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Abstract

The isomorphism problem is a key challenge in
both graph and hypergraph domains, crucial for
applications like protein design, chemical path-
ways, and community detection. Hypergraph iso-
morphism, which models high-order relationships
in real-world scenarios, remains underexplored
compared to the graph isomorphism. Current al-
gorithms for hypergraphs, like the 1-dimensional
generalized Weisfeiler-Lehman test (1-GWL), lag
behind advancements in graph isomorphism tests,
limiting most hypergraph neural networks to 1-
GWL’s expressive power. To address this, we
propose the high-dimensional GWL (k-GWL),
generalizing k-WL from graphs to hypergraphs.
We prove that k-GWL reduces to k-WL for simple
graphs, and thus develop a unified isomorphism
method for both graphs and hypergraphs. We
also successfully establish a clear and complete
understanding of the GWL hierarchy of expressiv-
ity, showing that (k+1)-GWL is more expressive
than k-GWL with illustrative examples. Based
on k-GWL, we develop a hypergraph neural net-
work model named k-HNN with improved expres-
sive power of k-GWL, which achieves superior
performance on real-world datasets, including a
6% accuracy improvement on the Steam-Player
dataset over the runner-up. Our code is available
athttps://github.com/talence-zcqg/
KGWL.
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1. Introduction

Hypergraphs have gained increasing attention in recent
years, because of their ability to naturally model a wide
range of systems where high-order relationships exist among
their constituting parts. In hypergraphs, a hyperedge allows
the connection of an arbitrary number of nodes and can eas-
ily abstract high-order relationships in social systems (Lotito
et al., 2022), biology (Sanchez-Gorostiaga et al., 2019), co-
authorship collaboration networks (Wu et al., 2022), ecology
(Grilli et al., 2017), and neuroscience (Xiao et al., 2019).
Despite the powerful expressiveness, hypergraph research,
such as representation learning (Antelmi et al., 2023) and
isomorphism test (Feng et al., 2024), has been underex-
plored compared to the graph counterpart because of the
inherent complexity and the lack of popular tools. In ad-
dition, simply transforming hypergraphs to simple graphs
either leads to an inevitable loss of information (Zhou et al.,
2006) or adds significantly many auxiliary nodes/edges that
increase space and time requirements in downstream tasks
(Yang et al., 2019; Yoon et al., 2020). It is demanding to
develop hypergraph isomorphism test and representation
learning algorithms. The two topics are closely related as
the expressivity of hypergraph neural networks (HNNs),
i.e., what functions the HNN models can approximate, can
resort to the power of isomorphism test in distinguishing
non-isomorphic hypergraphs (Morris et al., 2023).

In hypergraph representation learning, HGNN (Feng et al.,
2019) used the clique expansion technique to approximate
hypergraphs as graphs, and then ran graph convolution (Kipf
& Welling, 2016) but cannot recover hypergraph structures
with hyperedges in another hyperedge. HyperGCN (Yadati
et al., 2019) replaced each hyperedge with an incomplete
clique. Then HyperSAGE (Arya et al., 2020) first learned
to embed hypergraphs directly by propagating messages
in a two-stage procedure, which can be described as pass-
ing messages from vertices to hyperedges, and then back
to vertices from hyperedges. UniGNN (Huang & Yang,
2021) unified the two-stage hypergraph learning by gener-
alizing several Graph Neural Networks (GNNs) to HNNS,
pointing out that its expressive power is bounded by the
1-dimensional generalized Weisfeiler-Leman test (1-GWL).
Subsequent works, such as AllSetTransformer (Chien et al.,
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2022) and ED-HNN (Wang et al., 2023), are also of the
two-stage HNN type. Feng et al. (2024) further introduced
a hypergraph isomorphism test algorithm, referred to as
1-GWL. It also mentioned that 1-GWL can degrade into 1-
WL when applied to graphs, thus promoting the theoretical
unification of isomorphism tests.

Both GNNs and 1-dimensional WL test (1-WL) (Weisfeiler
& Leman, 1968) aggregate messages from neighbors and
iteratively update node representations and can be consid-
ered as neural and discrete variants. In the graph domain,
researchers have striven for a good understanding that clas-
sic GNNs, including GCN and GIN (Xu et al., 2018), have
expressive power upper bounded by 1-WL (Morris et al.,
2019), and a series of subgraph GNNs (Qian et al., 2022;
Frasca et al., 2022; Zhang et al., 2023a) have expressive
power at most 3-WL. Here, the high-dimensional WL test
(k-WL) (Immerman & Lander, 1990) can be viewed as us-
ing k-tuples of vertices to replace the original vertices in
the graph for isomorphism test. However, currently there is
no research study that can enhance the expressivity of
1-GWL in a systematic way as k-WL, resulting in that
the expressive power of most current HNNs is limited
to 1-GWL. Therefore, a significant research gap exists in
extending the 1-GWL algorithm to its higher-dimensional
counterparts and designing HNNs guided by these more
powerful algorithms.

In this paper, we propose a higher-dimensional version of
1-GWL, namely k-GWL. It is a generalization of k-WL that
can accept hypergraphs as input and process complex and
diverse high-order relations therein. Based on the different
aggregation methods of k-tuple neighbors, we propose two
variants, namely the folklore variant k-GFWL and the obliv-
ious variant k-GOWL. We prove that the proposed k-GWL
can degenerate to k-WL when applied to simple graphs,
subject to that the initialization of k-tuple features uses our
sub-hypergraph extraction method that deletes singleton hy-
peredges (Theorem 5.1). It unifies the high-dimensional
isomorphism tests for both simple graphs and hypergraphs.
Moreover, we prove the expressive power of (k+1)-GWL
surpasses that of k-GWL for k > 1 (Theorems 5.2 and 5.3)
with illustrative examples. The (k+1)-GOWL has the same
expressive power as k-KFWL for k£ > 2 (Theorem 5.4).
With these, we successfully establish a clear and complete
understanding of the GWL expressivity hierarchy (Eq. (7)).

Furthermore, we develop high-dimensional HNN models,
namely k-HNNs, based on the proposed k-GWL. We show
that k-HNNSs are provably more powerful than existing HNN
models and have expressive power at most k-GWL (The-
orems 6.1 and 6.2). In our experiments, k-HNNs achieve
superior performance across all datasets. Notably, on the
Steam-Player dataset, our methods outperform the second-
best approach by about 6% in accuracy.

2. Related Work
2.1. Expressivity of GNNs

Two seminal works (Xu et al., 2018; Morris et al., 2019)
related the problems of graph isomorphism test and GNNs,
revealing that any GNN architecture cannot be more pow-
erful than 1-WL in terms of distinguishing non-isomorphic
graphs. Morris et al. (2019) proposed a new GNN architec-
ture to overcome the limitations of 1-WL by learning fea-
tures over the k-tuple vertices instead of vertices. Later, sev-
eral works gradually proposed the incorporation of unique
vertex identifiers (Vignac et al., 2020), randomized vertex
labels (Sato et al., 2021; Abboud et al., 2021) and subgraph
information (Zhao et al., 2021; Zhang & Li, 2021; Papp
et al., 2021; Papp & Wattenhofer, 2022; Bouritsas et al.,
2022; Qian et al., 2022; Frasca et al., 2022) into the vertex
attributes to further enhance the expressiveness of GNNs.
Zhou et al. (2023) unified this framework to propose the
(k,l)-WL algorithm, which can be seen as applying k-WL to
a graph with [ vertices that are assigned additional features.
They also provided a theoretical analysis of the expressivity
of (k,l)-WL, establishing an expressivity hierarchy for algo-
rithms with different values of k and /. Zhang et al. (2023b)
studied the expressivity related to biconnectivity and de-
signed a 1-WL’s variant that can encode general distance
metrics. Bodnar et al. (2021) developed a WL for handling
simplicial complexes (generalizations of graphs). A more
comprehensive discussion of the WL test in GNNs can be
found in the survey (Morris et al., 2023).

2.2. HNNs and Their Expressivity

The development of HNNs shifted from single-stage
message-passing framework (Feng et al., 2019; Yadati et al.,
2019) to a two-stage update/aggregation process (Arya et al.,
2020; Huang & Yang, 2021; Chien et al., 2022; Wang et al.,
2023). In particular, Chien et al. (2022) unified a whole class
of two-stage models with multiset functions, which allows
to learn the most adequate update/aggregation for individual
dataset/task. Inspired by hypergraph diffusion (Li et al.,
2020), Wang et al. (2023) proposed ED-HNN that computes
specialized hyperedge-to-node messages for nodes in a hy-
peredge and can approximate any permutation-equivariant
hyperedge diffusion. Huang & Yang (2021) developed a
unified framework for GNNs and HNNss. It also proposed
1-GWL for hypergraph isomorphism test following (Boker,
2019) and bounded the expressive power of UniGNN by
1-GWL. Feng et al. (2024) separately developed 1-GWL
and also designed hypergraph subtree and hyperedge kernel
methods that improved earlier hypergraph kernels (Wach-
man & Khardon, 2007; Bai et al., 2014). In this paper,
we propose a k-dimensional generalized WL algorithm (k-
GWL), filling the research gap in hypergraphs where no
higher expressive-power algorithm existed. Additionally,
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we design k-HNNs based on k-GWL, with its theoretical
expressivity upper bounded by k-GWL. Luo et al. (2023)
studied the expressivity of hypergraph neural networks and
constructed hierarchies of arity (the maximum number of
vertices in hyperedges) and depth. For example, when the
depth is larger than a certain value, a neural logic machine
with a larger arity is more expressive. In contrast, this paper
generalizes k-WL to k-GWL, unifies graph and hypergraph
isomorphism tests, and establishes a clear generalized WL
hierarchy for hypergraphs.

3. Preliminary on the WL Algorithm

Let HG = (V, &, X) be a hypergraph, where V is the set
of vertices, £ is the set of hyperedges, and X is the vertex
feature vectors. In the incidence matrix H € {0, 1}VIxI€l,
each entry H (v, e) indicates whether vertex v is in the hy-
peredge e. N, (v) denotes the set of hyperedge neighbors of
vertex v, i.e., hyperedges containing v, and N, (e) denotes
the set of vertex neighbors of hyperedge e, i.e., vertices in e.

The 1-dimensional Weisfeiler-Leman (1-WL) (Weisfeiler
& Leman, 1968) is a classic algorithm for graph isomor-
phism test and has expressivity no worse than classic GNNs.
Let G be a graph with possibly labeled vertices. In iteration
0, the coloring c§°> (v) is initialized by the label of vertex v
or a uniform value if no label is provided. 1-WL iteratively
updates the color for vertex v according to its original color
and the colors of its neighbors. Specifically, the color is
computed as

i () = HASH({" ™V (v), el (w)|u € N (v)})

where HASH bijectively maps the above pair to a unique
color which has not been used in previous iterations.

It is well known that 1-WL is not able to distinguish all non-
isomorphic graphs (Cai et al., 1992). The k-dimensional
Weisfeiler-Leman (k-WL) was proposed to improve the
expressiveness (Immerman & Lander, 1990). It assigns
colors to k-tuples of vertices and iteratively updates them. In
iteration 0, the color c,(co) (v) of k-tuple v € G is initialized
as the isomorphism/atomic type of the subgraph induced by
k vertices in v. In iteration ¢t > 0, the color of tuple v is
computed by

c,(f)(v) = HASH(C](:_D(V),
{{0;(v,w) [w e V(@)} |1 <) <k})

where 0; (v, w) refers to a high-order neighbor of v obtained
by replacing the j** element of v by w. There is another
variant of k-WL that differs slightly in how they aggregate
neighborhood information and is denoted folklore k-WL (k-
FWL) in machine learning literature (Maron et al., 2019;
Morris et al., 2019). The above one is called oblivious k-
WL (k-OWL). k-OWL aggregates the colors of neighbors

ey

obtained by putting all elements in one position, while k-
FWL aggregates the colors of neighbors obtained by putting
one element in all k positions. Grohe & Otto (2015) proved
that k-OWL is as powerful as the folklore (k-1)-FWL for
k> 2.

However, the above isomorphism algorithms cannot be di-
rectly applied to hypergraphs. Recently, the 1-dimensional
Generalized WL (1-GWL) was proposed for the hyper-
graph isomorphism test (Feng et al., 2024; Huang & Yang,
2021). 1-GWL considers two neighborhoods: vertex’s hy-
peredge neighbors N, (v) and hyperedge’s vertex neighbors
N, (e). In iteration 0, the colors of c(lo)(e) and cgo)(v) are
initialized using their original labels, if any. In iteration
t > 0, the color updating rules are as follows.

i (e) = HASH(c{" ™" (), £ (w) | u € N,(e)})
i (v) = HASH (" P (v), {7 () | u € No(0)})

Huang & Yang (2021) proved that the two-stage HNN,
UniGNN, has expressivity upper bounded by 1-GWL. It is
easy to see this also holds for AllSet and thus many HNN’s
that are its special case (Thm. 3.4 in (Chien et al., 2022)).

4. High-Dimensional Generalized WL

In this section, we present our main method k-GWL for the
hypergraph isomorphism test. For clarity, tuples are ordered
and allow repetitive elements; multisets are unordered and
allow repetitive elements; and sets are unordered and do not
allow repetitive elements. In k-GWL, we consider k-tuples,
which allow repetitions of vertices. There are two types of
hypergraphs: the input hypergraph and the k-tuple hyper-
graph (see its construction in Section 4.1.2). Hyperedges in
both types of hypergraphs are sets, that is unordered.

4.1. How k-GWL Works

For our proposed k-GWL hypergraph isomorphism test, the
k-WL algorithm is a natural reference. The principle of
k-WL is to color k-tuples instead of single vertices. To
achieve that, it builds a k-tuple graph with each vertex as
a k-tuple, initializes the k-tuple features, and then applies
1-WL graph coloring in the k-tuple graph. To develop the
k-GWL hypergraph isomorphism test algorithm, we ask the
following research questions (RQs):

RQ1: How can we initialize the k-tuple features in the k-
tuple hypergraph while ensuring that, when given a simple
graph input, the k-tuple features keep the same as k-WL?

RQ2: How can we construct the k-tuple hypergraph from
the original hypergraph so that we can apply 1-GWL hyper-
graph coloring?

RQ3: How to develop HNNs with an expressive power up-
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per bounded by k-GWL, significantly improving the upper
bound 1-GWL of most existing HNNs?

In the following, we discuss how to address these research
questions one-by-one (with RQ3 answered in Section 6) and
explain our k-GWL methods.

4.1.1. K-TUPLE FEATURE INITIALIZATION (RQ1)

The initialization of k-tuple features is a crucial step in
realizing the strong expressive power of k-dimensional hy-
pergraph coloring. A random initialization cannot capture
unique characteristics of the collection of k vertices in each
k-tuple and is limited in getting theoretical guarantees on the
expressivity. A more desirable way is to initialize k-tuple
features according to the isomorphism type of the induced
sub-hypergraph. In this way, two k-tuples get the same
initial color if their induced sub-hypergraphs are isomor-
phic. This helps build necessary connections among those
k-tuples to ensure the theoretical expressivitiy. We formally
define two isomorphic hypergraphs:

Definition 4.1. Given hypergraphs HG, = (V4, Hy, X1),
HGo = (Va, Ha, X5) with vertex features X7, X5 and k-
tuples s', s? in HG; and HGo (with the i*" element as s},
s?), respectively. We say s', s? are isomorphic and have the
same isomorphism type (or called atomic type) iff

o Viy,ig € [k], 8], =s], ¢ s} =s7.

’ L1 192

° VZ S [k],Xl,sll - X2,S?'

k], (st ,...,sl) € H!' <«

21777 T

* Vil, veey Zn €

(sfl,...,s?") € H?.
Extracting the sub-hypergraph induced by (vertices in) a
k-tuple is a required and crucial step, before computing its
isomorphic type. While computing the subgraph induced
by a k-tuple in a simple graph is trivial (obtained by re-
taining only the rows and columns of the adjacency matrix
corresponding to vertices in the k-tuple), the counterpart
operation in hypergraphs needs special and careful consid-
erations. Taking Fig. 1 as an example, the top graph and
hypergraph are equivalent and we are given 2-tuples (v1, v3)
and (v1,v2). But if we simply keep the corresponding rows
and non-empty columns in the incidence matrix (similar
to simple graphs), then the resulting sub-hypergraph in the
bottom right would not be equivalent as the subgraph in
the bottom left! This is because after the extraction, there
are multiple hyperedges that contain only a single vertex.
This would prevent the degeneration of k-GWL to k-WL for
input simple graphs.

To address this issue, we propose to delete singleton hyper-
edges (those with only a single vertex). With this extra step,
the subgraph and sub-hypergraph extractions become consis-
tent and aligned for input simple graphs, paving the road for

subsequent theoretical analysis. The singleton deletions are
reasonable, since the main role of hyperedge connections is
to represent higher-order relations among multiple vertices.
With only one vertex in a hyperedge, it might be good to
remove it. We put detailed explanation in Appendix C. In
our experiments, we find that the removal of singleton hyper-
edges significantly enhances the hypergraph classification
performance.

gruph hypergraph

0‘ equxvalen‘r
(@)

subgraphs induced by T
(v1,v2) and (v1,v3)

95.%

Figure 1. Induced sub-hypergraph extraction.

gch

Formally, as the first step of k-GWL, we initialize the color
of k-tuples s = (v1, ..., vx) € V(HG)F instead of individual
vertices.

A% (s) = ISO(HGan(s)) 2

where HGu(s) represents the sub-hypergraph of HG in-
duced by the k-tuple s using the above technique, and the
ISO function colors a sub-hypergraph according to its iso-
morphism type.

4.1.2. K-TUPLE HYPERGRAPH CONSTRUCTION (RQ2)

In k-WL, a k-tuple graph is constructed where two k-tuples
are connected, called neighbors, if they differ only by one
of the k entries. Then, 1-WL can be applied on the graph
to lift the expressivity up to k-WL. In the hypergraph setup,
1-GWL must be applied in hypergraphs, but it is not clear
how to construct hypergraph structures based on k-tuples to
preserve their high-order relations.

In the proposed k-GWL, the connection patterns between k-
tuples are still rooted at and managed by their neighborhood
relations, i.e., being the same in all k entries but only one
entry. First, let 6;(s, w) be the k-tuple obtained by replacing
the i*" element of s by w. We define the neighbors of a
k-tuple s = (vy, ..., vx) in V(HG)* as k-tuples obtained by
replacing the j-th component of s by w € V(HG). The
definition of the neighbors of a k-tuple N(s) is the same as
the graph setting.

{0(s,w) = (v1,

N(s) = L Uk) |
1<j<kweV(HG)}

Uj—1, W, Vj+1, .-

3
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Figure 2. Illustration of k-GFWL and k-GOWL hypergraph neigh-
bors and hypergraph local neighbors for k-tuple (v1, vz, v3), where
k = 3. When considering set-based k-tuples, k-tuples with re-
peated vertices are absent, such as es, e4, and es in the left.

It is natural to connect a k-tuple and each of its neighbors
using a hyperedge, similar to k-WL. But this would result in
k * n hyperedges only for a k-tuple, making it prohibitively
large and limiting the scalability. Instead, it is reasonable to
connect a k-tuple with multiple k-tuples in its neighbors us-
ing a hyperedge, since they formulate a high-order neighbor-
hood relationship. We construct two types of k-dimensional
hypergraphs, depending on changing position j or vertex
w to identify the neighboring k-tuples (which will affect
the aggregation methods in applying 1-GWL later). They
are the k-dimensional folklore hypergraph HG. ¢ and k-
dimensional oblivious hypergraph HGy, , for k-tuples. The
k-GWL variants running on them are called k-dimensional
folklore GWL (k-GFWL) and k-dimensional oblivious GWL
(k-GOWL), respectively.

In the folklore hypergraph HGy. f, a k-tuple s has n hy-
peredges, one for each vertex w € V(HG) represented as
(s,01(s,w),02(s,w), -+ ,0x(s, w)). The set of hyperedges
&,y among k-tuples in HGy, s is defined by the following
formula:

Ek,f - {{(Sa el(s,w), 02(5, w)7 cae
w € V(HG), s € V(HG)"}

0
) k(S,’UJ)) | (4)

For example, in Fig. 2 left, we consider the 3-tuple
(v1,v2,v3) as our k-tuple s with k = 3. If we choose
v4 as vertex w to replace a vertex at each position of s,
the resulting 3-tuples (v4,v2,v3), (v1,v4,v3), (V1,V2,04)
together with s itself are included in hyperedge e;. If we
choose vs as vertex w, the 3-tuples (vs, va, v3), (v1, U5, v3),
(v1, v2, v5) and s itself are included in hyperedge es. If v;
is chosen, the 3-tuples (v1, v1,v3), (v1,v2,v1) and s itself

are included in hyperedge e3.

In the oblivious hypergraph HGy, ,, a k-tuple s has k hy-
peredges, one for each position j represented as ({s} U
{6;(s,w) |w € V(HG))}). The set of hyperedges &, in
the oblivious hypergraph HGj, , is then defined as follows:

Ero = {({s} U{0;(s,w) |[w € V(HG)}) |

. ) ®)
1<j<k seV(HG"}
As an example, in Fig. 2 right, when we choose the first
position as j to replace every vertex with vy, the resulting 3-
tuples (’Ug7 V2, 1}3), (’U37 V2, ’U3), (U4, V2, ’U3), and (Us, V2, ’U3)
together with s are placed in hyperedge e;. When we choose
the second and third positions as j respectively, we have that
(v1,v1,v3), (v1,v3,v3), (V1,v4,v3), (V1,v5,v3) and s are
in hyperedge es and (v1,v9,v1), (v1,v2,v2), (V1,v2,04),
(v1,v2,v5) and s are in hyperedge es. It should be noted that
the construction of k-tuple hypergraphs in k-GWL does not
depend on the actual hyperedges in the original hypergraph,
which are only used in the isomorphism type. It will be
different for HNNs in Section 6 though.

Both k-GWL and k-WL allow repetitions of vertices in
k-tuples. In the initialization of k-tuple features, they ex-
tract sub-hypergraphs and subgraphs induced by the set
of vertices in k-tuples and then use the isomorphism type
as features, where the set operation before extraction re-
moves vertex repetitions. For the construction of k-tuple
hypergraphs and k-tuple graphs, because tuples allow repeti-
tions, the vertex replacement strategies in the oblivious and

folklore variants (“all elements in one position” vs. “one
element in all k positions”™) still work with no issues.

4.1.3. APPLYING 1-GWL IN K-TUPLE HYPERGRAPH

With a k-tuple hypergraph HG;, (either HGy, s or HGy ) at
hand, we can proceed with applying 1-GWL to iteratively
update the color of every k-tuple s, c,(:) (s) at iteration ¢. In
each iteration, 1-GWL updates both colors of hyperedges

(t)( ) and k-tuples c(t) (s) in the k-tuple hypergraph HGj,.
The initial colors c( )( ) for all hyperedges e are the same

while the initial k-tuple colors c( )( ) are set based on their
isomorphism type. Let N(e) be k-tuple neighbors of hy-
peredge e and N (s) be hyperedge neighbors of k-tuple s.
The updating rules are defined as follows:

Yie), el V(s) | s € Na(e)})
'(5), fci(e) | e € Nu(8)})

c,(:) (e)= HASH(
AP (s)=HASH (™"
The process can be considered as two-stage updating: first

update hyperedge colors by the colors of k-tuples in it and
its color in the previous iteration, and then update k-tuple
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colors by the newly updated colors of hyperedges containing
it and its color in the previous iteration. For example, in
Fig. 2 left, we compute the color of the 3-tuple (v1, va, v3)
as follows. We first aggregate the colors of (vy,vs,v3),
(1}1, U4, ’U3), (1}1, Vg, ’U4), (1}1, Vg, ’Ug), and ey to update the
color of e;. Similarly, the color of es is updated. Then,
we use the updated colors of e; and e, and the previous
color of (v1, ve, v3) to update the 3-tuple’s color. After each
iteration, we compare the multisets of k-tuple colors for
two input hypergraphs. We can determine whether they are
isomorphic or not in at most h iterations. The pseudocode
of proposed k-GWL is shown in Appendix B and multiple
complete executions of k-GWL are shown in Appendix D.

4.2. Complexity

The computational complexity of the proposed k-GWL with
h iterations is O(hm), where m is the complexity in one
iteration and m = |V|dy + |€|de. Here dy and d, are the
average degrees of vertices and hyperedges in the k-tuple
hypergraph HG. (instead of the original hypergraph). In
‘HG, 5 and HG}, ,, we can derive the number of hyperedges
|€| based on their definitions: |k | in HGy ; is n* - n,
while in HG o, |Ek,0| is n”* - k. Here n* represents the total
number of k-tuples in V(HG). Additionally, the average de-
gree de in HG, is k, whereas in HGy, ,, it is n. Therefore,
the total time complexity for both k-GFWL and k-GOWL
algorithms are O(h - n* - n - k) = O(hk - n¥*+1). Here the
run-time is independent of the number of hyperedges in the
original hypergraph.

5. Theoretical Properties

In this part, we discuss theoretical results on the expres-
sive power of the two variants of k-GWL to distinguish
non-isomorphic hypergraphs. All the proofs are given in
Appendix A. For two isomorphism algorithms A and B, we
denote their respective final colors of hypergraph HG as
ca(HG) and cp(HG). We say:

¢ Ais more powerful than B (B < A) if for any pair of
hypergraphs HG1 and HGa, cA(HG1) = ca(HG2) =
cg(HG1) = cg(HG2). Otherwise, there exists a pair
of hypergraphs that B can distinguish while A cannot,
denoted as B £ A.

e Aisaspowerfulas B(A= B)if B<ANA<B.
¢ A is strictly more powerful than B (B < A) if B <
ANAZB.
5.1. The GWL Hierarchy and Connection with Existing
WL algorithms

We first show that k-GWL degenerates to k-WL for simple
graphs (instead of hypergraphs), unifying high-dimensional

isomorphism tests for both simple graphs and hypergraphs.

Theorem 5.1. Given a simple graph G = {V,E}, let
C(k,wi) (8) and c(y, g1y () be unique color labels that the
k-WL and k-GWL assign the k-tuple s to, respectively. There
exists a bijective function ¢ that maps the color c(j, ,,1(s)
from k-WL to k-tuple color cj, g1 (s) from k-GWL.

To construct the GWL hierarchy, our theoretical results
indicate that as the dimension k increases, the expressive
power of k-GWL strictly increases and (k+1)-GOWL has
the same expressivity as k-GFWL for £ > 2. We will show
shortly that 2-GOWL has a stronger expressive power than
1-GFWL.

Theorem 5.2. Vk > 1, (k+1)-GOWL - k-GOWL.
Theorem 5.3. Vk > 1, (k+1)-GFWL > k-GFWL.

Theorem 5.4. Vk > 2, (k+1)-GOWL = k-GFWL.

Figure 3. (a) A Hard Instance that 1-GWL fails but 2-GOWL suc-
ceeds; (b) A Harder Instance that 1-GWL and 2-GOWL fail but
2-GFWL succeeds.

In the graph realm, the WL hierarchy is quite clear that

1-OWL = 1-FWL 2 2-OWL
< 3-OWL = 2-FWL (©6)
< 4-OWL = 3-FWL - - -

and most GNNs (such as subgraph GNNs (Frasca et al.,
2022)) have expressive power no greater than 3-OWL. The
progress in the realm of hypergraphs lags much behind, with
only 1-GWL developed before our work. In this work, we
successfully establish a clear and complete understanding
of the GWL hierarchy, which is outlined below:

1-GOWL = 1-GFWL < 2-GOWL
< 3-GOWL = 2-GFWL (7
< 4-GOWL 2 3-GFWL - - -

Remarkably, unlike that 2-OWL = 1-WL in the WL hi-
erarchy, we have 2-GOWL > 1-GWL in the hypergraph
GWL hierarchy. To showcase, we give a hard pair of hy-
pergraphs in Fig. 3(a) which 2-GOWL successfully dis-
tinguishes but 1-GOWL and 1-GFWL fail. We also pro-
vide another pair of hypergraphs in Fig. 3(b) to confirm
2-GFWL > 2-GOWL. Both 1-GWL and 2-GOWL fail
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to distinguish the non-isomorphic hypergraphs, whereas
2-GFWL successfully identifies them. We refer readers
to Appendix D for detailed and step-by-step executions of
k-GWL in these hard instances. In fact, the hypergraphs
in Fig. 3(a) can be distinguished only by the initialization
step of 2-GOWL, whereas those in Fig. 3(b) require the
subsequent color refinement in 2-GFWL. The established
GWL expressivity hierarchy can not only help improve our
understanding on the theoretical capability of existing meth-
ods, but also guide the development of highly expressive
and practical hypergraph models.

5.2. Further Improving HNN Expressivity by Adding
Vertex Labels

Zhou et al. (2023) devised a fairly general method to en-
hance the GNN expressivity through adding limited labels
to vertices. The method can be applied to our k-GWL to
further enhance the expressivity. Their idea is to assign
extra labels 1,--- ,[ to [ vertices, but runs k-WL on the
whole graph with the additional labels only for those [ ver-
tices. This is repeated for every possible labeled graph
and then the final representation of the graph is aggregated
from the representations of all labeled graphs. This pro-
duces (k,l)-WL with a strictly stronger expressive power
than k-WL for [ > 2. It is straightforward to implement
the approach in k-GWL, which results in (k,/)-GWL with
even higher expressivity. However, the heavy computational

cost of O(h - (7)l -nF - n - k) makes it impractical. We
perform an additional experiment on (1,2)-GWL to validate
the performance as shown in Appendix E.6. We leave the
development of efficient sampling methods for hypergraphs
and adding more expressive vertex labels (e.g., structural
and positional encodings for vertices), instead of using only

vertex IDs in [-tuples, for future work.

5.3. Applying k-WL to Graphs transformed from
Hypergraphs

One could transform hypergraphs to graphs via a bijec-
tive mapping, such as the star expansion or line expansion
(Yang et al., 2022), and then apply k-WL on the transformed
graphs for isomorphism testing. This looks promising at
first glance. However, even though the transformation is
bijective, it does not guarantee the results of k-WL on the
transformed graphs are the same as those of k-GWL on
the original hypergraphs. For instance, we can find two
non-isomorphic hypergraphs where k-GWL can distinguish
them but k-WL cannot distinguish their transformed graphs.
Figure 3(a) provides such an example: while 1-WL (equiva-
lent to 2-OWL) fails to distinguish the transformed graphs,
2-GOWL successfully identifies the original hypergraphs.
Therefore, this indirect method does not achieve the same
expressive power as our k-GWL algorithm.

6. k-Dimensional Hypergraph Neural
Networks (k-HNNs)

In the following, to address RQ3, we propose k-HNN’s based
on the k-GWL algorithm, whose expressive power is upper
bounded by k-GWL. Due to scalability and limited GPU
memory, we consider set-based k-tuples in the k-GWL,
called k-sets, where ordering and repeated vertices in a tu-
ple are ignored. We treat each possible k-set as a vertex
and construct a hypergraph structure based on the k-sets.
As discussed earlier, we can construct two types of k-set
hypergraphs, HG, s and HG, ., based on Equations (4) and
(5), respectively. However, to further leverage the structural
information in the original hypergraph HG and reduce GPU
memory usage, we define a local neighborhood construc-
tion for the k-set hypergraph. The local neighbors of a
k-tuple s = (v1, ..., v;,) are defined as follows:

N(s) ={0;(s,w) = (v1, ..., Vj—1, W, Vjp1, ..., V) | ®
1<j<kweV(HG), (w,v;) € E(HG)}

In the pruned k-set hypergraph structures, ’HQL s and

Hgﬁw, we trim the original neighbors of each k-set s by
retaining only those neighbors with the differing nodes v;
and w belonging to the same hyperedge in the original hy-
pergraph G. For example at the bottom of Fig. 2, the local
neighbors of (v, va, v3) contain only 3-sets (v1, v2,v4) and
(v1,v2,v5), with other 3-sets pruned such as (v4,ve, v3)
and (v1,v4,v3). This is because, in the original hypergraph,
only v shares a hyperedge with v4 and v5 but v1, v2 do not.
We observe subtle differences in the resulting local k-set
hypergraph structures: in the k-GFWL version, (v1, va, v4)
and (v, v2,v5) belong to two separate hyperedges, whereas
in the k-GOWL version, they are in the same hyperedge.
Unlike k-GWL, for k-HNNSs based on local neighborhoods,
the actual hyperedges of the input hypergraph do influence
the construction of the k-set hypergraph.

Given the k-set hypergraph ?‘-lgfC (= Hgﬁc,f or "Hgfm), we
can apply any base HNN (of expressivity at most 1-GWL)
in k-HNN to significantly enhance the expressivity to be
at most k-GWL. Similar to k-GWL, we first initialize the
isomorphism type of all k-sets based on their induced sub-
hypergraphs. In the implementation, one could use 1-GWL
to determine the isomorphism type, which shows promising
empirical performance in our experiment since induced sub-
hypergraphs are often small. To take advantages of the
base HNN, we combine the embeddings learned by the base
HNN with the isomorphism-type features f%*°(s) to get the
k-set initial features, which can be expressed as:

2l = a([f(s), Y x{"]- Wy)) )

vES

where (") is the initial feature of k-set s in HG., 24" is the

embedding of vertex v learned by the base HNN, and W,
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is the learnable parameters. We also define that all initial
features of hyperedges in HG f,c are the same.

Then in each k-HNN layer ¢ > 0, we can compute the
feature vector for each k-set s in [V(HG)]* by the base HNN.
In our implementation, we adopt the following variant of
UniGNN as the base HNN:

) = o(DF Hy - 29 - W) 4 20D
) = oD Hy a0 W) 2

where xg)

(10)

and xét) are the latent representations of hyper-
edge e and k-tuple s in HG ff at layer ¢, respectively. Wét)
and Ws(t) are the learnable parameters. o is an activation
function, such as ReLU. Hy, is the incidence matrix of hy-
pergraph Hg;. D and D, are the diagonal matrices of
the k-set degrees and hyperedge degrees. Additionally, we
add residual connections (He et al., 2016) as a means of
alleviating the oversmoothing phenomenon.

pre-process to
k-set hypergraph
k-set structure:  isomorphsim concat

feature:

OONS)

k-set init
feature:

@%@...@

nxe
'L J hypergraph
k-set embedding embedding

k-Set HNN ||| —> @@@H —»@

Figure 4. Illustration of the proposed k-dimensional HNNs.

After calculating the embeddings ng) for all k-sets in the fi-

nal layer (7-th layer), we can apply a permutation-invariant
readout function, such as the sum function, in the k-set
embeddings and obtain a hypergraph-level embedding as:
F(HG) = > seving 2{"). This resulting hypergraph em-
bedding can then be used for downstream tasks, such as
hypergraph classification. The complete workflow of the
model is shown in Fig. 4.

Expressivity The expressivity analysis of k-HNNs is based
on k-tuples, instead of k-sets. To demonstrate the expres-
sivity of k-HNN:Ss, let ¢ C d denote that k-tuple coloring
c refines k-tuple coloring d, or equivalently, ¢(v) = ¢(w)
implies d(v) = d(w) for every k-tuple v, w. We prove
that the coloring cgf) from k-GWL refines the features :cgt),
which means that k-HNNs have expressive power upper
bounded by k-GWL. We further show that when the ag-
gregation, update, and readout functions are injective, the
expressivitiy of k-HNNs is the same as k-GWL. The devel-
opment of k-HNNs allows us to have a new way to design

hypergraph deep learning models with a target expressivity
k-GWL, similar to the relation between k-IGNs and k-WL
(Maron et al., 2019).

Theorem 6.1. Given a hypergraph HG = {V,E} and let

k > 2. Then for all iterations t > 0, for initial features xéo)

consistent with the initial colorings c,(co) of k-GWL and for
all weights W@,

D g (11)
Theorem 6.2. Let A : HG — R be a k-HNN based on
k-tuple neighborhood. With a sufficient number of layers,
for any pair of hypergraphs that k-GWL determines as non-
isomorphic, A also determines them as non-isomorphic if
(1) the aggregation and update functions in the base HNN of
A are injective, and (2) A’s hypergraph embedding readout
function is injective.

7. Experiments

In this section, we give brief discussions on the experiments
and the details of experimental setups and results are in
Appendix E.

Datasets: In the experiments, we adopt three types of real-
world hypergraph classification datasets proposed in HIC
[14], which are IMDB, Steam-Player, and Twitter-Friend,
ranging from movie staffs, game players, to social media.
The IMDB dataset further contains four distinct subsets. To
assess the efficacy of capturing distinct correlation struc-
tures, all datasets exclude the original vertex features. Keep-
ing the original vertex features makes it easier to distinguish
non-isomorphic hypergraphs, due to the potentially very
different vertex features. Hence, it is a common practice
to exclude these features and focus on structural informa-
tion only. See statistics of the datasets and the constructed
k-tuple hypergraphs in Tables 5, 6 and 7 of Appendix E.1.

Compared Methods: All experiments are conducted on
a server with 1080Ti GPU 11GB, except for 3-HNNs run-
ning on a GPU cluster with 40GB memory. Due to the
two different neighbor aggregation approaches, we obtain
two variants of our models: k-FHNNs and k-OHNNSs. For
fair comparisons, we choose competitive hypergraph deep
learning methods as baselines, including MLP, HyperGCN
(Yadati et al., 2019), HNHN (Dong et al., 2020), UniGNNII
(Huang & Yang, 2021), AllSetTransformer (Chien et al.,
2022), ED-HNN (Wang et al., 2023), and HIC adapted from
the 1-GWL subtree kernel method (Feng et al., 2024). The
number of layers and the number of parameters for all the
models are in Appendix E.7.

Main Results The experimental results for three types of
real-world hypergraph datasets are presented in Table 1.
First, our proposed two HNN models outperform other com-
pared methods across all datasets. Notably, on the Steam-
Player dataset, 2-FHNN outperforms the runner-up model,
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Table 1. Experimental Results on Various Datasets

IMDB-DIR-FORM IMDB-DIR-GENRE

IMDB-WRI-FORM

IMDB-WRI-GENRE ~ STEAM-PLAYER TWITTER-FRIEND

MLP 62.97+1.55 71.62+1.31 52.94+1.31 34.73£3.16 56.30+0.99 60.31+1.98
HYPERGCN 65.70+3.12 78.46+1.37 49.72+4.34 31.03+5.71 59.02+1.27 63.92+2.11
HNHN 67.10+1.46 79.30+1.92 55.29+2.86 44.91+2.84 58.48+1.09 61.23+£0.99
UNIGCNII 64.90+1.57 75.16+0.92 52.4143.10 40.19+2.08 58.89+1.40 60.92+2.32
ALLSETTRANSFORMER 66.76+2.55 79.31+0.94 52.67+4.77 54.09+2.41 61.87+1.87 64.03+1.34
ED-HNN 66.18+1.73 74.65+1.81 50.07+3.13 35.07+2.10 58.35+2.22 60.76+2.18
HIC 66.19+1.49 79.43+0.63 49.74+5.09 49.83+3.35 58.35+1.01 62.37+1.61
2-OHNN 67.25+2.35 79.75+1.14 55.35+3.74 50.08+1.89 65.97+1.37 64.12+1.30
2-FHNN 68.11+2.46 78.52+1.07 55.36+3.30 45.44+1.24 67.53+1.23 62.37£1.91
3-OHNN (SAMPLE SIZE 10) 67.66+2.59 79.11+1.11 52.75+4.12 57.50+3.55 63.00+2.01 62.97+2.04
3-FHNN (SAMPLE SIZE 10) 67.07+£2.33 78.90+1.10 50.56+2.69 53.84+2.05 61.50+1.59 63.05+3.67

Table 2. Results on Different Sub-Hypergraph Extraction Methods

2-FHNN  2-FHNN-S  2-OHNN  2-OHNN-S
IMDB-DIR-FORM 68.11+2.4  58.55+1.5 67.25+2.3 60.11+2.0
IMDB-DIR-GENRE ~ 78.52+1.0  76.33x1.2  79.75+1.1 74.79+1.0
IMDB-WRI-FORM 55.36+3.3 53.06+2.9 55.35+3.7 51.94+2.4
IMDB-WRI-GENRE ~ 45.44+1.2  36.38+1.5 50.08+1.8 35.95+2.3
STEAM-PLAYER 67.53+x1.2 59.56+1.0 65.97+1.3 59.17+1.7
TWITTER-FRIEND 62.75+£2.1 60.89+1.6 64.12+1.3 61.23£2.1

Table 3. Results on Sample Vertex Numbers (2-FHNN)

5 10 15 20 ALL
IMDB-DIR-FORM 66.45+1 65.97+2.5 66.51+x1.4 66.67+2.8 68.11+2.5
IMDB-DIR-GENRE 76.24+1 77.49+1.2  77.40+1.4 77.04+2.7 78.52%1.1
IMDB-WRI-FORM 52.22+4 52.78+4.4 48.61+5.2 51.11%£5.2 55.36+3.3
IMDB-WRI-GENRE ~ 47.93+3.3  43.10+2.3 38.36+2 37.76+£1.6  45.44x1.2
STEAM-PLAYER 61.81+2.2 63.43x1.7 65.88+1.9 65.98+1.5 67.53£1.2
TWITTER-FRIEND 62.15+1.3  61.08+1.2 62.85+2.1 62.31+1.8 62.75+2.2

AllSetTransformer, by 6% in accuracy. This advantage
stems from our model, guided by k-GWL, being able to
better capture the high-order structures within hypergraph
data. Second, we have run experiments on k-HNNs for
k = 3 based on the vertex sampling strategy with sample
size 10 in a GPU cluster with 40GB memory. Although not
the full 3-HNNs without the sampling, 3-HNNs with the
sampling have comparable performance to 2-HNNs across
the datasets, while significantly outperforming in the IMDB-
Wri-Genre dataset. Third, although 2-FHNN is theoretically
more advantageous than 2-OHNN, experimental results re-
veal mixed performance across datasets, with each outper-
forming in half of the datasets.

We also conduct comparative experiments for two sub-
hypergraph extraction methods. We append “-S” to the
model name when keeping all hyperedges, including sin-
gleton hyperedges, in extracting sub-hypergraphs. Table
2 shows the proposed induced sub-hypergraph method not
only supports the unification of graphs and hypergraphs, but
also offers significant empirical advantages.

Influence of the Vertex Sampling Strategy In k-HNNs, the
time complexity inevitably grows exponentially with the in-
crease in k. To reduce the complexity of k-tuple hypergraph
construction, we propose a vertex sampling strategy: we
sort the vertex set of each hypergraph dataset by degree and

Table 4. Time per Epoch (s) for Different Samplings (2-FHNN)

5 10 15 20 ALL
IMDB-DIR-FORM 7.58 8.46 8.46 8.58 10.27
IMDB-DIR-GENRE 13.81 14.59 15.34 15.54 20.71
IMDB-WRI-FORM 1.49 1.57 1.59 1.59 1.72
IMDB-WRI-GENRE  4.67 4.86 4.83 5.06 5.89
STEAM-PLAYER 10.75 11.10 11.21 10.87 11.16
TWITTER-FRIEND 6.82 7.13 7.63 7.34 7.77

select the top m vertices with the highest degrees. These
sampled vertices are then used to construct the k-tuple hy-
pergraph and train the models, while the remaining vertices
are ignored. Considering the distribution of vertex numbers
across the datasets, we set m to 5, 10, 15, and 20, result-
ing in four experimental groups. The selected results in
Table 3 show the effectiveness of the sampling method in
approximating the hypergraph classification accuracy.

Runtime Results To investigate the time complexity of the
k-HNN model, we record the average time required to run
one epoch across different datasets and different sampled
vertices. Selected results are presented in Table 4. We
observe that as the number of sampled vertices decreases,
the time required for the model to complete one epoch also
decreases. For instance, in the IMDB-Dir-Genre dataset,
where the hyperedge degree is higher, the time to complete
one epoch decreases by nearly 50% when going from full
sampling to sampling 5 vertices.

8. Conclusion

We establish a generalized WL hierarchy for hypergraphs
with increasing expressivity, with the notable difference be-
tween 1-GFWL vs. 2-GOWL, unlike its graph counterpart.
The hierarchy allows us to design hypergraph neural net-
works with the desired expressivity, improves upon most ex-
isting hypergraph neural networks whose expressive power
is upper bounded by 1-GWL. It is interesting to develop
computationally efficient hypergraph deep learning models
with provably high expressivity for a large value of k in
k-GWL. It is also an interesting direction to characterize the
expressive power of graph and hypergraph transformers.
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A. Proof

For two isomorphism algorithms A and B, we denote their respective final colors of hypergraph HG as c4(HG) and
cg(HG). We say:

* A is more powerful than B (B < A) if for any pair of hypergraphs HG1 and HG2, ca(HG1) = ca(HG2) =
cp(HG1) = cg(HG2). Otherwise, there exists a pair of hypergraphs that B can distinguish while A cannot, denoted
as B £ A.

e Aisaspowerfulas B(A~ B)if B<AANA=<B.

¢ A is strictly more powerful than B (B < A)if B < AN A 2 B. For example, for any pair of hypergraphs HG1
and HGa, caA(HG1) = ca(HG2) = cp(HG1) = c(HG2), and there exists at least one pair of hypergraphs HG; and
HGo such that cg(HG1) = cg(HG2), but c4(HG1) # ca(HGo).

Theorem A.1. (Theorem 5.1 in the main text) Given a simple graph G = {V, E}, let cj, .,1)(s) and c(y, guw1)(s) be unique
color labels that the k-WL and k-GWL assign the k-tuple s to, respectively. There exists a bijective function ¢ that maps the
color ¢, 1) (8) from k-WL to k-tuple color ¢y, g1 (s) from k-GWL.

Proof. We only prove the oblivious variants on k-OWL and k-GOWL and the proofs for the folklore variants follow
analogously.

Proof of injection: We first construct a function ¢ := ¢y, 1) () — (i, gu1) (S) and then prove it is a one-to-one mapping
(i.e., no two different sources are mapped to the same target). Consider the color c(;, ., (s) of k-tuple s at some iteration
t obtained by the k-WL algorithm (in Section 3). It is determined by the k-tuple s itself and its neighbors (more exactly,
their colors at iteration ¢ — 1), which we call the stem k-tuple set {s} U {6,(s, w) |w € V(G), 1 < j < k}. We model the
mapping from ¢, ;) (8) to its stem k-tuple set as an injective function f. In order to connect to k-GWL, we transform
the stem k-tuple set into another set {s} U {({s} U {#;(s,w)|w € V(G)}) | 1 < j < k}, by including s and N(; ,(s)
into a hyperedge. The new set can then be regarded as the k-tuple s and its hyperedge neighbors, which can determine the
color ¢z, gwi) (s) of k-tuple s obtained by the k-GWL algorithm. We denote by the injectve function g the mapping from the
new set to ¢(x, g.)(s). Then the function ¢ : (1) (S) — €(k,gui) (S) can be written as a composition function of g and f,

p=golf.

Next, we prove Vc(i, w1y (1) Ck,wi) (82) € Crywiys P(Ck,wi)(81)) = d(C(r,wi)(82)) = Cliwi) (1) = C(k,wi)(S2), Where
C(k,w1) denotes all possible k-tuples’ final colors obtained by k-WL. Assume for contradiction that there are two final colors
C(e,wi) (51)s Clio,wi) (S2) such that ¢y, 1) (S1) 7# (w1 (S2) and ¢(c(iwi) (1)) = A(C(k,wi) (S2))- It should be noted that the
injective function ¢ is reversible, getting inversion function g~!. With g~!, the two same final colors can be transformed
into the same set {s} U {({s} U {6;(s,w)|w € V(G)}) | 1 < j < k}, which further derives the same stem k-tuple set
{s}U{b;(s,w)|w € V(G),1 < j < k}. Similarly, we can apply the inverse function of f to get the same color of
Clk,wi) (1) and ¢z, 1) (S2). Since the assumption ¢z, 1) (1) 7# C(x,wi)(S2) leads to a contradiction, it is concluded that the
injection holds.

Proof of surjection: Here we prove that the two algorithms yield the same number of unique k-tuple colors in every iteration.
That is, there is 10 ¢y, g1 (s) in k-GWL that cannot be mapped from a c(y, .1 (s) in k-WL. For the first iteration ¢ = 0, both
two algorithms initialize k-tuple color with the isomorphism type. The isomorphism type of a subgraph is determined by two
factors: vertex labels and the subgraph structure. Since the vertex labels processed by the two algorithms are consistent in
the same graph G, we focus primarily on the structural difference of the subgraphs. Because of the devised sub-hypergraph
extraction method, it is guaranteed that the subgraph and sub-hypergraph induced by the same set of vertices in a k-tuple are
the same. With the same vertex labels and subgraph structure, the two algorithms output the same k-tuple coloring.

For iteration ¢ > 0, the color ¢y, (s) of k-tuple s in k-WL is determined by the stem k-tuple set {s} U {0;(s,w) |w €
V(G), 1 < j < k}. As shown in the proof of injection, the color ¢, 4. (s) in k-GWL is also determined by an equivalent
k-tuple set {s} U {({s} U{0;(s,w) |w € V(G)}) | 1 < j < k}. Thus, both the mapping of c(j, 1) (s) and ¢k gui)(s) from
the same k-tuple set are injective. Combining the injective property with that the initial colorings in iteration ¢ = 0 are the
same, we have in iteration £ > 0, the number of unique colors in the colorings induced by both algorithms is also the same.
Therefore, the surjection holds. Finally, since both surjection and injection hold, according to the definition of the bijection,
Theorem 5.1 holds. O
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For the rest proofs in this section, we use the following notations. Given two functions f, g, we use f — g to denote that for
arbitrary input hypergraphs H, G, we have f(H) = f(G) = g(H) = g(G). Then f — g implies that f = ¢g. When both
f — gand g — f hold, there exists a bijective mapping between f and g.

Theorem A.2. (Theorem 5.2 in the main text) Vk > 1, (k+1)-GOWL = k-GOWL.

Proof. k-GOWL uses the isomorphism type of k-tuple to initialize colors, as defined in Definition 4.1. We first prove that
Vs € VFTL ¢t (s) — ¢} (s:k+1) by enumerating ¢. Here, ¢}, , (s, HG) denotes the color of the k-tuple s in hypergraph
‘HG after applying (k+1)-GOWL for ¢ iterations.

1. For t = 0, the color is an isomorphism type. VHG1 = (Vy, H1, X1), HG2 = (Va, Ha, X>), Vs! € Vlk"’l,s2 € VQk'H,
we have

024-1(51) = 02+1(S2) =

(Vir,ia € [k +1],8;, =sj, &> 8], =s7,) A (Vi€ [k+1], X1 0 = Xp02)A
(Vit,..in € [k +1],(s{,,..,si ) € H > (s?,...,s] ) € H*) = 1)
(Vi iz € [k], si =sl sl =s?)A(Viek], X, st = Xog2 )/\
(Vit, .yin € [K], (s} ,....s; ) € H 3 (s7,...,87 ) € H?) =
Ck(s 1) = (S k+1)
Therefore, ¢ ; (s, HG) — ¢ (s:41, HG)
2. Vt >0,
In the k-GOWL algorithm, we get
i (e) = (HASH(( D (), el (ns) | ns € Na(e), Exyro =
f{stuf{di(s,w)|w e V(HG)}) [1<j<k+1s¢e V(Hg)kﬂ}}ﬁ))) -
ol (') = (HASH((ef (), e ™ (ns) | ms € Nife), Exo = (13)
f{({s:k41} U {0 (scpq1,w) [w € V(HG)}) |1 < j <k, sipy1 € V(Hg)k}}))) —
(t) (ot
¢, (€)

In the above, €’ is from &y, , which consists of only the first k tuples of (k+1)-tuples in x41,,. Furthermore, we have

L1(5) = (HASH((c{';,(5), fefLy(ne) | me € Ne(s), Ensro =

f{stu{tisw)weVHG))}) [1<j<k+1lse V(Hg)k“}}}}))) -

A (sipp1) = (HASH((CQ*”(SM), {cl) (ne) | ne € No(Sipr1), Exo = (14)
f{({s:k41} U {0 (scpq1,w) [w € V(HG)}) |1 < j <k, sipy1 € V(%g)k}}}}))) -
()
Ck (S:k+1)

Since ¢{') | (s) — ¢ (s.x41) holds for any iteration ¢ in k-GOWL, it follows that (k+1)-GOWL = k-GOWL.

It remains to prove that (k+1)-GOWL 22 k-GOWL, i.e., there exists a pair of hypergraphs such that (k+1)-GOWL can
distinguish while k-GOWL cannot. It is well-known that there exists a pair of graphs such that (k+1)-WL can distinguish
while k-WL cannot (Cai et al., 1992). Since graphs are a special case of hypergraphs and k-GWL degenerates to k-WL
for these inputs, we can re-use those (hyper-)graphs as the hard instances for k-GOWL which can still be distinguished by
(k+1)-GOWL, completing the proof. O
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Theorem A.3. (Theorem 5.3 in the main text) Vk > 1, (k+1)-GFWL = k-GFWL.

Proof. k-GFWL uses the isomorphism type of k-tuple to initialize colors, as defined in Definition 4.1. We first prove that
Vs € VE+L ¢l | (s) — ¢} (s:k+1) by enumerating ¢. Here, ¢}, , (s, HG) denotes the color of the k-tuple s in hypergraph
‘HG after applying (k+1)-GFWL for ¢ iterations.

1. Fort = 0, the color is an isomorphism type. We can re-use Step 1 in the proof of Theorem 5.2 to prove ¢} (8, HG) —
02 (s:k+1, HG), since k-GFWL and k-GOWL share the same initialization procedure.

2.Vt >0,

In the k-GFWL algorithm, we get
-1 -1
ei1(e) = (HASH((cf/;, (@), fef/1) (ns) | ms € Na(e), Expn s =

{(s,01(5,w), Os(s,w), -+, O 1 (s,w)) | w € V(HG), s € V(?{g)k“}}}}))) -

cD(e) = (HASH((CS—U@'), £V (ns) [ ns € Na(€),Epp = (1)
{{(S:kH,91(S:k+17w),92(5:k+1,w), e ’Gk(s;k_l,_l,'U))) |weV(HG), sky1 € V(HQ)’“}}}))) -
(t) (ot
Ck, (e')

In the above, €’ is from &, ¢ which consists of only the first k tuples of (k+1)-tuples in €11, r. Furthermore, we have

ei1(5) = (HASH((c{'1, (5), fei!]1 (ne) | ne € No(s), Expn g =

{(s, 01 (5, ), 02(5,w), -+, Opsa (5, w)) | w € V(HG), s € V(Hg)’““}}}}))) -

A (sp1) = (HASH((cff_l)(s:kH), (e (ne) | ne € No(sur1), Ey = (16)
{(S:k-‘rla el(s:k’-i-lvw)a GQ(S:k—‘,—lvw)a T aek(szk—i-hw)) | w e V(Hg)a S:k+1 S V(Hg)k}}}))> —
®
Cr, (sikt1)

Since ¢! (s) — ¢!”)(s.541) holds for any iteration ¢ in k-GFWL, it follows that (k+1)-GFWL > k-GFWL.

k+1 k
It remains to prove that (k+1)-GFWL 2 k-GFWL. We can apply the similar proof idea in Theorem 5.2 to get hard instances
for k-GFWL which can be distinguished by (k+1)-GFWL, completing the proof. O

We first present the following lemma that will be used in the proof of Theorem 5.4 and the lemma will be proved shortly.

Lemma A.4. Let k > 2. For all hypergraphs HG, HG', all v,v' € V(HG)¥*1 and all iterations t > 0, c((fLH(v) =

cff}cﬂ(v’) is equivalent to that ISOy11(v) = I1SOy41(v') and cgf)k 0;(v,)) = cgfac (0;(v',)) foralll <i<k+1

Theorem A.5. (Theorem 5.4 in the main text) Vk > 2, (k+1)-GOWL = k-GFWL.

Proof. Let cgf) and ¢\ be the coloring of k-GFWL and k-GOWL in the t!" iteration, respectively. We prove that for all

k o,k
hypergraphs %G, HG' and all iterations ¢ > 0, (1) if HG, HG’ are distinguished by CS&, they are distinguished by cgtgc IH
and (2) if HG, HG' are distinguished by cff?c 4 1» they are distinguished by cgf,zl).

To prove (1), suppose HG, HG' are not distinguished by c(tLH. Then there is a bijection f: V(HG)F ! — V(HG)k+!

o

such that ¢}, (v) = ¢}, (f(v)) forall v € V(HG)* .
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For u = (u1,ug, - ,ug), let uy = (ui,ug, -, ug,ug) and W'y = (uy,uy, -+ ,up,uj ) = f(uy). According
to cgtLH(qu) = cgtLH(qu) and Lemma A4, we get ISOpy1(uy) = SO 1(0)) and thus wj, = uj. Leta
mapping g(u) = (uf,ub, -+ ,u}) = u'. Then g is a bijection from V(HG)* to V(HG')*. Since u = 651 1(u,,) and

u’ =641 (1, ), we have cg‘ )k(qu) = cgc i(qu) by applying Lemma A.4 in the position k + 1. Then g is a bijection that

preserves the coloring cjf)k and thus c;ac cannot distinguish %G, HG'.

To prove (2), suppose HG, HG' are not distinguished by C(H—l). Then there is a bijection g: V(HG)* — V(HG')*
(Hl)(u) = cgct;rl)( (u)) for all u € V(HG)*. Let ' = g(u). By the definition of c( H) in k-GFWL,
Scac(u) = cgfzc(u) and there is a bijection h : V(HG) — V(HG') such that for all w € V(HG), we
have IS0y 1(uw) = ISOg1(uw'h(w)) and c(f) 0;(u,w)) = o 0;(u',h(w))) for all 1 < ¢ < k. This implies
f.k
cgf)k(ﬁ (uw,)) = 05(36(9 (W'h(w),)) forall 1 < 4 < k. Ttis clearly true that c(ffL(Gk+1(uw, ) = cf k(9k+1(u h(w),)).
Then by Lemma A.4, we get that cg Lﬂ(uw) = cgf3€+1(u’h(w)). We can then define a bijection f: V(HG)*+! —
V(HG' )k such that f(uw) = g(u)h(w) for all u € V(HG)* and all w € V(HG). f preserves the coloring Y and
0,k+1

thus cgti 1 cannot distinguish HG, HG'. O

such that c

we have c

We require £ > 2 to ensure that the isomorphism type function ISO() is activated in k-GFWL, since it has certain
distinguishing capability as shown in Figure 3(a). We now prove Lemma A 4.

Proof. (Proof of Lemma A.4) We prove the equivalence by induction on iteration ¢. The base case ¢t = 0 is trivial. For the

inductive step ¢ — ¢ + 1, to prove the forward direction, we suppose that c((f;r}r)l(v) = cgt:}r)l(v’ ). By the definition of

cgt:_t)l, we get [SOy41(v) = ISOg41(v'). For 1 <4 < k + 1, it remains to prove cgcle)(ei(v, ) = c(ftzl)(ﬁi(v’, )). By
the definition of cgt;:}r)l, we have {{CSLH(@(V, w)) |weV(HEG)} = {{cgf36+1(9i(v’,w’)) | w" € V(HG')}. Then there
is a bijection 1 : V(HG) — V(HG') such that ¢} , , (6;(v,w)) = ¢} 1 (:;(v', h(w))) for all w € V(HG).

According to the inductive hypothesis, we have that ISOgy1(0;(v,w)) = ISOky1(0;(v',h(w))) and
O (0;(0:(v,w),)) = (0;(0:(v' h(w)),)) forall 1 < j < k+ 1. When j = i, this implies c\\} (6;(v,)) =
Q) 0;(v',)). And for all 1 < j < k, we have D (9. 0;(v,),w c(t) 0;(0;(v',),h(w))). By the definition of

Iik fk\Y3 k\Yg
k-GFWL, it follows that ¢ ;) (8:(v,)) = ¢\ P (0:(+',)).

For the backward direction, we suppose that ISOj1(v) = ISOg41(v') and c(t+1)(01(v, ) = gle)(@i(v’, )) for all
1 <i<k+1. Since cgfﬂ) — cgc )k, by the inductive hypothesis, it follows that cgtL (v)= cE) i +1(v'). By definition of
cgtﬁ)l, to prove cgt;r}r)l (v) = c((f;r}r)l( "), we need to prove that {{co k+1(91( ,w)) |weV(HG)} = {{co k:+1( i(v, w')) |
w € V(HG )} forall1 <i<k+ 1.
Consider only an i for 1 <7 < k+ 1. Because cgcle)(oi(v, ) = Cﬁ”(el( ’.)), there is a bijection h : V(HG) — V(HG')
such that for all w € V(HG), we have 1SOj1(0i(v,)w) = ISOki1(6;(v',)h(w)) and ¢\ (0;(0;(v,),w)) =
(0;(0:(v',), h(w))) for all 1 < j < k. This implies that ISOg.1(0;(v,w)) = ISOkH(Qi(v’, h(w))) and
cgf)k(ﬁ 0;(v,w),)) = c(ft)k(ﬂ (0;(v', h(w)),)) for all 1 < j < k + 1. Then by the inductive hypothesis, we get that
gtzﬁ_l(&l(v,w)) = cgiﬂ(ﬁl(vﬂh(w))). Since h is a bijection, it holds that {{co k+1(€i(v,w)) | w e V(HG)} =
~{{cmk+1(9i(v’,w’)) | w' € V(HG')}, completing the proof. O

Theorem A.6. (Theorem 6.1 in the main text) Given a hypergraph HG = {V,E} and let k > 2. Then for all iterations

t > 0, for initial features xéo) consistent with the initial colorings cg)) of k-GWL and for all weights W),

A C ol (17)

Proof. We prove for an arbitrary iteration ¢ and k-tuples s, s’ € V(HG)¥, that c,(f) (s) = cg)(s’ ) implies 2 = x(t). In

fact, we can also prove for hyperedges e and €’ in HGy, c,(:)(e) = cg)(e’ ) implies :c.(f) = xg,) In iteration ¢t = 0, we
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(0)

have c(o)( )= c,(co)( "= 20 = x(o) since the initial features x5’ are chosen consistent with the initial colorings c,go) of

k-GWL. Similarly, ¢ 0 )( ) = 020)( N = x(o) ( ") because the initial hyperedge coloring and feature vectors are set to be
uniform.
Let k-tuple s,s" € V(HG)" and ¢ > 0 such that c,(:)( )= c,(c)( "). Suppose for the induction that cg 1)(s) = cffﬁl)(s’) =
Y = x(tfl) and c(t 1)(e) = c(tfl)(e’) = g = fe, Y hold. As Cg)( ) = ff)( "), we know from the
k- GWL refinement step that the old colors c,(f 1)(s) = c,(ffl)(s’ ) of s and s’ as well as hyperedge color multisets
{ck (e)|e € No(s)} and {{ck (e)|e € No(s')} of the hyperedge neighbors of s and s are identical. The latter,
according to the refinement step, implies that the multisets Ps {c(t 1)( 0i(s,w))|1 < j < k,w € V(G)} and
P, = {c, (t= 1)( 0i(s’,w))[1<j<kwe V( )} are identical (together with that the colors of the hyperedges at iteration

t—1, {c,(: Y(e)|e € No(s)} and{c Ye)|e e No(s)} arethesame).
Let Qs = {{m(t Y |11 <j<kweV(HG} and Qs = {{ 9(5 w) \1 < j < k,we V(HG)} be the multisets of

(s,w)
feature vectors (corresponding to Ps and P, with colors replaced by feature vectors). By the inductive hypothesis, we

know that z{' ™" = (t Y Qs = Qg and {r(t 2 le € Ne(s)} = {{:zz(t 2 |e € Ne(s')}. The latter two imply that

{xe) le € No(s)} = {{x(t) |e € No(s')}. Then, regardless of the choice of the aggregation and updating functions in

k-HNNs, we get 2 = xi,) since the input of the functions is the same. This proves cgf) (s) = cgf) (s = 2 = x(f) and

thus cl(ct) C :Uét). O

Theorem A.7. (Theorem 6.2 in the main text) Let A : HG — R? be a k-HNN based on k-tuple neighborhood. With a
sufficient number of layers, for any pair of hypergraphs that k-GWL determines as non-isomorphic, A also determines them
as non-isomorphic if (1) the aggregation and update functions in the base HNN of A are injective, and (2) A’s hypergraph
embedding readout function is injective.

Proof. Let HG, HG' be any pair of hypergraphs that k-GWL determines as non-isomorphic at iteration K. Since A’s
hypergraph embedding readout function is injective, it suffices to prove that A’s two-stage neighborhood aggregation
process, with sufficient iterations, embeds #G and HG' into different multisets of k-tuple embeddings. Suppose A updates
k-tuple representations as follows:

2l =g (@ F ({2l | s € Noe) )
2l = g(alV, f({zl) | e € Ne(9)})),

where ¢, ¢’ and f, f’ functions are injective.

The k-GWL applies an injective hash function h to update the k-GWL k-tuple labels:

= (e ”( )TV [s € Male)h)
t)

¢ () = h((e{ T (5).{cl () | e € Ne(5)D)).
We will prove, by induction, that for any iteration ¢, there always exists an injective function ¢ such that

2™ = o(c(s)). (18)
In addition, we prove that for any iteration ¢, there always exists an injective function ¢’ such that

20 =o' (P (e)). (19)
For the base case ¢t = 0, Eq. (18) trivially holds since the initial features are set based on the isomorphism type using Eq.
(9) which is an injective function. Eq. (19) also holds since the initial hyperedge features in k-HNN are the same as the

hyperedge labels in k-GWL. Suppose that Eq. (18) and (19) hold for iteration ¢ — 1, we show they also hold for ¢t. With
substitutions, the updating of hyperedge representations becomes
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20 =g (' ( "V (e)), ' ({fo(cl () |'s € Nale) ).

Since the composition of injective functions is injective, there exists some injective function 1)’ such that

20 = (cff "V (e). eV (s) | s € Nale)}).
We further get that
2@ =/ ("7 (), eV (s) | s € Mu(e)})
=4 (W)W (e (e). eV (s) [ s € Nale)})
=4 ()" (e).

Then there exists an injective function o/ = v’ - (h’)~! such that S (c,(:)( )). We can then apply similar trick in the

updating of k-tuple representations:

2l = g(a(cl V(). FH () (e)) | e € Nu(8)])).

Because the composition of injective functions is injective, there exists some injective function 1 such that

) = w(c V() fe () | e € Ne(®)})
= b7 b (s) e (€) | e € No(s)})
= -ht. cg)(s).
Hence, there exists an injective function o = 1 - h~! such that :cé ) = a(c,(c )( )). Therefore, at iteration K, when k-GWL
determines HG, HG' as non-isomorphic with different k-tuple labels ~{{c,c ( )}, kK-HNN must also have different features
{ng)}} = {{O’(CECK)(S»}} and decide them as non-isomorphic. O
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B. The high-dimensional Weisfeiler-Lehman test of hypergraph isomorphism algorithm

Algorithm 1 The high-dimensional Weisfeiler-Lehman test of hypergraph isomorphism algorithm

Input: Hypergraphs HG and HG’, int k: dimensionailty, ISO(+): isomorphism intial function, HG s, (s): sub-hypergraph
induced by k-tuple s from HG, k-tuples hypergraph HGy, int h: maximum number of iterations

// 1. Initialize k-tuple s* colors in V(HG)*.

A (s) + ISO(HGup(s)), s € V(HG)

c,(eo)(s’) — ISO(HGsup(s")),s € V(HG')*

// 2. Initialize hyperedge s’ color in hypergraph HG, for k-tuples.
c,(co)(e) +—0,e € E(HGy)

c,io)(e’) +—0,e € E(HG k)

t+0
while t < hand {c{”(s) | s € V(HG)*} = {c{”(s) | s’ € V(HG')¥} do
t—t+1

/1 3. Gathering hyperedges’ k-tuple neighbors to color hyperedges.
fore/e’ € E(HG,)/E(HG k) do
c,(ct)(e) — HASH((CSfl)(e), cl(ffl)(u) | u e Ns(e)}))
() + HASH((c¢f (), {ei) " (u) [u e Na(e)})
end for
/I 4. Gathering k-tuples’ hyperedge neighbors to color k-tuples.
for s/s’ € V(HG)* )V (HG')* do
A (s) + HASH((c{" Y (s), {ci () | u € Na(s) )
t t—1 t
(') < HASH((c! " V(s), el () | u € Nu(s)}))
end for
end while
Comparing {{c,(f) (s) | s € V(HG)} and {{c,(f) (s') |8 € V(HG)*}
Ensure: Whether HG and HG' are isomorphic or not.
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C. Sub-Hypergraph Extractions

We reveal that induced sub-hypergraphs, while appearing straightforward, require careful consideration. Recently there
is a growing interest in learning a good representation for sub-hypergraphs in hypergraphs, e.g., SHINE (Luo, 2022)
in bioinformatic applications. Here we propose a sub-hypergraph extraction trick and discuss the differences between
sub-hypergraphs and traditional subgraphs.

First, let us review the method for extracting subgraphs based on given vertices in a simple graph. Given graph G(X, A)
with vertex features X € R!VI*¥ and adjacency matrix A € {0,1}/VI*IVI. Given a set of vertices s = {vy, ..., v;}, our
purpose is to extract subgraph Gg,» (X sup, Asup) based on vertices s from G. It is easy to obtain X, € RIsIxF by selecting
the vertex features from s. The edge relationships among the vertex set s can be obtained by retaining only the relevant rows
and columns of the adjacency matrix A, resulting in Ay, € {0, 1}/s1xIsl,

Then, in the hypergraph G (X, H) with vertex features X € RIVI*" and incidence matrix H € {0, 1}/VI*IZI_ the features
of the sub-hypergraph’s vertices X,;, € RIS/*¥ can be obtained by selecting the features corresponding to the vertex set s.
The main issue lies in how we derive the sub-hypergraph’s incidence matrix H,;. One could simply retain the relevant rows
in the incidence matrix H and delete columns/hyperedges that contain no vertex in s, referred to as H'. But we propose two
(equivalent) rules to prune H':

1. If a hyperedge in the sub-hypergraph H' contains at least two vertices from the vertex set in its original hyperedge,
then the hyperedge is retained. (In other words, columns with at least two non-zero entries are kept in H'.)

2. If a hyperedge only contains a single vertex, called a singleton hyperedge, then the hyperedge is deleted from H’. (In
other words, columns with only one non-zero entry are pruned from H'.)

Therefore, we obtain Hg,, € {0, 1}|S‘X‘U| by retaining the relevant rows in the incidence matrix H and delete
columns/hyperedges that contain no vertex or only one vertex in s, where |U| is the number of hyperedges that con-
tain at least two vertices from the set s.

The first rule is well-motivated in practice and easy to explain. For instance, in citation datasets, hyperedges represent papers
and co-authors are the vertices within the hyperedges. When we remove some co-authors from a paper/hyperedge, the
co-author relationship among the remaining authors is still maintained.

The second rule essentially ensures that the sub-hypergraph and the subgraph induced by the same set of vertices in an
equivalent hypergraph/graph are the same. See the illustrative example in Figure 1. In fact, when there is a single vertex
in a hyperedge, the hyperedge information can be either deleted or transformed into an additional vertex feature. We turn
to the former, which facilitates the theoretical proof of the relation between k-GWL and k-WL. Additionally, from the
experimental results shown in Table 2, we find that deleting singleton hyperedges significantly enhances the hypergraph
classification performance compared to retaining them. We believe that our finding on sub-hypergraph extractions can be of
independent interest.
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D. Illustrative Examples for Hypergraph Isomorphism Test

For the examples in this section, we only consider k-sets for clarity. The omitted ordering (e.g., (v1,v2) vs. (v2,v1)) and
vertex repetitions (e.g., (v1,v1)) do not affect the correctness. Symmetric 2-tuples have the same features since they have
the same induced sub-hypergraph. 2-tuples with vertex repetitions have an induced sub-hypergraph as the vertex itself since
singleton hyperedges are removed.

D.1. An Example Distinguishable During the Initialization of 2-GWL

@ Input (b) Initial part Statistics results
(viv2): (v2,v3): (v3,v5):
V) @@ (v @8 (36 @@ NP 04 014 ol

G vd): @@ (v2v5): B O (v4,v5): *9 g 02 92 92
(viv5): @ @ (v2vb): (v4v6): @ B o8 »a 9:0

rowl  O16) @B v3vy e @@ 20 9

Process (Viv2): (v2v3): (v3,v5): 006 9"@:2
(3 @@ 2 @B (346 @ 8 | ﬁ@é 04 04 91
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2 H
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Figure 5. An illustrative example where 2-GWL can distinguish and 1-GWL cannot distinguish. Node labels are in circles and edge labels
are of red color.

In part (a), two non-isomorphic hypergraphs, G and G’, are presented. Part (b) illustrates the initialization process of
2-GWL, where 2-GWL successfully identifies distinct subgraphs in G and G’. For example, the subgraph type generated by
(vs, vg) in G’ is unique and does not match any subgraph type in G, allowing us to conclude that they are non-isomorphic.

In contrast, part (c) shows that 1I-GWL is unable to distinguish between the two hypergraphs. After each round of 1-GWL,
the color mapping remains the same. Thus, 1-GWL fails to distinguish between these two non-isomorphic hypergraphs.
Therefore, the expressive power of 2-GWL is indeed stronger than that of 1-GWL.
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D.2. A Harder Example Not Distinguishable During the Initialization of 2-GWL

We have presented an example where two non-isomorphic hypergraphs can be distinguished during the initialization phase
of 2-GWL in Figure 5. To further validate the expressive power of the k-GWL algorithm, we provide a more challenging
example of non-isomorphic hypergraphs that cannot be distinguished during the initialization phase of 2-GWL. Below, we
present the details of applying 1-GWL, 2-GOWL, and 2-GFWL in the hypergraphs.

Input Initial part Vertex —> Hyperedge Hyperedge —> Vertex Statistics results
v @ vi: @, 13] v @
2 @ v2: @[3, 4] v2: @
PPN e1: 2, 1@. 0. 01 el: 3 v3: @, 13, 4] v3: @
w @ 4100 @4 | @034 )
@ e3:1.1@ B! e3: 4 v5: @. [3, 4] vs: @
w @ e4:1, (@ @] e4: 4 vé: 9 [3, 4] v6: &Y ¢ ©2 96
P A X2 ) Hash Map 54 | 7@ 13 4] Hash Map - @
g e6: 2@ @@ . eb 3 8: 3] oI .
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Figure 6. Illustration of 1-GWL failing to distinguish two particular non-isomorphic hypergraphs. Node labels are in circles and edge
labels are of red color.

In Figure 6, we show that 1-GWL is unable to distinguish the challenging example of non-isomorphic hypergraphs. Similarly
to part (c) in Figure 5, after each round of 1-GWL, the types and quantities of colors generated remain consistent with those
from the previous round. Therefore, 1-GWL fails to distinguish these two non-isomorphic hypergraphs.

In the following, we show that 2-GFWL successfully distinguishes the non-isomorphic hypergraphs while 2-GOWL cannot
distinguish. We start with the details of the initialization part of 2-GWL (shared by 2-GFWL and 2-GOWL), as shown in
Figure 7.

We observe that cardinalities of the 2-tupe colors in the two hypergraphs keep the same, although the colors for (v, vs4),
(vs, v5), (v4,vg) and (vs, vg) are different. This indicates that neither 2-GFWL nor 2-GOWL can distinguish these two
non-isomorphic hypergraphs during the initialization phase.

In the next step, our 2-GOWL and 2-GFWL algorithms construct hyperedges for each initialized 2-tuple to connect it with its
corresponding 2-tuple hypergraph neighbors. For brevity, we only consider the 2-tuples (vs,v4) and (vs, vs) and construct
their 2-tuple hypergraph neighbors. The 2-tuple hypergraphs and their isomorphism test processes are shown in Figure 8
and Figure 9, respectively.

In Figure 8, we use the hyperedge construction formula of k-GOWL mentioned in Section 4.1.2 as follows:

Ero = ({s}U{b;(s,w) |w e V(HG)}) |1 < j <k, s € V(HG)"}
It can be deemed as replacing a specific vertex in the k-tuple with all vertices from the original vertex set to form a k-tuple
neighbor, and then all these k-tuple neighbors are connected to form a hyperedge. Specifically, for the 2-tuple (vs, v4), we

observe that by replacing vs in (vs, v4) with vy, ve, vs, Vg, v7, and v, we obtain six 2-tuple neighbors. These six neighbors
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Figure 7. The initialization phase of the 2-GWL cannot distinguish the non-isomorphic hypergraphs as well.

are connected to (vs, v4) by the hyperedge e, forming parts of the 2-tuple hypergraph. The construction process for (v, v5)
follows similarly.

Next, we perform the 1-GWL color relabeling on the constructed 2-tuple hypergraph. As a result, we obtain that in G,
2-tuple (v3,v4) is assigned color ‘9” and (vs, vs) is assigned color ‘10°. In G, 2-tuple (v3, v4) is assigned color ‘10’ and
(vs, vs) is assigned color ‘9. The cardinalities of colors for these two 2-tuples remain consistent with the input. Therefore,
2-GOWL is unable to distinguish these two non-isomorphic hypergraphs.

In Figure 9, k-GFWL constructs the set of hyperedges as follows:
gk,f = {(Sa 01 (Sv ’UJ), 02(Sa w)v t 7016(5’ w)) ‘ w e V(IHg>7 SRS V(Hg)k}}

It can be considered as replacing every vertex in the k-tuple with a specific vertex from the original vertex set to form
a k-tuple neighbor, and then all these k-tuple neighbors are connected to form a hyperedge. Specifically, for the 2-tuple
(vs, v4), we replace both vz and vy with vy, resulting in the 2-tuple neighbors (vy,v3) and (v1, v4). These two neighbors,
along with (vs, v4), are connected by the hyperedge e;. The construction process for (v3, vs) is similar.

Finally, we perform the 1-GWL coloring on the constructed 2-tuple hypergraph. The results are that in G, (vs, v4) is assigned
color ‘9’ and (v, vs) is assigned color ‘10°. In G’, (vs, vy4) is assigned color ‘11" and (v, vs) is assigned color ‘12°. Since
the 2-tuple colors in the two non-isomorphic hypergraphs differ, the 2-GFWL algorithm successfully distinguishes between
the two hypergraphs.
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Figure 9. Nlustration of 2-GFWL successfully distinguishing non-isomorphic hypergraphs.
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E. Experiment Details
E.1. Experimental Setups

Datasets: In the experiments, we adopt three types of real-world hypergraph classification datasets proposed in HIC [14],
which are IMDB, Steam-Player, and Twitter-Friend. In the IMDB datasets, two correlations—co-director and co-writer—are
used for high-order dataset construction. In the dataset name, “Dir” and “Wri” indicate hypergraphs constructed from the
co-director and co-writer relationships, respectively. The staff (director/writer) of each movie forms a hypergraph. “Form’
categorizes movies by type (e.g., animation, drama), while “Genre” classifies them by genre (e.g., adventure, crime). The
Steam-Player dataset comprises games played by Steam users, represented as hypergraphs, where vertices represent games
played, and hyperedges connect games with shared tags. The goal of the dataset is to identify each user’s preference:
single-player or multi-player games. The Twitter-Friend dataset is a social media dataset where each hypergraph represents
a user’s friends. Hyperedges connect users who are friends. The label indicates whether the user posted about “National
Dog Day” or “Respect Tyler Joseph”. To assess the efficacy of capturing distinct correlation structures, all datasets exclude
the original vertex features. Full dataset statistics are in Table 5, where |v| and |e| represent the number of vertices and
the number of hyperedges in a hypergraph, respectively. d, and d, are the average degrees of vertices and hyperedges,
respectively. In addition, we provide the information of k-tuple hypergraphs generated by the 2-GWL algorithm, which are
presented in Table 6 and Table 7, respectively.

>

Table 5. Statistics of Input Hypergraph Datasets

DATASET # HYPERGRAPHS  # CLASSES AVG.|v| AVG.le] MAX.|v] MAX.|e|] de dy

IMDB-DIR-FORM 1869 3 15.7 39.2 264 450 37 6.3
IMDB-DIR-GENRE 3393 3 17.3 36.4 264 450 3.8 59
IMDB-WRI-FORM 374 4 10.1 3.7 180 23 5.0 1.5
IMDB-WRI-GENRE 1172 6 12.8 4.4 273 75 52 1.5
STEAM-PLAYER 2048 2 13.8 46.4 76 140 45 149
TWITTER-FRIEND 1310 2 21.6 84.3 166 603 43 164

Table 6. Statistics of k-Tuple Hypergraphs by 2-GOWL
DATASET AVG.|v]  AVG.le] de dy

IMDB-DIR-FORM 223.4 368.1 9.2 12.6

IMDB-DIR-GENRE 301.8 477.2 9.6 12.7

IMDB-WRI-FORM 117.6 44.5 6.4 3.6
8

IMDB-WRI-GENRE 266.8 94.7 3 3.9
STEAM-PLAYER 96.8 21.7 12.6 2.9
TWITTER-FRIEND 345.2 611.5 13.7 21.2

Table 7. Statistics of k-Tuple Hypergraphs by 2-GFWL
DATASET AVG.Jv|  AVG.le] de dy

IMDB-DIR-FORM 223.4 6773.3 2.5 142
IMDB-DIR-GENRE 301.8 9068.1 2.5 14.8
IMDB-WRI-FORM 117.6 3435.15 2.6 7.7
IMDB-WRI-GENRE 266.8 10009.7 2.6 10.2
STEAM-PLAYER 96.8 511.0 3.0 12.0
TWITTER-FRIEND 345.2 7684.9 2.5 22.1

Compared Methods: In our k-HNN, the number of neighbors for each k-set grows exponentially with k, which is
constrained by the GPU memory capacity. Therefore, we mainly focus on k& = 2 (except for 3-HNNs with vertex sampling).
Due to the two different neighbor aggregation approaches, we obtain two variants of our models: k-FHNN and k-OHNN.
Since our models are end-to-end trained HNNs with node features and hypergraph structure as input and final hypergraph
features as output, we choose several representative hypergraph deep learning methods as baselines. These include:
HyperGCN (Yadati et al., 2019), HNHN (Dong et al., 2020), UniGNNII (Huang & Yang, 2021), AllSetTransformer (Chien
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et al., 2022), and ED-HNN (Wang et al., 2023). Furthermore, we adapt the 1-GWL kernel kernel method (Feng et al., 2024)
to an end-to-end model, resulting in HIC as another baseline. To further emphasize the contribution of structural information
to the learning process, we also include the 2-layer MLP of width 128 as a baseline model. Note that some of the above
methods were originally proposed for node classification tasks. Therefore, we add the same readout module in their final
step, where the embeddings of all nodes are summed to obtain the final hypergraph embedding used for classification.

Other Details: To evaluate the model’s performance, we report the average classification accuracy over 5-fold cross-
validation along with standard deviation. This metric intuitively measures the model’s ability to distinguish different types of
hypergraphs. We use the Adam optimizer with a learning rate of 0.001 and terminate the training if there is no improvement
in the validation performance after 50 epochs. All experiments are conducted on a server with an Intel E5-2650 CPU
(2.20GHz), 256GB RAM, and an NVIDIA 1080Ti GPU (11GB), except the experiment for 3-HNNs on a GPU cluster
consisting of 10 Sugon X640 G30 GPU servers, including 1 management node and 9 GPU compute nodes. Each node is
equipped with dual Intel Xeon 6248R CPU, 512GB RAM, and 8 Nvidia Tesla A100 GPU(40GB).

E.2. Main Result

The experimental results for three types of real-world hypergraph datasets are presented in Table 1. Based on those results,
we have four observations. First, our proposed two HNN models outperform other compared methods across all datasets.
Notably, on the Steam-Player dataset, 2-FHNN outperforms the runner-up model, AllSetTransformer, by 6% in accuracy.
This advantage stems from our model, guided by k-GWL, being able to better capture the high-order structures within
hypergraph data. Second, we have run experiments on k-HNNs for £ = 3 based on the vertex sampling strategy with
sample size 10 in a GPU cluster with 40GB memory. Although not the full 3-HNNs without the sampling, 3-HNNs
with the sampling have comparable performance to 2-HNNs across the datasets, while significantly outperforming in the
IMDB-Wri-Genre dataset. Third, in the IMDB-Wri-Form dataset, the structure-free MLP model achieves a relatively high
ranking, trailing our model by only 3% in accuracy. This indicates that leveraging high-order structural information in this
dataset still has a large space for improvement. Fourth, although 2-FHNN is theoretically more advantageous than 2-OHNN,
experimental results reveal mixed performance across datasets. For instance, 2-FHNN performs better on datasets such as
IMDB-Dir-Form, IMDB-Wri-Form, and Steam-Player, while 2-OHNN outperforms on IMDB-Dir-Genre, IMDB-Wri-Genre,
and Twitter-Friend datasets. Therefore, in practical applications, it is essential to select the model that best suits the specific
scenario.

E.3. Impact of Sub-hypergraph Extraction Methods

We here conduct comparative experiments for different sub-hypergraph extraction methods to show the proposed induced
sub-hypergraph method not only supports the unification of graphs and hypergraphs, but also offers empirical advantages.
We append “-S” to our model when keeping all hyperedges, including singleton hyperedges, in extracting sub-hypergraphs.
Note that this only changes the initial features of k-sets, i.e., isomorphism types, due to a possibly different induced
sub-hypergraph, while the k-set hypergraph structure remains unchanged. The experimental results are presented in Table 2.
We observe that when k-sets use sub-hypergraphs containing a large number of singleton hyperedges as the isomorphism
type features, the model performs poorly across all datasets. However, when we remove singleton hyperedges from the
sub-hypergraphs, the model achieves an average performance improvement of 5.4% across all datasets, with a maximum
improvement of 14%. This highlights the indispensable role of our induced sub-hypergraph module and its significant
impact on the empirical performance of k-HNN.

E.4. Influence of the Vertex Sampling Strategy

In k-GWL, the time complexity inevitably grows exponentially with the increase in k. To reduce the complexity of k-tuple
hypergraph construction, we propose a vertex sampling strategy. Specifically, we sort the vertex set of each hypergraph
dataset by degree and select the top m vertices with the highest degrees. These sampled vertices are then used to construct
the k-tuple hypergraph and train the models, while the remaining vertices are ignored.

Considering the distribution of vertex numbers across the datasets, we set m to 5, 10, 15, and 20, resulting in four
experimental groups. Additionally, we included a fully sampled experiment (using all vertices) as a baseline for comparison.
We conduct the same sampling experiments on both the 2-FHNN and 2-OHNN models. The experimental results for
different models are shown in Table 3 and Table 6, respectively.
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Table 3. Results on Sample Vertex Numbers (2-FHNN)
5 10 15 20 ALL

IMDB-DiIR-FORM 66.45+£0.98 65.97+2.54 66.51+x1.39 66.67+2.83 68.11+2.46
IMDB-DIR-GENRE ~ 76.24+0.98 77.49+1.23 77.40+1.44 77.04+2.67 78.52+1.07
IMDB-WRI-FORM 52.2243.99 52.78+4.39 48.61+x5.20 51.11%5.23 55.36+3.30
IMDB-WRI-GENRE ~ 47.93+£3.26 43.10+2.33 38.36+1.98 37.76+1.58 45.44+1.24
STEAM-PLAYER 61.81£2.20 63.43+1.71 65.88+1.91 65.98+1.51 67.53+1.23
TWITTER-FRIEND 62.15+1.30 61.08+1.23 62.85+2.14 62.31+1.67 62.75+2.18

Table 6. Results on Sample Vertex Numbers (2-OHNN)
5 10 15 20 ALL

IMDB-DIR-FORM 66.45+1.31 66.72+1.50 67.10x1.47 67.15%£1.27 67.25%£2.35
IMDB-DIR-GENRE ~ 76.39+1.85 75.68+1.45 77.49+1.43 75.12+1.03 79.75+1.14
IMDB-WRI-FORM 49.44+6.37 49.17£2.58 53.06%£5.08 51.94+3.58 55.35+3.74
IMDB-WRI-GENRE  47.50+3.17 42.93+2.54 36.90+3.50 38.19+1.80 50.08+1.89
STEAM-PLAYER 60.88+1.25 62.94+1.01 65.05+0.69 64.75x1.77 65.97+1.37
TWITTER-FRIEND 61.54+1.95 61.92+2.81 62.08+1.16 62.85+2.59 64.12+1.30

Based on those results, we have three observations. First, for both the 2-FHNN and 2-OHNN models, the performance
improves as the number of sampled vertices m increases, reaching its peak when all vertices are sampled. This trend is
particularly pronounced in the Steam-Player dataset, where the performance difference between the case with 5 sampled
vertices and the full sampling scenario is as high as 6%. Second, in some datasets, such as IMDB-Wri-Form and IMDB-
Wri-Genre, the model performance initially decreases and then increases as the number of sampled vertices increases. This
may be because, in these datasets, the key structural information is concentrated in a few high-degree vertices. Adding
low-degree vertices, which lack meaningful information, can interfere with learning the graph structure. Third, when the
number of sampled vertices m is low, 2-FHNN generally performs better than 2-OHNN. For example, in the cases where
m = 5 and m = 10, 2-FHNN outperforms 2-OHNN in 9 out of the 12 experimental datasets. This suggests that 2-FHNN is
more promising in the setting of aggressive pruning for high efficiency.

E.5. Runtime Results

To investigate the time complexity of the k-HNN model, we record the average time required to run one epoch across
different datasets and vertex sampling sizes. The runtime results for 2-FHNN and 2-OHNN are presented in Table 4 and
Table 7, respectively. Additionally, we also recorded the average time required to run one epoch across different hypergraph
learning models. The runtime results are shown in Table 8.

Table 4. Time per Epoch (seconds) for Different Sampling Numbers (2-FHNN)
5 10 15 20 ALL

IMDB-DIR-FORM 7.58 8.46 8.46 8.58 10.27
IMDB-DIR-GENRE 13.81 14.59 15.34 1554 20.71
IMDB-WRI-FORM 1.49 1.57 1.59 1.59 1.72
IMDB-WRI-GENRE 4.67 4.86 4.83 5.06 5.89
STEAM-PLAYER 10.75 11.10 11.21 10.87 11.16
TWITTER-FRIEND 6.82 7.13 7.63 7.34 7.77

From the experimental results in Table 4 and Table 7, we make the following three observations. First, even with the same
number of sampled vertices, the runtime of the same model varies significantly across different datasets. For instance,
in the 2-FHNN model experiments, when sampling five vertices, the average runtime per epoch time is only 1.49 s on
the IMDB-Wri-Genre dataset, while it rises to 13.81 s on the IMDB-Dir-Genre dataset, a nearly 9-fold difference. This
discrepancy can likely be attributed to the considerable difference in the average degree of hyperedges in the original
hypergraph topology. For example, the average hyperedge degree in the IMDB-Wri-Genre dataset is only 3.7, compared to
36.4 in the IMDB-Dir-Genre dataset, which is almost 10 times higher. As a result, even if two hypergraphs have the same
number of nodes, differences in their topological structures can lead to substantial differences in model runtime.
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Table 7. Time per Epoch (s) for Different Sampling Numbers (2-OHNN)
5 10 15 20 ALL

IMDB-DIR-FORM 7.50 8.30 8.51 8.50 8.98
IMDB-DIR-GENRE  13.65 14.46 1490 1541 17.41
IMDB-WRI-FORM 1.50 1.53 1.56 1.54 1.57
IMDB-WRI-GENRE 4.59 5.09 5.12 5.25 6.96
STEAM-PLAYER 9.09 11.34 11.41 11.32 11.55
TWITTER-FRIEND 6.71 7.10 7.56 7.43 7.71

Table 8. Time per Epoch (s) for Different HNN Models

IMDB-DIR-FORM  IMDB-DIR-GENRE IMDB-WRI-FORM IMDB-WRI-GENRE =~ STEAM-PLAYER  TWITTER-FRIEND

HNHN 7.4 10.78 0.3 0.87 2.94 1.37
HYPERGCN 39.54 131.23 3.8 13.58 98.49 100.73
HIC 5.68 10.27 0.99 3.16 5.58 4.48
UNIGCNII 5.52 9.92 0.98 3.18 5.4 3.19
ALLSETTRANS 5.8 10.24 1.01 3.28 5.69 4.16
ED-HNN 5.66 10.19 0.99 3.29 5.63 4.64
2-OHNN(OURS) 8.98 17.41 1.57 6.96 11.55 7.71
2-FHNN(OURS) 10.27 20.71 1.72 5.89 11.16 7.77

Second, as the number of sampled vertices increases, the time required for the model to complete one epoch also increases.
However, the rate of increase differs across datasets. We speculate that this is related to the average degree of the hyperedges
in the datasets. For instance, in the IMDB-Dir-Genre dataset, where the hyperedge degree is higher, the time to complete one
epoch increases by nearly 50% when going from sampling 5 vertices to full sampling. In contrast, in the IMDB-WTri-Genre
dataset, where the degree of hyperedge is lower, the time required to complete one epoch only increases by about 15%.

Third, when the number of vertices inevitably increases, using 2-OHNN will have a lower runtime compared to 2-FHNN,
even though their theoretical time complexities for constructing k-tuples are the same. For example, in the IMDB-Dir-Genre
dataset, under the full sampling of vertices, 2-OHNN requires 14% less time than 2-FHNN.

Based on the experimental results in Table 8, we also make three observations. First, the training time per epoch for
HyperGCN is significantly higher than all the other models. For example on the Twitter-Friend dataset, it is 14 times
longer than the second-most time-consuming model. This is because HyperGCN is a spectral HNN that involves expensive
Laplacian computations for every hypergraph in a dataset. Note that we did not include a variant of HyperGCN (Yadati
et al., 2019) that could run faster at the expense of worse embeddings.

Second, apart from HyperGCN, our 2-OHNN and 2-FHNN methods have the highest runtime. This is due to the computation
of the k-set embeddings. However, the runtimes of our models do not exhibit explosive growth; they remain within an
acceptable range, at most twice of the fast model UniGCNIIL.

Finally, combining with the runtime results of the vertex sampling experiment in Table 4 and Table 7, when the number of
sampled vertices is 5, the runtimes of 2-FHNN and 2-OHNN become much closer to those of the main models. Especially
in the IMDB-DIR-GENRE dataset, with 5 vertices sampled, the time ratio between our 2-FHNN and 2-OHNN models and
the fastest model, UniGCNII, shrinks to within a factor of 1.4.

E.6. Effect of Adding Node Labels

To validate whether the inclusion of additional node labels can enhance the expressive power of the model, we conduct the
following experiments using the HIC model as the baseline (whose expressive power is upper bounded by 1-GWL). We
select two nodes in the graph to include additional feature values of 1 and 2, while the remaining nodes receive an additional
feature value of 0. To ensure that each® pair of nodes is select at least once, we generate P(n, 2) label graphs, where P(n, 2)
represents all possible combinations of selecting 2 nodes from n nodes. We aggregate the final embeddings of all label
graphs process by the HIC model to obtain the final graph embedding, which is then used for graph classification tasks.
The variants obtain by the HIC model using this method are referred to as (1,2)-HIC. The experimental results of HIC and
(1,2)-HIC are shown in Table 9.
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Table 9. Comparison on the Inclusion of Additional Node Labels

MODEL IMDB-WRI-FORM  STEAM-PLAYER
HIC 49.74+5.09 58.354+1.01
(1,2)-HIC 53.61+3.36 61.15+3.08

The experimental results indicate that adding additional node labels can indeed improve the model’s accuracy. For example,
on the IMDB-Wri-Form and Steam-Player datasets, the model’s performance improves by approximately 3.5% on average,
further demonstrating that this method enhances the model’s expressive power.

E.7. The Number of Layers and The Number of Parameters in the Tested Models

Table 10. The Number of Parameters in the Models with 1 to 3 Layers

MODEL 1 LAYER 2 LAYERS 3 LAYERS
MLP NA 9,219 20,102
HYPERGCN NA 59,395 87,942
HNHN NA 125,443 192,131
UNIGCNII NA 41,731 58,115
ALLSETTRANSFORMER 135,171 NA NA
ED-HNN 109,443 NA NA
HIC NA 25,987 59,907
K-HNNs 117,379 216,963 316,547

Table 11. The Best-Performing Number of Layers in the Models

MODEL IMDB-DIR-FORM IMDB-DIR-GENRE IMDB-WRI-FORM IMDB-WRI-GENRE STEAM-PLAYER TWITTER-FRIEND
MLP 3 3 3 2 3 2
HYPERGCN 2 1 3 2 3 2
HNHN 3 2 2 2 2 3
UNIGCNII 3 3 3 2 3 2
ALLSETTRANSFORMER 1 1 1 1 1 1
ED-HNN 1 1 1 1 1 1
HIC 3 2 2 3 3 3
2-OHNN 1 3 2 1 2 2
2-FHNN 2 2 1 1 1 2

Here we report the number of parameters for all tested models towards a transparent comparison. We run different number
of layers from 1 to 3 for each of the models and report the highest performance achieved in Table 1. The best-performing
number of layers in the tested models and their corresponding number of parameters can be found in Tables 11 and 10,
respectively. For MLPs used in these models, we uniformly set the number of hidden layers as 2 and their dimension as 128.
In Table 10, k-HNNs have the same number of parameters for different values of k since they share the same neural network
architecture. It can be observed that our k-HNN models, AllSetTransformer, and HNHN use more parameters than others.
However, our proposed models and AllSetTransformer clearly outperform other baselines as shown in Table 1. For both
graph and hypergraph deep learning, it is still an open problem on how to address the trade-off between expressive power
and model complexity. In addition, we report the average time per epoch for all the models in Table 8 of Appendix E.5. The
run-times of our methods are mostly smaller than double those of compared methods, while the vertex sampling approach
can effectively reduce the run-time to be closer to that of other methods.
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