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Abstract

In silico modeling of transcriptional responses to perturbations is crucial for ad-
vancing our understanding of cellular processes and disease mechanisms. We
present PertEval-scFM, a standardized framework designed to evaluate models
for perturbation effect prediction. We apply PertEval-scFM to benchmark zero-
shot single-cell foundation model (scFM) embeddings against simpler baseline
models to assess whether these contextualized representations enhance perturba-
tion effect prediction. Our results show that scFM embeddings do not provide
consistent improvements over baseline models, especially under distribution shift.
Additionally, all models struggle with predicting strong or atypical perturbation
effects. Overall, this study provides a systematic evaluation of zero-shot scFM
embeddings for perturbation effect prediction, highlighting the challenges of this
task and revealing the limitations of current-generation scFMs. Our findings un-
derscore the need for specialized models and high-quality datasets that capture a
broader range of cellular states. Source code and documentation can be found at:
https://github.com/aaronwtr/PertEval.

1 Introduction

Inspired by the success of foundation models in fields such as natural language processing [1–3]
and computer vision [4], there has been an increase in the development of biological foundation
models. Among these, single-cell foundation models (scFMs) leverage vast amounts of unlabeled
transcriptomic single-cell RNA sequencing (scRNA-seq) data to learn contextualized representations
through self-supervised pre-training [5]. Fine-tuning the resulting model on labeled data enhances the
performance on downstream applications, such as cell-type classification, gene regulatory network
inference, and the prediction of cellular responses to perturbations [6–12].

A perturbation refers to any intervention or event leading to phenotypic alteration of a cell. Per-
turbation response prediction can provide invaluable insights into cellular mechanisms and disease
progression, facilitating the mapping of genotype to phenotype and the identification of potential drug
targets [13]. Numerous models, here referred to as narrow perturbation prediction models (NPPMs),
have been developed specifically for this task [14]. However, perturbation response prediction is a
challenging task, as demonstrated by the difficulty of models to improve consistently over simpler
baseline methods [15–17].

Recently, there has been a concerted effort to evaluate biological foundation models. The Therapeutic
Data Commons is an open science initiative that curates datasets, models and benchmarks related
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to a diverse range of therapeutic applications, including perturbation prediction [18]. Additionally,
Wu et al. [15] and Ahlmann-Eltze et al. [17] show that simple baseline models perform comparably
to scFMs in predicting transcriptomic response to perturbations. However, their analysis does not
account for distribution shift and focuses only on predictions for highly variable genes, many of
which show little to no effect in response to a perturbation [19].

Yet, distribution shift is a well-documented issue with scRNA-seq data [20, 21]. This often hinders
the deployment of models that appear to perform well during evaluation. Distribution shift can
occur as a consequence of inherent technical and biological noise, abundant in scRNA-seq data.
While scFMs have been proposed to mitigate such problems, there have been conflicting reports on
their ability to improve perturbation response prediction [8, 10, 15, 17]. This highlights the need
for a comprehensive benchmark to evaluate their limitations and failure modes, specifically against
distribution shift.

1.1 Contributions

Here, we present PertEval-scFM, a framework that addresses this research gap by providing:

• A detailed analysis of zero-shot scFM embeddings for perturbation effect prediction;

• A modular and extensible evaluation framework, with a toolbox of custom metrics designed
to calculate and help interpret results;

• Integration of a spectral graph theory method – SPECTRA [22] – that allows us to assess
model generalizability under distribution shift.

We apply PertEval-scFM to investigate any added benefit of using scFM embeddings for perturbation
response prediction. To do so, we use zero-shot embeddings generated from pre-trained scFMs and
train an MLP probe [23]. This allows for a fair evaluation of the transferability of these learned
representations, without introducing inductive biases from different perturbation prediction models.
The source code and documentation can be found on our GitHub.

2 PertEval-scFM Pipeline

In Figure 1 we present an overview of the PertEval-scFM pipeline, composed of three mains parts:
data pre-processing, model training and evaluation. We define each part in the following section.

Figure 1: PertEval-scFM framework (left to right) – data pre-processing, training of MLP probes under different
sparsification conditions; evaluation of trained models with AUSPC, E-distance and contextual alignment
metrics.
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2.1 Data pre-processing

To measure perturbation response we use Perturb-seq data, which integrates scRNA-seq with CRISPR-
based perturbations to profile gene expression changes in response to specific genetic modifications
at the single-cell resolution [24]. Perturb-seq data consists of transcriptomic data for unperturbed
control cells C ∈ Rnc×g and perturbed cells P ∈ Rnp×g, where nc and np corresponds to the
number of control and perturbed cells being measured, and g corresponds to the number of genes in
the dataset.

2.1.1 Data Preparation

PertEval-scFM takes as input the control cell matrix C ∈ Rnc×g obtained from Perturb-seq, con-
taining the raw expression count. Briefly, our pre-processing pipeline consists of normalizing and
log-transforming the raw expression count matrix. We then select the top 2,000 highly variable
genes v (HVGs), obtaining a reduced control matrix C ∈ Rnc×v . We also calculate the differentially
expressed genes (DEGs) for all perturbations to use in our evaluations. See Appendix A.2 for further
details.

2.1.2 Data featurization

To generate the input features for our baselines, we randomly select 500 cells from C to form a
pseudo-bulk sample C̃. To combat noise and sparsity issues, we calculate the average expression
across C̃ and repeat this process np times. The resulting basal gene expression vectors can then
be matched to perturbed cells, resulting in control expression feature matrix Xc ∈ Rnp×v. See
Appendix C.1 for further details.

Single-cell foundation model embeddings. To construct the control cell embeddings, we then feed
our input matrix Xc into the scFM:

fscFM(Xc) = Zc, Zc ∈ Rnp×e (1)

where e is the embedding dimension of the scFM. Perturbed cell embeddings Zp ∈ Rnp×e are then
generated by setting the expression of the perturbed gene to zero in all cells where it is expressed,
effectively simulating a perturbation in silico. The control and perturbation embeddings are then
concatenated to form the final input for the MLP probe. See Appendix C.2 for further details.

ZscFM = Zc ⊕ Zp (2)

Gene expression data embeddings. To serve as a baseline against which to compare the perfor-
mance of the scFM embeddings, we use our input matrix Xc ∈ Rnp×v. Here, we model a genetic
perturbation by calculating the gene co-expression matrix Gc ∈ Rnp×v between the perturbed genes
and the highly variable genes in Xc. We then concatenate the control and perturbation embeddings to
form the final input for the MLP probe. See Appendix C.1 for further details.

ZGE = Xc ⊕Gc (3)

2.2 Training

2.2.1 MLP probe for perturbation effect prediction

A 1-hidden layer MLP was selected as a probe for its flexibility and simplicity in handling various
types of data representations. For each single-gene perturbation, the MLP learns the log fold change
perturbation effect δ, defined as:

δ := P −Xc (4)
where P ∈ Rnp×v represents the perturbed gene expression matrix. The MLP probe predicts the
perturbation effect, denoted by δ̂, described by the following equation:

δ̂θ(ZscFM) = ReLU(ZscFMW⊤
1 + b1)W

⊤
2 + b2 (5)

The model parameters θ include the weight matrices W1 ∈ Rh×2e and W2 ∈ Re×h, where h
corresponds to the dimension of the hidden layer, and the bias vectors b1 ∈ Rh and b2 ∈ Re. Details
on training and hyperparameter optimization are provided in Appendix D.1.
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2.2.2 Baseline models

We establish two baseline models against which to compare the performance of the MLP probes
trained with scFM embeddings.

Mean baseline. The mean baseline assumes that a perturbation has little effect on the perturbed
cell’s gene expression. This reflects the biological reality that most single-gene perturbations result in
small changes in gene expression, providing a simple biologically plausible null model highlighting
the challenge inherent in distinguishing meaningful perturbation effects from background variability
in single-cell data. The predicted perturbation effect, δ̂, is then simply computed as:

δ̂ = Xc −Xc (6)

where Xc is the mean of Xc.

MLP baseline. The MLP baseline uses log-normalized gene expression data directly as an input.
This approach ensures we can attribute any change in performance compared to the MLP baseline to
the scFM embeddings.

δ̂η(ZGE) = ReLU(ZGEW
⊤
1 + b1)W

⊤
2 + b2, (7)

where dimensions of parameters η correspond to W1 ∈ Rh×2v , W2 ∈ Rv×h, b1 ∈ Rh and b2 ∈ Rv .

2.2.3 Modeling distribution shift

To assess the robustness of the MLP probes when using either gene expression data or scFM embed-
dings, we implement SPECTRA [22], a graph-based method that partitions data into increasingly
challenging train-test splits while controlling for cross-split overlap between the train and test data.

In SPECTRA, edges within the graph represent sample-to-sample similarity. The connectivity of the
similarity graph is controlled by the sparsification probability (s). For each split, this connectivity is
adjusted by stochastically removing edges with sparsification probability s ∈ [0, 1]. We introduce
the constraint s < smax, where smax is empirically chosen to ensure a sufficient number of samples
in both the train and test sets. After sparsification, the train and test sets are sampled from distinct
subgraphs. As the sparsification probability increases, the degree of similarity between the train and
test sets decreases, making it harder for the model to generalize to unseen perturbations effectively.
For further details, see Appendix E.

2.3 Evaluation

Currently, there is no consensus on how to benchmark perturbation effect prediction models. Here, we
propose a standardized toolkit of three metrics, which aims to enhance model assessment, facilitate
meaningful biological interpretation of results, and enable consistent cross-model comparisons:

• Area Under the SPECTRA Performance Curve (AUSPC)

• E-distance

• Contextual alignment

To assess model performance, we use the mean squared error (MSE) as our primary evaluation metric,
based on prior work by Ji et al. [25] demonstrating that the MSE provides a reliable assessment of
perturbation effects reflective of biological reality.

2.3.1 Area Under the SPECTRA Performance Curve

To evaluate robustness under distribution shift, the AUSPC is adapted for perturbation effect pre-
diction, following the approach introduced by Ektefaie et al. [22]. We formally define the AUSPC
as:

AUSPC =

∫ smax

0

ϕ(s) ds (8)
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where ϕ(s) is the MSE as a function of the sparsification probability s used to define each train-test
split. Integrating the MSE across s yields a single performance metric that reflects a model’s ability
to generalize under increasing distribution shift. The integral is approximated with the trapezoidal
rule (see Appendix E.2).

Motivated by the observation that simple baselines often perform surprisingly well in perturbation
prediction, we introduce the ∆AUSPC metric. This metric anchors a model’s robustness to a baseline.
The ∆AUSPC is defined as:

∆AUSPC =

∫ smax

0

[ϕb(s)− ϕm(s)]ds (9)

Here, ϕb represents the MSE of the mean expression baseline, and ϕm is the MSE of the model being
evaluated. A positive ∆AUSPC indicates that the model outperforms the baseline, while a negative
value suggests the opposite. This metric provides a clear measure of a model’s generalizability
improvement over simply predicting the mean perturbation effect.

2.3.2 Evaluating perturbation strength using E-distance

As introduced by Peidli et al. [26], we use the E-distance as a metric to quantify the difference
between perturbed and control cell gene expression profiles (Appendix F.1). This metric accounts
for variability within and between the control and perturbed gene expression distributions, providing
a quantitative measure of perturbation effect strength. This helps analyze the characteristics of
perturbations that models succeed or struggle to predict accurately, helping to contextualize model
performance, especially when dealing with outlier perturbations that traditional metrics may not
immediately reveal.

2.3.3 Contextual alignment and its effect on model performance

While pre-training dataset size is often linked to improved downstream model performance, recent
research emphasizes the critical role of data quality over dataset size [27, 28]. We therefore suggest
the inclusion of a contextual alignment metric, which quantifies the similarity between the pre-training
and fine-tuning datasets, and its effect on model performance. We calculate the cross-split overlap
between the pre-train and fine-tune datasets using cosine similarity, to determine how representative
the pre-training data is of the fine-tuning data (see Appendix G.1).

2.4 Use Case

Single-Cell Foundation Models. PertEval-scFM currently includes the following scFMs: scBERT
[6], Geneformer [8], scGPT [10], scFoundation [12] and UCE [9]. In Table 1 we include details of
their architecture and pre-training data. See Appendix B.1 for further details.

Table 1: Overview of the scFMs included in PertEval-scFM.
Model name Architecture Pre-training objective # of cells Organism Emb. dim.

scBERT Performer Masked language modeling (MLM) ∼5 million human & mouse 200
Geneformer Transformer Masked language modeling (MLM) ∼30 million human 256

scGPT Transformer Specialized attention-masking mechanism ∼33 million human 512
UCE Transformer Masked language modeling (MLM) ∼36 million 8 species 1,280

scFoundation Transformer Read-depth-aware (RDA) modeling ∼50 million human 3,072

Dataset. PertEval-scFM is applied to the 105 single-gene perturbations in the Norman et al.
[29] Perturb-seq dataset. This dataset contains high-quality CRISPRa perturbations often used in
perturbation prediction studies, as well as baseline expression for unperturbed cells. It allows for
the systematic evaluation of model performance in predicting the effects of genetic perturbations at
single-cell resolution. For details on the dataset, see Appendix A.
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3 Results

3.1 Zero-shot scFM embeddings do not meaningfully improve performance over rudimentary
baselines across 2,000 HVGs

In Figure 2 and Table 2, we show that probes trained with zero-shot scFM embeddings did not
show consistent improvement over the baseline models, with a 3.7% difference in AUSPC between
Geneformer (worst) and the MLP baseline (best). All results obtained have overlapping error
bars, indicating no significant differences in performance across models. As the sparsification
probabilities (s) increased from 0.0 to 0.7, the MSE worsened across all models. However, the
zero-shot embeddings from the scFMs demonstrated a sharper decline in performance compared to
the MLP baseline at higher sparsification probability values. Overall, these results show that scFM
embeddings do not mitigate problems caused by distribution shift, suggesting that the embeddings do
not provide reliably generalizable representations for perturbation prediction across 2,000 HVGs.
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Figure 2: Perturbation effect predictions evaluated across 2,000 highly variable genes for 8 train-test splits of
increasing difficulty. (a) MSE for all prediction models. Experiments were carried out in triplicate for each
model. The heatmap shows the mean MSE values (↓). (b) Average AUSPC (↓) across sparsification probabilities
for each model with standard error bars.

Table 2: Perturbation effect prediction evaluation across 2,000 HVGs. Models are listed in order of ∆AUSPC.
↓ MSE (10−2) across sparsification probabilities

Model 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ↓ AUSPC (10−2) ↑ ∆ AUSPC (10−2)

Mean baseline 5.916 ± 0.161 6.177 ± 0.204 5.980 ± 0.621 6.497 ± 0.513 6.219 ± 0.308 6.659 ± 0.154 7.413 ± 1.038 8.430 ± 0.540 4.612 ± 0.317 -
MLP gene expression 5.935 ± 0.213 6.288 ± 0.282 6.410 ± 0.289 6.699 ± 0.705 6.453 ± 0.584 5.984 ± 0.458 6.502 ± 1.277 7.065 ± 1.022 4.484 ± 0.299 0.1280
scGPT 5.940 ± 0.207 6.237 ± 0.218 6.340 ± 0.608 6.765 ± 0.428 6.363 ± 0.345 5.926 ± 0.174 6.400 ± 1.144 8.506 ± 1.020 4.525 ± 0.255 0.0863
scBERT 5.968 ± 0.160 6.301 ± 0.316 6.341 ± 0.356 6.761 ± 0.765 6.363 ± 0.544 5.924 ± 0.418 6.451 ± 1.200 8.488 ± 0.558 4.537 ± 0.268 0.0748
scFoundation 5.989 ± 0.162 6.421 ± 0.317 6.366 ± 0.356 6.793 ± 0.764 6.440 ± 0.538 5.919 ± 0.417 6.705 ± 1.183 8.601 ± 0.537 4.594 ± 0.246 0.0179
UCE 5.937 ± 0.140 6.258 ± 0.311 6.132 ± 0.620 6.565 ± 0.514 6.387 ± 0.307 6.551 ± 0.155 7.370 ± 1.065 8.479 ± 0.601 4.647 ± 0.312 -0.0355
Geneformer 5.938 ± 0.135 6.257 ± 0.049 6.132 ± 0.622 6.565 ± 0.520 6.395 ± 0.300 6.550 ± 0.140 7.382 ± 1.155 8.525 ± 0.494 4.651 ± 0.309 -0.0396

3.2 Zero-shot scFM embeddings show minimal improvement over rudimentary baselines
across the top 20 DEGs

Single-gene perturbations typically alter the expression of a limited subset of genes within the
transcriptome. Hence, models predicting mean gene expression can still achieve low MSE values
across 2,000 HVGs. To better assess the ability of the models to predict meaningful perturbation
effects, we restricted the evaluation to the top 20 DEGs per perturbation. The results are displayed in
Table 3. This evaluation proves more challenging, evidenced by the order of magnitude increase in
MSE (Appendix H.2). Consistent with the pattern observed for the 2,000 HVGs, the MSE values
became worse as the sparsification probability increased, particularly for Geneformer and scGPT

Table 3: Perturbation effect prediction evaluation across the top 20 DEGs per perturbation.
↓ MSE across sparsification probabilities

Model 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ↓ AUSPC ↑ ∆AUSPC (10−2)
Mean baseline 0.398 ± 0.043 0.479 ± 0.050 0.474 ± 0.078 0.489 ± 0.053 0.492 ± 0.047 0.492 ± 0.047 0.525 ± 0.126 0.604 ± 0.144 0.345 ± 0.011 -
UCE 0.355 ± 0.037 0.463 ± 0.048 0.464 ± 0.077 0.482 ± 0.053 0.476 ± 0.042 0.485 ± 0.047 0.484 ± 0.104 0.624 ± 0.162 0.334 ± 0.012 1.078
scBERT 0.381 ± 0.038 0.469 ± 0.050 0.464 ± 0.077 0.481 ± 0.053 0.475 ± 0.042 0.482 ± 0.045 0.499 ± 0.117 0.608 ± 0.149 0.336 ± 0.011 0.878
MLP gene expression 0.379 ± 0.038 0.466 ± 0.051 0.468 ± 0.074 0.456 ± 0.039 0.497 ± 0.042 0.521 ± 0.071 0.513 ± 0.123 0.622 ± 0.172 0.342 ± 0.013 0.312
scGPT 0.402 ± 0.035 0.463 ± 0.048 0.464 ± 0.077 0.482 ± 0.053 0.475 ± 0.042 0.484 ± 0.047 0.485 ± 0.105 0.828 ± 0.249 0.347 ± 0.015 -0.168
scFoundation 0.406 ± 0.041 0.502 ± 0.052 0.466 ± 0.077 0.489 ± 0.056 0.469 ± 0.040 0.486 ± 0.046 0.567 ± 0.090 0.638 ± 0.166 0.350 ± 0.011 -0.486
Geneformer 0.405 ± 0.044 0.464 ± 0.048 0.464 ± 0.077 0.481 ± 0.052 0.475 ± 0.042 0.483 ± 0.046 0.488 ± 0.106 0.902 ± 0.220 0.351 ± 0.014 -0.564
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(Appendix H.3). Among all models, scBERT performed best across most sparsity levels (∆AUSPC
= 0.00878), while UCE produced the most robust results (∆AUSPC = 0.0108). This indicates that
these models were marginally better at capturing perturbation-specific expression changes in the top
20 DEGs, compared to the baselines. Conversely, Geneformer, scFoundation and scGPT showed
negative ∆AUSPC values, suggesting limitations in their ability to capture perturbation-specific
expression changes. Despite these trends, the observed differences in performance were again
minimal, with UCE (best) outperforming Geneformer (worst) by only 4.8%. These small differences
and overlapping error margins suggest that no method provides significant performance gains over
simpler approaches, even when focusing on the genes most affected by perturbations.

3.3 E-distance analysis reveal failure modes of perturbation prediction probes

Strong perturbation effects are generally under-represented in single-gene Perturb-seq data. Hence,
we hypothesized that models will struggle with predicting strong or atypically distributed perturbation
effects. In Figure 3a we show the relationship between E-distance and performance, averaged across
scFMs. Our E-distance analysis confirms that models generally perform worse when predicting
the effect of perturbations with higher E-distance (i.e. strong perturbation effects). This trend was
evident across all models, supporting the idea that training data with mild perturbation effects limits a
model’s ability to generalize to more extreme cases.

Figure 3b further illustrates how perturbation strength is distributed across the different train-test splits.
At higher sparsification probabilities, perturbations with lower E-distances become less frequent,
while those with stronger effects appear more often. This is consistent with the earlier observation that
performance declines as sparsity increases, as the models are increasingly challenged with stronger
perturbations. Two perturbations illustrate this trend: AHR (Figure 4a), which has a low E-distance,
showed a relatively small dynamic range in the target perturbation effects, ranging from about−0.1 to
0.25. In contrast, CEBPE (Figure 4b) showed a more pronounced perturbation effect, with a broader
dynamic range of −0.5 to 1. The models performed worse when predicting the effect of CEBPE than
that of AHR, aligning with our hypothesis that models poorly predict strong perturbations. This might
be due to strong perturbations like CEBPE rarely appearing in the training data.
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Figure 3: (a) MSEs for all test perturbations as a function of the E-distance. The predictions displayed are the
averaged across all scFMs. (b) The E-distance of all test perturbations stratified per split as a function of the
sparsification probability. The mean of the E-distance per split is included in red.

However, there are deviations from this trend. In Figure 4d, we show that CEBPA, which has a strong
perturbation effect, was predicted relatively well by the models. Despite a high overall perturbation
strength, CEBPA strongly modulates relatively few genes, with a longer tail of more mildly impacted
genes. This suggests that the model’s capability to predict perturbation effects depends not only on
the magnitude of the perturbation, but also on its distribution. In Figure 4c, we show that IKZF3
further substantiates this observation: despite eliciting a significantly weaker effect compared to
CEBPA, it was predicted less accurately, likely due to its atypical effect distribution (Appendix H.4).
This suggests that model performance could be improved by more evenly representing perturbations
across a wider range of effect sizes and distributions. These findings highlight the importance of
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Figure 4: Predictions of models across the top 20 DEGs for 4 perturbations from different splits. Subcaptions
indicate perturbation name, sparsification probability. The predictions are included as colored dots, and the
target perturbation effect is displayed as a dashed line.

exploring perturbation space more thoroughly and ensuring balanced representation during model
training – a challenge that scFM embeddings alone are not equipped to address.

3.4 Contextual alignment between pre-training and fine-tuning datasets has minimal impact
on intra-cell type perturbation effect prediction

Previous research by Cui et al. [10] demonstrated that the performance of models trained with
zero-shot scFM embeddings is strongly affected by the overlap between their pre-training datasets
and the downstream task data in cell-type annotation tasks. We sought to determine whether this
reliance on contextual alignment extends to perturbation effect prediction.
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Figure 5: MSE as a function of the pre-train and fine-tune data cross-split overlap for scGPT and scBERT.
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In Figure 5, we calculated the contextual alignment between the datasets used to pre-train scGPT and
scBERT, and the Norman dataset – used to fine-tune the scFM probes. The alignment scores were
0.606 and 0.718 for scGPT and scBERT, respectively, indicating that scBERT’s pre-training corpus is
approximately 19% more similar to the Norman dataset than that of scGPT. While the models show
comparable MSE across splits, scBERT showed greater robustness. Notably, scGPT’s pre-training
corpus is an order of magnitude larger than scBERT’s, underscoring the importance of contextual
alignment over just scaling up the size of pre-training data.

However, to fully appreciate the impact of contextual alignment in perturbation effect prediction, the
experimental setup proposed here should be expanded to include a broader range of cell types and
perturbations. We believe that future research should explore how contextual alignment may affect
model performance when pre-training datasets are curated for perturbation effect prediction.

3.5 Limitations

In this study we focused on applying PertEval-scFM to one well-established high quality dataset.
Ideally, we need to expand to more diverse datasets, including datasets containing combinatorial and
chemical perturbations, to ensure the robustness of our framework and verify the findings presented
here. Nonetheless, this is a step towards a unified framework to evaluate models for perturbation
effect prediction.

4 Conclusion

PertEval-scFM addresses the current lack of consensus in benchmarking models for perturbation
effect prediction by introducing a modular evaluation toolkit with diverse metrics designed to assess
and interpret model performance. In particular, our framework allows consideration of distribution
shift, often overlooked in other studies. We apply PertEval-scFM to evaluate the added benefit of
using zero-shot scFM embeddings for perturbation prediction, instead of raw gene expression data.
This study showed that current generation zero-shot scFM embeddings offer no improvement in
perturbation effect prediction performance compared to rudimentary baselines when evaluated across
2,000 HVGs and 20 DEGs. The AUSPC metric suggests that scFMs were less robust to distribution
shift, whereas analysis using the E-distance metric revealed that the models particularly struggle
to predict strong and atypically distributed perturbation effects. Finally, the contextual alignment
metric points to the necessity of including a broader range of cell types and perturbations to better
understand its impact on perturbation effect prediction. We plan to maintain and expand PertEval-
scFM, developing a comprehensive benchmarking suite to facilitate the evaluation of perturbation
models, and expect it to become a valuable community resource.

Future work. While our findings do not support the use of current-generation scFMs for reliable
perturbation effect prediction, we recognize their potential. We expect that to make progress towards
the accurate prediction of perturbation effects, scFMs must be customized for this task. Key questions,
such as how to represent perturbations in silico, and how to fully leverage vast pre-training data, need
to be addressed. Existing cell atlases only capture a tiny fraction of the human phenoscape – the full
range of states possibly occupied by a cell [30] – and often exclude perturbation-induced states. We
think two key elements are required to improve the use of scFMs for perturbation effect prediction:
higher-quality data that spans a wider range of the human phenoscape, covering multiple modalities,
and consisting of clinically relevant cell types; and second, the development of specialized models,
including scFMs, designed to fully leverage large-scale datasets to predict transcriptomic responses
to perturbations.

Computational requirements

A single MLP probe was trained using 12 NVIDIA A100-PCIE-40GB GPU cores. Runtime depends
on the hidden dimension of the probe, which is around 5 to 30 minutes for the smallest to biggest
probes, respectively. This research utilized QMUL’s Apocrita HPC facility, supported by QMUL
Research-IT [31].
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Appendix

A Single-cell data

The advent of single-cell RNA sequencing technology (scRNA-seq) has revolutionized our under-
standing of cellular heterogeneity and dynamic biological processes [32]. Unlike traditional bulk
sequencing methods, which average signals across large populations of cells, scRNA-seq technologies
enable the study of gene expression at single-cell resolution. This granularity provides unprece-
dented insights into complex mechanisms of development, differentiation, and disease progression
[30, 33, 34]. The broad-scale application potential of scRNA-seq technology has led to the generation
of large-scale datasets, such as the Human Cell Atlas [35] and the CellxGene Census [36], which
collectively span millions of cells and most sources of primary tissue.

A.1 Perturb-seq data

Perturb-seq integrates scRNA-seq with CRISPR-based perturbations to profile gene expression
changes in response to specific genetic modifications at the single-cell resolution [24]. By sys-
tematically perturbing genes and measuring the resulting transcriptomic changes, Perturb-seq data
provides a detailed map of cellular responses to specific genetic modifications. These datasets, such
as those generated by Norman et al. [29] and Replogle et al. [37], allow researchers to explore
the relationships between gene perturbations and cellular phenotypes in a high-dimensional space,
providing invaluable insights into gene regulatory networks and cellular behavior and allowing the
identification of potential drug targets [38].

A.1.1 The Norman dataset

The dataset from Norman et al. [29] represents one of the most comprehensive Perturb-seq resources
available. It profiles transcriptional responses to over 100 single-gene perturbations in the human
K562 leukemia cell line, using pooled CRISPR screening and scRNA-seq. This dataset captures gene
expression data from thousands of individual cells, each subjected to either a control or a perturbation,
providing an ideal testing ground for models designed to predict perturbation effects. The Norman
dataset includes both perturbed and unperturbed cells, allowing for systematic evaluation of model
performance in predicting the effects of genetic perturbations at single-cell resolution.

Table A1: Overview of the Norman dataset

Characteristic Description

Cell type K562 (human leukemia cells)

Total number of perturbations 287

Number of single-gene perturbations 105

Perturbation method CRISPRa

Number of control cells ∼12,000

Number of cells ∼110,000

Sequencing platform 10x Genomics Chromium

Gene expression data Single-cell RNA-seq

Number of genes measured 20,000+

Reference Norman et al. [29]

A.2 Single-cell data pre-processing and quality control functions and settings

The dataset was downloaded and pre-processed using ScPerturb [26], PertPy [39], and ScanPy
[40]. As scFMs utilize raw gene expression counts, two versions of the dataset are stored internally:
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an AnnData object containing raw expression counts, used to generate embeddings with scFMs, and
an AnnData object with pre-processed gene expression values, used to train the baseline models.

Pre-processing involved normalizing the raw gene expression counts by the total number of counts
for each gene to account for differences in sequencing depth and ensure comparability across samples.
This was performed using the scanpy.pp.normalize_total(adata) method with default settings.
Next, the normalized counts were log-transformed with scanpy.pp.log1p(adata) to stabilize vari-
ance and make the data more amenable to downstream analysis. Finally, the top 2,000 highly variable
genes were selected for training, using the scanpy.pp.highly_variable_genes(pert_adata,
n_top_genes=2000) function.

A.3 Quality control plots
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Figure A1: Quality control plots for the Norman dataset. (a) The number of cells per gene. This indicates how
often an individual gene is measured across cells. Genes that are present in many cells might be housekeeping
genes or essential genes. Because many genes were present in only a few cells, only genes present in minimum
5 cells were considered. (b) The number of genes detected per cell across all datasets. This offers insights
into the distribution of genes among cells and indicates how representative the measurements are of single-cell
transcriptomes.
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B Models

B.1 Single-cell foundation models (scFMs)

Single-cell foundation models (scFMs) are trained on broad single-cell data using large-scale self-
supervision, allowing them to be adapted (i.e., fine-tuned) for a wide range of downstream tasks.
Most scFMs use variants of the Transformer [41] architecture to process embedded representations
of input gene expression data. However, they differ in input data representation, model architecture,
and training procedures. Here, we provide a brief overview of the scFMs included in PertEval-scFM.

Geneformer. Geneformer [8] employs six transformer units, each consisting of a self-attention
layer and an MLP layer. The model is pre-trained on Genecorpus-30M, which comprises 29.9 million
human single-cell transcriptomes from a broad range of tissues obtained from publicly available
data. Before feeding the data into the model, gene expression values are converted into rank value
encodings. This method provides a non-parametric representation of each single-cell transcriptome
by ranking genes based on their expression levels in each cell and normalizing these ranks within
the entire dataset. Consequently, housekeeping genes, which are ubiquitously highly expressed,
are normalized to lower ranks, reducing their influence. Rank value encodings for each single-cell
transcriptome are then tokenized, allowing genes to be stored as ranked tokens instead of their exact
transcript values. Only genes detected within each cell are stored, thus reducing the sparsity of the
data. When input into the model, genes from each single-cell transcriptome are embedded into a
256-dimensional space. Cell embeddings can also be generated by averaging the embeddings of
each detected gene in the cell, resulting in a 256-dimensional embedding for each cell. The model
is pre-trained using a masked learning objective, masking a portion of the genes and predicting the
masked genes, which is intended to allow the model to learn gene network dynamics.

scBERT. scBERT [6] adapts the BERT architecture [1] for single-cell data analysis. A transformer
is used as the model’s backbone. The input data is represented as a sequence of gene expression
values for each cell, where cells are constructed from gene expression value tokens. Gene embeddings
are generated from the sum of two embeddings, where the first represents the gene’s binned log-scale
expression level, and the second is generated with gene2vec [42] and specifies the gene’s identity. The
model is pre-trained via imputation on 5 million cells using a masked learning objective – masked
gene expression values are predicted as a function of the other gene embeddings in the cell. In the
paper, scBERT is fine-tuned for cell type annotation.

scFoundation. scFoundation [12] employs xTrimogene as a backbone model, a scalable
transformer-based architecture that includes an embedding module and an asymmetric encoder-
decoder. The embedding module converts continuous gene expression scalars into high-dimensional
vectors, allowing the model to fully retain the information from raw expression values, rather than
discretizing them like other methods. The encoder is designed to only process nonzero and non-
masked gene expression embeddings, reducing computational load and thus enabling the application
of “vanilla transformer blocks to capture gene dependency without any kernel of low-rank approxima-
tion”. These encoded embeddings are then recombined with the zero-expressed gene embeddings at
the decoder stage to establish transcriptome-wide embedded representations. This backbone approach
can then be built upon additional architectures which are specialized for specific tasks - i.e., GEARS
[43] for perturbation response prediction. scFoundation is pre-trained using read-depth-aware (RDA)
modeling, an extension of masked language modeling developed to take the high variance in read
depth of the data into account. The raw gene expression values are pre-processed using hierarchical
Bayesian downsampling in order to generate the input vectors, which can either be the unchanged
gene expression profile or where downsampling has resulted in a variant of the data with lower total
gene expression counts. After gene expression has been normalized, raw and input gene expression
count indicators are represented as tokens which are concatenated with the model input, allowing the
model to learn relationships between cells with different read depths. Pre-training used data from
over 50 million single cells sourced from a wide range of organs and tissues originating from both
healthy and donors with a variety of diseases and cancer types.

scGPT. scGPT [10] follows a similar architectural and pre-training paradigm to scBERT. However,
scGPT bins genes according to their expression, ensuring an even distribution across each bin. It uses
random gene identity embeddings and incorporates an additional “condition embedding” to store
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meta-information and differentiate each gene. Along with gene embeddings, scGPT trains a cell
token to summarize each cell. Instead of the long-range Performer architecture, scGPT processes
embeddings via Flash-Attention [44] blocks. The model implements a generative masked pre-training
using a causal masking strategy inspired by OpenAI’s GPT series [45]. scGPT is pre-trained on
33 million human cells and fine-tuned on a wide suite of downstream tasks, including cell type
annotation, genetic perturbation response prediction, batch correction, and multi-omic integration.

Universal Cell Embeddings (UCE). Universal Cell Embeddings (UCE) [9] is trained on a large
compendium of single-cell RNA-seq datasets from multiple species, including human, mouse,
mouse lemur, zebrafish, pig, rhesus macaque, crab-eating macaque, and western clawed frog, to
create a universal embedding space for cells. The model converts the transcriptome of a single cell
into an expression-weighted sample of its corresponding genes and then represents these genes by
their protein products using a large protein language model. This representation is then fed into
a transformer model. UCE is pre-trained in a self-supervised manner with a contrastive learning
objective, where similar cells are mapped to nearby points in the embedding space, and dissimilar
cells are mapped to distant points. This training paradigm enables UCE to provide high-quality
embeddings that facilitate various downstream analyses. Benchmarks carried out by Rosen et al. [9]
in a zero-shot framework shown that UCE outperforms Geneformer [8] and scGPT [10], as well as
cell annotation models such as scVI and scArches, in cell representation tasks.

B.2 scFM embedding generation

In this section, we detail the process of generating embeddings for each foundation model in a zero-
shot context using pre-trained models with frozen weights. For some models, pre-trained checkpoints
are available and can be directly utilized, while others require initial pre-training. By freezing model
weights, we ensure that the embeddings represent the learned features from the initial training phase,
without further adaptation to the specific perturbation prediction task. This approach allows us to
evaluate the inherent quality and utility of the pre-trained representations for downstream applications
in biological research.

Geneformer. To generate embeddings for Geneformer [8], we downloaded the repository, including
pre-trained model checkpoints, from Hugging Face. For control cells, we pre-processed the raw
expression files to ensure the correct naming of columns and then fed them into the Geneformer
tokenizer (TranscriptomeTokenizer). Once the dataset had been tokenized, we extracted embed-
dings using the pre-trained checkpoint (6-layer model) with the EmbExtractor method. For the
perturbation data, we loaded the data and iterated through it in order to remove perturbed genes,
simulating their deletion. The perturbed cells were then tokenized, and embeddings were extracted
for each perturbed cell using the same functions.

scBERT. To generate emeddings for scBERT [6], we first downloaded the checkpoint and data
shared in the scBERT GitHub repository. The environment was set up using the scBERT-reusability
GitHub repository. For the raw expression counts, the genes were aligned using Ensembl Homo
sapiens gene information. Log-normalization was performed and cells with less than 200 expressed
genes were filtered out. For the perturbation data, the gene expression value was set to 0 to simulate
perturbation, and embeddings were generated using the predict.py script.

scFoundation. To generate scFoundation embeddings [12], we initialized the scFoundation class
shared at the official scFoundation GitHub repository. The 01B-resolution pre-trained model
checkpoint was loaded and the embeddings were generated while setting the input_type =
singlecell and tgthighres = f1 to indicate no read depth differences between unperturbed
and perturbed cells. The embeddings were then generated using the get_embeddings function.

scGPT. To generate embeddings for scGPT [10] we installed the scGPT python package. We
downloaded and used the whole-human scGPT model for embedding. For control cells, we used
the scGPT embed_data function to generate the embeddings from the raw expression values. This
function tokenises the data before feeding it through the model. For the perturbation data, we removed
the perturbed genes, to simulate their deletion. The embeddings for the perturbed cells were then
generated using the scGPT embed_data function.
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Universal Cell Embeddings (UCE). To generate cell embeddings for UCE [9], we ran the
eval_single_anndata.py script provided in the UCE GitHub repository. Model weights for the
33-layer model and the pre-computed protein embeddings were downloaded separately from figshare.
The script takes as input an h5ad raw expression file with variable names set as gene_symbols. The
script was run with default parameters, except for the filter argument which was set to False, in order
to skip an additional gene and cell filtering step. No further pre-processing was required to generate
embeddings for control cells. For in vitro perturbed cells, the raw count value of the perturbed gene
was explicitly set to zero for each condition prior to model inference, and saved as a h5ad file. The
output of the script was an identical h5ad file with the input, except for cell-level embeddings that are
stored in the Anndata.obsm[‘X_uce’] slot.
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C Featurization

C.1 Single-cell expression data featurization

To generate the input features for raw single-cell expression data, we begin with the control matrix
C ∈ Rnc×v, consisting of nc unperturbed single-cell transcriptomes across v highly variable genes
(see Appendix A.2). From this matrix, we form a pseudo-bulk sample C̃, which aggregates expression
values from groups of cells within the same sample, in order to reduce sparsity and noise. Formally,
let C̃ = {ci}500i=1 denote the set of randomly sampled cells from C. The average expression value Cj

for each cell j is then calculated by averaging the expression across the pseudo-bulked cells:

Cj =
1

|C̃|
∑
ci∈C̃

ci,j ∀ j ∈ {1, . . . , np} (C1)

Using this basal expression, we construct the input matrix Xc ∈ Rnp×v, which has the same
dimensions of the perturbed transcriptomic matrix P ∈ Rnp×v (i.e. what we want to predict), where
np is the number of perturbed cells. The input matrix Xc is generated by subsampling from Cj ,
ensuring that the dimensions are consistent between the input and the target output.

This approach ensures that input-target pairs are consistently defined for all training examples, as the
dimensions of Xc ∈ Rnp×v align with the target matrix P . Representing input expression at pseudo-
bulked basal levels helps mitigate sparsity issues caused by limited gene coverage in individual
single-cell measurements from the original dataset. However, this method introduces a trade-off by
reducing the heterogeneity of the input gene expression. As a result, some salient single-cell signals,
such as those related to its initial state, may be diminished. However, inferring cellular states based
solely on gene expression data is inherently challenging, given the many confounding factors and
technical noise present in single-cell datasets [46]. Therefore, conventional machine learning models
should not be expected to perform this task with high fidelity to begin with.

C.1.1 MLP baseline

To generate the full set of input features for the MLP, we must encode the identity of each perturbation
alongside capturing basal gene expression. Let P = {p1, . . . , pk} denote the set of perturbable
genes, and let D = {d1, . . . , dv} represent all highly variable genes.

To evaluate the models’ ability to generalize to unseen perturbations, it is important to incorporate
information about gene interactions within a specific cell type. This allows the models to learn gene
interaction networks, helping to extrapolate effects from known perturbations to novel ones.

To achieve this, we construct a v-dimensional correlation vector for each perturbable gene by
calculating the Pearson correlation between its basal expression and that of all other genes, including
itself. By including the auto-correlation of the perturbable gene, we explicitly encode the identity of
the gene to be perturbed. The resulting feature vector for each perturbable gene, gc ∈ Rv, captures
the correlations between its basal expression and the basal expression of all highly variable genes.
Aggregating these correlation vectors for all perturbable genes produces the matrix Gc ∈ Rnp×v,
where the perturbation in each row corresponds to the transcriptomic state observed in P .

Finally, the control gene expression matrix Xc is concatenated with the perturbation correlation
matrix Gc to construct the complete input feature matrix:

ZGE = Xc ⊕Gc (C2)

Here, ZGE ∈ Rn×2v represents the input feature matrix, where each row gi combines the log-
normalized basal expression values of a cell with the corresponding perturbation correlation features.
This procedure is applied to both the training and testing sets, to generate ZGEtrain and ZGEtest .

C.2 Single-cell foundation model embedding featurization

To generate embeddings from a pre-trained single-cell foundation model (scFM) with frozen weights,
we begin by mapping raw gene expression counts to transcriptomic embeddings. Let fscFM : Rl →
Rec represent the function that transforms raw expression data into an embedding for each cell.
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To construct the control cell embedding, we feed the raw expression vector xc
i for each of the nc

control cells into the scFM:
fscFM(Xc) = Zc (C3)

The embedding vectors are then subsampled to create Zc ∈ Rnp×ec , where np matches the number
of perturbed cells and the dimension of Zc aligns with the target output matrix.

An in silico perturbation embedding is then generated by nullifying the expression of the perturbed
gene across all control cells in which it is expressed, up to a maximum of 500 cells. The nullification
process, denoted by N(xc

i , pi), adjusts the gene expression vector according to the requirements of
the scFM model in use. The nullification function can be defined as N : Rv × Nv → Rl, where Rv

represents the space of the gene expression vector, and Nv denotes the set of natural numbers from 1
to v, corresponding to the indices of genes in xc

i . If the scFM requires setting the perturbed gene’s
expression to zero, l = v. However, some scFMs filter out non-expressed genes during tokenization
(scGPT), or train on ranked gene token representations instead of expression values (Geneformer). In
these cases, the perturbed gene must be removed from the control gene expression vector, resulting in
l = v − 1. Nonetheless, the perturbation embedding xp

i is constructed as follows:

fscFM(N(xc
i , pi)) = zpi (C4)

The perturbation embeddings for all cells form the matrix Zp ∈ Rnp×ec .

The final cell embedding is then obtained by concatenating the control embedding Zc with the
perturbation embedding Zp:

ZscFM = Zc ⊕ Zp (C5)

This approach differs from raw expression featurization, where co-expression patterns are explicitly
encoded to model perturbations. In the scFM embedding featurization, in silico perturbation simulates
the changes caused by gene perturbation. We hypothesize that the embeddings generated by scFMs
inherently encode co-expression relationships, aligning with their pre-training objective based on
masked language modeling.

In this study, zero-shot embeddings are generated using five different scFMs (Table 1). Inference for
each scFM is tailored to the specific idiosyncrasies of the model in question. Detailed information on
all the scFMs used can be found in Appendix B.1.
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D MLP

D.1 Hyperparameter optimization

To optimize the MLP probes, we used root mean square error (RMSE) as the objective function and
the Adam optimizer [47]. Model performance was evaluated on an independent test set comprising
unseen perturbations. The objective function to be minimized is:

L(θ) =

√√√√ 1

nb

nb∑
j=1

(
(T −Xc)j − δ̂θ(X)j

)2

(D1)

where j indexes each cell and nb denotes the batch size.

Hyperparameters were selected using the tree-structured Parzen estimator (TPE) tuning algorithm
[48]. This optimization was performed on the first train-test split, which contains the largest training
set. Given the computational demands of exhaustive parameter sweeps, we focused on optimizing the
hyperparameters using the gene expression data as a reference.

An initial search across different numbers of hidden layers revealed that this parameter had no
substantial effect on model performance. Therefore, a single hidden layer was used throughout the
experiments to maintain model simplicity. The learning rate, however, was found to significantly
influence performance and was thus adjusted for the models trained using the scFM embeddings.
Following the manifold hypothesis, we set the hidden dimension to half of the input dimension [49].
A comprehensive list of the final hyperparameters for each model is provided in Table D1.

Table D1: TPE hyperparameter optimization results for all the datasets and probes considered.
Hyperparameter

Dataset Model Type Type Name Value

Norman MLP

Adam Optimizer
Starting Learning Rate 5 · 10−5

Gene expression

Max. Epochs 100

ReduceLROnPlateau Scheduler

Reduction Factor 0.1
Patience 15

Threshold 1 · 10−4

Min. Learning Rate 5 · 10−9

Model Hidden Layers 1
Hidden Dimension 1, 024

Data Batch Size 64

Norman MLP

Adam Optimizer Starting Learning Rate 3 · 10−4

Geneformer

Max. Epochs 100

ReduceLROnPlateau Scheduler

Reduction Factor 0.1
Patience 10

Threshold 1 · 10−4

Min. Learning Rate 5 · 10−9

Model Hidden Layers 1
Hidden Dimension 128

Data Batch Size 64
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Table D2: TPE hyperparameter optimization results, continued.
Hyperparameter

Dataset Model Type Type Name Value

Norman MLP

Adam Optimizer Starting Learning Rate 5 · 10−6

scBERT

Max. Epochs 100

ReduceLROnPlateau Scheduler

Reduction Factor 0.1
Patience 10

Threshold 1 · 10−4

Min. Learning Rate 5 · 10−9

Model Hidden Layers 1
Hidden Dimension 100

Data Batch Size 64

Norman MLP

Adam Optimizer Starting Learning Rate 3 · 10−4

scGPT

Max. Epochs 100

ReduceLROnPlateau Scheduler

Reduction Factor 0.1
Patience 10

Threshold 1 · 10−4

Min. Learning Rate 5 · 10−9

Model Hidden Layers 1
Hidden Dimension 256

Data Batch Size 64

Norman MLP

Adam Optimizer Starting Learning Rate 3 · 10−4

UCE

Max. Epochs 100

ReduceLROnPlateau Scheduler

Reduction Factor 0.1
Patience 10

Threshold 1 · 10−4

Min. Learning Rate 5 · 10−9

Model Hidden Layers 1
Hidden Dimension 640

Data Batch Size 64

Norman MLP

Adam Optimizer Starting Learning Rate 3 · 10−4

scFoundation

Max. Epochs 100

ReduceLROnPlateau Scheduler

Reduction Factor 0.1
Patience 10

Threshold 1 · 10−4

Min. Learning Rate 5 · 10−9

Model Hidden Layers 1
Hidden Dimension 1, 536

Data Batch Size 64
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E SPECTRA

E.1 Evaluating model robustness under distribution shift in single-cell data with SPECTRA

Sample-to-sample similarity must be calculated to construct the spectral graph for single-cell data.
If two samples are sufficiently similar, an edge will be inserted in the spectral graph. To quantify
sample-to-sample similarity between distributions, the L2 norm, denoted by ∥ · ∥, of the log 1p-fold
change between the mean perturbation expression vector, pi, and the mean control gene expression
vector, c, is calculated:

S(pi, c) = ∥ log(pi + 1)− log(c+ 1)∥ (E1)

Using this definition, a series of train-test splits are generated by sparsifying the initial graph. Train
and test instances are samples from distinct subgraphs for each split, with decreasing mean pairwise
similarity between the two sets. The sparsification of the initial graph is attenuated by a sparsification
probability (s), which is the probability that an edge between two samples will be be dropped.
Mathematically, SPECTRA employs a graph sparsification technique similar to what is described in
Spielman and Teng [50]. A practical limitation of the current implementation of SPECTRA lies in
its tendency to unevenly distribute perturbations of similar magnitudes across the training and test
splits while minimizing cross-split overlap. This uneven distribution engenders class imbalances that
become increasingly pronounced at higher sparsification probabilities. Consequently, this imposes a
trade-off between induced class imbalance and simulated distribution shift. Empirical observations
on the Norman data indicate that the sparsification probability threshold at which the class imbalance
remains manageable is approximately 0.7. Beyond this threshold, the deleterious effects of class
imbalance as well as low sample numbers begin to outweigh the benefits of reduced cross-split
overlap.

For the Norman dataset, Appendix E1a illustrates a rapid decrease in the number of training and
testing samples as the sparsification probability increases. This is expected, as a higher sparsification
probability leads to increasingly disconnected subgraphs to draw samples from. Furthermore,
appendix E1 confirms that SPECTRA can simulate distribution shift by showing a corresponding
decrease in similarity between the samples as sparsification probability rises. Subsequently, we train
and test models on each SPECTRA split and plot the MSE as a function of the decreasing cross-split
overlap. The area under this curve is defined as the AUSPC, which serves as a measure of model
generalizability under distribution shift.

Similarly to the within-dataset case outlined above, the cross-split overlap can be used to measure the
similarity between-datasets, in this case between the scFM pre-train and our fine-tune datasets for
scBERT and scGPT. This approach allows us to investigate the impact of pre-training data on the
quality of scFM embeddings. Further details are provided in Section G.1.
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Figure E1: (a) Number of samples in train and test as a function of the sparsification probability. (b) Cross-split
overlap as a function of the sparsification probability.
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E.2 Implementation details of the AUSPC

The AUSPC is defined by Equation 8. For numerical evaluation, the integral is approximated using
the trapezoidal rule with sparsification probabilities si ∈ {0.0, 0.1, ..., 0.7}:

AUSPC = f(ϕ) =

∫ smax

0

ϕ(s) ds

≈ d

2

n−1∑
i=0

[ϕ(si) + ϕ(si+1)]

(E2)

where d denotes the step size of the sparsification probability (0.1 in this case) and ϕ represents the
metric of interest, (MSE). The ∆AUSPC is subsequently derived by calculating this value for both
the baseline and the model independently, and then subtracting the AUSPC of the model from that of
the baseline. For simplicity, we use the notation ϕi = ϕ(si).

To quantify the uncertainty associated with the AUSPC, uncertainty propagation is utilised, wherein
the AUSPC is assumed to be a non-linear function of the metric of interest, ϕ(s). For uncertainty
propagation in this context, the following equation is employed:

σ2 =

n−1∑
i=1

(
∂f

∂ϕi
σϕi

)2

(E3)

where σ represents the total error associated with the AUSPC and σϕi denotes the error associated
with the MSE for split i.

The partial derivative ∂f
∂ϕi

is calculated using the definition of f given in Equation E2:

∂f

∂ϕi
=

d

2

∑
i

(
∂

∂ϕi
ϕi +

∂

∂ϕi
ϕi+1

)
∂f

∂ϕi
=

d

2

(E4)

Substituting this result into Equation E3 yields:

σ2 =
∑
i

(
d

2
σϕi

)2

σ =

√√√√∑
i

(
d

2
σϕi

)2
(E5)

The algorithmic implementation is given in Algorithm 1.
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Algorithm 1 Calculate AUSPC and its associated error

1: function TRAPEZOIDALAUSPC(ϕ, s)
2: AUSPC← np.trapz(ϕ, s)
3: return AUSPC
4: end function
5: function CALCULATEDELTAAUSPC(ϕb, ϕm, σb, σm, s)
6: AUSPCb ← TRAPEZOIDALAUSPC(ϕb, s)
7: AUSPCm ← TRAPEZOIDALAUSPC(ϕm, s)
8: d← s[1]− s[0] ▷ Assuming uniform step size

9: σb ←
√∑

i(
d
2σϕb,i)

2

10: σm ←
√∑

i(
d
2σϕm,i)2

11: ∆AUSPC← AUSPCb − AUSPCm

12: return ∆AUSPC, σb, σm

13: end function
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F E-statistics

F.1 Using E-distance and differential gene expression to evaluate significant perturbations

While examining transcriptome-wide, aggregated perturbation effects provides valuable insights, it
lacks the granularity needed to assess a model’s ability to reconstruct perturbation effects at the gene
level. To address this limitation, energy statistics (E-statistics) are employed to evaluate and select
significant perturbations in single-cell expression profiles. Subsequently, differential gene expression
analysis is carried out to identify the top 20 differentially expressed genes which are then used to
evaluate individual perturbations.

Perturbation effects are quantified using the E-distance, which compares mean pairwise distances
between perturbed and control cells. Let X ∈ {x1, . . . ,xna

} and Y ∈ {y1, . . . ,ynb
} be two

distributions of cells in different conditions with na and nb cells respectively, where xi, yi ∈ Rm

refer to the transcriptomes for cell i. Now the between-distribution distance δXY and the within-
distribution distances σX and σY can be defined as:

δXY =
1

na · nb

na∑
i=1

nb∑
j=1

d(xi,yj)

σX =
1

n2
a

na∑
i=1

na∑
j=1

d(xi,xj)

σY =
1

n2
b

nb∑
i=1

nb∑
j=1

d(yi,yj)

(F1)

where d(·, ·) is the squared Euclidean distance. The E-distance, E, is then defined as:

E(X ,Y) := 2δXY − σX − σY (F2)

The E-test, a Monte Carlo permutation test, is used to assess the statistical significance of observed
E-distances. This test generates a null distribution by randomly permuting perturbation labels 10,000
times, comparing the observed E-distance against this distribution to yield an adjusted p-value
that was calculated using the Holm-Sidak method. This p-value can then be used to select which
perturbations result in a perturbation effect that is significantly different from the control.

Before E-statistics are calculated, the data is pre-processed. The number of cells per perturbation is
subsampled to 300, following the 200-500 range proposed by Peidli et al. [26]. Perturbations with
fewer than 300 cells are excluded from downstream analysis. This threshold excludes 20 perturbations,
leaving 84 single-gene perturbations. One additional perturbation (BCL2L11) is excluded by the
E-test as not significant.

For significant perturbations, the top 20 differentially expressed genes between perturbation and
control are selected for evaluation. This approach is based on the observation that genetic pertur-
bations tend to significantly affect only a fraction of the full transcriptome, while the remainder
remains close to control expression [19]. This allows us to evaluate whether the predicted perturbation
effect aligns with the experimental observations specifically for individual perturbations. The data
is pre-processed for differential gene expression testing as described in Appendix A.2. Differen-
tial gene expression calculation is performed using the Wilcoxon rank sum test implemented in
scanpy.tl.rank_gene_groups.
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G Contextual alignment

G.1 Calculating contextual alignment between pre-train and fine-tune datasets

To evaluate the influence of pre-training on the efficacy of scFM embeddings, we estimate the
contextual alignment between the datasets used for pre-training and those used for fine-tuning. We
expect that enhanced model performance correlates with a greater overlap between these datasets.
Following the instructions outlined on the scGPT GitHub, we obtained the complete pre-training cell
corpus for scGPT from the CellXGene Census. As for scBERT, the pre-training dataset is derived
from PanglaoDB and provided by the authors. The scBERT and scGPT datasets contain 1.4 million
and 33 million cells, and 16,906 and 60,664 features respectively.

To carry out the contextual alignment experiment, we first ensure alignment between the paired
datasets based on common genes. We normalize the fine-tuning dataset to a total read count of 10,000
over all genes and apply log1p-transformation. Additionally, we filter the data to include the same set
of 2,061 highly variable genes that are used in the fine-tuning process (see Appendix A.2). Following
these steps, we obtain two pre-training/fine-tuning common gene sets, 1,408 for scBERT + Norman
and 2,044 for scGPT + Norman.

To quantify the alignment, we compare gene expression profiles between the fine-tuning and pre-
training datasets by computing cosine similarity scores, which are advantageous due to their insen-
sitivity to expression magnitude. This comparison generates a dense score matrix of dimensions
Nfinetune × Npre-train. For a subset of Npre-train, used in at least one train-test split, an aggregate
cross-split overlap is calculated to evaluate the impact of different pre-training/fine-tuning dataset
configurations on model performance.

Initially, a matrix S ∈ RNfinetune×Npre-train is constructed, where each element sij represents the cosine
similarity between the i-th cell in the fine-tuning dataset and the j-th cell in the pre-training dataset.
From this, we derive a binary similarity matrix B of the same dimensions with entries bij . The matrix
is constructed as follows:

bij =

{
1 if sij ≥ µ+ 2σ,

0 otherwise,
(G1)

where µ and σ are the mean and standard deviation of the cosine similarities computed across
100,000 randomly sampled cell pairs. Based on this established threshold, B represents whether each
fine-tuning cell significantly overlaps with each pre-training cell.

To quantify the alignment for each fine-tuning cell, we aggregate over the pre-training dimension of
matrix B for each fine-tuning cell, resulting in a vector f where each component fi is given by:

fi =
1

Npre-train

Npre-train∑
j=1

Bij (G2)

Here, fi ∈ RNfinetune represents the fraction of the pre-training dataset that is similar to the i-th
fine-tuning cell.

To conduct the sensitivity analysis, we define a threshold τ , which represents the minimum fraction of
the pre-training dataset that a fine-tuning cell must be similar to in order to be considered significantly
aligned. τ is varied within the range of 0 to 0.1% of Npre-train. For each value of τ , we calculate the
proportion of fine-tuning cells that meet or exceed this threshold, thus generating a series of values:

p(τ) =
1

Nfinetune

Nfinetune∑
i=1

1{fi>τ} (G3)

where 1 is the indicator function that evaluates to 1 if the condition is true and 0 otherwise.

The sensitivity curve is then plotted as p(τ) versus τ . The area under this curve reflects the overall
cross-split overlap of the fine-tuning dataset relative to the pre-training dataset, as visualized in
Figure G1.
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Figure G1: Plot of the probability that a cell from the pre-train dataset is similar to a cell from the fine-tune
dataset as a function of τ , the similarity threshold at which two cells are considered similar based on their cosine
similarity.
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H Supplementary figures

H.1 SPECTRA performance curves
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(d) Geneformer
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Figure H1: MSE as a function of the sparsification probability for the different models. These functions are used
to calculate to calculate the AUSPC, which is here shaded in blue.
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H.2 Perturbation effect prediction results across top 20 DEGs
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Figure H2: Comparison of the mean baseline across different sparsification probability train-test splits.

H.3 MSE for all models compared to mean baseline across top 20 DEGs
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Figure H3: MSE as a function of the sparsification probability for the different models. This is a depiction of the
curves that are used to calculate the ∆AUSPC.
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H.4 Mean post-perturbation expression profiles for IKZF3 and CEBPA

0 2500 5000 7500 10000 12500 15000 17500

Gene

10−3

10−2

10−1

100

M
ea

n
po

st
-p

er
tu

rb
at

io
n

ex
pr

es
si

on

CEBPA
IKZF3

Figure H4: Post-perturbation mean expression profiles for IKZF3 and CEBPA. The y-axis has been log-
transformed for visual clarity.
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