documents. Our approach is more efficient than OCR text tokens, when
given the same token length constraint.

* Our SEEKER supports long-context multimodal reasoning, effectively handling long-form multi-
image input and generating long-form text output.

* Our instruction-tuned SEEKER model demonstrates promising results compared to the existing
MLLMs on six long-context multimodal tasks.

2 BACKGROUND

Multimodal Large Language Model Recent advancements of proprietary Large Language Models,
GPT-4 |OpenAll (2023a), Gemini [Team et al.| (2023), Claude, QWen [Bai et al.| (2023a)), and open-
source ones, LLaMA [Touvron et al.| (2023ajb), Mistral, have shown groundbreaking applications.
Their counterparts in the visual domain are followed up, including GPT-4V |OpenAl| (2023b), Gemini-
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Figure 3: Our SEEKER surpass OCR-based model on long multimodal context tasks: 1) process
multiple text-rich images naturally. 2) more compact token and fit easily in fix-context length LLM.

Vision Team et al.| (2023)), Claude3-Opus-VL, Qwen-VL Bai et al.|(2023b), InstructBLIP Dai et al.
(2023)), LLaVA [Liu et al.|(2023d)). Some work |Lu et al.| (2023)); Wu et al.| (2024)) reveals the deficit of
these MLLMs in multiple images reasoning, and recent models McKinzie et al.| (2024)); Laurengon
et al.[(2024); Jiang et al.| (2024} improve such capabilities. Other workRust et al.| (2023)); |Gao et al.
(2024)) explore to process both text and images within pixels via task-specific finetuning. However,
the long-context capabilities of these MLLMs are underexplored. Our proposed SEEKER advances
the long-context multimodal understanding of MLLMs from two aspects, long-form image inputs
and long-form text outputs.

Long Context Transformer The Transformer-dominated LLMs have struggled with long context
length as studied in|Liu et al.|(2023e). LongL.LaMA [Tworkowski et al.|(2023)), Self-Extend Jin et al.
(2024) have been proposed to increase the effective context length by either fine-tuning or training-
free approach based on pre-trained LLMs . When it comes to MLLMs, additional long-context issues
are introduced from Vision Transformers (ViTs) Dosovitskiy et al.|(2021) for image processing, and
connecting with the LLMs. The concept of Dynamic Tokens Wang et al.|(2021) introduces a novel
approach where the allocation of computational resources is adapted dynamically, emphasizing that
not all image parts equally contribute to the recognition task. Additionally, the development of the
Self-slimmed Vision Transformer|Zong et al.|(2022) introduces a mechanism for model slimming
during the inference phase, reducing computational overhead without significant loss in accuracy. In
contrast, our proposed SEEKER utilizes image tokens as compact representations for image and text,
alleviating the context length required for the same amount of semantic information in the language
model backbone when processing multimodal content.

3 SEEKER: LONG-CONTEXT VISION AND LANGUAGE UNDERSTANDING

We propose SEEKER, a multimodal large language model designed to handle long-context images
and texts, as depicted in Figure 3] In Section[3.I] we discuss the innovative use of image tokens
to represent lengthy textual data compactly. Then we introduce long-context multimodal task and
instruction data in Section @ Finally, in Section@ we illustrate the architecture of our SEEKER to
support both long-context and short-context multimodal understanding.

3.1 USING IMAGE TOKENS TO ENCODE TEXT HELPS CONTEXT LENGTH EXTRAPOLATION

We follow the approach outlined in |Xiong et al.|(2023)) to evaluate model’s extrapolation capability in
the First-Sentence-Retrieval task. In this task, models are required to retrieve the first sentence at a
specific length. We conduct this synthetic task on various numbers of documents with different page
counts. We probe the performance of GPT-4-Vision Image by feeding its images of documents and
compare it with GPT-4-Vision Text and GPT-4, which receive extracted text using the OCR model
Nougat Blecher et al.|(2023). Nougat achieves over a 90 BLEU score on OCR text from scientific
documents. All these models have a context length limit of 128% tokens.

On the left side of Figure m we visualize the Rouge-L [Lin| (2004) score in relation to the total
number of pages of input documents, which range from 1 (approximately 1k text tokens) to 448
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Table 1: Long-Context Multimodal Task. Img/#In: the number of input images, Text
Tok/#In and #Out: the number of input and output text tokens. Full examples are presented

in Appendix [B.T}

Task Prompt Example ‘ tmg Text Tok
| #In. #In.  #Out.

Long-Form Multi-Image Input

Index Which Image contains the given sentence? 6.6 100.4 1.0

SentRetrie What is the first sentence on the first image? 1.0 23.0 35.5

ArxivQA What is the main purpose of the article as stated in the abstract? | 8.2 13.9 35.0

PassKey What is the <PASSKEY> in the provided images? 4.0 95.4 2.6
Long-Form Text Output

ArxivVerb Read the text in the image verbatim. 1.0 10.0 1301.6

WikiVerb Read the text in the image verbatim. 1.0 16.0 1107.1

(approximately 500k text tokens). We observe a significant performance degradation in models fed
with text input. In contrast, without any additional changes, we see improved extrapolation when
representing length text content with visual tokens by feeding images of documents directly to the
model.

3.2 LONG-CONTEXT MULTIMODAL TASK

We mainly consider two categories of long-context multimodal capabilities, as outlined in Table|l} 1)
Long-form multimodal input: This involves multiple text-rich images interleaved with text as the
input context. 2) Long-form text output: This requires generating long text.

Instruction Data for Long-Form Multi-Image Input First, we combine an arbitrary number of
single-image visual instruction data |Liu et al.| (2023c) sourced from CC3M into the multi-image
format for the intra-image reasoning task. This helps initiate model’s capability of understanding
sequences of images (e.g., <tmg> This image depicts a... <imgs> This image shows a...). We
then curate inter-image reasoning instruction data from NLVR2 |Suhr et al.[(2019) (e.g., <imgi>
<imgo> Considering the images on both sides, is ‘At least one of the televisions is turned off.” valid?
Answer yes or no.), Mimic CGD (e.g., <img;> <imge> What's the difference between the two sinks
in the images?), and annotate multi-image conversation data on COCO images Lin et al.|(2015) using
GPT-4V (e.g., <tmg1> <imgs> <tmgs> How many birds are in all the provided images?). To
enable understanding of long-form text-rich image sequences, we collect compiled PDFs from arXiv
documents. Each page from these documents is processed as images, ranging from 4 to 24 pages. We
use GPT-4V to generate descriptive or conversational instruction data for these scientific documents.
To further improve the model’s understanding of each provided image, we create a multi-image text
grounding task, requiring the model to ground the question to the referred image (e.g., <img;>
<imge> ... <tmgs> Which image contains the answer to the question / Which image contains the
sentence...).

Instruction Data for Long-Form Text Output To enhance long-form text generation capabilities
related to the given image, we propose a task that involves reading the text in the image verbatim (e.g.,
<imgy> Quote the text in the image verbatim.). This challenging task requires the vision backbone to
encode character-level image details and the language backbone to attend to the image token while
producing very long text without hallucinating on previously generated content.

3.3 LONG-CONTEXT MULTIMODAL LARGE LANGUAGE MODEL

To enable long-context multimodal reasoning, our model architecture should: 1) encode multiple
images interleaved with text, 2) align images and text at a fine-grained level, and 3) decode long texts
that attend to extended multimodal contexts. The following paragraphs illustrate the design of our
proposed SEEKER for this purpose.
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Long-Context Multi-Image Encoding For effective feature integration in scenarios involving
multiple images, it is crucial to include image separators to concatenate text and image sequences as:

N
Query = Querysystem + Z (Qimg,i + thl,i) (1)
=1

Qimg,i = start(img, i) + content(img, i) + end(img, 7)

Specifically, we use start(img,i) and end(img,i) as special tokens ‘<Istartofimgil>’ and ‘<lendofimgil>’
to distinguish the start and end of each image, respectively. We observe this strategy is essential for
maintaining model performance, especially when training is limited to a small dataset of long-context
multimodal instructions. The encoding process and the concatenation of the feature vectors of the
input sequence can be described as:

ti = EH()E (Ti), v = MLPV_>t (EHCV (L))

2
Q = [to;v1;t1; 09525 .. .5 vy; tn] @

Here, Enc, encodes each image ¢ into a feature vector and projects it to the word embedding space.
The concatenated vector () integrates sequences of image and text feature vectors, where [; | denotes
concatenation along the feature dimension.

Additionally, to preserve the model’s capability with single-image data without necessitating re-
finetuning, we introduce image-specific identifiers only during multi-image training and inference,
while retaining the original prompt template for single-image contexts. Furthermore, incorporating
image-index-aware question-answering instruction data enhances the model’s ability to anchor its
reasoning to specific images, enabling robust multi-image understanding and reasoning.

Dense Image-Text Alignment We inherit the general image-text alignment from the pre-training
image-text pairs. To enhance the visual representation of dense text in images, and improve the
alignment between image and text representation of rendered text, we curate a visual-embedded
task that renders text into visual space. Specifically, we render text paragraphs from Wikipedia into
1024 x 1024 images using Arial font, with sizes ranging from 18 to 30, providing various word
densities per image. We observe that it is essential to start by learning image-text alignment at a
sparse level (large font size, low word density) and gradually incorporate dense text-rendered image
data. Task types we consider include question answering on multiple images rendered with text from
Wikipedia, and reading the text verbatim from rendered images.

Supervised Fine-tuning Strategy We aim to leverage sequential data processing to fine-tune
models on a combination of textual and visual inputs, enabling them to generate coherent and
contextually relevant responses based on both text and image data. In the domain of multimodal
large language models, the autoregressive training objective is a pivotal technique, which can be
formulated as follows:

L
p(Xo|Q) = [T po(xilQ)
i=1
3 3)
L(0) = =) log P(w;|z<i, Q; 6)
t=1
where z; represents tokens with length L, X denotes the target output given the features of

multimodal queries (), and 6 denotes the model parameters. This loss function encourages the model
to predict the next token in the sequence, given the previous visual and textual tokens.

4 IMPLEMENTATION DETAILS

4.1 MODEL ARCHITECTURE

The language model backbone of SEEKER is the DeepSeek LLM [DeepSeek-Al et al.| (2024), which
has a design similar to LLaMA. It is supervised-finetuned on 2T tokens with additional DPO and
surpasses LLaMA-2 and GPT-3.5 on numerous open-eval tasks. To enable to process high-resolution
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images and ensure adept performance in real-world scenarios, we instruction-tune the stage-3 model
from the DeepSeek-VL series of model |[DeepSeek-Al et al.|(2024). The vision encoder of SEEKER-
TINY is SigLIP, and the vision encoder of SEEKER is a hybrid of SigLIP-L |[Zhai et al.| (2023)) and
SAM-B [Kirillov et al.[(2023). This enables processing 1024 x 1024 images into a fixed token length
of 576. This fixed token length for high-resolution image processing provides an optimal balance of
fine-grained and compact visual representation. The adaptor used is a hybrid MLP, the same as in
DeepSeek-VL Lu et al.|(2024).

4.2 TRAINING

We use the AdamW [Loshchilov & Hutter| (2019) optimizer to train our models for 1 epoch with a
batch size of 32. The learning rate is linearly warmed up during the first 5% of steps to le — 4 and
then reduced to zero using a cosine learning rate scheduler. The context sequence length is set to
4096 during instruction-tuning on single-image data. Both the vision-and-language pre-training data
(e.g., MMC4 Zhu et al.| (2023)) and single-image instruction-tuning data (e.g., ShareGPT4V |Chen
et al.| (2023)) are adopted from DeepSeek-VL [Lu et al.|(2024). For continual training on our proposed
long-context multimodal instruction data (Section [3;21), we set the maximum length to 8192 to
accommodate a long sequence of images and long-form text output. We set the rank to 8 for low-rank
adaptation (LoRA [Hu et al.| (2021))). Our SEEKER and SEEKER-TINY are trained on a single
8-A100-40G node for 30 hours and 12 hours, respectively.

4.3 EVALUATION

We consider four long-form multi-image input tasks: 1) Index: the multiple-choice image indexing
task, given a sequence of images and a question, the model selects the option with the index of the
image that contains the answer, 2) SentRetrie: the sentence retrieval task, given a sequence of
images of rendered text sampled from Wikipedia, the model is required to retrieve the first sentence
from the first image, 3) ArxivQA: the question answering on arxiv documents, the model is required
to answer the question according to visual image of arxiv documents. 4) PassKey: the passkey
retrieval task slightly modified for multimodal model, given the sentence with a masked word, the
model need to answer what is the masked word by reading the visually-situated text content from
arxiv document. We consider two long-form text output tasks: 1) ArxivVerb: extract text from
the image of arxiv documents verbatim, 2) WikiVerb: extract text from the image of rendered text
from Wikipedia verbatim. Details of each long-context multimodal task are introduced in Table [T}
with more details presented in Appendix [B.T}

Each long-context multimodal task contains 80 diversified samples. We use the accuracy metric for
the multiple-choice task (Index) and the Rouge-L score for all other text generation tasks. For
standard multimodal tasks, which require fewer than four image inputs and text answers that are less
than 400 tokens. We use the accuracy metric for multiple-choice NLVR2 Suhr et al.| (2019) test-public
split and the BLINK |[Fu et al.| (2024) validation split. We validate models on the official evaluation
metrics and test splits for general single-image multimodal benchmarks, MMB EN, MMB CN (MMC)
and Circular Eval for MMB (CCBench) [Liu et al.| (2024b), SEED |L1 et al.|(2023a), AI2D |[Kembhavi
et al.| (2016), LLaVAB [Liu et al|(2023c)), ChartQA Masry et al.| (2022), TextVQA |Singh et al.[(2019)).
We follow the inference configurations in VLMEvalKit|Contributors| (2023)).

5 MAIN RESULTS

5.1 LONG IMAGE AND TEXT CONTEXT

Long-Form Multi-Image Input In Table [2] SEEKER significantly surpass larger open-source
MLLMs across all four long-form multi-image input tasks. We concatenate the images for models
that can not handle image sequences. Additionally, SEEKER-TINY ranks second best. On average,
our models also outperform the proprietary GPT-4V model. This indicates our auxiliary tasks, as
detailed in Section[3.2] enhance the models’ reasoning across multiple images and grounding content
to specific images. Thus our models excel at handling long-context tasks involving long-form multiple
text-rich image inputs.
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Table 2: Long Image and Text Context. : proprietary models, : the proposed models,
#Tok/Img: the number of tokens per image. We report accuracy on multiple-choice task Index,
and Rouge-L score for other tasks.

Models Params  #Tok/Img ‘ Long-Form Multi-Image Input Long-Form Text Output

‘Index SentR ArxivQ PassK Avg ArxivV Wikiv Avg

Close-source MLLMs

GPT-4V |OpenAlI|(2023b) - 85 | 32.50 71.10 45.19 27.16  43.98 32.58 5.96 19.27
Open-source MLLMs

Qwen-VL-Chat|Bai et al.|(2023b) 7B - 2.49 25.05 8.24 0.00 8.94 4.90 5.41 5.15
LLaVA-1.5Liu et al.|[(2023b) 7B 576 23.74 30.61 35.60 0.00 22.48 4.14 3.80 3.97
LLaVA-Next|Liu et al. |(2024a) 7B 2880 17.49 34.35 20.50 0.00 18.08 22.33 22.94 22.63
LLaVA-Next (Mistral)|Liu et al.|(2024a) 7B 2880 17.49 34.45 21.39 0.00 18.33 20.11 20.92 20.51
DeepSeek-VL|Lu et al.|[(2024) B 576 13.74 10.37 19.83 0.17 11.02 31.59 16.48 24.03
IDEFICS2|Laurencon et al.[(2024) 8B 64 10.83 63.46 9.68 0.13 21.02 12.12 5.93 9.02
Monkey-Chat|L1 et al.|[(2023b) 10B - 16.24 23.65 17.90 0.00 14.44 5.82 2.08 3.95
LLaVA-1.5|Liu et al.|[(2023a) 13B 576 22.49 41.02 32.31 0.00 23.95 9.57 7.12 8.34
LLaVA-Next|Liu et al.|(2024a) 13B 2880 11.24 37.55 15.60 0.00 16.09 27.14 31.05 29.09
Open-source Tiny MLLMs

DeepSeek-VL|Lu et al.|(2024) 1.3B 576 14.99 10.46 21.29 0.15 11.72 20.06 10.43 15.24
MiniCPM-V [Hu et al.|(2024) 3B - ‘ 8.74 12.01 31.42 0.00 13.04 1.50 2.98 2.24
Ours

SEEKER-TINY 1.3B 576 33.74 66.99 42.68 24.99 42.10 23.52 25.33 24.42
SEEKER 7B 576 ‘ 27.49 71.33 42.35 3791  44.77 31.85 34.98 33.41

Long-Form Text Output In Table|2| our SEEKER achieves the best performance for long-context
tasks requiring long-form text output. On average, LLaVA-Next|Liu et al.|(2024a)-13B also performs
well, likely because these tasks usually require a single image. Its feature of splitting images into
four tiles as additional 2304 image tokens, combined with the original image, greatly enhances its
ability to capture visual details. This is particularly beneficial for verbatim tasks involving Arxiv and
Wikipedia content rendered in the image. Meanwhile, DeepSeek-VL |Lu et al.| (2024) achieves the
best scores among other open-source 7B MLLMs , primarily due to its alignment of image and text
by enforcing text reading from a large scale of visual-situated real-world data, such as documents and
PDFs. By incorporating our small-scale verbatim task data, which includes images rendered with
text of various font sizes, into the instruction-tuning stage, our models achieve a 38.1% performance
improvement.

Fix-length Image Tokens are more
Expressive than Text Tokens If a
model can interpret text within im-
ages, it confirms that this method
is a valid way to present informa-
tion. Additionally, if the model re-
quires fewer image tokens than text
tokens to understand the text, this in-

Table 3: Probing Question Answering with Varying Page Con-
text: Our SEEKER model seeks more accurate text answers
within compact image tokens of image sequences compared
to OCR-based approaches with the same context length. p
stands for the range of page numbers of the document.

dicates that pixels can represent text ~ Models Input Type ‘ pot6 pebB potil0 pel0l2  Avg
more compactly. To investigate this, TIM

we conduct a probing task involv-  pec i ocr T ‘ 3579 3574 3600  29.99 3438
Ing question-answering using vari- SEEKER -LLM OCR Txt 4526 46.17  50.57 39.18  45.29
ous pages of documents fed into the MLLM

model, as shown in Table No- DeepSeek-VL Seq Img 29.30 37.97 36.67  28.38  33.08
tably in this task, we use aversion of  SIIA SWISOCRT 0 i i

our SEEKER with the same context
length as the compared model, which
is 4,096 tokens. Our observations indicate that when the text token count is up to around 4,000,
the response accuracy remains within the context length limit of 4,096 tokens without performance
degradation for the language model (LLM). When the text token count exceeds 4,000 but the image
token count remains below 4,000, the vision-language model (VLM) outperforms the LLM by 4 to
8 percentage points. However, when the image token count exceeds 4,000, the performance of the
VLM also declines, though it remains slightly superior to that of the LLM.
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Table 4: Short Image and Text Context. : proprietary models, : the proposed models. We
compare our SEEKER with other MLLMs on multi-image and single-image benchmarks.

Models | Multi-Image Single-Image

‘NLVRZ BLINK Avg MMB MMC SEED CCBench AI2D LLaVAB ChartQA TextVQA Avg

Close-source MLLMs

GPT-4V OpenAI|(2023b] ‘ L7 51.1 61.4 751 4.4 71.6 46.5 75.9 93.1 78.5 78.0 60.3
Open-source MLLMs

Qwen-VL-Chat|Bai et al. |(2023b} 30.8 28.1 29.5  60.6 56.3 64.8 41.2 63.0 67.7 49.8 60.7 58.0
LLaVA-1.5-7B|Liu et al.|(2023a] 61.7 37.1 494 652  59.0 65.8 27.5 55.5 61.8 17.8 45.4 49.8
LLaVA-Next-7B|Liu et al. [(2024a] 58.7 41.2 49.9 674 62.3 69.6 24.3 67.0 72.7 55.4 64.4 60.4
LLaVA-Next-7B (Mistral)|Liu et al.|(2024a) 43.5 375 405 695  61.3 72.4 30.0 69.0 67.8 51.8 65.2 63.1
DeepSeek-VL-7B|Lu et al.|(2024 ) 46.6 40.9 43.7 741 714 70.4 51.7 65.3 77.8 59.1 64.9 66.8
IDEFICS2-8B|Laurencon et al.[(2024) 79.9 468 634 753 673 71.9 37.6 72.3 49.1 24.36 68.9 66.3
Monkey-Chat-T0B]Li et al. |[(2023b} 66.0 40.5 53.3 710 65.8 68.9 48.4 68.5 60.5 59.5 65.5 63.5
LLaVA-1.5-13B|Liu et al. (2023a) 66.2 42.7 544  69.2 65.0 68.2 30.4 61.1 66.1 18.2 48.9 53.4
LLaVA-Next-13B|Liu et al.|(2024a} 64.3 42.6 53.4  70.7 79.0 7.9 28.8 72.2 73.9 61.4 66.9 65.6
Open-source Tiny MLLMs

DeepSeek-VL-1.3B|Lu et al.|(2024} 61.3 38.8 50.1  64.0 62.9 66.0 37.6 51.5 51.1 47.4 57.8 54.8
MiniCPM-V-3B|Hu et al.|[(2024) ‘ 63.1 400 515 679  62.6 65.6 41.4 56.3 51.3 44.2 56.6 55.7
Ours

SEEKER-TINY -1.3B 69.9 40.5 552 648  63.7 66.0 37.3 49.0 81.7 45.4 56.3 58.0
SEEKER -7B ‘ 72.4 421 572 740 72.6 71.1 52.0 64.6 79.3 58.3 65.3 67.1

5.2 GENERAL MULTIMODAL UNDERSTANDING BENCHMARK

We aim to evaluate the general multimodal understanding and reasoning capabilities of our model in
comparison with state-of-the-art models in the field. In TableE], our model, SEEKER , demonstrates
performance on par with other models of similar size when tested on short-context multi-image tasks.
This consistency in performance is noteworthy, given that our model excels in these tasks without
requiring significant additional resources or tuning.

Moreover, even though we did not explicitly include general single-image instruction data during
the continual instruction tuning phase for long-context tasks, our model still retains competitive
performance. In fact, SEEKER performs on par with other MLLMs in this domain and even
outperforms all other models on certain tasks. This ability to maintain performance, despite the
absence of further instruction tuning data, can be attributed to our approach of employing a distinct
image identifier for multi-image processing, while continuing to use the single-image template
during inference. This strategy allows the model to handle multi-image tasks efficiently without
compromising its performance on single-image tasks.

6 ANALYSIS

6.1 CONTEXT LENGTH EXTRAPOLATION

We analyze the effectiveness of using image
tokens versus OCR text tokens for image repre-

sentation. The density plot in Figure[d]illustrates B Tokens/image Query
the distribution of token counts for both meth- 0.0006 Tokens/OCR-Text Query
ods. The Image token representation is notably 0.0005

more compact, with a significant peak at lower 2 .0,

token counts, whereas the OCR-text displaysa £

broader distribution with higher counts. This © "%

variation shows that OCR-text length can be vul- 0.0002

nerable and uncontrollable in images rich in text, 0.0001 f \

often leading to wide-ranging token counts. In 0.0000 A \

contrast, image tokens maintain a consistent to- ) 2000 4000 6000 8000 10000 12000 14000

ken length regardless of textual density. With Token Count

a model context length set to 8192 tokens, im-

age tokens are handled 100% of the time with- Figure 4: Density plot comparing token counts for
out truncation, whereas OCR-text frequently image token (blue) and OCR-text (orange) repre-
exceeds this limit, achieving only 66.25% ex- sentations. Image tokens are more compact than
ecution success without truncation. Meanwhile, text, fitting well within 8192 context length.
truncating OCR text compromises performance



Under review as a conference paper at ICLR 2025

as shown in Table[3] This highlights the advantages of image tokens for predictable and efficient
encoding of long multimodal contexts.

6.2 INFERENCE EFFICIENCY

In addition to its context length extrapolation
capability, our model SEEKER solves long-
context multimodal tasks more efficiently com- - SEEKER -« SEEKER-Tiny

pared to the OCR-based approach. For exam- SEEKER w. OCR -« SEEKER-Tiny w. OCR,A{
ple, when comparing the inference time cost
of SEEKER with and without OCR, the lat-
ter first extracts long text from multiple im-
ages and then feeds text into SEEKER . By
eliminating the time-consuming OCR step, our
model achieves a significant reduction in infer-
ence time. Specifically, in the longest context
scenario, SEEKER is approximately three times

faster than OCR-based approach, showcasing Figure 5: Generation times for SEEKER and
the substantial time efﬁciency‘ SEEKER-TINY with and without OCR.
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6.3 TRADEOFF OF COMPACT CONTEXT
LENGTH AND HIGH RESOLUTION

In Figure [] we show GPT-4-Vision with low and high resolution setting on first-sentence-retrieval.
With high-resolution mode, more tokens will be used to represent the same image. Although high-
resolution usually brings more details and better performance, we can see it tradeoffs capability of
extrapolating long page document understanding. And thus only GPT-4-Vision low-resolution model
preserves the performance in this probing task. On the right we can see that high-resolution usually
take more image tokens to represent text-rich image than text tokens of OCR-extracted content, and
thus even drops more quickly than feeding text.
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Figure 6: Performance plot on First-Sentence-Retrieval task. GPT-4-Vision Image and GPT-4-Vision
(High) Image directly process the long-context information in image, the High refers to high resolution
mode compared with low one. GPT-4-Vision Text represents the approach to process long-context
information in OCR-extracted content.

6.4 QUALITATIVE SHOWCASES

Figure[/|showcases the SEEKER model’s performance on three tasks, emphasizing its long-context
capabilities. In the verbatim generation task, SEEKER read text from the arXiv paper, indicating
its coherent narratives given extended multimodal context. For the first sentence retrieval task, it
efficiently navigated and extracted key sentences from extensive texts without utilizing the OCR
model. In the task of reasoning across multiple images, the model effectively grounds the text in the
specific image as required. At the bottom of Figure[7] we observe that SEEKER can also generalize to
multi-frame video understanding. We compare SEEKER-7B with DeepSeek-VL-7B on identifying
the document titles in Table[5] SEEKER excels at capturing character-level details. These results
illustrate SEEKER ’s proficiency in handling long-context multimodal tasks, marking a significant
advancement in MLLMs .
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Question: Where is the boy in red headed in the end of the video?

Answer: The boy in red is headed down the stairs.

Figure 7: Showcases of the SEEKER ’s performance on verbatim text generation, sentence retrieval,
multi-image reasoning, and video question answering, demonstrating its long-context understanding.

Table 5: Comparisons of MLLMs’ Instruction-Following Character-Level Recognition.

Text Prompt: What is the title of
the document?

Reference: Flow correlated per-
colation during vascular network
formation in tumors

DeepSeek-VL-7B: Flow corre-
lated percolation driving vascu-
lar network formation in tumors.

SEEKER : Flow correlated per-
colation during vascular network
formation in tumors

7 CONCLUSION

In this paper, we present SEEKER , which advances the field of long-context comprehension in
multimodal large language models. By enhancing the processing of lengthy texts presented in visual
formats and continual instruction-tuning on extended context tasks, SEEKER surpasses existing
multimodal large language models in handling extensive multimodal contexts. Our SEEKER also
shows efficiency compared with OCR-based approach in terms of better long context extrapolation
and inference efficiency.
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Figure 8: Training Loss Curve.

A IMPLEMENTATION DETAILS OF SEEKER

A.1 TRAINING LOSS CURVE

In Figure[8] we show the training loss curve of our SEEKER and SEEKER-TINY . Though both model
have a quick loss drop initially, we observe a smoother and more consistent decrease of SEEKER than
SEEKER-TINY . In the end, SEEKER stabilizes at a lower loss value, suggesting its potentially better
generalization capabilities than SEEKER-TINY .
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Question: In this task, please reply with the option letter of which Image
contains the given Sentence. Sentence:'Next we consider a direct corollary
of this result by applying to prime number theorem' Instruction: Which Image
contains the above Sentence? Select from these options: (A) Image 1 (B)
Image 2 (C) Image 3 (D) Image 4 (E) Image 5 (F) Image 6.

g Answer: (C) Image 3

Figure 9: Task Index.

B LONG-CONTEXT MULTIMODAL TASKS

B.1 TASK EXAMPLES

In Section[3.2] we first introduce multimodal long-context tasks categorized in long-form multi-image
input and long-form text output. And in Figure[OT4] we visualize full task examples.
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in Relation o Obtaining Latin
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Question: What is the definition of a Latin square according to Definition
1.17?

Answer: According to Definition 1.1, a Latin square of order n is an n x n
matrix where each row and each column is a permutation of elements of [n].

Figure 11: Task ArxivQA.
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Quantum-Classical Transitions in Complex Networks n

free, but as the temperature i
hicrarchical heterogencous orga
Considering that

al complex networks a
(see for example [16]), we deem that the proposed fermionic model can be considered
a good candidate for representing their evolution, at low and high temperatures. As
shown i 5 1 also the dynamics of particles during both processes.
In each d that the cooling process takes ime to allow the
particles to get to their final positions. During the cooling process, the number of
particles changing position is very high from the first time step. In contrast, during
the heating process, we found that, at the beginning, this mumber is small and rapidly
increases after a few (usually about ten) time steps. Then, this of jumps reaches
a maximum and begins to decrease until all particles stop moving. We deem that this
behavior is an effect of the Eq. (16), since it has been defined to prevent particles from
occupying high-energy levels densely at high temperatures.

6. Conclusions

Tin this paper, we have defined a fermionic network model that allows us to represent
complex networks as quantum gases. Using this model, we have shown that network
evolution is a_ temperature-dependent process characterized by three n hases:
classical random, scale-free and WTA. On performing a cooling process, sition
from a classical random to a scale-free network takes place. Notably, the system achieves

equilibrium when a WTA structure is reached, despite the non-equilibrinm nature of
the network evolution. On the other hand, on performing a heating process which
starts from a WTA structure, the network evolution follows a slightly different path. In

Question: Read the text in the
image verbatim.

Answer: free, but as the
temperature increases the network
loses its metric structure and
its hierarchical heterogeneous
organization, becoming a
classical random network.
Considering that many real
complex networks are scale-free
while others are not (see for
example [16]), we deem that the
proposed fermionic model can be
considered a good candidate for
representing their evolution, at
low and high temperatures. As
shown in Figure 5, we analyzed
also the dynamics of particles
during both processes. In each
simulation we observed that the
cooling process takes more time
to allow the particles to get to
their final positions. During the
cooling process, the number of
particles changing position is
very high from the first time
step. In contrast, during the
heating process, we found

that. ...

Figure 12: Task ArxivVerbatim.

20



Under review as a conference paper at ICLR 2025

(¢e

Beginning of the sequence: Aristotle (; Aristotélés, ; 384—-322 BC) was a Greek philosopher and
polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the
Lyceum, the Peripatetic school of philosophy, and the Aristotelian tradition. His writings cover many
subjects including physics, biology, zoology, metaphysics, logic, ethics, aesthetics, poetry,

theatre, music, rhetoric, psychology, linguistics, economics, politics, meteorology, geology and
government. Aristotle provided a complex synthesis of the various philosophies existing prior to him.

It was above all from his teachings that the West inherited its intellectual lexicon, as well as

problems and methods of inquiry. As a result, his philosophy has exerted a unique influence on almost
every form of knowledge in the West and it continues to be a subject of contemporary philosophical
discussion.Little is known about his life. Aristotle was born in the city of Stagira in Northern

Greece. His father, Nicomachus, died when Aristotle was a child, and he was brought up by a guardian.
At seventeen or eighteen years of age he joined Plato's Academy in Athens and remained there until
the age of thirty-seven (c. 347 BC). Shortly after Plato died, Aristotle left Athens and, at the

request of Philip Il of Macedon, tutored Alexander the Great beginning in 343 BC. He established a
library in the Lyceum which helped him to produce many of his hundreds of books on papyrus scrolls.
Though Aristotle wrote many elegant treatises and dialogues for publication, only around a third of

his original output has survived, none of it intended for publication.Aristotle's views profoundly

shaped medieval scholarship. The influence of physical science extended from Late Antiquity and the
Early Middle Ages into the Renaissance, and were not replaced systematically until the Enlightenment
and theories such as classical mechanics were developed. Some of Aristotle's zoological observations
found in his biology, such as on the hectocotyl (reproductive) arm of the octopus, were disbelieved
until the 19th century. He also influenced Judeo-Islamic philosophies (800—1400) during the Middle
Ages, as well as Christian theology, especially the Neoplatonism of the Early Church and the
scholastic tradition of the Catholic Church. Aristotle was revered among medieval Muslim scholars as
"The First Teacher", and among medieval Christians like Thomas Aquinas as simply "The Philosopher”,
while the poet Dante called him “the master of those who know". His works contain the earliest known
formal study of logic, and were studied by medieval scholars such as Peter Abelard and John
Buridan.Aristotle's influence on logic continued well into the 19th century. In addition, his ethics,
though always influential, gained renewed interest with the modern advent of virtue ethics.Aristotle
has been called "the father of logic", "the father of biology", "the father of political science",

"the father of zoology", "the father of embryology", "the father of natural law", "the father of

scientific method", "the father of rhetoric", "the father of psychology", "the father of realism",

"the father of criticism", "the father of individualism", "the father of teleology", and "the father

of meteorology".Lifeln general, the details of Aristotle's life are not well-established. The

biographies written in ancient times are often speculative and historians only agree on a few salient
points.Aristotle, whose name means "the best purpose" in Ancient Greek, was born in 384 BC in
Stagira, Chalcidice, about 55 km (34 miles) east of modern-day Thessaloniki. His father, Nicomachus,
was the personal physician to King Amyntas of Macedon. While he was young, Aristotle learned about
biology and medical information, which was taught by his father. Both of Aristotle's parents died

when he was about thirteen, and Proxenus of Atarneus became his guardian. Although little information
about Aristotle's childhood

Question: Read the text in the image verbatim.

Answer: Aristotle (; Aristotélés, ; 384-322 BC) was
Greek philosopher and polymath during the Classical

a

period in Ancient Greece. Taught by Plato, he was the

founder of the Lyceum, the Peripatetic school of
philosophy, and the Aristotelian tradition. His
writings cover many subjects including physics,
biology, zoology, metaphysics, logic, ethics,
aesthetics, poetry, theatre, music, rhetoric,
psychology, linguistics, economics, politics,
meteorology, geology and government. Aristotle
provided a complex synthesis of the various
philosophies existing prior to him.

Figure 13: Task WikiVerbatim.
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Beginning of the sequence: An American in Paris is a jazz-influenced orchestral piece by American
composer George Gershwin first performed in 1928. It was inspired by the time that Gershwin had spent
in Paris and evokes the sights and energy of the French capital during the Années folles.Gershwin
scored the piece for the standard instruments of the symphony orchestra plus celesta, saxophones, and
automobile horns. He brought back four Parisian taxi horns for the New York premiere of the
composition, which took place on December 13, 1928, in Carnegie Hall, with Walter Damrosch conductin
the New York Philharmonic. It was Damrosch who had commissioned Gershwin to write his Concerto in F
following the earlier success of Rhapsody in Blue (1924). He completed the orchestration on November
18, less than four weeks before the work's premiere. He collaborated on the original program notes

with critic and composer Deems Taylor.BackgroundAlthough the story is likely apocryphal, Gershwin is
said to have been attracted by Maurice Ravel's unusual chords, and Gershwin went on his first trip to
Paris in 1926 ready to study with Ravel. After his initial student audition with Ravel turned into a

sharing of musical theories, Ravel said he could not teach him, saying, "Why be a second-rate Ravel
when you can be a first-rate Gershwin?"Gershwin strongly encouraged Ravel to come to the United
States for a tour. To this end, upon his return to New York, Gershwin joined the efforts of Ravel's

friend Robert Schmitz, a pianist Ravel had met during the war, to urge Ravel to tour the U.S. Schmitz
was the head of Pro Musica, promoting Franco-American musical relations, and was able to offer Ravel
a $10,000 fee for the tour, an enticement Gershwin knew would be important to Ravel.Gershwin greeted
Ravel in New York in March 1928 during a party held for Ravel's birthday by Eva Gauthier. Ravel's

tour reignited Gershwin's desire to return to Paris, which he and his brother Ira did after meeting

Ravel. Ravel's high praise of Gershwin in an introductory letter to Nadia Boulanger caused Gershwin

to seriously consider taking much more time to study abroad in Paris. Yet after he played for her,

she told him she could not teach him. Boulanger gave Gershwin basically the same advice she gave all
her accomplished master students: "What could | give you that you haven't already got?" This did not
set Gershwin back, as his real intent abroad was to complete a new work based on Paris and perhaps a
second rhapsody for piano and orchestra to follow his Rhapsody in Blue. Paris at this time hosted

many expatriate writers, among them Ezra Pound, W. B. Yeats, Ernest Hemingway, and artist Pablo
Picasso.CompositionGershwin based An American in Paris on a melodic fragment called "Very
Parisienne”, written in 1926 on his first visit to Paris as a gift to his hosts, Robert and Mabel

Schirmer. Gershwin called it "a rhapsodic ballet"; it is written freely and in a much more modern

idiom than his prior works.Gershwin explained in Musical America, "My purpose here is to portray the
impressions of an American visitor in Paris as he strolls about the city, listens to the various

street noises, and absorbs the French atmosphere."The piece is structured into five sections, which
culminate in a loose ABA format. Gershwin's first A episode introduces the two main "walking" themes

in the "Allegretto grazioso" and develops a third theme in the "Subito con brio". The style of this A
section is written in the typical French style of composers Claude Debussy and Les Six. This A

section featured duple meter, singsong rhythms, and diatonic melodies

(¢e

Question: What is the first sentence in the image-?

Answer: An American in Paris is a Jjazz-influenced
orchestral piece by American composer George Gershwin
first performed in 1928.

Figure 14: Task SentRetrie.
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C DISCUSSION

C.1 LIMITATIONS

While our model, SEEKER, has made significant strides in processing extended-context multimodal
inputs, it encounters several critical limitations that require deeper investigation. The process of com-
pressing textual information into visual tokens, although efficient, may inadvertently overlook precise
textual understanding. Future endeavors should focus on developing hybrid encoding strategies that
balance token compression with the preservation of essential information. Additionally, SEEKER
could inadvertently learn and perpetuate biases present in its training data. It is imperative that further
research is conducted to identify, understand, and address these biases, ensuring the model’s equity
and inclusiveness.

C.2 SOCIETAL IMPACT

By integrating visual tokens with textual data, SEEKER addresses the limitations of traditional
models and supports the handling of longer input sequences. This innovation could transform various
sectors, improving information accessibility and retrieval systems across academic research, legal
document analysis, and extensive data processing tasks. Particularly beneficial in educational and
professional environments, SEEKER enables rapid and accurate extraction of vast informational
content, fostering better decision-making and knowledge dissemination. However, this advancement
might exacerbate information disparities if not equitably accessible. Steps should be taken to make
sure it is both affordable and available to everyone.
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