
The First Optimal Algorithm for Smooth and
Strongly-Convex-Strongly-Concave Minimax

Optimization

Dmitry Kovalev
KAUST∗

dakovalev1@gmail.com

Alexander Gasnikov
MIPT†, ISP RAS‡, HSE§

gasnikov@yandex.ru

Abstract

In this paper, we revisit the smooth and strongly-convex-strongly-concave minimax
optimization problem. Zhang et al. (2021) and Ibrahim et al. (2020) established
the lower bound Ω

(√
κxκy log

1
ϵ

)
on the number of gradient evaluations required

to find an ϵ-accurate solution, where κx and κy are condition numbers for the
strong convexity and strong concavity assumptions. However, the existing state-
of-the-art methods do not match this lower bound: algorithms of Lin et al. (2020)
and Wang and Li (2020) have gradient evaluation complexity O

(√
κxκy log

3 1
ϵ

)
and O

(√
κxκy log

3(κxκy) log
1
ϵ

)
, respectively. We fix this fundamental issue by

providing the first algorithm with O
(√

κxκy log
1
ϵ

)
gradient evaluation complexity.

We design our algorithm in three steps: (i) we reformulate the original problem
as a minimization problem via the pointwise conjugate function; (ii) we apply
a specific variant of the proximal point algorithm to the reformulated problem;
(iii) we compute the proximal operator inexactly using the optimal algorithm for
operator norm reduction in monotone inclusions.

1 Introduction

In this paper, we revisit the smooth and strongly-convex-strongly-concave minimax optimization
problem of the form

min
x∈Rdx

max
y∈Rdy

r(x) + F (x, y)− g(y), (1)

where F (x, y) : Rdx ×Rdy → R is a continuously differentiable function, r(x) : Rdx → R∪ {+∞}
and g(y) : Rdy → R ∪ {+∞} are proper lower semi-continuous convex functions. Problem (1)
has been actively studied in economics, game theory, statistics and computer science (Başar and
Olsder, 1998; Roughgarden, 2010; Von Neumann and Morgenstern, 1947; Facchinei and Pang, 2003;
Berger, 2013). Recently, many applications of this problem appeared in machine learning, including
adversarial training (Madry et al., 2017; Sinha et al., 2017), prediction and regression problems
(Taskar et al., 2005; Xu et al., 2009), reinforcement learning (Du et al., 2017; Dai et al., 2018) and
generative adversarial networks Arjovsky et al. (2017); Goodfellow et al. (2014).

In our paper, we focus on the case when function f(x, y) is strongly convex in x and strongly concave
in y. There are several reasons to consider this function class. First, this setting is fundamental and

∗King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
†Moscow Institute of Physics and Technology, Dolgoprudny, Russia
‡Institute for System Programming RAS, Research Center for Trusted Artificial Intelligence, Moscow, Russia
§National Research University Higher School of Economics, Moscow, Russia

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Table 1: Comparison of the state-of-the-art algorithms for solving smooth and strongly-convex-
strongly-concave minimax problems in the number of gradient evaluations required to find an
ϵ-accurate solution (Definition 1).

Reference Gradient Complexity
Tseng (2000)

Nesterov and Scrimali (2006)

Gidel et al. (2018)

Alkousa et al. (2019) O
(
min

{
κx

√
κy, κy

√
κx

}
log2 1

ϵ

)
Lin et al. (2020) O

(√
κxκy log

3 1
ϵ

)
Wang and Li (2020) O

(√
κxκy log

3(κxκy) log
1
ϵ

)
Algorithm 4 (This paper) O

(√
κxκy log

1
ϵ

)
Lower Bound (Zhang et al., 2021; Ibrahim et al., 2020) Ω

(√
κxκy log

1
ϵ

)

O
(
max {κx, κy} log 1

ϵ

)

studied by most existing works on minimax optimization.5 Second, efficient algorithms initially
developed for convex optimization often show state-of-the-art performance in non-convex applications
(Kingma and Ba, 2014; Reddi et al., 2019; Duchi et al., 2011). Finally, we will further see that this
fundamental setting is utterly understudied and lacks answers to even the most basic questions such
as “What is the best possible algorithm for solving a problem in this setting?”6

1.1 Related Work

Until recently, the best-known gradient evaluation complexity of solving problem (1) was
O
(
max {κx, κy} log 1

ϵ

)
(Tseng, 2000; Nesterov and Scrimali, 2006; Gidel et al., 2018), where

κx and κy denote the condition numbers of functions f(·, y) and f(x, ·), respectively. The first
attempt to provide an algorithm with an “accelerated” convergence rate was the work of Alkousa et al.
(2019). They provided an algorithm with O

(
min

{
κx

√
κy, κy

√
κx

}
log2 1

ϵ

)
gradient evaluation

complexity. This result was subsequently improved up to O
(√

κxκy log
3 1

ϵ

)
by Lin et al. (2020)

and O
(√

κxκy log
3(κxκy) log

1
ϵ

)
by Wang and Li (2020). However, these results do not match the

lower complexity bound Ω
(√

κxκy log
1
ϵ

)
established by Zhang et al. (2021); Ibrahim et al. (2020).

Hence, we have the following fundamental open problem:

Can we design an algorithm that achieves the lower gradient evaluation complexity bound in smooth
and strongly-convex-strongly-concave minimax optimization?

It is worth mentioning that this open question was answered positively in the works of Kovalev et al.
(2021); Thekumparampil et al. (2022); Jin et al. (2022) in the case of minimax problems with bilinear
coupling, i.e., when F (x, y) = p(x) + x⊤Ay − q(y), where p(x) and q(y) are smooth and strongly
convex functions, and A is a dx × dy matrix. However, the algorithm provided in this work does not
apply to the general minimax problem (1).

1.2 Main Contributions

We develop the first optimal algorithm for solving problem (1) in the smooth and strongly-convex-
strongly-concave regime, which is the main contribution of this work. We split the algorithm
development in three steps:

(i) In Section 3, we reformulate problem (1) as a particular minimization problem.

5Most existing works on minimax optimization study the convex-concave case. However, this setting can be
easily reduced to the strongly-convex-strongly-concave case via the regularization technique (Lin et al., 2020).

6In contrast to smooth convex-concave minimax optimization, the answer to this question for smooth convex
minimization was given by Nesterov (1983) several decades ago.

2



(ii) In Section 4, we develop a specific variant of the accelerated proximal point algorithm
(Algorithm 2) which will be used as a baseline for the optimal algorithm construction.

(ii) In Section 5, we develop an optimal algorithm for operator norm reduction in monotone in-
clusion problems, which will be used for the proximal operator computation in Algorithm 2.

In the final Section 6, we summarize these three steps by describing the optimal algorithm construction
and showing that the complexity of the proposed algorithm matches the lower bound.

As mentioned before, in Section 5, we develop an optimal algorithm for operator norm reduction
in composite monotone inclusion problems of the form (22), which is the second main contribution
of this work. To the best of our knowledge, there is only one optimal algorithm of Yoon and Ryu
(2021), which works for Lipschitz-continuous operators only, i.e., when B(u) ≡ 0 in problem (22).
In contrast to this, our algorithm works in the composite case with general maximally monotone
operator B(u).

Concurrent work of Carmon et al. (2022). In their recent concurrent paper, Carmon et al. (2022)
developed an efficient variant of the Catalyst method (Lin et al., 2015) called RECAPP. In contrast
to the original Catalyst method, RECAPP does not suffer from extra logarithmic factors in the
complexity. When applied to the minimax optimization problem (1), RECAPP achieves the optimal
complexity O

(√
κxκy log

1
ϵ

)
. Hence, RECAPP is another optimal algorithm for solving smooth

strongly-convex-strongly-concave minimax optimization problems. However, the work of Carmon
et al. (2022) appeared on arXiv and was published at ICML 2022 later than the first version of this
paper appeared on arXiv.

2 Preliminaries

The following assumptions formalize the smoothness, strong convexity, and strong concavity proper-
ties of function f(x, y).
Assumption 1. Function F (x, y) is µx-strongly convex in x, where µx > 0. That is, the following
inequality holds for all x1, x2 ∈ Rdx , y ∈ Rdy :

F (x2, y) ≥ F (x1, y) + ⟨∇xF (x1, y), x2 − x1⟩+ (µx/2)∥x2 − x1∥2. (2)
Assumption 2. Function F (x, y) is µy-strongly concave in y, where µy > 0. That is, the following
inequality holds for all x ∈ Rdx , y1, y2 ∈ Rdy :

F (x, y2) ≤ F (x, y1) + ⟨∇yF (x, y1), y2 − y1⟩ − (µy/2)∥y2 − y1∥2. (3)
Assumption 3. Function F (x, y) is L-smooth. That is, the following inequality holds for all
x1, x2 ∈ Rdx , y1, y2 ∈ Rdy :

∥∇F (x1, y1)−∇F (x2, y2)∥2 ≤ L2
(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
. (4)

Under these assumptions, by κx = L
µx

and κy = L
µx

, we denote the condition numbers of functions
F (·, y) and F (x, ·), respectively. The following assumption formalizes the properties of regularizers
r(x) and g(y).
Assumption 4. Functions r(x) and g(y) are convex, lower semi-continuous and proper, i.e., there
exist x̄ ∈ Rdx , ȳ ∈ Rdy such that r(x̄), g(ȳ) < +∞.

By (x∗, y∗) ∈ Rdx × Rdy , we denote the solution of problem (1), which is characterized via the
first-order optimality conditions {−∇xF (x∗, y∗) ∈ ∂r(x∗),

∇yF (x∗, y∗) ∈ ∂g(y∗).
(5)

Note that there exists a unique solution to the problem due to the strong convexity and strong concavity
assumptions (Assumptions 1 and 2). Hence, for any point (x, y) ∈ Rdx × Rdy , we can use squared
distance to the solution ∥x− x∗∥2 + ∥y − y∗∥2 as an optimality criterion. We formalize it through
the following definition.
Definition 1. We call a pair of vectors (x, y) ∈ Rdx ×Rdy an ϵ-accurate solution of problem (1) for
a given accuracy ϵ > 0 if it satisfies

∥x− x∗∥2 + ∥y − y∗∥2 ≤ ϵ. (6)

3



3 Step I: Reformulation via Pointwise Conjugate Function

In this section, we reformulate problem (1) as a particular convex minimization problem. This
reformulation will be beneficial because minimization problems are typically easier to solve than
minimax optimization problems.

3.1 Pointwise Conjugate Function

We start by introducing the pointwise conjugate function which will be the main component of our
problem reformulation. Let function F̂ (x, y) : Rdx × Rdy → R be defined as

F̂ (x, y) = F (x, y)− µx

2
∥x∥2 + µy

2
∥y∥2. (7)

One can observe that function F̂ (x, y) is smooth, convex in x, and concave in y due to Assumptions 1
to 3. Now, the pointwise conjugate function G(z, y) : Rdx × Rdy → R is defined as follows:

G(z, y) = sup
x∈Rdx

[
⟨x, z⟩ − r(x)− F̂ (x, y) + g(y)

]
. (8)

One can observe that for fixed y ∈ Rdy , function G(·, y) is nothing else but the
Fenchel conjugate7 of function r(·) + F̂ (·, y) − g(y). Moreover, function G(z, y) is de-
fined as a pointwise supremum of a family of convex and lower semi-continuous functions{
φx(z, y) = ⟨x, z⟩ − r(x)− F (x, y) + g(y) | x ∈ Rdx

}
. Hence, G(z, y) is also convex and lower

semi-continuous function. The following lemma provides a characterization of the subdifferential of
the pointwise conjugate function.
Lemma 1. Let z, x ∈ Rdx and y, w ∈ Rdy be arbitrary vectors that satisfy

z −∇xF̂ (x, y) ∈ ∂r(x), w +∇yF̂ (x, y) ∈ ∂g(y). (9)

Then, G(z, y) = ⟨z, x⟩ − r(x)− F̂ (x, y) + g(y) and (x,w) ∈ ∂G(z, y).

3.2 Reformulation of the Minimax Optimization Problem

Now, we introduce the following minimization problem:

min
z∈Rdx ,y∈Rdy

[
P (z, y) =

µ−1
x

2
∥z∥2 + µy

2
∥y∥2 +G(z, y)

]
(10)

It turns out that this minimization problem can be seen as a reformulation of problem (1). This is
justified by the following lemma.
Lemma 2. Problem (10) has a unique solution (z∗, y∗) ∈ Rdx × Rdy , where

z∗ = −µxx
∗ (11)

and (x∗, y∗) is the unique solution of problem (1).

Lemma 2 implies that if we find an approximate solution (z, y) ∈ Rdx × Rdy to problem (10), a
pair of vectors (−µ−1

x z, y) ∈ Rdx × Rdy will be an approximate solution to the original minimax
problem.

The idea of reformulating the minimax optimization problem as a minimization problem is not new
and has been used in the state-of-the-art works of Lin et al. (2020); Wang and Li (2020); Alkousa
et al. (2019). However, their reformulation is different from ours and has several disadvantages. In
particular, it does not allow for building the optimal algorithm for solving problem (1). We provide a
detailed discussion of this in the Appendix.

4 Step II: Accelerated Proximal Point Method

In this section, we develop the main algorithmic framework for solving problem (10), which is
formalized as Algorithm 2. We give the intuition behind the development of Algorithm 2 and provide
its theoretical analysis. Further, in Section 6, we will use this algorithmic framework to develop the
first optimal algorithm for solving main problem (1).

7Recall that for a convex function h(x), Fenchel conjugate is defined as h∗(z) = supx[⟨z, x⟩ − h(x)].

4



Algorithm 1 Accelerated Gradient Method
1: input: z0 = z0f ∈ Rdx , y0 = y0f ∈ Rdy

2: parameters: α ∈ (0, 1], ηz, ηy, θz, θy > 0, K ∈ {1, 2, . . .}
3: for k = 0, 1, 2, . . . ,K − 1 do
4: (zkg , y

k
g ) = α(zk, yk) + (1− α)(zkf , y

k
f )

5: zk+1
f = zkg − θz∇zP (zkg , y

k
g )

6: yk+1
f = ykg − θy∇yP (zkg , y

k
g )

7: zk+1 = zk + ηzµz(z
k
g − zk) + ηzθ

−1
z (zk+1

f − zkg )

8: yk+1 = yk + ηyµy(y
k
g − yk) + ηyθ

−1
y (yk+1

f − ykg )
9: end for

10: output: (zK , yK)

Algorithm 2 Accelerated Proximal Point Algorithm
1: input: z0 = z0f ∈ Rdx , y0 = y0f ∈ Rdy

2: parameters: α ∈ (0, 1], ηz, ηy, θy > 0, K ∈ {1, 2, . . .}
3: for k = 0, 1, 2, . . . ,K − 1 do
4: (zkg , y

k
g ) = α(zk, yk) + (1− α)(zkf , y

k
f )

5: Find (xk+1
f , yk+1

f , zk+1
f , wk+1

f ) ∈ Rdx × Rdy × Rdx × Rdy that satisfy (18)
6: zk+1 = zk + ηzµ

−1
x (zk+1

f − zk)− ηz(x
k+1
f + µ−1

x zk+1
f )

7: yk+1 = yk + ηyµy(y
k+1
f − yk)− ηy(w

k+1
f + µyy

k+1
f )

8: end for
9: output: (zK , yK)

4.1 Nesterov Acceleration

It is well-known that Accelerated Gradient Method of Nesterov (1983, 2003) is the optimal algorithm
for solving smooth (strongly-)convex minimization problems. Therefore, we could try to apply this
method to solving problem (10), which is formalized as Algorithm 1. Note that we used the notation
µz = µ−1

x in Algorithm 1, which is the strong convexity parameter of P (z, y) in z. Unfortunately,
function P (z, y) can be non-smooth, and the gradient ∇P (zkg , y

k
g ) can be undefined. It means that

Algorithm 1 cannot be applied to problem (10).

4.2 Moreau-Yosida Regularization

In order to avoid the issues caused by the non-smoothness of function P (z, y), we use the Moreau-
Yosida regularization (Moreau, 1962; Yosida, 2012). Consider a function P θz,θy (z, y) defined in the
following way:

P θz,θy (z, y) = min
z+∈Rdx ,y+∈Rdy

1

2θz
∥z+ − z∥2 + 1

2θy
∥y+ − y∥2 + P (z+, y+), (12)

where θz, θy > 0. Function P θz,θy (z, y) is called the Moreau envelope of function P (z, y). The
Moreau envelope has two crucial properties. First, it is a smooth function. Second, it has the same
minimizers as function P (z, y):

(z∗, y∗) = argmin
z∈Rdx ,y∈Rdy

P θz,θy (z, y). (13)

The latter means that we could apply Accelerated Gradient Method to problem (13), which would
give us an efficient algorithm for solving problem (10). Further, we are going to construct such an
algorithm.

4.3 Construction of the Algorithm

We start the construction of our algorithm by computing the gradient ∇P θz,θy (zkg , y
k
g ). The theory of

the Moreau-Yosida regularization (Lemaréchal and Sagastizábal, 1997) suggests that the gradient of

5



the Moreau envelope can be computed in the following way:

∇P θz,θy (zkg , y
k
g ) =

[
θ−1
z (zkg − zk+1

f )

θ−1
y (ykg − yk+1

f )

]
, (14)

where (zk+1
f , yk+1

f ) ∈ Rdx × Rdy is computed via the following auxiliary minimization problem:

(zk+1
f , yk+1

f ) = argmin
z∈Rdx ,y∈Rdy

1

2θz
∥z − zkg∥2 +

1

2θy
∥y − ykg∥2 + P (z, y). (15)

Further, we choose parameter θz = µ−1
z = µx and write the first-order optimality conditions for this

problem using the definition of function P (z, y):[
µ−1
x (zk+1

f − zkg ) + µ−1
x zk+1

f

θ−1
y (yk+1

f − ykg ) + µyy
k+1
f

]
∈ −∂G(zk+1

f , yk+1
f ). (16)

The latter condition involves the subdifferential ∂G(z, y). Hence, we can rewrite this condition using
Lemma 1, which provides the characterization of ∂G(z, y)8:

zk+1
f −∇xF̂ (xk+1

f , yk+1
f ) ∈ ∂r(xk+1

f ), xk+1
f + µ−1

x (zk+1
f − zkg ) + µ−1

x zk+1
f = 0,

wk+1
f +∇yF̂ (xk+1

f , yk+1
f ) ∈ ∂g(yk+1

f ), wk+1
f + θ−1

y (yk+1
f − ykg ) + µyy

k+1
f = 0.

(17)

where xk+1
f ∈ Rdx and wk+1

f ∈ Rdy are auxiliary vectors. From (17) we get

µ−1
x (zk+1

f − zkg ) = −(xk+1
f + µ−1

x zk+1
f ),

θ−1
y (yk+1

f − ykg ) = −(wk+1
f + µyy

k+1
f ),

which we plug into lines 7 and 8 of Algorithm 1.

Finally, we replace the computation of (zk+1
f , yk+1

f ) on lines 5 and 6 of Algorithm 1 using condi-
tion (17). It turns out that we can use the following relaxed version of condition (17) without hurting
the convergence properties of the resulting algorithm:

zk+1
f −∇xF̂ (xk+1

f , yk+1
f ) ∈ ∂r(xk+1

f ),

wk+1
f +∇yF̂ (xk+1

f , yk+1
f ) ∈ ∂g(yk+1

f ),

8

µx
∥∆k

x∥2 + θy∥∆k
y∥2 ≤ µx

8
∥xk+1

f + µ−1
x zkg∥2 + θ−1

y ∥yk+1
f − ykg∥2,

(18)

where ∆k
x and ∆k

y are defined as follows:∆k
x = zk+1

f +
µx

2
(xk+1

f − µ−1
x zkg ),

∆k
y = wk+1

f + µyy
k+1
f + θ−1

y (yk+1
f − ykg ).

(19)

4.4 Convergence of the Algorithm

After applying all the modifications mentioned above to Algorithm 1, we obtain Algorithm 2.
Theorem 1 provides the iteration complexity of Algorithm 2. The proof of Theorem 1 can be found
in the Appendix.
Theorem 1. Let ηz, ηy be defined as

ηz = µx/2, ηy = min {1/(2µy), θy/(2α)} . (20)
Then, to find an ϵ-accurate solution of problem (1), Algorithm 2 requires the following number of
iterations:

K = O
(
max

{
1

α
,

α

θyµy

}
log

1

ϵ

)
. (21)

In this case, the ϵ-accurate solution will be given as (−µ−1
x zK , yK), where (zK , yK) is the output of

Algorithm 2.
8To be precise, Lemma 1 implies the relation (17) ⇒ (16) rather than the equivalence (17) ⇔ (16). However,

this is not an issue because we provide the intuition behind the algorithm development in this section. The
rigorous proofs are postponed to the Appendix.

6



Algorithm 3 Extra Anchored Gradient for Monotone Inclusions
1: input: u−1 ∈ Rd

2: parameters: λ > 0, T ∈ {1, 2, . . .}, {βt}T−1
t=0 ⊂ (0, 1)

3: u0 = JλB(u
−1 − λA(u−1))

4: a0 = A(u0)
5: b0 = 1

λ (u
−1 − λA(u−1)− u0) ▷ b0 ∈ B(u0)

6: for t = 0, 1, 2 . . . , T − 1 do
7: ut+1/2 = ut + βt(u

0 − ut)− λ(at + bt)
8: ut+1 = JλB(u

t + βt(u
0 − ut)− λA(ut+1/2))

9: at+1 = A(ut+1)
10: bt+1 = 1

λ (u
t + βt(u

0 − ut)− λA(ut+1/2)− ut+1) ▷ bt+1 ∈ B(ut+1)
11: end for
12: output: (uT , aT + bT ) ▷ bT ∈ B(uT )

Unfortunately, Algorithm 2 cannot be applied to solving problem (1) in its current form because
it requires finding vectors (xk+1

f , yk+1
f , zk+1

f , wk+1
f ) that satisfy condition (18) on line 5 at each

iteration. Further, we will show that finding these vectors can be seen as finding an approximate
solution to a particular monotone inclusion problem. In Section 5, we will provide an optimal
algorithm for solving such monotone inclusions. In Section 6, we will show how to combine this
algorithm with Algorithm 2 and obtain the first optimal algorithm for solving main problem (1).

5 Step III: Operator Norm Reduction in Monotone Inclusions

In this section, we consider the following monotone inclusion problem:

find u∗ ∈ Rd such that 0 ∈ A(u∗) +B(u∗), (22)

where A(u), B(u) : Rd ⇒ Rd are maximally monotone mappings. We are interested in the case
when A(u) is single-valued and Lipschitz continuous. The properties of operators A(u) and B(u)
are formalized through the following assumptions.
Assumption 5. Mapping A(u) : Rd → Rd is single-valued, M -Lipschitz and monotone. That is, for
all u1, u2 ∈ Rd, ⟨A(u1)−A(u2), u1 − u2⟩ ≥ 0 and ∥A(u1)−A(u2)∥ ≤ M∥u1 − u2∥.
Assumption 6. Mapping B(u) : Rd ⇒ Rd is maximally monotone and possibly multivalued. That is,
mapping B(u) satisfies the following conditions:

1. B(u) is monotone, i.e., for all u1, u2 ∈ domB, b1 ∈ B(u1), b2 ∈ B(u2) the following
inequality holds: ⟨u1 − u2, b1 − b2⟩ ≥ 0, where domB = {u ∈ Rd | B(u) ̸= ∅}.

2. The graph gphB = {(u, b) ∈ Rd × Rd | b ∈ B(u)} is not properly contained in the graph
of any other monotone mapping on Rd.

Note that mapping A(u) is also maximally monotone because it is monotone and continuous (Rock-
afellar and Wets, 2009, Example 12.7). Further, we will use an operator JλB(u) : Rd ⇒ Rd which is
defined as

u+ ∈ JλB(u) if and only if λ−1(u− u+) ∈ B(u+), (23)
where λ > 0. This mapping is called the resolvent of mapping B(u). The maximal monotonicity of
B(u) implies that the resolvent JλB(u) is single-valued for all u ∈ Rd (Rockafellar and Wets, 2009,
Theorem 12.12).

Now, we are ready to present Algorithm 3 for solving monotone inclusion problem (22). The design
of our algorithm is based on the Extra Anchored Gradient Algorithm of Yoon and Ryu (2021).
The critical difference between the algorithm of Yoon and Ryu (2021) and Algorithm 3 is that the
algorithm of Yoon and Ryu (2021) can be applied to problem (22) in the case B(u) ≡ {0} only.
Therefore, our Algorithm 3 can be seen as an extension of the algorithm of Yoon and Ryu (2021) for
general monotone inclusion problems of the form (22).

The following theorem provides the convergence guarantees for Algorithm 3. The proof of the
theorem can be found in the Appendix.

7



Theorem 2. Assume that there exists at least a single solution u∗ to problem (22). Let βt be defined
as follows

βt = 2/(t+ 3). (24)

Let λ be defined as
λ = 1/(

√
5M). (25)

Then, the following inequality holds

∥aT + bT ∥2 ≤ 288M2

(T + 1)2
∥u−1 − u∗∥2, (26)

where aT = A(uT ) and bT ∈ B(uT ).

6 Final Step: The First Optimal Algorithm for Minimax Optimization

In this section, we construct the first optimal algorithm for solving main problem (1). In order to
do this, we use Algorithm 3 to compute vectors (xk+1

f , yk+1
f , zk+1

f , wk+1
f ) on line 5 of Algorithm 2.

Further, we describe the construction of our algorithm in detail.

6.1 Construction of the Algorithm

As mentioned in Section 4, Algorithm 2 cannot be applied to solving problem (1) in its current form
because it requires finding the vectors satisfying condition (18) on line 5 at each iteration. Further,
we will show how to do this using Algorithm 3. Let Rd = Rdx × Rdy . For each k ∈ {0, 1, 2, . . .}
consider operators Ak(u) : Rd → Rd and B(u) : Rd ⇒ Rd defined as follows:

Ak(u) =

[√
γxa

k
x(x, y)√

γya
k
y(x, y)

]
, B(u) =

{[√
γxbx√
γyby

] ∣∣∣∣ bx ∈ ∂r(x), by ∈ ∂g(y)

}
, (27)

where γx, γy > 0 are parameters, variable u ∈ Rd is defined as

u = (γ−1/2
x x, γ−1/2

y y), where (x, y) ∈ Rdx × Rdy , (28)

and operators akx(x, y) : Rd → Rdx and aky(x, y) : Rd → Rdy are defined as

akx(x, y) = ∇xF̂ (x, y) +
µx

2
(x− µ−1

x zkg ),

aky(x, y) = −∇yF̂ (x, y) + µyy + θ−1
y (y − ykg ).

(29)

One can observe that operators Ak(u) and B(u) satisfy Assumptions 5 and 6. This is justified by the
following lemma.

Lemma 3. Operator Ak(u), defined by (27), is monotone and M -Lipschitz, where M is given as

M = 2max{γxL, γy(L+ θ−1
y )}. (30)

Operator B(u), defined by (27), is maximally monotone.

Now, we are ready to construct the first optimal algorithm for solving main problem (1) which
is formalized as Algorithm 4 (it can be found in the Appendix). In order to do this, we use Al-
gorithm 3 to perform the computations on line 5 of Algorithm 2. Consider the k-th iteration of
Algorithm 2 and replace line 5 of Algorithm 2 with the lines of Algorithm 3 using the notation
ut = (γ

−1/2
x xk,t, γ

−1/2
y yk,t) for t ∈ {−1, 0, 1, 2, . . .}.

In addition, we replace the for-loop of Algorithm 3 with the while-loop that iterates until the following
condition is satisfied (see line 11 of Algorithm 4):

γx∥akx(xk,t, yk,t) + bk,tx ∥2 + γy∥aky(xk,t, yk,t) + bk,ty ∥2 ≤
≤ γ−1

x ∥xk,t − xk,−1∥2 + γ−1
y ∥yk,t − yk,−1∥2.

(31)

8



Algorithm 4 FOAM: The First Optimal Algorithm for Minimax Optimization
1: input: z0 = z0f ∈ Rdx , y0 = y0f ∈ Rdy

2: parameters: α ∈ (0, 1], ηz, ηy, θy > 0, {βt}∞t=0 ⊂ (0, 1), λ, γx, γy > 0, K ∈ {1, 2, . . .}
3: for k = 0, 1, 2, . . . ,K − 1 do
4: (zkg , y

k
g ) = α(zk, yk) + (1− α)(zkf , y

k
f )

5: (xk,−1, yk,−1) = (−µ−1
x zkg , y

k
g )

6: xk,0 = proxγxλr(·)(x
k,−1 − γxλa

k
x(x

k,−1, yk,−1))

7: yk,0 = proxγyλg(·)(y
k,−1 − γyλa

k
y(x

k,−1, yk,−1))

8: bk,0x = 1
γxλ

(xk,−1 − γxλa
k
x(x

k,−1, yk,−1)− xk,0)

9: bk,0y = 1
γyλ

(yk,−1 − γyλa
k
y(x

k,−1, yk,−1)− yk,0)

10: t = 0
11: while condition (31) is not satisfied do
12: xk,t+1/2 = xk,t + βt(x

k,0 − xk,t)− γxλ(a
k
x(x

k,t, yk,t) + bk,tx )
13: yk,t+1/2 = yk,t + βt(y

k,0 − yk,t)− γyλ(a
k
y(x

k,t, yk,t) + bk,ty )

14: xk,t+1 = proxγxλr(·)(x
k,t + βt(x

k,0 − xk,t)− γxλa
k
x(x

k,t+1/2, yk,t+1/2))

15: yk,t+1 = proxγyλg(·)(y
k,t + βt(y

k,0 − yk,t)− γyλa
k
y(x

k,t+1/2, yk,t+1/2))

16: bk,t+1
x = 1

γxλ
(xk,t + βt(x

k,0 − xk,t)− γxλa
k
x(x

k,t+1/2, yk,t+1/2)− xk,t+1)

17: bk,t+1
y = 1

γyλ
(yk,t + βt(y

k,0 − yk,t)− γyλa
k
y(x

k,t+1/2, yk,t+1/2)− yk,t+1)

18: t = t+ 1
19: end while
20: tk = t
21: (xk+1

f , yk+1
f ) = (xk,tk , yk,t

k

)

22: (zk+1
f , wk+1

f ) = (∇xF̂ (xk+1
f , yk+1

f ) + bk,t
k

x ,−∇yF̂ (xk+1
f , yk+1

f ) + bk,t
k

y )

23: zk+1 = zk + ηzµ
−1
x (zk+1

f − zk)− ηz(x
k+1
f + µ−1

x zk+1
f )

24: yk+1 = yk + ηyµy(y
k+1
f − yk)− ηy(w

k+1
f + µyy

k+1
f )

25: end for
26: output: (−µ−1

x zK , yK)

We also set the initial iterates to xk,−1 = −µ−1
x zkg and yk,−1 = ykg on line 5 of Algorithm 4, and use

the output of the inner while-loop to compute vectors (xk+1
f , yk+1

f , zk+1
f , wk+1

f ) on lines 21 and 22
of Algorithm 4. Now, if we define parameters γx, γy in the following way:

γx = 8µ−1
x , γy = θy, (32)

then condition (31) on line 11 of Algorithm 4 becomes equivalent to condition (18) on line 5 of
Algorithm 2. Hence, vectors (xk+1

f , yk+1
f , zk+1

f , wk+1
f ) computed on lines 21 and 22 of Algorithm 4

satisfy condition (18), which implies that Algorithm 4 is a special case of Algorithm 2.

6.2 Complexity of the Algorithm

It remains to establish the gradient evaluation complexity of Algorithm 4. First, we need to estimate
the number of iterations performed by the inner while-loop of Algorithm 4, which is equal to tk

defined on line 20 of Algorithm 4. Recall that the inner while-loop was constructed out of the lines of
Algorithm 3. Hence, we can use Theorem 2 to provide an upper bound on tk. This is done by the
following lemma.
Lemma 4. Assume the following choice of the parameters of Algorithm 4: stepsize λ is defined by
(25), parameter M is defined by (30), sequence {βt}∞t=0 is defined by (24), parameters γx and γy
are defined by (32). Then, tk ≤ T , where T is given as

T = ⌈48
√
2max{8L/µx, 1 + θyL}⌉ − 1. (33)

Now, we are ready to provide the final gradient complexity of Algorithm 4. It is done by the following
theorem.

9



Theorem 3. Let parameters of Algorithm 4 be defined as follows: α = min
{
1,
√
θyµy

}
, θy = 8µ−1

x ,

λ =
(
2
√
5(1 + 8L/µx)

)−1
, stepsizes ηz and ηy are defined by (20), parameters γx and γy are

defined by (32), parameters {βt}∞t=0 are defined by (24). Then, to find an ϵ-accurate solution of
problem (1), Algorithm 4 requires the following number of gradient evaluations:

O
(
max

{
L

µx
,

L
√
µxµy

}
log

1

ϵ

)
. (34)

Corollary 1. Without loss of generality we can assume µx ≥ µy , otherwise we just swap variables x
and y in problem (1). Hence, Algorithm 4 has the following gradient evaluation complexity:

O
(

L
√
µxµy

log
1

ϵ

)
. (35)

Acknowledgements

The work of A. Gasnikov was supported by a grant for research centers in the field of artificial
intelligence, provided by the Analytical Center for the Government of the Russian Federation in
accordance with the subsidy agreement (agreement identifier 000000D730321P5Q0002) and the
agreement with the Ivannikov Institute for System Programming of the Russian Academy of Sciences
dated November 2, 2021 No. 70-2021-00142.

References
Alkousa, M., Dvinskikh, D., Stonyakin, F., Gasnikov, A., and Kovalev, D. (2019). Accelerated

methods for composite non-bilinear saddle point problem. arXiv preprint arXiv:1906.03620.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial networks. In
International conference on machine learning, pages 214–223. PMLR.

Başar, T. and Olsder, G. J. (1998). Dynamic noncooperative game theory. SIAM.

Berger, J. O. (2013). Statistical decision theory and Bayesian analysis. Springer Science & Business
Media.

Carmon, Y., Jambulapati, A., Jin, Y., and Sidford, A. (2022). Recapp: Crafting a more efficient catalyst
for convex optimization. In International Conference on Machine Learning, pages 2658–2685.
PMLR.

Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen, J., and Song, L. (2018). Sbeed: Convergent
reinforcement learning with nonlinear function approximation. In International Conference on
Machine Learning, pages 1125–1134. PMLR.

Du, S. S., Chen, J., Li, L., Xiao, L., and Zhou, D. (2017). Stochastic variance reduction methods for
policy evaluation. In International Conference on Machine Learning, pages 1049–1058. PMLR.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7).

Facchinei, F. and Pang, J.-S. (2003). Finite-dimensional variational inequalities and complementarity
problems. Springer.

Gidel, G., Berard, H., Vignoud, G., Vincent, P., and Lacoste-Julien, S. (2018). A variational inequality
perspective on generative adversarial networks. arXiv preprint arXiv:1802.10551.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
and Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing
systems, 27.

Ibrahim, A., Azizian, W., Gidel, G., and Mitliagkas, I. (2020). Linear lower bounds and conditioning
of differentiable games. In International conference on machine learning, pages 4583–4593.
PMLR.

10



Jin, Y., Sidford, A., and Tian, K. (2022). Sharper rates for separable minimax and finite sum
optimization via primal-dual extragradient methods. arXiv preprint arXiv:2202.04640.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kovalev, D., Gasnikov, A., and Richtárik, P. (2021). Accelerated primal-dual gradient method
for smooth and convex-concave saddle-point problems with bilinear coupling. arXiv preprint
arXiv:2112.15199.

Lemaréchal, C. and Sagastizábal, C. (1997). Practical aspects of the moreau–yosida regularization:
Theoretical preliminaries. SIAM journal on optimization, 7(2):367–385.

Lin, H., Mairal, J., and Harchaoui, Z. (2015). A universal catalyst for first-order optimization.
Advances in neural information processing systems, 28.

Lin, T., Jin, C., and Jordan, M. I. (2020). Near-optimal algorithms for minimax optimization. In
Conference on Learning Theory, pages 2738–2779. PMLR.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2017). Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083.

Moreau, J. J. (1962). Fonctions convexes duales et points proximaux dans un espace hilbertien.
Comptes rendus hebdomadaires des séances de l’Académie des sciences, 255:2897–2899.

Nesterov, Y. (2003). Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media.

Nesterov, Y. and Scrimali, L. (2006). Solving strongly monotone variational and quasi-variational
inequalities.

Nesterov, Y. E. (1983). A method for solving the convex programming problem with convergence
rate o (1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547.

Reddi, S. J., Kale, S., and Kumar, S. (2019). On the convergence of adam and beyond. arXiv preprint
arXiv:1904.09237.

Rockafellar, R. T. and Wets, R. J.-B. (2009). Variational analysis, volume 317. Springer Science &
Business Media.

Roughgarden, T. (2010). Algorithmic game theory. Communications of the ACM, 53(7):78–86.

Sinha, A., Namkoong, H., and Duchi, J. (2017). Certifiable distributional robustness with principled
adversarial training. arXiv preprint arXiv:1710.10571, 2.

Taskar, B., Lacoste-Julien, S., and Jordan, M. (2005). Structured prediction via the extragradient
method. Advances in neural information processing systems, 18.

Thekumparampil, K. K., He, N., and Oh, S. (2022). Lifted primal-dual method for bilinearly coupled
smooth minimax optimization. In International Conference on Artificial Intelligence and Statistics,
pages 4281–4308. PMLR.

Tseng, P. (2000). A modified forward-backward splitting method for maximal monotone mappings.
SIAM Journal on Control and Optimization, 38(2):431–446.

Von Neumann, J. and Morgenstern, O. (1947). Theory of games and economic behavior, 2nd rev.

Wang, Y. and Li, J. (2020). Improved algorithms for convex-concave minimax optimization. Advances
in Neural Information Processing Systems, 33:4800–4810.

Xu, H., Caramanis, C., and Mannor, S. (2009). Robustness and regularization of support vector
machines. Journal of machine learning research, 10(7).

Yoon, T. and Ryu, E. K. (2021). Accelerated algorithms for smooth convex-concave minimax
problems with o (1/kˆ 2) rate on squared gradient norm. In International Conference on Machine
Learning, pages 12098–12109. PMLR.

11



Yosida, K. (2012). Functional analysis. Springer Science & Business Media.

Zhang, J., Hong, M., and Zhang, S. (2021). On lower iteration complexity bounds for the convex
concave saddle point problems. Mathematical Programming.

12



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [No]
(c) Did you discuss any potential negative societal impacts of your work? [No] This is a

theoretical work with no forseeable negative societal impact.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Assumptions 1
to 3.

(b) Did you include complete proofs of all theoretical results? [Yes] see Appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13


	Introduction
	Related Work
	Main Contributions

	Preliminaries
	Step I: Reformulation via Pointwise Conjugate Function
	Pointwise Conjugate Function
	Reformulation of the Minimax Optimization Problem

	Step II: Accelerated Proximal Point Method
	Nesterov Acceleration
	Moreau-Yosida Regularization
	Construction of the Algorithm
	Convergence of the Algorithm

	Step III: Operator Norm Reduction in Monotone Inclusions
	Final Step: The First Optimal Algorithm for Minimax Optimization
	Construction of the Algorithm
	Complexity of the Algorithm


