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ABSTRACT

Weight decay is a widely used technique for training Deep Neural Net-
works(DNN). It greatly affects generalization performance, but the underlying
mechanisms are not fully understood. Recent works show that for layers followed
by normalizations, weight decay mainly affects the effective learning rate. How-
ever, although normalizations have been extensively adopted in modern DNNs,
layers such as the final fully-connected layer do not satisfy this precondition. For
these layers, the effects of weight decay are still unclear. In this paper, we compre-
hensively investigate the mechanisms of weight decay and find that except for in-
fluencing effective learning rate, weight decay has another distinct mechanism that
is equally important: affecting generalization performance by controlling cross-
boundary risk. These two mechanisms together give a more comprehensive ex-
planation for the effects of weight decay. Based on this discovery, we propose a
new training method called FixNorm, which discards weight decay and directly
controls the two mechanisms. We also propose a practical method to tune hy-
perparameters of FixNorm, finding near-optimal solutions 2∼3 times faster than
Bayesian Optimization. On ImageNet classification task, training EfficientNet-B0
with FixNorm achieves 77.7%, which outperforms the original baseline by a clear
margin. Surprisingly, when scaling MobileNetV2 to the same FLOPS and apply-
ing the same tricks with EfficientNet-B0, training with FixNorm achieves 77.4%,
which shows the importance of well-tuned training procedures and further veri-
fies the effectiveness of our approach. We set up more well-tuned baselines using
FixNorm, to facilitate fair comparisons in the community.

1 INTRODUCTION

Weight decay is an important trick and has been widely used in training Deep Neural Networks. By
constraining the weight magnitude, it is widely believed that weight decay regularizes the model
and improve generalization performance(Krizhevsky et al., 2012; Bös, 1996; Bos & Chug, 1996;
Krogh & Hertz, 1992). Recently, a series of works (Van Laarhoven, 2017; Zhang et al., 2018;
Hoffer et al., 2018) propose that for layers followed by normalizations, such as BatchNormaliza-
tion(Ioffe & Szegedy, 2015), the main effect of weight decay is increasing the effective learning
rate(ELR). Take the widely adopted Conv-BN block as an example. Since BatchNormalization is
scale-invariant, the weight norm of the convolution layer does not affect the block’s output, which
contradicts the regularization effect of weight decay. On the contrary, the weight norm affects the
step size of the weight update, e.g., a larger weight norm results in smaller step size. By constraining
the weight norm from unlimitedly growing, weight decay increases the step size of weight update,
thus increasing the ELR.

This interesting discovery arouses our questions: Does it covers the full mechanism(s) of weight
decay? If the answer is true, weight decay would be unnecessary since its effect fully overlaps
with the original learning rate. Hoffer et al. (2018) shows that the performance can be recovered
when training without weight decay by applying an LR correction technique. However, the LR
correction coefficient at each step depends on the original training statistics(with weight decay),
which makes this technique only a verification of the effective learning rate hypothesis, but can
not be used as a practical training method. Moreover, the ELR hypothesis only applies to layers
followed by normalizations, and there are layers that do not satisfy this requirement. For example,
the final fully-connected layer that is commonly used in classification tasks. For these layers, the
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effects of weight decay are usually omitted (Hoffer et al., 2018), or simply the original weight decay
is preserved (Zhang et al., 2018). These problems indicate that the mechanisms of weight decay are
still not fully understood.

In this paper, we try to investigate the above problems. For the convolution layers that followed
by normalizations, we find that simply fixing the overall weight norm to a constant fully recovers
the effect of weight decay. For the final fully-connected layer, we find that there is a special ef-
fect introduced by weight decay, which influences the generalization performance by controlling the
cross-boundary risk. This mechanism is as important as the former investigated ELR, and they
together capture most of the effects of weight decay. We then propose a new training scheme called
FixNorm, which discards the weight decay and directly controls the effects of two main mecha-
nisms. By using FixNorm, we fully recover the performance of popular CNNs on large scale classi-
fication dataset ImageNet(Deng et al., 2009). Further, we show that the hyperparameters of FixNorm
can be easily tuned and propose an efficient tuning method FixNorm-tune, which find near-optimal
solutions 2∼3 times faster than Baeysian Optimization. Specifically, by applying FixNorm-tune, we
achieve 77.7%(+0.4%) with EfficientNet-B0, 79.5%(+0.3%) with EfficientNet-B1, 73.97%(+1.9%)
with MobileNetV2.

Training tricks and network tricks show significant impacts on performance, introducing difficulties
in tuning and bringing ambiguities to comparisons. We show that this can be mitigated by using
FixNorm-tune. For example, by simply scaling MobileNetV2 to the same FLOPS and applying the
same tricks of EfficientNet-B0, training with FixNorm achieves 77.4% top-1 accuracy, while the
default training process only gets 76.72%. To facilitate fairer comparisons, we apply our FixNorm-
tune method to representative CNN architectures and set up new baselines under different settings.

Our contributions can be summarized as follows:

• Except for increasing the effective learning rate, we discover a new mechanism of weight
decay which controls the cross-boundary risk, and give a better understanding of weight
decay’s effect on generalization performance.

• We propose a new training scheme called FixNorm that discards the weight decay and
directly controls the effects of two main mechanisms, which fully recovers the accuracy of
weight decay training and makes hyperparameters easier to tune.

• We propose a practical method to tune hyperparameters of FixNorm which is 2∼3 times
faster than Bayesian Optimization and demonstrate its efficiency, robustness, and SOTA
performance on large scale datasets like ImageNet, MS COCO and Cityscapes.

• By using our approach, we establish well-tuned baselines for popular networks, which we
hope can facilitate fairer comparisons in the community.

2 DISSECTING WEIGHT DECAY FOR TRAINING DEEP NEURAL NETWORKS

2.1 REVISITING THE EFFECTIVE LEARNING RATE HYPOTHESIS

We aim at further understanding the mechanisms of weight decay. Towards this, we first briefly
revisit the effective learning rate(ELR) hypothesis. As noted in Hoffer et al. (2018), when BN is
applied after a linear layer, the output is invariant to the channel weight vector norm. Denoting a
channel weight vector with w and ŵ = w/‖w‖2, channel input as x, we have

BN(wx) = BN(‖w‖2ŵx) = BN(ŵx) (1)

In such case, the gradient is scaled by 1/‖w‖2:

∂BN(wx)

∂(w)
=
∂BN(‖w‖2ŵx)

∂(‖w‖2ŵ)
=

1

‖w‖2
∂BN(ŵx)

∂ŵ
(2)

This scale invariance makes the key feature of the weight vector is its direction. As in Hoffer et al.
(2018), when the weights are updated through stochastic gradient descent with learning rate η

wt+1 = wt − η∇Lt(wt) (3)

one can derive that the step size of the weight direction is approximately proportional to

ŵt+1 − ŵt ∝
η

‖wt‖22
(4)
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Based on this formulation, the ELR hypothesis can be explained as follows: when applying weight
decay to layers followed by normalization, it prevents weight norm from unlimitedly growing, which
preserves the step size of weight update, thus “increasing the effective learning rate”.

However, this phenomenon is still not fully investigated. Hoffer et al. (2018) proposes a learning rate
correction technique that can train DNNs to similar performance without weight decay. However,
this technique needs to mimic the effective step size from training with weight decay, which can
not be used as practical training methods. On the other hand, as the hypothesis is based on the
scale invariance brought by normalizations, there are layers that do not satisfy this precondition.
For example, the final fully-connected(FC) layers that commonly used in classification tasks. As
experiments in Zhang et al. (2018)(Figure 4), there is a clear gap between whether weight decay is
applied to the final FC layer. These problems indicate that the mechanisms of weight decay are still
not fully understood.

2.2 DISCARDING WEIGHT DECAY FOR CONVOLUTION LAYERS

We first consider discarding weight decay for convolution layers. Since the ELR hypothesis indicates
that the main effect of weight decay on convolution layers is produced by constraining weight vector
norm, we investigate how weight vector norm changes during training. Denoting the weights in all
convolution layers as a single verctor W Conv, we plot ‖W Conv‖2 in Fig 1. ResNet50(He et al., 2016)
is trained on ImageNet for 100 epochs with lr = 0.4 and weght decayλ = 0.0001. Other settings
follow general setups in section 3.
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Figure 1: Left: ‖W Conv‖2 of WD training Right: top-1 accuracy for Algo 1 and WD training, both
learning rates are found by gridsearch

From Fig 1 left, the curve can be divided into two phases. In the first few epochs, ‖W Conv‖2
decreases rapidly, which will increase the ELR according to the ELR hypothesis. However, this
effect is duplicated with the learning rate warmup strategy, thus can be discarded. In the second
phase, ‖W Conv‖2 changes slowly in a relatively stable range. We suppose that in this phase, the main
effect is to keep ELR stable, while exactly following the trajectory of ‖W Conv‖2 is not necessary.
Therefore, we propose to directly fix ‖W Conv‖2 to a constant, instead of implicitly controlling it
with weight decay. We implement this by rescaling W Conv to match the norm at initialization after
each optimization step. The whole algorithm is summarized in Algo 1.

Algorithm 1 Fixing the weight norm of convolution layers
Input: initial learning rate lr, total steps T , weight decay on final FC layer λFC, training samples x, corre-
sponding labels y
Initialization: random initialize weight vector W0

1: for t in 0, ..., T − 1 do
2: x,y← BatchSampler(t) . sample a batch of data and lable
3: L̂t(Wt)←

∑
L(f(x;Wt), y) +

1
2
λFC‖W FC

t ‖22 . only apply weight decay on final FC layer
4: ηt ← GetLRScheduleMultiplier(t) . get current learning rate multiplier value
5: Wt+1 ← Optimizer(Wt, lr × ηt,∇L̂t(Wt)) . update weight with some optimizer

6: W Conv
t+1 ←W Conv

t+1
‖W Conv

0 ‖2
‖W Conv

t+1‖2
. rescale Conv weight to the norm at initialization

7: end for

Since the fixed weight norm in Algo 1 is substantially different from weight decay(WD) training,
their optimal learning rates are different. To be fair, we grid search the lr for both Algo 1 and WD
training and compare the best performance. As shown in Fig 1 right, Algo 1 achieves same top-1
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accuracy of WD training. These results demonstrate that for convolution layers followed by BN,
weight decay can be discarded. Note that we preserve λFC for the final FC layer, which will be
addressed in the next subsection.

2.3 EFFECTS ON FINAL FULLY-CONNECTED LAYERS

To investigate the effects of weight decay on the final FC layer, we first set λFC = 0 for Algo
1. The experiment result shows that the accuracy drops from 77.8% to 76.4%, which means that
weight decay has essential effects on the final FC layer. Are these effects associated with the ELR
hypothesis? To verify this, we first try to make the final FC layer scale-invariant. We apply three
modifications on Algo 1: (1) replace original FC layer with WN-FC layer; (2) replace W Conv in line
6 of Algo 1 with W Conv+FC; (3) set λFC = 0. This modified algorithm is denoted as Algo 1@WN-
FC. WN-FC layer is normal FC layer applied with weight normalization(Salimans & Kingma, 2016).
Original FC and WN-FC layer are formulated as follows(g is a learnable parameter):

FC(x;W FC) = xTW FC (5)

WN-FC(x;W FC, g) =
xTW FC

‖W FC‖2
× g (6)
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Figure 2: Training ResNet50 on ImageNet with Algo 1, Algo 1@WN-FC and Algo 1@FixNorm-
FC. Left: top-1 accuracy Top right: weight norm of the final FC layer (‖W FC‖2 for FC, g for
WN-FC and FixNorm-FC) Bottom right: MCBR

We compare Algo 1 and Algo 1@WN-FC by training ResNet50 on ImageNet. As can be seen in
Fig 2 left, there is still a clear gap between Algo 1 and Algo 1@WN-FC. Since Algo 1@WN-FC
already preserves ELR, this gap implies that weight decay has additional effects beyond preserving
ELR on the final FC layer.

Now lets take a closer look at the WN-FC layer. Combine equation 6 with softmax cross-entropy
loss L, si = xTWi

‖W ‖2
g denotes the logits value of class i, pi denotes the probability of class i, k for

the label class and j for other classes. We have(for full derivations, please refer to Appendix B):

L(x, k) = − log pk = − log
esk∑
esj

(7)

−∂L(x, k)
∂x

=
g

‖W ‖2
∑
j 6=k

pj(Wk −Wj) (8)

 

Figure 3: Ilustration of feature space

We visualize Equation 8 in Fig 3. It shows that the gra-
dient is actually driving x from the other class center
Wj towards the label class center Wk, where the mag-
nitude mainly depends on pj and g. Note that g will
continuously grow through training(larger g makes loss
lower when x is correctly classified). In the meantime, pj
will shrink faster because of the nature of softmax trans-
form, thus weakening the overall gradient. This will leave
x being closer to the class boundary between Wj and
Wk(larger cosβ). In this case, x is more likely to cross
the class boundary, e.g., be misclassified, at a slight dis-
tribution shift. In other words, it will lead to poor gener-
alization. To quantitively verify this explaination, we define Mean Cross-Boundary Risk(MCBR)
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for a batch of training samples:

MCBR(B,W ) =
1

|B| · (#class− 1)

∑
(x,y)∈B

∑
j 6=y

cos(x,Wj −Wy) (9)

MCBR shows how much x is lean to the class boundaries, ranging from -1 to 1. We suppose that the
larger weight norm of the final FC layer(or g for WN-FC layer) will lead to higher MCBR and worse
generalization performance. We compare these metrics for Algo 1 and Algo 1@WN-FC in Fig 2.
It can be observed that without constraint, g of Algo 1@WN-FC continuously grows and leads to
higher MCBR compared to Algo 1, which explains why Algo 1@WN-FC has worse generalization
performance.

Based on these analyses, we propose a new FC layer that constrains g in equation 6 from exceeding
a given upper bound, denoted as FixNorm-FC. The upperbound is controled by a hyperparameter a.√
#class normalizes the upper bound across different number of classes.

FixNorm-FC(x;W FC , g, α) =
xTW FC

‖W FC‖2
×min(g, α ∗

√
#class) (10)

We replace the WN-FC layer with the FixNorm-FC layer in Algo 1@WN-FC, denoted as Algo
1@FixNorm-FC. We choose a proper value for α and show the results for this new algorithm in
Fig 2. By simply constraining the upper limit of g, Algo 1@FixNorm-FC maintains low MCBR
and fully closes the accuracy gap. This result reveals the true effect of weight decay on final FC
layers: constraining the weight norm, controlling the cross-boundary risk, and finally influencing
the generalization performance.

Now we can summarise the two main effects of weight decay: for convolution layers followed by
normalizations, weight decay preserves ELR; for final FC layers, weight decay controls the cross-
boundary risk. Algo 1@FixNorm-FC(referred to FixNorm for simplicity) fully recovers these two
effects. Beyond that, there is an additional advantage: its hyperparameters are easier to tune. We
will show this in 2.4 and 3.1.

2.4 TUNING HYPERPARAMETERS FOR FIXNORM TRAINING
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Figure 4: Top-1 accuracy for differ-
ent lr and α. ResNet50 trained for 50
epochs

Section 2.2 and 2.3 investigate the two main effects of
weight decay. While normal weight decay training con-
trols these two effects through lr and λ, FixNorm training
controls them through lr and α. Since these hyperparam-
eters greatly influence the final accuracy, it is important
to know how to tune them.

For normal weight decay training, many works (Smith,
2018; Loshchilov & Hutter, 2017) show that optimal val-
ues for lr and λ are tightly coupled. This means that they
must be tuned jointly, which is usually inefficient. Fortu-
nately, our analysis can explain why they are tightly cou-
pled: weight decay controls the two effects with a sin-
gle hyperparameter. For example, when one changes the
value of λ, the ELR and the cross-boundary risk are both
affected, then lr needs to be adjusted accordingly to get
the optimal ELR.

For FixNorm training, however, lr and α should not be coupled since they control the two effects
separately. To verify this, we grid search lr and α and show the corresponding top-1 accuracy in Fig
4. It clearly shows that the optimal value of lr does not depends on the value of α and vice versa.
This suggests that we can tune lr and α separately, which significantly reduces the cost.

We propose a simple yet effective approach to tune lr and α for FixNorm training. We introduce
two priors to tune lr efficiently.

• Top-1 accuracy is approximately a concave function of lr
• The best lr for shorter training is usually larger than that for longer training
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The first prior is mainly an empirical finding, while the second one can be partially explained by
the correlation between generalization performance and weight distance from initialization(Hoffer
et al., 2017): shorter training may require larger lr to travel far enough from the initialization in
weight space to generalize well. These two priors motivate us to use best lr under shorter training
as an upper bound for that under longer training. This strategy can adaptively shrink the search
range and locate the best lr in a wide range with relatively low cost. After the best lr is found, we
fix it and grid search for the best α. The overall method is summarized in Algo 2(FixNorm-tune).

Algorithm 2 Tuning lr and α for FixNorm training
Input: number of lr tuning roundsN , learning rate range [lrmin, lrmax], learning rate split numberK, training
steps of each lr tuning round T = [T0, T1, ..., TN−1] where Ti ≤ Ti+1, alpha candidates [α0, α1, ..., αm−1]
Output: αbest, lrbest, accbest
Initialization: αbest = α0, lrbest = NULL, accbest = 0

Phase 1 - Find lrbest
1: for r in 0, ..., N − 1 do
2: LR← UniformSample(lrmin, lrmax,K) . uniformly sample K values from current lr range
3: Acc← {FixNormTrain(LRk, αbest, Tr)| k ∈ {0, ...,K − 1}} . run FixNorm training for each lr
4: idx← argmaxAcc . find the index of the best accuracy
5: lrmax ← LRidx . update the lr upper bound by the corresponding lr of the best accuracy
6: if Accidx > accbest then . update the best accuracy and the best lr
7: accbest ← Accidx
8: lrbest ← LRidx

9: end if
10: end for
Phase 2 - Find αbest

11: Acc← {FixNormTrain(lrbest, αi, TN−1)| i ∈ {1, ...,m− 1}} . fix lr = lrbest and run FixNorm
training for each α

12: idx← argmaxAcc . find the index of the best accuracy
13: if Accidx > accbest then . update the best accuracy and the best α
14: accbest ← Accidx
15: αbest ← αidx

16: end if

3 EXPERIMENTS

General setups We perform experiments on ImageNet classification task (Deng et al., 2009)
which contains 1.28 million training images and 50000 validation images. Our general training
settings are mainly adapted from He et al. (2019), which include Nesterov Accelerated Gradient
(NAG) descent(Nesterov, 1983), one-cycle cosine learning rate decay(Loshchilov & Hutter, 2016)
with linear warmup at first 4 epochs(Goyal et al., 2017) and label smoothing with ε = 0.1(Szegedy
et al., 2016). We do not use mixup augmentation(Zhang et al., 2017). All the models are trained on
16 Nvidia V100 GPUs with a total batch size of 1024. Other settings follow reference implementa-
tions of each model. We leave experiments for detection, segmentation and group normalization(Wu
& He, 2018) in Appendix D.

FixNorm-tune setups For Algo 2, we set N = 2, learning rate range [0.2, 3.2], K = 5, T =
[0.2Tmax, Tmax] where Tmax is the max training steps, α candidates [0.5, 1.0, 2.0, 4.0, 8.0, 16.0].
The search contains two lr tuning rounds and one α tuning round. The total computational resources
consumed are K × 0.2Tmax + K × Tmax + (6 − 1) × Tmax = 11Tmax, which is 11 times of a
single training process.

3.1 FIXNORM-TUNE ON RESNET50-D AND MOBILENETV2

To demonstrate the effectiveness of our method, we first apply Algo 2 on two well-studied ar-
chitectures: ResNet50-D(He et al., 2019) and MobileNetV2(Sandler et al., 2018). We follow
He et al. (2019) and train 120 epochs for ResNet50-D and 150 epochs for MobileNetV2. Their
reference top-1 accuracies reported are 78.37% and 72.04%. We also adopt Bayesian Optimiza-
tion(BO)(Snoek et al., 2012) to search the learning rate and weight decay for normal weight decay
training (BO+WD). We use the same learning rate range [0.2, 3.2] for BO, and the weight decay
range is set to [0.00001, 0.0005]. Results are shown in Table 1.
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Table 1: Results for FixNorm-tune and BO+WD

FixNorm-tune BO + WD Reference

lr α top-1(%)±std lr λ top-1(%)±std lr λ top-1(%)±std

ResNet50-D 1.4 0.5 78.62±0.054 0.53 8.6e-5 78.53±0.047 0.4 1e-4 78.37±0.051
MobileNetV2 0.5 16.0 73.20±0.032 0.64 2.2e-5 72.84±0.024 0.2 4e-5 72.04±0.027

As in Table 1, both FixNorm-tune and BO+WD outperform reference settings by a clear margin.
Note that the reference settings have already been heavily refined in He et al. (2019). We further
show details of FixNorm-tune and BO+WD in Fig 5. Our method shows two advantages compared
to BO+WD. First, our method finds better solutions at a lower cost. As shown in Fig 5 left, the cost
of our method is 11 times of normal training while BO+WD requires 25 and 35, and our final results
are even better than that found by BO+WD. Second, our method is more stable and barely needs
meta-tuning, while BO itself has many tunable meta hyperparameters (Lindauer et al., 2019). We
use the same FixNorm-tune setups for all the experiments, including in Table 2. These setups are
intuitive, and the method performs consistently well across all the settings.
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Figure 5: Left: search progress for FixNorm and BO+WD Middle: FixNorm search details for
ResNet50-D Right: FixNorm search details for MobileNetV2

To better understand our method, we show more details about FixNorm-tune in Fig 5 middle and
right for ResNet50-D and MobileNetV2, respectively. There are two lr searching rounds and one
α searching round according to our setups. In the first lr round, both experiments starts with lr
values in [0.8, 1.4, 2.0, 2.6, 3.2] (which are uniformly sampled from initial range [0.2, 3.2]) and
train for 1/5 total epochs(24 epochs and 30 epochs respectively). Best lr values are very different
in this round: lr1 = 2.6 for ResNet50-D and lr1 = 0.8 for MobileNetV2. Taking these values
as new upper bound, [0.2, lr1] are further split, and corresponding lr values are evaluated in the
second round, for full total epochs. The best lr values are 1.4 and 0.5 in this round. These values
are fixed, and then α is searched. For ResNet50-D, the initial α = 0.5 is already the best, while for
MobileNetV2 a better α = 16.0 is found. From Fig 5 one can find that the patterns match two priors
introduced in section 2.4.

3.2 NEW STATE-OF-THE-ARTS WITH FIXNORM-TUNE

Many powerful networks have been proposed recently. These networks usually adopt many tricks
and hard to tune. To fully exploit the capabilities of these networks, we apply FixNorm-tune to opti-
mize them further. We also apply advanced tricks to basic models like MobileNetV2 and ResNet50-
D. These tricks are used by EfficientNet(Tan & Le, 2019), including SE-layer(Hu et al., 2018), swish
activation(Ramachandran et al., 2017), stochastic depth training(Huang et al., 2016) and AutoAug-
ment(Cubuk et al., 2019). The results are shown in Table 2. We can find that:

• Our method consistently outperforms reference settings. Strong baselines like EfficientNet
can be further improved by our method, specifically +0.4% and +0.3% for B0 and B1.

• Tunning matters. When simply apply tricks to MobileNetV2 and scale to the same FLOPS
with B0 and B1, FixNorm-tune achieves 77.4% and 79.18% top-1 accuracy, while default
training settings only get 76.72 and 78.75. This difference can lead to unreliable conclu-
sions when compared to EfficientNet.
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• Best lr and α are different among models, even for the same model with different settings.
This suggests that we should tune for each setting to fully exploit their performance.

Table 2: Results with FixNorm-tune models with * are applied with tricks, †means the result is
obtained using lr and λ from basic settings(MobileNetV2 150 and ResNet50-D 120)

Model #Epochs Top-1 Top-1 (ref.) #Params #FLOPS lr α

MobileNetV2 150 73.20 72.04 3.5M 300M 0.5 16.0
MobileNetV2 350 73.97 73.38† 3.5M 300M 0.35 8.0

EfficientNet-B0 350 77.72 77.30 5.3M 384M 0.5 4.0
EfficientNet-B1 350 79.52 79.20 7.8M 685M 0.8 8.0

MobileNetV2×1.12* 350 77.40 76.72† 4.7M 386M 0.5 8.0
MobileNetV2×1.54* 350 79.18 78.75† 8.0M 682M 0.65 4.0

ResNet50-D 120 78.62 78.37 25.6M 4.3G 1.4 0.5
ResNet50-D 350 79.29 79.04† 25.6M 4.3G 1.1 0.5

ResNet50-D* 350 81.27 80.80† 28.1M 4.3G 1.1 1.0

4 RELATED WORKS

We only highlight the most related works in this section and leave other works in Appendix E due
to the page limit.

Understanding weight decay Recently, a series of works (Van Laarhoven, 2017; Zhang et al.,
2018; Hoffer et al., 2018) propose that when combined with normalizations, the main effect of
weight decay is increasing ELR, which is contrary to the previous understanding and motivates new
perspectives. Van Laarhoven (2017) first introduces the ELR hypothesis and provides derivations
for different optimizers, while both Hoffer et al. (2018); Zhang et al. (2018) give additional evidence
supporting the hypothesis. Hoffer et al. (2018) also proposes norm-bounded Weight Normalization,
which fixes the norm of each convolution layer separately. By doing this, their method fixes the
ELR of each layer, which highly depends on the initialization of each layer. Differently, we fix the
norm of all convolution layers as a whole and maintains the global ELR, which is more robust and
demonstrates SOTA performance on large scale experiments. Layer-wise ELR controlling is an in-
teresting problem and may lead to new perspectives for weight initialization techniques. Similar to
Hoffer et al. (2018), Xiang et al. (2019) also proposes modifications to Weight Normalization based
on ELR hypothesis. They identify the problems when using weight decay with Weight Normaliza-
tion and propose ε−shifted L2 regularizer to constrain weight norm to ε with coefficient λ. Beyond
the ELR hypothesis, Li & Arora (2019) derives a closed-form between learning rate, weight decay,
momentum, and proposes an exponentially increasing learning rate schedule. Their work mainly dis-
cusses the linkage of three hyperparameters, while our work focuses on the underlying mechanisms
of weight decay. Except for the ELR hypothesis, Loshchilov & Hutter (2017) identifies problems
when applying weight decay to Adam optimizer, which improves generalization performance and
decouples it from the learning rate. These works bring interesting perspectives for understanding
weight decay, yet our work has distinct differences and contributions. First, our work investigates
the effect on final FC layers and find a new mechanism that complements the understanding of
weight decay on generalization performance, which is mostly ignored by previous works. Second,
our method, including FixNorm and FixNorm-tune, are both concise and effective and demonstrate
SOTA performance on large scale datasets.

5 CONCLUSION

In this paper, we find a new mechanism of weight decay on final FC layers, which affects generaliza-
tion performance by controlling cross-boundary risk. This new mechanism complements the ELR
hypothesis and gives a better understanding of weight decay. We propose a new training method
called FixNorm, which discards weight decay and directly controls the two mechanisms. We also
propose an effective, efficient, and robust method to tune hyperparameters of FixNorm, which can
consistently find near-optimal solutions in a few trials. Experiments on large scale datasets demon-
strate our methods, and a series of SOTA baselines are established for fair comparisons. We believe
this work brings new perspectives and may motivate interesting ideas like controlling layer-wise
ELR and automatically adjusting cross-boundary risk.
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A APPENDIX—ALGORITHMS

In section 2.3, we apply three modifications to Algo 1: (1) replace original FC layer with WN-
FC layer; (2) replace W Conv in line 6 of Algo 1 with W Conv+FC; (3) set λFC = 0. This modified
algorithm is denoted as Algo 1@WN-FC. Here we show the full algorithm as follows:

Algorithm 1 @WN-FC
Input: initial learning rate lr, total steps T , training samples x, corresponding labels y
Replace: replace original final FC layer with WN-FC layer
Initialization: random initialize weight vector W0

1: for t in 0, ..., T − 1 do
2: x,y← BatchSampler(t) . sample a batch of data and lable
3: L̂t(Wt)←

∑
L(f(x;Wt), y) +

1
2
λFC‖W FC

t ‖22 . only apply weight decay on final FC layer
4: ηt ← GetLRScheduleMultiplier(t) . get current learning rate multiplier value
5: Wt+1 ← Optimizer(Wt, lr × ηt,∇L̂t(Wt)) . update weight with some optimizer

6: W Conv+FC
t+1 ←W Conv+FC

t+1
‖W Conv+FC

0 ‖2
‖W Conv+FC

t+1 ‖2
. rescale Conv and FC weight to the norm at initialization

7: end for

The Algo 1@FixNorm-FC is similar to Algo 1@WN-FC, while the only different is that WN-FC
layer is replaced by FixNorm-FC layer. The full algorithm is shown as follows:

Algorithm 1 @FixNorm-FC
Input: initial learning rate lr, total steps T , momentum µ, training samples x, corresponding labels y
Replace: replace original FC layer by FixNorm-FC layer
Initialization: random initialize weight vector W0

1: for t in 0, ..., T − 1 do
2: x,y← BatchSampler(t) . sample a batch of data and lable
3: L̂t(Wt)←

∑
L(f(x;Wt), y) +

1
2
λFC‖W FC

t ‖22 . only apply weight decay on final FC layer
4: ηt ← GetLRScheduleMultiplier(t) . get current learning rate multiplier value
5: Wt+1 ← Optimizer(Wt, lr × ηt,∇L̂t(Wt)) . update weight with some optimizer

6: W Conv+FC
t+1 ←W Conv+FC

t+1
‖W Conv+FC

0 ‖2
‖W Conv+FC

t+1 ‖2
. rescale Conv and FC weight to the norm at initialization

7: end for
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B APPENDIX—DERIVATIONS

The complete derivations of equation 8 are as follows. L denotes the softmax cross-entropy loss,
si =

xTWi

‖W ‖2
g denotes the logits value of class i, pi denotes the probability of class i, k for the label

class and j for other classes. We have,

L(x, k) = − log pk = − log
esk∑
esi

(11)

(12)

We first derive ∂pk

∂sk
:

∂pk
∂sk

=
esk
∑
esj − eskesk

(
∑
esj )

2 (13)

=
esk∑
esj
−
(

esk∑
esj

)2

(14)

= pk − pk2 (15)
= pk(1− pk) (16)

also for j 6= k, we have,

∂pk
∂sj

=
−eskesj
(
∑
esi)

2 (17)

= −pkpj (18)

combine them with ∂si
∂x = Wi

‖W ‖2
g, we have,

∂pk
∂x

=
∂pk
∂sk

∂sk
∂x

+
∑
j 6=k

∂pk
∂sj

∂sj
∂x

(19)

= pk(1− pk)
Wk

‖W ‖2
g +

∑
j 6=k

−pkpj
Wj

‖W ‖2
g (20)

=
pkg

‖W ‖2

(1− pk)Wk +
∑
j 6=k

−pjWj

 (21)

=
pkg

‖W ‖2

(
Wk +

∑
−piWi

)
(22)

=
pkg

‖W ‖2

(∑
pi(Wk −Wi)

)
(23)

=
pkg

‖W ‖2

∑
j 6=k

pj(Wk −Wj)

 (24)

(25)

and finally,
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−∂L(x, k)
∂x

= −∂L(x, k)
∂pk

∂pk
∂x

(26)

=
1

pk

pkg

‖W ‖2
∑
j 6=k

pj(Wk −Wj) (27)

=
g

‖W ‖2
∑
j 6=k

pj(Wk −Wj) (28)

C APPENDIX—MORE DETAILS

Parameters other than convolution and FC weights For modern CNNs like ResNet or Mo-
bileNet, the majority of parameters come from weights of convolution and FC layers. Other param-
eters are mainly biases and γ and β of BN layers. As in He et al. (2019), the no-bias-decay strategy
is applied to avoid overfitting, which does not use weight decay on these parameters. We empirically
find that this strategy does not harm performance, so we adopt this strategy in our FixNorm method,
which means we do not fix the norm of biases and γ and β parameters. Experiments in Table 2 also
include architectures with SE-blocks, which have FC layers that are not followed by normalizations.
Since these layers are not directly followed by softmax cross-entropy loss, we find that they do not
suffer from the problem identified in section 2.3. So we simply replace these layers with WN-FC
layers and add the weights into the norm-fixing process(line 6 in Algo 1@FixNorm-FC). In sum-
mary, our FixNorm method considers weights of convolution layers, final FC-layers, and FC layers
of SE-blocks. Other parameters like biases and γ and β of BN layers are excluded from the norm
fixing process.

D APPENDIX—MORE RESULTS

D.1 EXTENDING FIXNORM-FC FOR PIXEL-WISE CLASSIFICATION

The FixNorm-FC is proposed to replace the original final FC layer in classification tasks. There
are other forms of classification tasks that do not use FC layers, such as segmentation and object
detection. For segmentation, the models are usually fully convolutional, and the last convolution
layer is used for pixel-wise classification. This also applies to Region Proposal Networks(Ren et al.,
2015) used in object detection or methods that produce dense detections like RetinaNet(Lin et al.,
2017). These tasks still share the nature of the classification task, therefore the cross-boundary risk
still needs to be controlled. Our FixNorm-FC layer can be easily extended to these tasks because
the final convolution layer can be viewed as a normal FC layer that shares weight across spatial
positions. Denote the weight of the final convolution layer as W Conv with shape [cout, cin, kh, kw],
we define,

FixNorm-Conv(x;W Conv, g, α) =
Conv(x,W Conv)

‖W Conv‖2
×min(g, α ∗ √cout) (29)

This layer is a straightforward extension of the FixNorm-FC layer, which will be used in experiments
on segmentation and detection later.

D.2 EXPERIMENTS ON CITYSCAPES

Setups The Cityscapes dataset(Cordts et al., 2016) is a task for urban scene understanding. We
follow the basic training settings in Yuan & Wang (2018). We use 2975 images for training and
500 images for validation. The initial learning rate is set as 0.01 and weight decay as 0.0005. The
original image size is 1024×2048, and we use a crop size of 769×769. All the models are trained
on 4 Nvidia V100 GPUs for 40000 iterations with a total batch size of 8. The poly learning rate
policy is used. We use the ResNet-101 + Base-OC(Yuan & Wang, 2018) as the baseline model.

Modifications We replace the last convolution layer with FixNorm-Conv when trained with our
FixNorm method.
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FixNorm-tune setups The main settings are the same with that on ImageNet, such as N = 2,
K = 5, T = [0.2Tmax, Tmax], α candidates as [0.5, 1.0, 2.0, 4.0, 8.0, 16.0]. The only difference is
that we adapt the learning rate range to [0.005, 0.1]. The reason is that the models are finetuned on
a pre-trained model from ImageNet, therefore the default learning rate is smaller.

The results are shown in table 3. FixNorm-tune clearly outperforms the baseline, and the improve-
ments are larger when the cosine learning rate is applied. Note that the mIoU actually drops when
using the cosine learning rate with default hyperparameters, while FixNorm-tune finds the appropri-
ate hyperparameters and improves the performance.

Table 3: Results with FixNorm-tune on Cityscapes

Model #Iters Val. mIoU(%) hyperparameters

baseline 40000 78.7 lr = 0.01, λ = 0.0005
baseline w/ cosine lr 40000 78.3 lr = 0.01, λ = 0.0005

FixNorm-tune 40000 79.4 lr = 0.0335, α = 1.0
FixNorm-tune w/ cosine lr 40000 79.7 lr = 0.043, α = 1.0

D.3 EXPERIMENTS ON MS COCO

Setups To verify our FixNorm-tune method on object detection task, we train RetinaNetLin et al.
(2017) on MS COCOLin et al. (2014). We following common practice and use the COCO train-
val35k split, and report results on the minival split. We use the ResNet50-FPN backbone, while the
base ResNet50 model is pre-trained on ImageNet. The RetinaNet is trained with stochastic gradient
descent(SGD) on 8 Nvidia V100 GPUs with a total batch size of 16. The models are trained for
90k iterations with default learning rate 0.01, which is then divided by 10 at 60k and 80k iterations.
The default weight decay is 0.0001. The αfocal is set to 0.25 and the γfocal is set to 2.0. The stan-
dard smooth L1 loss is used for box regression. We use horizontal image flipping as the only data
augmentation, and the image scale is set to 800 pixels.

Modifications To make the RetinaNet compatible with our method, we add Weight Normalization
layers to all the convolution layers that are not followed by normalizations (include layers in FPN
and classification subnet and bounding-box prediction subnet), for all the models. We also replace
the last convolution layer of the classification subnet with FixNorm-Conv when trained with our
FixNorm method. The last convolution layer of the bounding-box prediction subnet is used for
regression task, which does not suffer from the problem identified in section 2.3, so we do not
replace it with FixNorm-Conv.

FixNorm-tune setups The main settings are the same with that on ImageNet, such as N = 2,
K = 5, T = [0.2Tmax, Tmax], α candidates as [0.5, 1.0, 2.0, 4.0, 8.0, 16.0]. As the models
are finetuned on a pre-trained model, we use the same learning rate range of [0.005, 0.1] as in
segmentation experiments.

The results are shown in table 4. FixNorm-tune clearly outperforms the baseline, and the improve-
ments are larger when the the cosine learning rate is applied.

Table 4: Results with FixNorm-tune on MS COCO

Model #Iters Val. AP(%) hyperparameters

baseline 90000 36.5 lr=0.01, wd=0.0001
baseline w/ cosine lr 90000 36.2 lr=0.01, wd=0.0001

FixNorm-tune 90000 36.9 lr=0.0145, α = 0.5
FixNorm-tune w/ cosine lr 90000 37.1 lr=0.0145, α = 0.5
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D.4 EXPERIMENTS ON GROUP NORMALIZATION

Except for the widely used Batch Normalization layer, other types of normalization layers have been
proposed. According to the ELR hypothesis, FixNorm should also work for them. To verify the
effectiveness of our method, we conduct experiments with Group Normalization on ImageNet. We
choose ResNet50-D in Table 2 and replace BN layers by Group Normalization layers with a group
number of G = 32. As shown in Table 5, when trained with Group Normalization, FixNorm-tune
consistently improves the top-1 accuracy over the reference result as when trained with BN.

Table 5: Results for FixNorm-tune with Group Normalization models with * are applied with
tricks, †means the result is obtained using lr and λ from basic settings(ResNet50-D 120)

Model #Epochs Top-1 Top-1 (ref.) #Params #FLOPS lr α

ResNet50-D* 350 81.27 80.80† 28.1M 4.3G 1.1 1.0
ResNet50-D*(G=32) 350 80.92 80.31† 28.1M 4.3G 1.4 1.0

E APPENDIX—ADDITIONAL RELATED WORKS

Hyperparameter Optimization (HPO). Hyperparameter Optimization is an important topic for
effectively training DNNs. One straightforward method is grid search, which is only affordable
for a very limited number of hyperparameters since the combinations grow exponentially. Ran-
dom search(Bull, 2011) is a popular alternative that selects hyperparameter combinations randomly,
which can be more efficient when the resource is constrained. Bayesian Optimization(BO) (Brochu
et al., 2010) further improves efficiency by building a model on historical information to guide the
selection. Hyperband(Li et al., 2017) allocates different budgets to random configurations and re-
jects bad ones according to the performance obtained under low budgets. BOHB (Falkner et al.,
2018) combines BO with Hyperband to select more promising configurations. Both Hyperband
and BOHB highly relies on the assumption that performance under different budgets is consistent.
However, this assumption is not always valid, and these methods may suffer from the low rank-
correlation of performance under different budgets(Ying et al., 2019). While these methods are
universal black-box optimization methods, our tuning method leverages more priors of hyperparam-
eters. Our method suggests that with a better understanding of the underlying mechanisms, we can
develop a method that is more effective and efficient.
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