

000 001 002 003 004 005 *NeoWorld: NEURAL SIMULATION OF EXPLORABLE* 006 *VIRTUAL WORLDS VIA PROGRESSIVE 3D UNFOLDING* 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 We introduce NeoWorld, a deep learning framework for generating interactive 3D
026 virtual worlds from a single input image. Inspired by the *on-demand worldbuilding*
027 concept in the science fiction novel *Simulacron-3* (1964), our system constructs
028 expansive environments where only the regions actively explored by the user are
029 rendered with high visual realism through object-centric 3D representations. Un-
030 like previous approaches that rely on global world generation or 2D hallucination,
031 NeoWorld models key foreground objects in full 3D, while synthesizing back-
032 grounds and non-interacted regions in 2D to ensure efficiency. This hybrid scene
033 structure, implemented with cutting-edge representation learning and object-to-3D
034 techniques, enables flexible viewpoint manipulation and physically plausible scene
035 animation, allowing users to control object appearance and dynamics using natural
036 language commands. As users interact with the environment, the virtual world
037 progressively unfolds with increasing 3D detail, delivering a dynamic, immersive,
038 and visually coherent exploration experience. NeoWorld significantly outperforms
039 existing 2D and depth-layered 2.5D methods on the WorldScore benchmark.
040

1 INTRODUCTION

041 In the 1964 science fiction novel *Simulacron-3*, the protagonist, Douglas Hall, navigates a virtual
042 simulation of 1937 Los Angeles, where he discovers that only the areas he actively interacts with are
043 rendered in detail. This *on-demand worldbuilding* concept inspires our **NeoWorld** framework, which
044 leverages neural networks to construct an infinite, interactive virtual world from a single image. In
045 NeoWorld, the simulated environment is initially represented in 2D and progressively evolves into
046 detailed 3D models as users engage with it. This user-driven rendering strategy provides immersive
047 experiences while maintaining computational efficiency.

048 NeoWorld builds upon recent progress in learning-based interactive world generation (Yu et al.,
049 2025; 2024), which has demonstrated promising capabilities in open-vocabulary and view-consistent
050 environment synthesis. These approaches, though effective for infinite static rendering or camera-path
051 navigation, are not designed for interactive exploration where users may dynamically uncover or
052 manipulate different parts of the world. They often rely on 2D extrapolation (Rombach et al., 2022;
053 Zhuang et al., 2024; Corneanu et al., 2024) or 2.5D layered representations (Yu et al., 2025), which
054 result in noticeable artifacts under large viewpoint changes and fall short in supporting dynamic,
055 interactive scene manipulation.

056 *How can we enable AI systems to simulate infinitely expandable digital worlds with both high-fidelity*
057 *visual realism and physically grounded dynamics?* This requires meeting two key conditions. First,
058 the scene should be object-centric, allowing fine-grained manipulation and interaction with individual
059 entities. Second, the system must balance 3D immersion with computational efficiency. While full 3D
060 modeling (Qiu et al., 2024; Xie et al., 2024; Guan et al., 2022) supports physics-consistent interaction
061 and coherent view synthesis, it is often computationally expensive. To address this, NeoWorld
062 introduces a hybrid object-centric scene structure that progressively unfolds 2D object representations
063 into 3D, guided by object proximity along the camera trajectory or user-specified prompts.

064 Unlike prior approaches (Yu et al., 2025; 2024), we propose a deep learning framework that begins
065 with an inverse rendering pipeline, reconstructing the input image using lightweight, object-centric
066 2D representations enriched with instance-level semantic information. As shown in Fig. 1, this design
067 enables precise object selection in response to novel scene descriptions specified by the user. To

Figure 1: **An overview of our approach.** NeoWorld constructs an infinitely expandable virtual world by integrating object-centric representation learning, image-to-3D reconstruction, and dynamics simulation. It progressively unfolds a 3D scene through user exploration or natural language commands

enhance physical realism and facilitate user interaction within the constructed digital environment, such as changing viewpoints or controlling object motions via natural language, we first incorporate large language models (LLMs) (Team et al., 2023; Bai et al., 2023; Achiam et al., 2023; Liu et al., 2024a) for on-demand object selection, and then apply an image-to-3D technique (Wu et al., 2025) to progressively convert frequently accessed or viewpoint-relevant objects into full 3D representations. These 3D representations are then tightly aligned with the original 2D image at the object level, enabling seamless integration and consistent visual coherence.

NeoWorld outperforms prior 2D (Hong et al., 2023; Wan et al., 2025) and 2.5D (Yu et al., 2025; 2024) methods in interactive world generation, delivering more consistent 3D rendering quality and greater user engagement. In summary, the main contributions of NeoWorld are as follows:

- NeoWorld is a pilot study on *interactive world generation with 3D dynamics* from a single image. Its core idea is to enhance virtual realism while preserving computational efficiency by **progressively unfolding 3D content** along user exploration paths or in response to user prompts.
- It introduces a **hybrid object-centric scene structure**, rendering background regions as lightweight 2D surfaces while modeling foreground objects in full 3D to enrich user interaction. Accordingly, NeoWorld incorporates cutting-edge *differentiable rendering*, *representation learning*, and *image-to-3D reconstruction* techniques to create a unified world generation pipeline.
- Building on these features, NeoWorld enables new interactive capabilities not available in prior work, including **3D-consistent scene exploration** and **physics-based object manipulation**.

2 PRELIMINARIES

Interactive world generation. This task aims to construct a coherent sequence of spatially and semantically connected 3D scenes $\{\mathcal{E}_0, \mathcal{E}_1, \dots\}$ starting from a single input image \mathcal{I}_0 , controlled by user-specified content prompts \mathcal{P}_i and camera trajectories \mathcal{C}_i . This task involves two main stages that operate in an iterative *reconstruction-then-generation* manner:

- **Reconstruction:** At each time step i , a 3D scene representation \mathcal{E}_i is generated from the current observation image \mathcal{I}_i using an *image-to-3D* module: $\mathcal{E}_i \sim \mathcal{M}_{3D}(\mathcal{I}_i)$, where \mathcal{M}_{3D} denotes a model that lifts 2D observations to explicit 3D scene representations.
- **Generation:** Based on the current scene representation \mathcal{E}_i , a user-defined camera movement \mathcal{C}_{i+1} , and a text description \mathcal{P}_{i+1} of the new observation, the system synthesizes the next-view image: $\mathcal{I}_{i+1} \sim \mathcal{G}(\mathcal{E}_i, \mathcal{C}_{i+1}, \mathcal{P}_{i+1})$, where \mathcal{G} is an image synthesis model.

This iterative process allows the virtual world to progressively unfold as the user explores it, while maintaining spatial and temporal consistency.

Existing methods and challenges. Recent approaches such as WonderJourney (Yu et al., 2024) and WonderWorld (Yu et al., 2025) typically follow a two-step computation scheme for interactive world generation. First, user interactions or scripted camera paths determine the exploration trajectory. Then, generative inpainting models synthesize novel views conditioned on prior observations. The

Figure 2: **The model architecture for 3D-consistent generation of physical worlds:** (i) an object-centric representation module, (ii) a progressive object-to-3D unfolding module, and (iii) a user interface that interprets natural language commands and drives simulation based on the 3D scene.

synthesized images are projected into 3D representations (e.g., point clouds, meshes, or simplified 2.5D FLAGS (Yu et al., 2025)) and integrated into the existing environment, enabling the incremental construction of large-scale virtual worlds. However, these methods face several key limitations:

- *Limited interactions:* Existing methods primarily support visual navigation but lack support for physical interactions or dynamic animation. Without explicit object-centric modeling, fine-grained interaction with the generated world remains challenging.
- *Efficiency bottleneck in immersive 3D modeling:* Full-scene 3D generation is computationally expensive. While layered 2.5D representations (e.g., FLAGS in WonderWorld (Yu et al., 2025)) offer higher efficiency, they inherently restrict the range of valid viewing angles. As a result, large viewpoint shifts often lead to geometric distortions or occlusion artifacts in the generated content.

3 METHOD

3.1 OVERVIEW

To tackle the aforementioned challenges, we propose NeoWorld, a unified framework that progressively constructs an open-ended interactive world from a single input image through an iterative *3D-unfolding-2D-generation* pipeline. Beyond visual navigation, NeoWorld focuses on object-centric world generation that is both efficient and immersive, and supports intuitive user-world interaction. An overview is shown in Fig. 2. Given a single input image, the scene is first reconstructed into object-centric Gaussian layers (2.5D) using panoptic segmentation. Key foreground objects are then reconstructed in full 3D, determined by predefined foreground categories and their distance to the camera. In this way, the scene is represented in a hybrid structure that combines object-centric 2.5D backgrounds with fully 3D foregrounds. This design offers two advantages: (i) balancing immersion and computational efficiency, and (ii) enabling object-level interaction with the generated world. As the user navigates or interacts with the scene, the system incrementally unfolds new regions of the world, guided by camera motion and user prompts. User commands—such as object manipulation or text-driven dynamics—are grounded in the generated entities; if the selected entity is in 2.5D, it will be reconstructed into 3D, thereby enabling interactive control and physically plausible animation. **As an optional post-processing step for user-object interaction, we employ a video-to-video approach (Jiang et al., 2025) to further improve visual realism and motion smoothness.**

As stated in Sec. 3.2–3.4, NeoWorld introduces three key innovations: (i) an object-centric neural scene representation, (ii) a progressive 2.5D-to-3D scene unfolding mechanism prioritized by object proximity or user prompts, and (iii) a user–scene interaction module that enables intuitive object-level manipulation and physics-based animation within the constructed world.

3.2 OBJECT-CENTRIC GAUSSIAN LAYERS

To enable object-aware 3D world construction from a single image, NeoWorld adopts an object-centric scene representation that combines layered Gaussian Spalting (Yu et al., 2025) with compact instance-aware features. Refer to WonderWorld, we decompose the input image \mathbf{I}_i into two depth

162 layers—foreground, background—using depth edges and object segmentations: $\mathbf{I}_i = \{\mathbf{I}_{\text{fg}}^i, \mathbf{I}_{\text{bg}}^i\}$. Each
 163 layer is represented as a set of 2D Gaussian primitives: $\mathcal{E}_i = \{\mathcal{E}_{\text{fg}}^i, \mathcal{E}_{\text{bg}}^i\}$. Each primitive can be
 164 regarded as a degenerate 3D Gaussian with a compressed depth scale (ϵ), which preserves surface
 165 fidelity while maintaining efficient rendering. Unlike WonderWorld, we enrich each Gaussian with
 166 a learnable *object-centric attribute coefficient* $\gamma_n \in \mathbb{R}^C$, which encodes instance-level semantics in
 167 a low-dimensional embedding space (detailed in the next paragraph). This yields an object-centric
 168 scene layout. We initialize Gaussians using estimated depth and surface normals (Yu et al., 2025)
 169 (See Appendix E), and optimize their parameters with the photometric reconstruction loss between
 170 the rendered and input image \mathbf{I}_i . For scene extrapolation, we render novel views from the optimized
 171 Gaussian layers and apply an image inpainting model to complete missing regions. By repeating
 172 the cohesive loop of scene decomposition, optimizing object-centric Gaussian layers, novel-view
 173 rendering and inpainting, NeoWorld incrementally grows the world: $\{\mathcal{E}_0, \mathcal{E}_1, \dots\}$. Next, we describe
 174 how the 2.5D Gaussian layers are bound with the object-centric attribute coefficients γ_n .

175 **Efficient object-centric attribute binding.** To derive γ_n for each Gaussian primitive, we apply an
 176 off-the-shelf panoptic segmentation model (Jain et al., 2023) g_{seg} independently to the foreground
 177 and background layers: $[\mathbf{M}_{\text{fg}}^i, \mathbf{S}_{\text{fg}}^i] = g_{\text{seg}}(\mathbf{I}_{\text{fg}}^i)$ and $[\mathbf{M}_{\text{bg}}^i, \mathbf{S}_{\text{bg}}^i] = g_{\text{seg}}(\mathbf{I}_{\text{bg}}^i)$, where $\mathbf{M}^i \in \mathbb{R}^{H \times W \times K}$
 178 denotes an instance-level segmentation mask assigning each pixel to one of K distinct objects, K
 179 is an assumed maximum number of objects in the scene, and $\mathbf{S}^i \in \mathbb{R}^K$ provides the associated
 180 semantic categories, which are later used in object selections. A naive approach is to define γ as a K -
 181 dimensional one-hot vector corresponding to object IDs, enabling segmentation masks to be rendered
 182 as: $\widehat{\mathbf{M}}(\mathbf{u}) = \sum_{n \in \mathcal{S}(\mathbf{u})} T_n(\mathbf{u}) \cdot \alpha_n \cdot \gamma_n$ with $T_n(\mathbf{u}) = \prod_{m \in \mathcal{S}(\mathbf{u}), o_m < o_n} (1 - \alpha_m)$ for pixel \mathbf{u} , where
 183 $\mathcal{S}(\mathbf{u})$ denotes Gaussians projected onto \mathbf{u} , sorted by depth, and α denotes opacity. The attributes
 184 γ_n can then be optimized by a cross-entropy loss between $\widehat{\mathbf{M}}$ and the ground-truth segmentation
 185 \mathbf{M} . However, in the context of infinite world generation, the total number of objects K can be
 186 extremely large. To address this, we introduce a compact codebook $\mathbf{F} \in \mathbb{R}^{K \times C}$ with $C \ll K$, which
 187 significantly reduces memory and computation cost: $\mathbf{F} = \{\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_K\}$, $\mathbf{f}_k \in \mathbb{R}^C$, $\|\mathbf{f}_k\|_2 = 1$.
 188 Each embedding vector is uniformly sampled from the unit sphere in C -dimensional space, and
 189 their pairwise cosine similarities are constrained below a threshold δ to ensure robust instance
 190 discrimination. [After initialization, the codebook is kept fixed and shared globally across all scenes.](#)
 191 We render predicted embeddings γ into segmentation space $\widehat{\mathbf{M}}$ and optimize them by minimizing the
 192 cosine distance to the codebook-augmented ground truth $\mathbf{M} \cdot \mathbf{F}$:

$$\mathcal{L}_{\text{cos}} = 1 - \frac{1}{|\Omega|} \sum_{\mathbf{u} \in \Omega} \frac{\widehat{\mathbf{M}}(\mathbf{u})^\top (\mathbf{M} \cdot \mathbf{F})(\mathbf{u})}{|\widehat{\mathbf{M}}(\mathbf{u})| \cdot |(\mathbf{M} \cdot \mathbf{F})(\mathbf{u})|}, \quad (1)$$

193 where Ω denotes the set of valid pixels. During initialization, Gaussian attributes are associated with
 194 codebook vectors according to 2D instance labels. At inference time, the instance label for a pixel
 195 \mathbf{u} is predicted by selecting the nearest codebook vector: $y(\mathbf{u}) = \arg \max_{k \in 1, \dots, K} \frac{\widehat{\mathbf{M}}(\mathbf{u})^\top \mathbf{f}_k}{|\widehat{\mathbf{M}}(\mathbf{u})| \cdot |\mathbf{f}_k|}$. This
 196 compact embedding strategy provides efficient and scalable feature encoding, making object-centric
 197 Gaussian representations feasible for infinite 3D world generation.

198 **Optimization.** The object-centric Gaussian layers are optimized by minimizing $\mathcal{L} = 0.8\mathcal{L}_1 +$
 199 $0.2\mathcal{L}_{\text{D-SSIM}} + \mathcal{L}_{\text{cos}}$, where \mathcal{L}_1 and $\mathcal{L}_{\text{D-SSIM}}$ denote L1 and SSIM losses between the rendered and
 200 input image \mathbf{I}_i , and \mathcal{L}_{cos} measures the cosine distance between γ and \mathbf{f} . To further promote spatial
 201 smoothness of object-centric representations, we periodically replace each γ with the mean value
 202 of its k -nearest neighbors during training (KNN smoothing). This strategy effectively suppresses
 203 floaters (*i.e.*, outlier Gaussians) and enhances overall geometric consistency across the scene.

204 **Cross-scene alignment.** A key challenge is ensuring that object-centric Gaussian layers maintain
 205 instance-level continuity across different viewpoints. To address this, we establish correspondences
 206 between the newly obtained panoptic masks and the previously predicted instance labels. Given a
 207 panoptic segmentation mask \mathbf{M}^i at the current viewpoint C_i and the predicted instance label map
 208 y_{i-1} rendered from the prior scene representation, we perform correspondence matching within the
 209 overlapping regions. Specifically, each current panoptic instance k is re-assigned to the predicted label
 210 y_{i-1} if their overlapping area exceeds a predefined threshold θ . This matching procedure enables
 211 consistent label propagation across views, ensuring that the object-centric attributes γ attached to
 212 each Gaussian remain coherent as the scene evolves. Therefore, NeoWorld constructs a continuous
 213 object-centric representation for incrementally expanding environments.

216 3.3 PROGRESSIVE 2.5D-TO-3D UNFOLDING
217

218 Although object-centric Gaussian layers are efficient, they are not well-suited for interactions such as
219 object manipulation and animation. Meanwhile, 2.5D layers often introduce noticeable artifacts under
220 extreme viewpoint changes. Therefore, it is essential to reconstruct interaction-relevant objects with
221 full 3D geometry. In particular, since foreground objects are the most likely to involve interactions,
222 we prioritize those belonging to predefined foreground categories and located closest to the current
223 viewpoint, selecting the top N objects by proximity. In such cases—or when explicitly specified
224 by user prompts—we invoke an image-to-3D module (Amodal3R (Wu et al., 2025) in practice) for
225 object completion and alignment (Sec. 3.3).

226 **3D object alignment.** Reconstructed 3D objects are often misaligned in position, rotation, or scale
227 relative to the existing Gaussian layers \mathcal{E}_i and the object’s original placement. To seamlessly integrate
228 them into the scene, we perform alignment by optimizing uniform scale $S \in \mathbb{R}^+$, rotation $\mathbf{R} \in \mathbb{R}^{3 \times 3}$,
229 and translation $\mathbf{T} \in \mathbb{R}^3$. This procedure consists of two stages. (1) **Coarse alignment.** Prior work
230 typically searches over a discrete set of yaw, pitch, and roll angles and selects the best hypothesis via
231 a perceptual metric (e.g., DINOV2) (Hu et al., 2025). This approach is computationally expensive
232 due to the large candidate set and repeated perceptual evaluations. Instead, we leverage the priors of
233 an image-to-3D reconstruction model and fine-tune it to jointly diffuse object geometry and pose.
234 Concretely, we fine-tune the *Sparse Structure Transformer* of the Amodal3R, and augment the DiT
235 input with an additional pose token $\mathcal{E}(p)$, where $p \in \mathbb{R}^6$ is a 6D rotation parameterization. During
236 training, the ground-truth pose p^* is perturbed along a flow-matching path p_t and fed to the DiT,
237 which predicts velocity fields for both geometry and pose under a flow-matching objective. At
238 inference, we sample $p_T \sim \mathcal{N}(0, I_6)$ and integrate the reverse flow to obtain p_0 . The 6D rotation
239 is mapped to $\text{SO}(3)$ via Gram–Schmidt. Scale S is initialized by matching the longest edge of
240 the reconstructed bounding box to the target, and translation \mathbf{T} aligns centers. Since our method
241 adds only one token, pose estimation incurs negligible overhead compared to the base image-to-3D
242 pipeline. (2) **Fine alignment.** We further refine translation, scale, and rotation by minimizing a
243 differentiable rendering objective on the original scene. Specifically, we employ a depth loss and
244 a silhouette Dice loss between renderings of the reconstructed object and the ground-truth target,
245 ensuring precise alignment and seamless integration.

246 **Fallback for unreliable 3D reconstruction.** Although recent advances in image-to-3D reconstruc-
247 tion (Wu et al., 2025; Xiang et al., 2024; Yushi et al., 2025) have demonstrated strong performance,
248 errors may still arise, particularly when object segmentation is inaccurate under occlusion. To enhance
249 the robustness of NeoWorld, we introduce a fallback strategy: after unfolding and aligning the object
250 to the input image, we evaluate reconstruction fidelity by computing the cosine similarity between
251 DINOV2 features of the re-rendered object and its corresponding masked region in the input. If the
252 similarity score falls below a threshold τ , the object is reverted to a 2.5D representation, as low
253 similarity typically reflects segmentation errors or degraded 3D reconstruction under severe occlusion.
254 Additional ablation details are provided in Appendix B.

255 3.4 INTUITIVE USER-WORLD INTERACTION
256

257 Recall that the generated world is object-centric, consisting of 3D foreground objects and object-
258 centric Gaussian layers. We further enable user prompts to manipulate or animate arbitrary objects
259 within the world. To achieve this, we employ a Large Language Model (g_{LLM} , Gemini-2.5pro (Co-
260 manici et al., 2025)) to interpret user intent. The input to g_{LLM} is decomposed into three components:
261 the instruction \mathcal{J} (defining scene interaction rules), the user prompt \mathcal{U} (specifying the desired manip-
262 ulation), and \mathcal{O} (describing all scene objects by their spatial centers, scales, and categories). Given
263 these inputs, g_{LLM} predicts the target object index \mathcal{I} and the corresponding manipulation attributes \mathcal{A} :
264 $[\mathcal{I}, \mathcal{A}] = g_{\text{LLM}}(\mathcal{J}, \mathcal{O}, \mathcal{U})$. Examples and further implementation details are provided in Appendix E.
265 The attributes \mathcal{A} are task-dependent and may include translations and rotations for basic manipula-
266 tions, transformation sequences for animations (e.g., lists of translations and rotations), or physical
267 parameters (e.g., material properties for MPM-based dynamic simulation). To support more complex
268 interactions, we further allow objects to be converted into meshes or substituted with high-fidelity 3D
269 assets. These assets can then be animated using keyframe techniques, thereby enhancing both realism
and immersion in interactive world generation.

270 **Video-to-Video enhancement.** While MPM-based simulation and animations can produce physi-
271 cally plausible and 3D-consistent dynamics, they still have important limitations: in particular, they
272 cannot adequately handle appearance changes induced by object–environment interactions, such as

270 moving shadows or water flowing and splashing as a boat moves. To further enhance the realism of
 271 the scene, we leverage a state-of-the-art video-to-video (V2V) generation model (Jiang et al., 2025)
 272 to refine the simulated dynamics, yielding visually higher-quality and more coherent dynamic videos.
 273 To enable a fair and transparent comparison with the baselines, all reported results are obtained
 274 **without applying the visual enhancement module**, unless otherwise specified.

275 4 EXPERIMENTS

276 4.1 EXPERIMENTAL SETUP

277 **Implementation details.** Following WonderWorld, we use StableDiffusion-v2.0-Inpainting (Rom-
 278 bach et al., 2022) as the backbone for inpainting and distilled StableDiffusion-XL for object removal.
 279 For panoptic segmentation, we adopt OneFormer (Jain et al., 2023). Normal and depth estimation
 280 are performed with Marigold Normal and Marigold Depth (Ke et al., 2024) to ensure high-quality
 281 geometric information. For scene alignment, we fine-tune Amodal3R for 20 epochs on a mixture of
 282 3D synthetic datasets: 3D-FUTURE (Fu et al., 2021), ABO (Collins et al., 2022), and HSSD (Khanna
 283 et al., 2024). Hyperparameters are set as follows: codebook dimension $C = 16$, cosine similarity
 284 threshold $\delta = 0.5$, and fallback score threshold $\tau = 0.4$. We sample 3 viewpoints along the fixed
 285 panoramic path and 15 additional viewpoints at 30° intervals on the orbiting path. All images are
 286 rendered at 512×512 resolution with evenly spaced viewpoints.

287 **Baselines.** Since no prior work supports interactive 3D object-centric world generation, we perform
 288 best-effort comparisons with three groups of baselines, each targeting a different aspect of NeoWorld.

- 289 • *Unbounded world generation*: We compare with recent 3D world generation methods (Wonder-
 290 Journey (Yu et al., 2024), WonderWorld (Yu et al., 2025)), video diffusion models (CogVideoX-
 291 I2V-5B (Hong et al., 2023), Wan2.1-I2V-14B (Wan et al., 2025)), and Matrix-Game2 (He et al.,
 292 2025), an interactive 2D world generation baseline.
- 293 • *Object-centric accuracy*: We evaluate against 3D object-centric learning methods, Gaussian-
 294 Grouping (Ye et al., 2024) and OmniSeg3DGS (Ying et al., 2024). GaussianGrouping distills 3D
 295 segmentations from 2D masks (SAM (Kirillov et al., 2023), DEVA (Cheng et al., 2023)), while
 296 OmniSeg3DGS learns 3D feature fields from SAM masks via contrastive learning (Li et al., 2020).
- 297 • *Interactive manipulation*: As ground-truth 3D dynamics are unavailable, we compare with strong
 298 video models (Kling 1.6 (Kuaishou, 2025), CogVideo-I2V, Wan2.1-I2V) and PhysGen3D (Chen
 299 et al., 2025), which targets physics-plausible world dynamics.

300 **Benchmarks.** We construct our evaluation benchmark following three prior works: WonderWorld,
 301 WorldScore (Duan et al., 2025), and WonderJourney. To ensure consistency, we exclude wide-angle
 302 landscape photos with vast scenery or ambiguous composition, resulting in a curated set of 28
 303 images covering 7 distinct styles and occlusion conditions. Following the automatic evaluation
 304 protocol of WonderWorld, we procedurally generate 4 3D environments per image, yielding 112
 305 diverse scenes spanning both photorealistic and artistic styles. Scene descriptions are produced
 306 using ChatGPT (Achiam et al., 2023), and the camera trajectory is fixed to a panoramic path (see
 307 WonderWorld for procedural generation details). For novel-view evaluation, we additionally adopt an
 308 orbiting trajectory with azimuth sweeping from 0° to 90° , inspired by WorldScore.

309 **Metrics.** Following prior work (Yu et al., 2025; Duan et al., 2025), we evaluate **static world**
 310 generation and novel-view exploration using the following metrics:

- 311 1. *CIQA+* (Wang et al., 2023), *Q-Align* (Wu et al., 2024a), and *sFID* (Nash et al., 2021) to assess
 312 perceptual and semantic image quality compared with real data;
- 313 2. *3D Consistency* and *Scene Quality* measured by human users for scene realism and overall
 314 video quality along generation and exploration trajectories;
- 315 3. *ImageCLIP* for text-scene alignment and *CLIP Score* for long-term consistency between the
 316 input image and novel views;
- 317 4. *IoU* for segmentation accuracy against ground-truth masks;
- 318 5. **Additionally, we report three *VBench* (Zhang et al., 2024a) metrics for video quality evaluation,**
- 319 **including motion smoothness, subject consistency, and background consistency.**

320 For **dynamic world** generation, such as multi-object scenarios with spatially grounded prompts (*e.g.*,
 321 “the chair on the left”), which require precise object identification and animation, we evaluate two
 322 metrics: (1) *Prompt Alignment*, a human study measuring text-video alignment, and (2) *VideoCLIP*
 323 *Similarity*, an automated score computed with VideoCLIP-XL (Wang et al., 2024).

Figure 3: **Qualitative comparison of exploration view and novel view rendering.** Camera viewpoints follow the illustrated trajectory, with the novel view path shown in blue.

Table 1: **Interactive world generation performance.** Human evaluation results are indicated with \dagger . The time required to generate each novel view is measured on an NVIDIA H20 GPU. For all metrics except time cost, higher values indicate better performance.

Method	CIQA+	Q-Align	3D-Const \dagger	SceneQuality \dagger	ImageCLIP	CLIP-Score	Time/view (s)
CogVideo-I2V	0.65	4.09	N/A	N/A	76.23	92.47	242.53
Wan2.1-I2V	0.67	4.28	N/A	N/A	74.54	95.43	721.20
Matrix-Game2	0.58	3.76	N/A	N/A	N/A	70.36	8.57
WonderJourney	0.49	1.73	20.33	20.51	78.91	66.00	179.11
WonderWorld	0.55	2.34	32.42	32.26	78.35	69.20	10.71
NeoWorld	0.59	2.66	47.25	47.23	78.63	72.46	18.14

4.2 EVALUATION ON UNBOUNDED WORLD GENERATION

In Fig. 3, we present a qualitative comparison of exploration-view and novel-view renderings across NeoWorld, CogVideo-I2V, Wan2.1-I2V, Matrix-Game2, WonderWorld, and WonderJourney. We can see that only NeoWorld can keep 3D view realism without explicit holes, benefiting from its hybrid scene representation. More showcases are included in the Appendix D. Table 1 reports results of NeoWorld against two 3D world generation methods (WonderJourney, WonderWorld) and three video diffusion models (CogVideo-I2V, Wan2.1-I2V, Matrix-Game2). Additionally, Table 2 presents quantitative results on supplementary metrics. NeoWorld achieves the lowest sFID and the highest VBench scores among all methods, demonstrating superior visual fidelity, smoother motion, and more consistent temporal behavior overall.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Table 2: Quantitative comparison of interactive world generation in **sFID** and three **VBench** (Zhang et al., 2024a) metrics, including motion smoothness, subject consistency, and background consistency.

Method	sFID \downarrow	Motion Smoothness \uparrow	Subject Consistency \uparrow	Background Consistency \uparrow
WonderJourney	114.17	0.9810	0.7741	0.8806
WonderWorld	111.07	0.9886	0.7895	0.8819
NeoWorld	109.54	0.9897	0.7917	0.8840

Table 3: Quantitative analysis of the proposed object-centric representation (Metric: IoU).

OmniSeg3DGS	GaussianGrouping	NeoWorld	w/o Joint Optim.	w/o KNN Smooth
33.24	36.70	70.53	64.26	68.59

3D scene realism. We evaluate 3D consistency (3D-Const) and overall scene quality (SceneQuality) through a human study comparing WonderJourney, WonderWorld, and NeoWorld. Over 45% of participants preferred NeoWorld. Video diffusion models are excluded as they do not support 3D world generation or accurate viewpoint control. On CIQA+ and Q-Align, Wan2.1-I2V and CogVideo-I2V achieve higher scores due to minimal camera motion and limited viewpoint changes, producing frames that closely match the input images. Nevertheless, NeoWorld surpasses WonderJourney and WonderWorld on both metrics, demonstrating stronger visual realism in interactive 3D generation.

Text-to-scene alignment and long-term consistency. NeoWorld achieves a comparable Image-CLIP score to WonderJourney and WonderWorld, while diffusion-based methods show markedly lower text-to-scene similarity, reflecting weaker geometric grounding. Matrix-Game2 is excluded from ImageCLIP as it lacks text input. For temporal coherence, NeoWorld attains the highest CLIP score among Matrix-Game2, WonderJourney, and WonderWorld; Wan2.1-I2V and CogVideo-I2V score higher because near-static cameras inflate frame-level similarity without true 3D consistency.

Efficiency. NeoWorld attains the second-best rendering speed among 3D unbounded world generation methods. Its efficiency mainly stems from the progressive 3D unfolding procedure, despite incorporating object-centric learning and object-to-3D generation. Overall, NeoWorld offers the best balance of realism, exploration, and efficiency.

4.3 EVALUATION ON OBJECT-CENTRIC REPRESENTATIONS

We manually annotated instance-level masks as ground truth and computed the IoU against the rendered masks. Quantitative results are reported in Table 3. Even without joint optimization or KNN smoothing (see Sec. 3.2), NeoWorld significantly outperforms OmniSeg3DGS and GaussianGrouping. When jointly optimized with image reconstruction loss (\mathcal{L}_1 and $\mathcal{L}_{\text{D-SSIM}}$) and object-centric loss \mathcal{L}_{cos} , the IoU improves from 64.26 to 70.53, demonstrating the benefit of leveraging implicit correlations between appearance and instance semantics. Applying KNN smoothing further suppresses Gaussian floaters, increasing IoU from 68.59 to 70.53. Qualitative comparisons in Fig. 4 show that the instance masks generated by NeoWorld align more accurately and smoothly with the RGB images than those of OmniSeg3DGS, further validating the effectiveness of our object-centric representation.

4.4 EVALUATION ON USER INTERACTIONS

By leveraging the parsing capabilities of LLMs, NeoWorld enables user-prompt-controlled object manipulation and animation. As shown in Fig. 5, given prompts such as “rightmost boat” or “right chair,” the manipulation targets are correctly located and animated. Compared with strong video diffusion models, including CogVideo-I2V (Hong et al., 2023), Wan2.1-I2V (Wan et al., 2025), and the commercial Kling1.6 (Kuaishou, 2025), NeoWorld achieves superior text-motion

Table 4: Interactive dynamic world animation performance. Higher values indicate better performance. Similarly, human evaluation results are indicated with \dagger .

Method	PromptAlign \dagger	VideoCLIP	Method	PromptAlign \dagger	VideoCLIP
CogVideo-I2V	8.63	16.34	WonderJourney	N/A	N/A
Wan2.1-I2V	8.52	16.26	WonderWorld	N/A	N/A
Kling 1.6	20.90	16.19	NeoWorld	61.95	17.05

Figure 4: Qualitative comparison of object-centric representation.

Figure 5: Qualitative results of dynamic simulation.

alignment. Quantitative results in Table 4 confirm this: both human study results (PromptAlign) and VideoCLIP scores demonstrate the effectiveness of NeoWorld in aligning generated dynamics with user instructions. In contrast, previous interactive 3D world generation models (WonderJourney and WonderWorld) are not object-centric; they support only visual navigation and cannot enable text-guided object control. Due to space limitations, we refer readers to Appendix B, D for additional examples of object manipulation and further analysis of LLM design and behavior.

4.5 ABLATION STUDIES

Post-simulation visual enhancement. In Fig. 6, we further present dynamic simulation and animation results *with and without* the visual enhancement module. The results indicate that the post-V2V module significantly improves the overall image quality and scene coherence, producing natural appearance changes caused by interactions between objects and the environment, including evolving lighting and shadows, as well as water flickering and rippling.

Alternative module designs. We conduct ablation studies on key backbone choices in NeoWorld, including depth/normal estimators (Bhat et al., 2023; Xu et al., 2025; Bae & Davison, 2024), inpainting models (Suvorov et al., 2021; Labs, 2024), and image-to-3D models (Szymanowicz et al., 2024). As shown in Table 5, lighter models already yield reasonable performance, while stronger ones (*e.g.*, PPD for depth and Marigold for normals) consistently provide improvements. LaMa yields

Figure 6: **Showcases of dynamic simulation *without* and *with* the post visual enhancement module.** The final version exhibits more natural visual effects, such as water ripples following the boat, realistic shadows of the car cast on the ground, and a reduced floating appearance of the car.

Table 5: **Ablation study of module designs in NeoWorld.** Compared with the modules used in NeoWorld, we denote lighter alternatives with \dagger and stronger alternatives with \ddagger .

Task	Model	CIQA+	Q-Align	ImageCLIP	CLIP-Score
Depth	replace w. ZoeDepth \dagger	0.58	2.64	77.57	73.96
	replace w. PPD \ddagger	0.58	2.78	78.18	74.37
Normal	replace w. DSINE \dagger	0.48	2.56	77.51	70.33
Inpainting	replace w. LaMa \dagger	0.52	2.53	54.95	66.80
	replace w. SD1.5 \dagger	0.57	2.63	76.67	70.30
	replace w. Flux-Fill \ddagger	0.56	2.65	76.11	69.10
Image-to-3D	replace w. SplatterImage \dagger	0.54	2.55	78.44	68.43
Final	NeoWorld	0.59	2.66	78.63	72.46

lower ImageCLIP scores because it is text-agnostic, and Flux-Fill does not produce further gains since it is designed for local object replacement rather than the large-scale completion required in NeoWorld. Additional ablations, including LLM choice, object removal, codebook design, alignment, and hyperparameters, are provided in Appendix B.

5 CONCLUSIONS AND LIMITATIONS

In this work, we introduced NeoWorld, a novel deep learning framework for interactive world generation with object-level semantics and 3D physical consistency. In contrast to existing approaches that are constrained to static world generation and limited to visual navigation, NeoWorld enables user-driven object manipulation and physics-based dynamic simulation within a continuously expanding 3D environment. To achieve this, we designed a cascaded architecture that starts with lightweight 2D object-centric representations and progressively unfolds full 3D geometry based on user interactions, effectively balancing computational efficiency with immersive visual and physical realism.

Rather than a single unified model, NeoWorld is a cascade of external, pre-trained modules. Consequently, end-to-end robustness is constrained by the weakest link, and upstream errors can propagate to the final world simulation. Typical failures include: (i) alignment failures; (ii) ambiguous or overly complex prompts that lead to LLM misinterpretation; (iii) image-to-3D reconstruction errors under heavy occlusion or highly complex/reflective textures; and (iv) under- or over-segmentation results, which corrupt object masks and the following reconstruction. **Please refer to the Appendix F for detailed analyses and visualizations.**

540 REPRODUCIBILITY STATEMENT
541542 We include anonymized code in the supplementary material to facilitate the reproduction of all
543 experiments, figures, and tables. The Implementation Details section in the appendix specifies all
544 hyperparameter settings. We will release a de-anonymized repository upon acceptance.
545546 REFERENCES
547548 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
549 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
550 [arXiv preprint arXiv:2303.08774](https://arxiv.org/abs/2303.08774), 2023.551 Adobe Inc. Mixamo. <https://www.mixamo.com/>, 2025. Accessed: 2025-02-24.
552553 Gwangbin Bae and Andrew J. Davison. Rethinking inductive biases for surface normal estimation.
554 In [IEEE/CVF Conference on Computer Vision and Pattern Recognition \(CVPR\)](https://openaccess.thecvf.com/content_CVPR_2024/html/Bae_Rethinking_Inductive_Biases_for_Surface_Normals_CVPR_2024.html), 2024.
555556 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
557 Yu Han, Fei Huang, et al. Qwen technical report. [arXiv preprint arXiv:2309.16609](https://arxiv.org/abs/2309.16609), 2023.558 Shariq Farooq Bhat, Reiner Birk, Diana Wofk, Peter Wonka, and Matthias Müller. Zoedepth:
559 Zero-shot transfer by combining relative and metric depth. [arXiv preprint arXiv:2302.12288](https://arxiv.org/abs/2302.12288),
560 2023.
561562 Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
563 Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative
564 interactive environments. In [ICML](https://icml.cc/2024/submit/), 2024.565 Christopher P. Burgess, Loïc Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matthew M.
566 Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and representation.
567 [CoRR](https://arxiv.org/abs/1901.11390), abs/1901.11390, 2019.
568569 Shengqu Cai, Eric Ryan Chan, Songyou Peng, Mohamad Shahbazi, Anton Obukhov, Luc Van Gool,
570 and Gordon Wetzstein. Diffdreamer: Towards consistent unsupervised single-view scene extrapo-
571 lation with conditional diffusion models. In [ICCV](https://openaccess.thecvf.com/content_ICCV_2023/html/Cai_Diffdreamer_ICCV_2023.html), pp. 2139–2150, 2023.572 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
573 Armand Joulin. Emerging properties in self-supervised vision transformers. In [ICCV](https://openaccess.thecvf.com/content_ICCV_2021/html/Caron_Emerging_Properties_in_Self-Supervised_Vision_Transformers_ICCV_2021.html), pp. 9650–
574 9660, 2021.
575576 Lucy Chai, Richard Tucker, Zhengqi Li, Phillip Isola, and Noah Snavely. Persistent nature: A
577 generative model of unbounded 3d worlds. In [CVPR](https://openaccess.thecvf.com/content_CVPR_2023/html/Chai_Persistent_Nature_CVPR_2023.html), pp. 20863–20874, 2023.
578579 Boyuan Chen, Hanxiao Jiang, Shaowei Liu, Saurabh Gupta, Yunzhu Li, Hao Zhao, and Shenlong
580 Wang. Physgen3d: Crafting a miniature interactive world from a single image. In [CVPR](https://openaccess.thecvf.com/content_CVPR_2025/html/Chen_Physgen3d_Crafting_a_Minature_Interactive_World_from_a_Single_Image_CVPR_2025.html), 2025.
581582 Chang Chen, Fei Deng, and Sungjin Ahn. Roots: Object-centric representation and rendering of 3d
583 scenes. [JMLR](https://jmlr.org/papers/v22/21-136.html), 22(259):1–36, 2021.
584585 Ho Kei Cheng, Seoung Wug Oh, Brian Price, Alexander Schwing, and Joon-Young Lee. Tracking
586 anything with decoupled video segmentation. In [ICCV](https://openaccess.thecvf.com/content_ICCV_2023/html/Cheng_Tracking_Anything_with_Dcoupled_Video_Segmentation_ICCV_2023.html), pp. 1316–1326, 2023.
587588 Jasmine Collins, Shubham Goel, Kenan Deng, Achleshwar Luthra, Leon Xu, Erhan Gundogdu,
589 Xi Zhang, Tomas F Yago Vicente, Thomas Dideriksen, Himanshu Arora, et al. Abo: Dataset and
590 benchmarks for real-world 3d object understanding. In [Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition](https://openaccess.thecvf.com/content_CVPR_2022/html/Collins_Abo_CVPR_2022.html), pp. 21126–21136, 2022.591 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
592 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
593 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
[arXiv preprint arXiv:2507.06261](https://arxiv.org/abs/2507.06261), 2025.

594 Ciprian Corneanu, Raghudeep Gadde, and Aleix M Martinez. Latentpaint: Image inpainting in latent
 595 space with diffusion models. In WACV, pp. 4334–4343, 2024.
 596

597 Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint. Learning multi-object
 598 dynamics with compositional neural radiance fields. In CoRL, pp. 1755–1768, 2023.
 599

600 Haoyi Duan, Hong-Xing Yu, Sirui Chen, Li Fei-Fei, and Jiajun Wu. Worldscore: A unified evaluation
 601 benchmark for world generation. arXiv preprint arXiv:2504.00983, 2025.
 602

603 Gamaleldin Elsayed, Aravindh Mahendran, Sjoerd Van Steenkiste, Klaus Greff, Michael C Mozer,
 604 and Thomas Kipf. Savi++: Towards end-to-end object-centric learning from real-world videos. In
 605 NeurIPS, pp. 28940–28954, 2022.
 606

607 Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and Ingmar Posner. GENESIS: generative
 608 scene inference and sampling with object-centric latent representations. In ICLR, 2020.
 609

610 Ruili Feng, Han Zhang, Zhantao Yang, Jie Xiao, Zhilei Shu, Zhiheng Liu, Andy Zheng, Yukun
 611 Huang, Yu Liu, and Hongyang Zhang. The matrix: Infinite-horizon world generation with real-time
 612 moving control. arXiv preprint arXiv:2412.03568, 2024.
 613

614 Rafail Fridman, Amit Abecasis, Yoni Kasten, and Tali Dekel. Scenescape: Text-driven consistent
 615 scene generation. In NeurIPS, pp. 39897–39914, 2023.
 616

617 Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binjiang Zhao, Steve Maybank, and Dacheng
 618 Tao. 3d-future: 3d furniture shape with texture. International Journal of Computer Vision, 129
 619 (12):3313–3337, 2021.
 620

621 Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hao, Harri Valpola, and Jürgen Schmidhuber.
 622 Tagger: Deep unsupervised perceptual grouping. In NeurIPS, 2016.
 623

624 Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel
 625 Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation
 626 learning with iterative variational inference. In ICML, pp. 2424–2433, 2019.
 627

628 Shanyan Guan, Huayu Deng, Yunbo Wang, and Xiaokang Yang. Neurofluid: Fluid dynamics
 629 grounding with particle-driven neural radiance fields. In ICML, pp. 7919–7929, 2022.
 630

631 Xianglong He, Chunli Peng, Zexiang Liu, Boyang Wang, Yifan Zhang, Qi Cui, Fei Kang, Biao Jiang,
 632 Mengyin An, Yangyang Ren, et al. Matrix-game 2.0: An open-source, real-time, and streaming
 633 interactive world model. arXiv preprint arXiv:2508.13009, 2025.
 634

635 Lukas Höllerin, Ang Cao, Andrew Owens, Justin Johnson, and Matthias Nießner. Text2room:
 636 Extracting textured 3d meshes from 2d text-to-image models. In ICCV, 2023.
 637

638 Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale
 639 pretraining for text-to-video generation via transformers. In ICLR, 2023.
 640

641 Yicong Hong, Kai Zhang, Juxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan Sunkavalli,
 642 Trung Bui, and Hao Tan. LRM: large reconstruction model for single image to 3d. In ICLR, 2024.
 643

644 Ronghang Hu, Nikhila Ravi, Alexander C Berg, and Deepak Pathak. Worldsheet: Wrapping the
 645 world in a 3d sheet for view synthesis from a single image. In ICCV, pp. 12528–12537, 2021.
 646

647 Yujia Hu, Songhua Liu, Xingyi Yang, and Xinchao Wang. Flash sculptor: Modular 3d worlds from
 648 objects. arXiv preprint arXiv:2504.06178, 2025.
 649

650 Jitesh Jain, Jiachen Li, Mang Tik Chiu, Ali Hassani, Nikita Orlov, and Humphrey Shi. Oneformer:
 651 One transformer to rule universal image segmentation. In CVPR, pp. 2989–2998, 2023.
 652

653 Zeyinzi Jiang, Zhen Han, Chaojie Mao, Jingfeng Zhang, Yulin Pan, and Yu Liu. Vace: All-in-one
 654 video creation and editing. arXiv preprint arXiv:2503.07598, 2025.
 655

656 Rishabh Kabra, Daniel Zoran, Goker Erdogan, Loic Matthey, Antonia Creswell, Matt Botvinick,
 657 Alexander Lerchner, and Chris Burgess. Simone: View-invariant, temporally-abstracted object
 658 representations via unsupervised video decomposition. NeurIPS, 34:20146–20159, 2021.
 659

648 Biliana KANEVA, Josef SIVIC, Antonio TORRALBA, Shai AVIDAN, and William T FREEMAN.
 649 Infinite images: Creating and exploring a large photorealistic virtual space. *Proceedings of the*
 650 *IEEE*, 98(8):1391–1407, 2010.

651 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 652 adversarial networks. In *CVPR*, pp. 4401–4410, 2019.

653 Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Konrad
 654 Schindler. Repurposing diffusion-based image generators for monocular depth estimation. In
 655 *CVPR*, pp. 9492–9502, 2024.

656 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
 657 for real-time radiance field rendering. *ACM TOG*, 42(4):139–1, 2023.

658 Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf: Language
 659 embedded radiance fields. In *ICCV*, pp. 19729–19739, 2023.

660 Mukul Khanna, Yongsen Mao, Hanxiao Jiang, Sanjay Haresh, Brennan Shacklett, Dhruv Batra,
 661 Alexander Clegg, Eric Undersander, Angel X Chang, and Manolis Savva. Habitat synthetic scenes
 662 dataset (hssd-200): An analysis of 3d scene scale and realism tradeoffs for objectgoal navigation.
 663 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 664 16384–16393, 2024.

665 Thomas Kipf, Gamaleldin Fathy Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour, Georg
 666 Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional object-centric
 667 learning from video. In *ICLR*, 2022.

668 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 669 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *ICCV*, pp.
 670 4015–4026, 2023.

671 Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. Decomposing nerf for editing via
 672 feature field distillation. In *NeurIPS*, pp. 23311–23330, 2022.

673 Amit Pal Singh Kohli, Vincent Sitzmann, and Gordon Wetzstein. Semantic implicit neural scene
 674 representations with semi-supervised training. In *3DV*, pp. 423–433, 2020.

675 Kuaishou. Kling: Ai video generation model, 2025. <https://www.klingai.com>, Accessed:
 676 2025-02-24.

677 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

678 Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen Koltun, and Rene Ranftl. Language-driven
 679 semantic segmentation. In *ICLR*, 2022a.

680 Junnan Li, Pan Zhou, Caiming Xiong, and Steven Hoi. Prototypical contrastive learning of unsuper-
 681 vised representations. In *ICLR*, 2020.

682 Zhengqi Li, Qianqian Wang, Noah Snavely, and Angjoo Kanazawa. Infinitenature-zero: Learning
 683 perpetual view generation of natural scenes from single images. In *ECCV*, pp. 515–534, 2022b.

684 Chieh Hubert Lin, Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, and Ming-Hsuan Yang. Infini-
 685 tyGAN: Towards infinite-pixel image synthesis. In *ICLR*, 2022.

686 Chieh Hubert Lin, Hsin-Ying Lee, Willi Menapace, Menglei Chai, Aliaksandr Siarohin, Ming-Hsuan
 687 Yang, and Sergey Tulyakov. Infinality: Infinite-scale city synthesis. In *ICCV*, pp. 22808–22818,
 688 2023.

689 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 690 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 691 *arXiv:2412.19437*, 2024a.

692 Andrew Liu, Richard Tucker, Varun Jampani, Ameesh Makadia, Noah Snavely, and Angjoo
 693 Kanazawa. Infinite nature: Perpetual view generation of natural scenes from a single image.
 694 In *ICCV*, pp. 14458–14467, 2021.

702 Kunhao Liu, Fangneng Zhan, Jiahui Zhang, Muyu Xu, Yingchen Yu, Abdulmotaleb El Saddik, Chris-
 703 tian Theobalt, Eric Xing, and Shijian Lu. Weakly supervised 3d open-vocabulary segmentation. In
 704 NeurIPS, pp. 53433–53456, 2023.

705 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 706 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training for
 707 open-set object detection. In ECCV, pp. 38–55, 2024b.

708 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
 709 Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention.
 710 In NeurIPS, pp. 11525–11538, 2020.

711 Yifan Lu, Xuanchi Ren, Jiawei Yang, Tianchang Shen, Zhangjie Wu, Jun Gao, Yue Wang, Siheng
 712 Chen, Mike Chen, Sanja Fidler, et al. Infinicube: Unbounded and controllable dynamic 3d driving
 713 scene generation with world-guided video models. arXiv preprint arXiv:2412.03934, 2024.

714 Rundong Luo, Hong-Xing Yu, and Jiajun Wu. Unsupervised discovery of object-centric neural fields.
 715 In ICLR, 2024.

716 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
 717 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

718 Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with
 719 sparse representations. arXiv preprint arXiv:2103.03841, 2021.

720 Chaojun Ni, Xiaofeng Wang, Zheng Zhu, Weijie Wang, Haoyun Li, Guosheng Zhao, Jie Li, Wenkang
 721 Qin, Guan Huang, and Wenjun Mei. Wonderturbo: Generating interactive 3d world in 0.72 seconds.
 722 arXiv preprint arXiv:2504.02261, 2025.

723 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
 724 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas
 725 Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
 726 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jégou, Julien Mairal, Patrick Labatut,
 727 Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision.
 728 TMLR, 2024, 2024.

729 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 730 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 731 synthesis. In ICLR, 2024.

732 Jie Qin, Jie Wu, Pengxiang Yan, Ming Li, Ren Yuxi, Xuefeng Xiao, Yitong Wang, Rui Wang, Shilei
 733 Wen, Xin Pan, et al. Freeseg: Unified, universal and open-vocabulary image segmentation. In
 734 CVPR, pp. 19446–19455, 2023.

735 Minghan Qin, Wanhua Li, Jiawei Zhou, Haoqian Wang, and Hanspeter Pfister. Langsplat: 3d
 736 language gaussian splatting. In CVPR, pp. 20051–20060, 2024.

737 Ri-Zhao Qiu, Ge Yang, Weijia Zeng, and Xiaolong Wang. Language-driven physics-based scene
 738 synthesis and editing via feature splatting. In Ales Leonardis, Elisa Ricci, Stefan Roth, Olga
 739 Russakovsky, Torsten Sattler, and Gü̈l Varol (eds.), ECCV, pp. 368–383, 2024.

740 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 741 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 742 models from natural language supervision. In ICML, pp. 8748–8763, 2021.

743 Alexander Raistrick, Lahav Lipson, Zeyu Ma, Lingjie Mei, Mingzhe Wang, Yiming Zuo, Karhan
 744 Kayan, Hongyu Wen, Beining Han, Yihan Wang, et al. Infinite photorealistic worlds using
 745 procedural generation. In CVPR, pp. 12630–12641, 2023.

746 Alexander Raistrick, Lingjie Mei, Karhan Kayan, David Yan, Yiming Zuo, Beining Han, Hongyu
 747 Wen, Meenal Parakh, Stamatis Alexandropoulos, Lahav Lipson, Zeyu Ma, and Jia Deng. Infinigen
 748 indoors: Photorealistic indoor scenes using procedural generation. In CVPR, pp. 21783–21794,
 749 2024.

756 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 757 Khedr, Roman Rädle, Chloé Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
 758 sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross B. Girshick, Piotr Dollár, and Christoph
 759 Feichtenhofer. SAM 2: Segment anything in images and videos. In ICLR, 2025.

760 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 761 resolution image synthesis with latent diffusion models. In CVPR, pp. 10684–10695, 2022.

762 Mehdi SM Sajjadi, Daniel Duckworth, Aravindh Mahendran, Sjoerd Van Steenkiste, Filip Pavetic,
 763 Mario Lucic, Leonidas J Guibas, Klaus Greff, and Thomas Kipf. Object scene representation
 764 transformer. NeurIPS, 35:9512–9524, 2022.

765 Yawar Siddiqui, Lorenzo Porzi, Samuel Rota Buló, Norman Müller, Matthias Nießner, Angela Dai,
 766 and Peter Kontschieder. Panoptic lifting for 3d scene understanding with neural fields. In CVPR,
 767 pp. 9043–9052, 2023.

768 Gautam Singh, Yi-Fu Wu, and Sungjin Ahn. Simple unsupervised object-centric learning for complex
 769 and naturalistic videos. In NeurIPS, pp. 18181–18196, 2022.

770 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 771 In NeurIPS, 2019.

772 Karl Stelzner, Kristian Kersting, and Adam R Kosiorek. Decomposing 3d scenes into objects via
 773 unsupervised volume segmentation. arXiv preprint arXiv:2104.01148, 2021.

774 Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha,
 775 Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky. Resolution-
 776 robust large mask inpainting with fourier convolutions. arXiv preprint arXiv:2109.07161, 2021.

777 Stanislaw Szymanowicz, Christian Rupprecht, and Andrea Vedaldi. Splatter image: Ultra-fast
 778 single-view 3d reconstruction. In The IEEE/CVF Conference on Computer Vision and Pattern
 779 Recognition (CVPR), 2024.

780 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 781 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 782 capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

783 SAM 3D Team, Xingyu Chen, Fu-Jen Chu, Pierre Gleize, Kevin J Liang, Alexander Sax, Hao
 784 Tang, Weiyao Wang, Michelle Guo, Thibaut Hardin, Xiang Li, Aohan Lin, Jiawei Liu, Ziqi Ma,
 785 Anushka Sagar, Bowen Song, Xiaodong Wang, Jianing Yang, Bowen Zhang, Piotr Dollár, Georgia
 786 Gkioxari, Matt Feiszli, and Jitendra Malik. Sam 3d: 3dfy anything in images. 2025. URL
 787 <https://arxiv.org/abs/2511.16624>.

788 Tripo 3D. Tripo 3d. <https://www.tripo3d.ai/>, 2025. Accessed: 2025-02-24.

789 Vadim Tschernezki, Iro Laina, Diane Larlus, and Andrea Vedaldi. Neural feature fusion fields: 3d
 790 distillation of self-supervised 2d image representations. In 3DV, pp. 443–453, 2022.

791 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 792 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative models.
 793 arXiv preprint arXiv:2503.20314, 2025.

794 Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel
 795 of images. In AAAI, volume 37, pp. 2555–2563, 2023.

796 Jiapeng Wang, Chengyu Wang, Kunzhe Huang, Jun Huang, and Lianwen Jin. Videoclip-xl: Advanc-
 797 ing long description understanding for video clip models, 2024. URL <https://arxiv.org/abs/2410.00741>.

798 Haoning Wu, Zicheng Zhang, Weixia Zhang, Chaofeng Chen, Liang Liao, Chunyi Li, Yixuan Gao,
 799 Annan Wang, Erli Zhang, Wenxiu Sun, et al. Q-align: Teaching Imms for visual scoring via
 800 discrete text-defined levels. In ICML, pp. 54015–54029, 2024a.

810 Shuang Wu, Youtian Lin, Yifei Zeng, Feihu Zhang, Jingxi Xu, Philip Torr, Xun Cao, and Yao Yao.
 811 Direct3d: Scalable image-to-3d generation via 3d latent diffusion transformer. In NeurIPS, 2024b.
 812

813 Tianhao Wu, Chuanxia Zheng, Frank Guan, Andrea Vedaldi, and Tat-Jen Cham. Amodal3r: Amodal
 814 3d reconstruction from occluded 2d images. arXiv preprint arXiv:2503.13439, 2025.

815 Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen, Xin
 816 Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation. arXiv
 817 preprint arXiv:2412.01506, 2024.

818

819 Junyu Xie, Weidi Xie, and Andrew Zisserman. Segmenting moving objects via an object-centric
 820 layered representation. In NeurIPS, pp. 28023–28036, 2022.

821

822 Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
 823 Physgaussian: Physics-integrated 3d gaussians for generative dynamics. In CVPR, pp. 4389–4398,
 824 2024.

825 Gangwei Xu, Haotong Lin, Hongcheng Luo, Xianqi Wang, Jingfeng Yao, Lianghui Zhu, Yuechuan
 826 Pu, Cheng Chi, Haiyang Sun, Bing Wang, et al. Pixel-perfect depth with semantics-prompted
 827 diffusion transformers. arXiv preprint arXiv:2510.07316, 2025.

828

829 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 830 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 831 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 832 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 833 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 834 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 835 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 836 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 837 Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

838

839 Kaizhi Yang, Xiaoshuai Zhang, Zhiao Huang, Xuejin Chen, Zexiang Xu, and Hao Su. Movingparts:
 Motion-based 3d part discovery in dynamic radiance field. In ICLR, 2024a.

840

841 Mingyu Yang, Junyou Li, Zhongbin Fang, Sheng Chen, Yangbin Yu, Qiang Fu, Wei Yang, and
 842 Deheng Ye. Playable game generation. arXiv preprint arXiv:2412.00887, 2024b.

843

844 Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke. Gaussian grouping: Segment and edit
 anything in 3d scenes. In ECCV, pp. 162–179, 2024.

845

846 Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and Bill
 847 Freeman. Improved distribution matching distillation for fast image synthesis. In NeurIPS, 2024.

848

849 Haiyang Ying, Yixuan Yin, Jinzhi Zhang, Fan Wang, Tao Yu, Ruqi Huang, and Lu Fang. Omniseg3d:
 850 Universal 3d segmentation via hierarchical contrastive learning. In CVPR, pp. 20612–20622,
 851 2024.

852

853 Hong-Xing Yu, Haoyi Duan, Junhwa Hur, Kyle Sargent, Michael Rubinstein, William T. Freeman,
 854 Forrester Cole, Deqing Sun, Noah Snavely, Jiajun Wu, and Charles Herrmann. Wonderjourney:
 855 Going from anywhere to everywhere. In CVPR, 2024.

856

857 Hong-Xing Yu, Haoyi Duan, Charles Herrmann, William T. Freeman, and Jiajun Wu. Wonderworld:
 Interactive 3d scene generation from a single image. In CVPR, 2025.

858

859 LAN Yushi, Shangchen Zhou, Zhaoyang Lyu, Fangzhou Hong, Shuai Yang, Bo Dai, Xingang Pan,
 860 and Chen Change Loy. Gaussiananything: Interactive point cloud flow matching for 3d generation.
 861 In ICLR, 2025.

862

863 Fan Zhang, Shulin Tian, Ziqi Huang, Yu Qiao, and Ziwei Liu. Evaluation agent: Efficient and
 promptable evaluation framework for visual generative models. arXiv preprint arXiv:2412.09645,
 2024a.

864 Hao Zhang, Feng Li, Xueyan Zou, Shilong Liu, Chunyuan Li, Jianwei Yang, and Lei Zhang. A
 865 simple framework for open-vocabulary segmentation and detection. In ICCV, pp. 1020–1031,
 866 2023.

867 Qihang Zhang, Yinghao Xu, Yujun Shen, Bo Dai, Bolei Zhou, and Ceyuan Yang. Berfscene: Bev-
 868 conditioned equivariant radiance fields for infinite 3d scene generation. In CVPR, pp. 6839–6849,
 869 2024b.

870 Yanpeng Zhao, Siyu Gao, Yunbo Wang, and Xiaokang Yang. Dynavol: Unsupervised learning for
 871 dynamic scenes through object-centric voxelization. In ICLR, 2024.

872 Yanpeng Zhao, Yiwei Hao, Siyu Gao, Yunbo Wang, and Xiaokang Yang. Dynamic scene understand-
 873 ing through object-centric voxelization and neural rendering. TPAMI, 2025.

874 Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew J Davison. In-place scene labelling
 875 and understanding with implicit scene representation. In ICCV, pp. 15838–15847, 2021.

876 Haiyang Zhou, Wangbo Yu, Jiawen Guan, Xinhua Cheng, Yonghong Tian, and Li Yuan. Holo-
 877 time: Taming video diffusion models for panoramic 4d scene generation. arXiv preprint
 878 arXiv:2504.21650, 2025.

879 Chaoyang Zhu and Long Chen. A survey on open-vocabulary detection and segmentation: Past,
 880 present, and future. TPAMI, 2024.

881 Junhao Zhuang, Yanhong Zeng, Wenran Liu, Chun Yuan, and Kai Chen. A task is worth one word:
 882 Learning with task prompts for high-quality versatile image inpainting. In ECCV, pp. 195–211,
 883 2024.

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 APPENDIX
919920 This supplementary material includes the following:
921

- 922 • *Related work*: Introduction of related direction, including infinite world generation and object-level
923 3D scene decomposition.
- 924 • *Ablation study*: Ablations of key components, **including codebook design, object removal, LLM**
925 **choice, alignment, multi-object manipulation, scalability analysis, and other hyperparameters**
926 (Sec. B).
- 927 • *Quantitive results*: Detailed benchmark description and quantitive results (Sec. C).
- 928 • *Qualitative results*: Additional visualizations of generated scenes and simulations, **including**
929 **interactive world generation results using exploration views only and using both exploration and**
930 **novel views, simulations with multiple objects, and multi-view renderings** (Sec. D).
- 931 • *Further Implementation details*: Additional information on Gaussian layer initialization, human
932 study setup, **per-module time breakdown**, and prompt design for LLMs (Sec. E).
- 933 • *Failure case analysis*: Visualizations and analysis of typical failure cases (Sec. F).

937 A RELATED WORK
938939 A.1 INFINITE WORLD GENERATION
940

941 Infinite world generation aims to construct an unbounded world from a single image, enabling
942 real-time control via camera motion and content prompts. Early research focused on perpetual video
943 generation along a given camera trajectory. The seminal work InfiniteImages (KANEVA et al., 2010)
944 introduced a non-parametric method for infinite 2D extrapolation through classical 2D image retrieval,
945 stitching, and blending. Subsequent learning-based methods (Liu et al., 2021; Lin et al., 2022; Li
946 et al., 2022b; Cai et al., 2023; Chai et al., 2023; Raistrick et al., 2023; Bruce et al., 2024; Yang et al.,
947 2024b; Feng et al., 2024; Raistrick et al., 2024; Zhou et al., 2025; Ni et al., 2025) auto-regressively
948 synthesized new scenes with generative models (Zhuang et al., 2024; Karras et al., 2019; Rombach
949 et al., 2022; Song & Ermon, 2019; Podell et al., 2024; Ke et al., 2024). Recent advances have
950 extended from 2D to 3D scene exploration (Hu et al., 2021; Yu et al., 2024; Fridman et al., 2023; Yu
951 et al., 2025; Höllerin et al., 2023; Lu et al., 2024; Zhang et al., 2024b; Lin et al., 2023) by integrating
952 image-to-3D generation (Xiang et al., 2024; Wu et al., 2024b; Hong et al., 2024; Yushi et al., 2025;
953 Wu et al., 2025) after the image extrapolation step. Wonderworld (Yu et al., 2025) even realized
954 real-time performance through the proposed efficient 2.5D layered scene representation. However,
955 existing methods remain limited to view-controlled navigation, lacking support for fine-grained
956 user-world interactions like physical manipulation or dynamic animation.

957 A.2 OBJECT-LEVEL 3D SCENE DECOMPOSITION
958

959 2D scene decomposition (Greff et al., 2016; 2019; Burgess et al., 2019; Engelcke et al., 2020;
960 Elsayed et al., 2022; Kipf et al., 2022; Singh et al., 2022; Xie et al., 2022) typically uses open-
961 vocabulary segmentation (Zhang et al., 2023; Qin et al., 2023; Zhu & Chen, 2024; Liu et al., 2024b)
962 or unsupervised methods like slot attention (Locatello et al., 2020). For 3D, recent works (Qiu et al.,
963 2024; Zhao et al., 2025; 2024; Kabra et al., 2021; Sajjadi et al., 2022; Chen et al., 2021; Driess et al.,
964 2023; Yang et al., 2024a; Luo et al., 2024; Qin et al., 2024; Kobayashi et al., 2022; Tschernezki
965 et al., 2022; Siddiqui et al., 2023; Kerr et al., 2023) attach semantics into neural fields (Mildenhall
966 et al., 2020; Kerbl et al., 2023) by distilling features from models (e.g., CLIP (Radford et al., 2021),
967 DINO (Caron et al., 2021; Oquab et al., 2024), LSeg (Li et al., 2022a), or SAM (Kirillov et al.,
968 2023; Ravi et al., 2025)), across multiple viewpoints. There are also some efforts (Kohli et al., 2020;
969 Stelzner et al., 2021; Zhi et al., 2021; Liu et al., 2023) that leverage direct supervision (e.g., depth or
970 instance maps). However, current approaches require dense views and suffer from high training or
971 optimization costs. The key challenge remains: online semantic reconstruction from sparse (even
monocular) input.

972 Table 6: **Comparison of alternative designs for object-centric representations.** These results are
 973 achieved on 9 scenes using 3 different seeds. Our codebook design yields a great balance between
 974 the object-centric scene decomposition quality and rendering efficiency. *Time* denotes the average
 975 training time for a single scene layer, and *Storage* denotes the storage required for a world consisting
 976 of 9 scenes.

Method	IoU	Time (s/scene)	Storage
One-hot Encoding	92.16 ± 1.92	52.90	2726M
AutoEncoder	24.42 ± 2.40	<u>2.59</u>	334M
Linear Mapping	45.54 ± 4.60	3.95	333M
Codebook (Final model)	<u>86.27 ± 1.23</u>	2.54	333M

977
 978
 979 Table 7: **Comparison of difference alignment strategies.** Plausibility and coherence are evaluated
 980 through a human-in-the-loop study. Our approach achieves the best overall alignment performance
 981 while maintaining reasonable efficiency.

Method	Plausibility	Coherence	Time(s)
w/o Coarse	10.71	11.20	1.86
w/o Fine	25.67	26.17	0.06
Flash Sculptor (Hu et al., 2025)	29.75	30.18	105.06
Full model	33.87	32.45	1.92

992 993 B ABLATION STUDY

994
 995 **Alternative designs for object-centric representations.** As discussed in Sec. 3.2, a straightforward
 996 approach for object-centric learning is to define γ as a K -dimensional one-hot vector, which directly
 997 corresponds to object IDs. Additionally, prior work has proposed alternative designs, such as
 998 employing an autoencoder to first compress feature vectors into a lower-dimensional space (Qin et al.,
 999 2024), or utilizing a single linear layer to map the rendered feature map from a lower-dimensional
 1000 space back to its original high-dimensional representation (Ye et al., 2024).

1001 We report the IoU, the average training time for a single scene layer (e.g., \mathcal{L}_{fg}), and the storage
 1002 for a world consisting of 9 scenes in Table. 6. From the results, it can be observed that one-hot
 1003 encoding achieves the highest IoU, but at the cost of significantly higher training time and memory
 1004 consumption. This makes it impractical for interactive infinity world generation, where computational
 1005 efficiency is essential. In contrast, both the autoencoder and linear mapping achieve suboptimal
 1006 results for different reasons.

1007 The autoencoder suffers from the lack of explicit constraints on the distances of the compressed
 1008 representations, leading to reduced robustness. On the other hand, linear mapping approaches are
 1009 usually applied in offline settings, where the entire set of scenes is pre-defined and known beforehand.
 1010 In our online scenario, where scenes are generated incrementally, linear mapping faces catastrophic
 1011 forgetting issues. Furthermore, linear mapping requires projecting low-dimensional features into
 1012 high-dimensional space for loss computation, which is notably slower compared to our approach,
 1013 where cosine similarity is directly applied in the low-dimensional codebook.

1014 Notably, different from Sec. 4.3, here we evaluate the performance using the IoU between the
 1015 predicted labels and the panoptic mask generated by OneFormer (Jain et al., 2023). This metric
 1016 provides a clearer and more intuitive way to reflect distillation errors. Overall, our method strikes
 1017 a good balance between performance and efficiency, making it a suitable choice for infinite world
 1018 generation under interactive scenarios.

1019 **Ablation study of object alignment.** In Table 7 and Fig. 7, we ablate our alignment pipeline by:
 1020 (i) removing coarse alignment, (ii) removing fine alignment, and (iii) replacing coarse alignment
 1021 with Flash Sculptor (Hu et al., 2025), which performs a discrete search over predefined angles using
 1022 DINOv2 similarity. We evaluate physical plausibility, visual coherence (via a human-in-the-loop
 1023 study), and efficiency, where the reported time for coarse alignment is measured as the overhead
 1024 relative to the original image-to-3D pipeline. The results show that our coarse alignment achieves
 1025 strong alignment results with almost no additional time cost, and is critical for producing plausible

1026 Table 8: **Sensitivity analyses.** We evaluate the impact of varying the cosine similarity threshold δ
 1027 and the codebook dimension C on the performance of object-centric representation learning. The
 1028 results are derived from 9 scenes using 3 different seeds. *Time* denotes the average training time for a
 1029 single scene layer, and *Storage* denotes the storage required for a world consisting of 9 scenes.

Hyperparameters	IoU	Time(s/scene)	Storage
$\delta = 0.9, C = 8$	83.09 ± 2.80	2.28	257M
$\delta = 0.7, C = 11$	84.34 ± 1.90	2.40	287M
$\delta = 0.5, C = 16$ (Final model)	86.27 ± 1.23	2.54	333M
$\delta = 0.3, C = 90$	87.24 ± 1.50	7.94	564M

1036 Table 9: **The impact of codebook size on object-centric representation learning.** The results are
 1037 derived from 9 scenes. *Storage* denotes the storage required for a world consisting of 9 scenes.

Codebook size	IoU	Storage
16	18.71	409M
128	84.08	409M
384	85.88	409M
16 / scene	79.81	409M
256 (Ours)	87.03	409M

1047 and coherent outputs, while fine alignment further refines the results. Overall, our method delivers
 1048 the highest alignment quality with substantially lower runtime than Flash Sculptor.

1049
 1050 **Hyperparameter analyses.** In Table 8, we analyze the impact of two key hyperparameters: the
 1051 codebook dimension C and the cosine similarity threshold δ . A higher threshold δ enables the use
 1052 of a smaller codebook dimension C , improving computational efficiency. However, this comes at
 1053 the expense of reduced robustness, as higher similarity thresholds may result in less distinct object
 1054 representations. In this experiment, we tuned δ and adjusted C to the minimum value that satisfies
 1055 the threshold. In our final model, we set $\delta = 0.5$ and $C = 16$, achieving a favorable balance between
 1056 efficiency and robustness. In Table 9, we evaluate the impact of codebook size on the performance of
 1057 object-centric representation learning, and additionally compare a per-scene codebook variant. The
 1058 results show that as long as the global codebook size is larger than the typical number of objects, the
 1059 overall performance is very similar, and the codebook size is essentially irrelevant to the total world
 1060 storage. In contrast, using a per-scene codebook leads to degraded performance: newly added scenes
 1061 may introduce codebook entries that are similar to those of existing scenes, which increases feature
 1062 ambiguity and results in noisy or incorrect segmentations.

1063
 1064 **Ablation study of LLMs.** To constrain LLM outputs to be physically plausible and within a
 1065 reasonable operating range, we augment the instruction prompt \mathcal{J} with targeted selection guidance.
 1066 As an alternative, we supply few-shot exemplars during prompting to encourage the LLM to produce
 1067 more accurate, context-aware manipulation attributes. To quantify the effect of in-context learning on
 1068 overall system performance, we conduct the following study. Specifically, we inject 4 exemplars into
 1069 the prompt, each comprising a user instruction, relevant object metadata, and the expected outputs.
 1070 The model is evaluated on 8 diverse scenes spanning a broad stylistic spectrum and both simple and
 1071 complex cases. For comparison, we also evaluate a no-guidance baseline in which all attribute cues
 1072 are removed from the prompt. We report quantitative results on three metrics:

- **Object selection accuracy:** We manually annotated the dataset comprising prompts and their corresponding target objects to evaluate whether the model accurately selects the intended object.
- **Motion alignment:** We conducted a human-in-the-loop study to assess whether the simulated or animated movements reflect the user’s intent.
- **Penetration rate (for animation):** Similar to motion alignment, we employed a human-in-the-loop study to evaluate whether objects exhibit unnatural interpenetration.

Figure 7: Comparison of object alignment methods.

Table 10: The impact of in-context learning and prompt guidance on LLMs. The results are derived from 8 diverse scenes, including both simple and complex cases.

Method	Simulation		Animation		
	ObjAcc↑	MotionAlign↑	ObjAcc↑	MotionAlign↑	Penetration↓
NeoWorld	100	83.33	100	83.34	26.67
w. in-context	100	82.92	100	80.47	29.04
w/o guidance	87.5	28.33	100	70.95	33.33

As shown in Table. 10, the results show that our guidance achieves performance comparable to in-context learning, while removing all guidance leads to significant degradation, especially in simulation tasks, where outputs exhibit unrealistic physical parameters and incorrect material generation.

Furthermore, we find that NeoWorld outputs with and without in-context learning are often similar across many scenarios. This indicates that our guidance effectively fulfills the role of in-context learning by providing the model with essential cues to generate context-aware, high-quality results. It enhances the system’s understanding of task requirements and helps infer correct attributes, similar to how structured examples guide in-context learning.

Analysis of LLMs behaviors. We analyze how the system handles ambiguous instructions by exposing its internal reasoning process and evaluating its robustness. For instance, given the prompt **“Move a boat slightly to the right”** in a scene with four boats and no further specification, the LLM generates the following internal reasoning trace:

*The user wants to move a boat to the right. First, I need to figure out *which* boat to move. The scene has a few options, I'll review their positions and sizes to select a visually prominent one – a good starting point is one that's closer and larger. Instance ID 2 seems ideal; it's at the front ($z=0.00$) and has a reasonable size. So, Boat 2 it is.*

Next, I have to consider interactions, but I'm instructed to ignore background elements like the sea. So, the movement of the boat won't explicitly interact with the water, the simulation will only apply to the boat.

Now for the material properties. The instructions specify 'jelly' with a high Young's modulus for rigid objects. I'll set a high Young's modulus, let's go with '1e6', and

1134
1135
1136 Table 11: **Ablation study of the fallback strategy in NeoWorld.**
1137
1138

Method	CIQA+	Q-Align	ImageCLIP	CS
w/o fallback	0.58	2.68	77.81	72.03
Full model	0.59	2.66	78.63	72.46

1139
1140 Table 12: **Comparison of object removal methods.** We evaluate the removal model in terms of
1141 visual quality and unintended object emergence.

Method	CIQA+	Q-Align	Emergence rate↓
LaMa	0.71	4.28	17.85
SD-2 inpainting	0.72	4.32	37.04
SDXL inpainting	0.71	4.24	32.14
SDXL removal	0.71	4.30	7.40

1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18398
18399
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18498
18499
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18598
18599
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18698
18699
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18798
18799
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18838
18839
18840
18841
18842
18843
18844
18845
18

1188 Table 13: **The impact of the number of objects on manipulation accuracy.** We evaluate object
 1189 selection accuracy and motion alignment.

	Num obj	ObjAcc↑	MotionAlign↑
1190	1	100	90.60
1191	2	100	95.75
1192	3	100	88.64
1193	4	100	87.85
1194			
1195			

1196 Table 14: **The model choice of LLMs.** The results are derived from 8 diverse scenes, including both
 1197 simple and complex cases.

1199	Model	Simulation		Animation		
		ObjAcc↑	MotionAlign↑	ObjAcc↑	MotionAlign↑	Penetration↓
1200	Qwen3-8B	100	66.34	100	71.15	39.83
1201	Qwen3-30B-A3B	100	61.06	100	62.09	28.85
1202	Gemini2.5Pro	100	73.79	100	75.55	42.03
1203						
1204						

1205 **Ablation study of fallback strategy.** In Fig. 17, we analyze the effect of fallback strategy in
 1206 NeoWorld. The results show that the fallback strategy successfully filters failure cases arising from
 1207 severe occlusions (1st row) and segmentation failures (2nd row). In Table. 11, we further quantify
 1208 this effect: the differences with and without fallback are marginal, indicating that such failures are
 1209 infrequent and underscoring the overall robustness of NeoWorld.

1211 **Multi-object manipulation.** In Table 13, we analyze the impact of the number of objects on
 1212 manipulation performance, measured by object selection accuracy and motion alignment. For each
 1213 number of objects, we evaluate on 6 different cases. The results indicate that, as the number of
 1214 objects increases, NeoWorld consistently selects all target objects correctly, and motion alignment
 1215 remains largely unaffected, demonstrating the effectiveness and robustness of our object-centric
 1216 representation.

1218 **LLM choices.** In Table 14, we further evaluate different LLM choices, including Gemini2.5Pro
 1219 used in NeoWorld, as well as two open-source lightweight models: Qwen3-8B-Thinking and
 1220 Qwen3-30B-A3B-Thinking-2507 (Yang et al., 2025). The results show that all models can reli-
 1221 ably select the correct target objects and achieve similar performance, highlighting the effectiveness
 1222 of the object-centric scene representation and control interface in NeoWorld.

1224 **Scalability analyses.** In Table 15, we report generation time, peak GPU memory, and storage of
 1225 the generated world as we increase the world size and the number of unfolding objects, where world
 1226 size refers to the number of scenes contained in the generated world. These trends indicate that our
 1227 system scales approximately linearly in time and storage with respect to both world size and the
 1228 number of unfolding objects, while incurring minimal additional GPU memory overhead.

1229 C DETAILED QUANTITIVE RESULTS

1232 The benchmark of NeoWorld includes 7 distinct styles and occlusion conditions:

- 1234 • **Photorealistic:** Realistic environments with detailed textures and geometry.
- 1235 • **Ink Painting:** Highly abstract visuals featuring brush-like textures.
- 1236 • **Oil Painting:** Scenes with rich, layered colors and blended geometric edges.
- 1237 • **Cyber-punk:** Futuristic, neon-lit environments with dense layouts and visual clutter.
- 1238 • **Minecraft:** Blocky, pixelated worlds with low-resolution textures.
- 1239 • **Anime:** Stylized 2D visuals with vibrant palettes and simplified geometric representations.
- 1240 • **Complex Scenes:** High object occlusions and intricate layouts.

1242 Table 15: **Scalability with respect to world size and the number of unfolding objects.** We report
 1243 generation time, peak GPU memory footprint, and storage for the generated world.

Scalability	Time(s)	Memory footprint	Storage
World size	1	18.14	23.29G
	2	37.19	24.20G
	4	73.15	24.23G
	8	150.13	24.38G
	16	293.98	24.84G
Unfolding objects	1	18.14	23.29G
	2	25.87	23.29G
	3	33.02	23.30G

1254 Table 16: **Performance on different types of scenes for interactive world generation.**

Method	Photorealistic				Ink painting			
	Q-Align	Clip-Score	3D-Const	SceneQuality	Q-Align	Clip-Score	3D-Const	SceneQuality
WonderJourney	1.71	59.05	18.45	18.19	1.53	63.03	22.86	23.81
WonderWorld	2.45	67.32	39.31	34.38	1.90	62.85	28.57	28.57
NeoWorld	2.84	69.78	42.24	47.43	2.33	66.16	48.57	47.62

Method	Oil painting				Cyber-punk			
	Q-Align	Clip-Score	3D-Const	SceneQuality	Q-Align	Clip-Score	3D-Const	SceneQuality
WonderJourney	1.67	68.38	14.29	20.00	1.56	72.00	25.24	21.90
WonderWorld	2.95	63.16	31.43	29.52	2.16	72.13	28.57	29.06
NeoWorld	2.95	64.86	54.29	50.48	2.37	74.94	46.19	49.04

1269 In Tables 16-17, we present the detailed performance of NeoWorld across different scene categories.
 1270 The results show that NeoWorld consistently surpasses the baseline models and demonstrates
 1271 robustness across diverse image styles, including challenging cases with occlusions and visual clutter.

D MORE VISUALIZATION RESULTS

1276 Fig. 8-10 compare the exploration and novel views generated by different methods. In Fig. 11, we
 1277 also present interactive world generation results using exploration views only. The 2D video diffusion
 1278 models (e.g., Wan2.1-I2V) lack explicit control over camera trajectories and tend to produce frames
 1279 that closely resemble the input image. The 2D interactive method Matrix-Game2 fails to provide
 1280 accurate camera control and does not preserve object-level 3D consistency. Furthermore, compared
 1281 to existing interactive world generation methods such as WonderWorld and WonderJourney, which
 1282 rely on surface-level representations, though WonderWorld and NeoWorld achieve comparable visual
 1283 quality in exploration views, our method demonstrates significantly higher 3D consistency in the
 1284 generated views. In Fig. 12, we also include visualizations of dynamic scene simulations annotated
 1285 with user prompts, illustrating how our method responds to motion-specific instructions and maintains
 1286 temporal coherence across frames.

1287 In Fig. 13, we present visual results of dynamic scene simulation and animation involving multiple
 1288 objects, demonstrating the effectiveness and robustness of our object-centric representation in
 1289 handling complex multi-object interactions.

1290 In Fig. 15, we further showcase the visualizations of translation, rotation, and animation. For the
 1291 animation, the 3D character is reconstructed with an existing Image-to-3D tool (Tripo 3D (Tripo 3D,
 1292 2025)) and subsequently animated using Mixamo (Adobe Inc., 2025).

1293 Additionally, because all manipulations are performed directly in 3D and then rendered, our method
 1294 can generate images from arbitrary viewpoints and time steps. In Fig. 14, we present the same
 1295 dynamic scenes rendered from two static cameras (1st–2nd rows) and two moving cameras (3rd–4th
 1296 rows).

1296 Table 17: **Performance of interactive world generation (Part 2).** Metric names are abbreviated for
 1297 compact presentation.

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349	MineCraft				Anime				Complex			
	Method	QA	CS	3DCons	SQ	QA	CS	3DCons	SQ	QA	CS	3DCons
WonderJourney	1.69	73.93	19.05	22.86	1.79	64.59	17.38	16.19	2.02	74.41	25.40	25.71
WonderWorld	2.39	79.27	33.33	29.52	2.03	69.53	23.33	32.62	2.39	72.04	29.84	33.33
NeoWorld	2.45	81.42	47.62	47.62	2.69	72.12	59.29	51.19	2.65	75.86	44.76	40.96

Table 18: **Per-module runtime (in seconds).** “All” denotes the end-to-end runtime of the full pipeline over a single scene.

Image inpainting	Depth estimation	Object removal	Segmentation
2.08	1.70	1.50	0.51
Gaussian training	3D unfolding	Alignment	All
5.01	5.42	1.92	18.14

E FURTHER IMPLEMENTATION DETAILS

E.1 GAUSSIAN LAYER INITIALIZATION

Following WonderWorld (Yu et al., 2025), we adopt guided depth diffusion using marigold depth and marigold normals to initialize the geometry of Gaussian layers. Specifically, given a scene image I_i , the guided depth diffusion estimates the depth based on existing geometries (i.e., the depth rendered from previously constructed scenes), ensuring multi-scene geometric coherence. Next, normals are computed using Marigold normals.

Each pixel is then initialized as a 2D Gaussian, where the position is derived from its pixel coordinate and depth, the quaternion is computed from the normals, the color is set based on the corresponding pixel color, and the scale is determined according to the Nyquist sampling theorem. During optimization, the position and color remain fixed, while the scale, opacity, and quaternions are updated to refine the representation.

E.2 PER-MODULE TIME BREAKDOWN

In Table 18, we report a per-module runtime breakdown of our pipeline, providing a more detailed characterization of its overall efficiency. This breakdown indicates that the main computational bottlenecks lie in the 3D stages of our pipeline (including Gaussian layers training and 3D unfolding), while the cost of 2D modules is already modest.

E.3 HUMAN STUDY DETAILS

We recruited 105 participants for a blind preference study. In each trial, participants were shown video clips generated by different methods for the same scene. The method order is randomized per trial. Participants are instructed to select exactly one best video based on 3D consistency, scene quality, and other metrics. The survey is fully anonymous. We report results as preference rates, i.e., the percentage of trials in which each method is chosen.

E.4 LLM-BASED USER INTERACTION

In user interaction and dynamic simulation, we employ an LLM g_{LLM} to derive the target object index and manipulation attributes: $\mathcal{I}, \mathcal{A} = g_{LLM}(\mathcal{J}, \mathcal{O}, \mathcal{U})$, where \mathcal{J} represents the instruction prompt, \mathcal{O} contains the object-related information, and \mathcal{U} denotes the user input prompt. Specifically, object-related information \mathcal{O} comprises the 3D position and size of each object, as well as its instance index and category.

1350 For the simulation task, the instruction prompt \mathcal{J} describes the intended dynamics of the scene. For
 1351 the animation task, a similar instruction prompt is used; however, the output is extended to include a
 1352 sequence of translations and rotations applied to each object instance, enabling fine-grained control
 1353 over individual motions.

1354 The instruction prompt \mathcal{J} for the simulation task is defined as follows:

1355 *You are a simulation assistant. Next, you will be provided with object information
 1356 in a scene and a user prompt. You need to identify the foreground objects most
 1357 likely to interact with each other, and estimate appropriate material point method
 1358 (MPM) attributes for each. When selecting an object to simulate:*

- 1360 *1. Pay close attention to any spatial indicators in the user prompt (e.g., "the
 1361 apple on the left", "the top plate", "the apple falling onto the plate").*
- 1362 *2. Consider object descriptions (e.g., position, size) when multiple objects of the
 1363 same category exist.*
- 1364 *3. Select objects that are mentioned in the user prompt or are likely to participate
 1365 in the described interaction.*
- 1366 *4. Most scenes involve 1-3 foreground objects interacting with each other.*
- 1367 *5. Coordinate system: Defined as follows: +x points to the right of the image,
 1368 +y points upward, and +z points into the scene (i.e., away from the viewer).*

1370 For each selected object, you should provide simulation parameters including:

- 1371 *• Material type: Choose from the following list: ['jelly', 'sand',
 1372 'foam', 'snow', 'plasticine'].*
- 1373 *• Young's modulus (E): Represents stiffness. Higher values indicate stiffer
 1374 materials.*
- 1375 *• Poisson's ratio (nu): Represents how much a material contracts in directions
 1376 perpendicular to the direction it is stretched.*
- 1377 *• Density and Friction angle should be set appropriately based on the material
 1378 and object type.*
- 1379 *• Force: Provide a 3D vector $[f_x, f_y, f_z]$ representing the applied force, which
 1380 should be set appropriately based on the description of dynamics in the user
 1381 prompt. Suitable force magnitudes typically range from 5 to 20 to create
 1382 visible motion and interaction effects.*

1384 Here's a guide to help you select the appropriate material:

- 1385 *• jelly: For elastic objects that can deform and return to their original shape
 1386 (like rubber, soft fruits, gelatin-like substances). Best for simulating bouncy,
 1387 elastic objects. Young's modulus (E): 1e4-1e6, Poisson's ratio (nu): 0.3-0.45*
- 1388 *• sand: For granular materials that can flow but maintain volume (like sand,
 1389 sugar, rice). Best for simulating grainy substances that pour. Young's modulus
 1390 (E): 1e6-1e8, Poisson's ratio (nu): 0.2-0.3, friction_angle : 30 – 45*
- 1391 *• foam: For soft, compressible materials that absorb impact (like cushions,
 1392 sponges, styrofoam). Young's modulus (E): 1e3-1e5, Poisson's ratio (nu):
 1393 0.1-0.3*
- 1394 *• snow: For brittle, lightweight materials that can break apart and accumulate
 1395 (like snow, powder). Young's modulus (E): 1e4-1e6, Poisson's ratio (nu):
 1396 0.2-0.3*
- 1397 *• plasticine: For materials that deform permanently and don't return to original
 1398 shape (like clay, dough, plasticine). Best for simulating objects that can be
 1399 molded. Young's modulus (E): 1e5-1e7, Poisson's ratio (nu): 0.3-0.4*

1400 For rigid objects like furniture, use 'jelly' with a high Young's modulus (E: 1e5-
 1401 1e7). For soft objects like fruits, pillows, use 'jelly' with low Young's modulus (E:
 1402 1e2-1e4). For moldable objects like clay or dough, use 'plasticine'. For grainy
 1403 substances like sugar or salt, use 'sand'. Please use the following JSON format
 for the output:

```

1404     {
1405         "objects": [
1406             {
1407                 "instance_id": instance_id_1,
1408                 "material_params": {
1409                     "material": material_1,
1410                     "E": E_1,
1411                     "nu": nu_1,
1412                     "friction_angle": friction_angle_1,
1413                     "density": density_1
1414                 },
1415                 "force": [f_x_1, f_y_1, f_z_1]
1416             },
1417             {
1418                 "instance_id": instance_id_2,
1419                 "material_params": {
1420                     "material": material_2,
1421                     "E": E_2,
1422                     "nu": nu_2,
1423                     "friction_angle": friction_angle_2,
1424                     "density": density_2
1425                 },
1426                 "force": [f_x_2, f_y_2, f_z_2]
1427             }
1428         ]
1429     }

```

Finally, we apply several lightweight post-processing steps to improve the quality of LLM outputs. For simulation, we clamp generated force values to a physically plausible range to ensure stable, realistic dynamics. For animation, we resample and interpolate translation and rotation trajectories to match the target duration, since the LLM outputs may not perfectly align with the intended length. We also apply a temporal smoothing filter to the translation and rotation signals to produce coherent, artifact-free motion.

F FAILURE CASE ANALYSIS

Despite incorporating a fallback strategy and several robustness mechanisms, failures can still occur under severe occlusions or segmentation errors. Fig. 18 illustrates typical cases: (i) alignment errors (1st row), where the reconstructed 3D object is misaligned with the target, yielding incoherent results; (ii) image-to-3D degradation (2nd row), where the image-to-3D module either fails to recover fine object details—leading to visual degradation—or lacks sufficient cues under heavy occlusion, causing failures; and (iii) segmentation errors (3rd row), where over- or under-segmentation produces inaccurate 3D geometry.

In Table 19, we report the empirical failure frequency (in %) of each module in our pipeline. Overall, the failure rates are low, and errors are primarily concentrated in the image-to-3D, alignment, and segmentation modules. Image-to-3D failures mostly occur when reconstructing humans or objects with highly complex geometry. Alignment failures typically arise in scenes with severe occlusions or highly cluttered object configurations. Since OneFormer is a closed-set panoptic segmenter, segmentation failures are mainly due to out-of-distribution categories. In contrast, failures from the depth estimator and the LLM are relatively rare. Taken together, these statistics demonstrate the robustness and effectiveness of NeoWorld.

In Fig. 19, we compare the Amodal3R used in NeoWorld with a very recent open-source model SAM3D (Team et al., 2025), as well as the closed-source model Tripo3D. We observe that these latest image-to-3D models already produce significantly better visual quality than earlier approaches. We expect NeoWorld to continue benefiting from future advances in image-to-3D, leading to increasingly faithful and detailed object reconstructions.

Table 19: **Per-module failure frequency (%) on our benchmark.**

Depth	Image-to-3D	Alignment	Segmentation	LLM
0.83	3.33	2.50	5.83	0.83

To address these limitations, promising directions include employing more capable image-to-3D models for both reconstruction and alignment, refining masks with interactive segmentation methods (*e.g.*, SAM (Kirillov et al., 2023)), and replacing the current fallback scheme with a multimodal large language model to further improve robustness.

Figure 8: **Additional examples of interactive world generation (Part 1).**

Figure 9: **Additional examples of interactive world generation (Part 2).**

Figure 10: **Additional examples of interactive world generation (Part 3).**

Figure 11: **Additional examples of interactive world generation with exploration views.**

Figure 12: Showcases of dynamic scene simulation.

Figure 13: **Demonstration of multiple objects manipulation.** We show examples of dynamic scene simulation in 1st–2nd rows and manipulation 3rd–4th rows.

1717 **Figure 14: Multi-view visualizations of dynamic scenes under different camera settings.** We
1718 render the same dynamic scenes from two static cameras (1st–2nd rows) and two moving cameras
1719 (3rd–4th rows).

1720
1721
1722
1723
1724
1725
1726
1727

1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Figure 17: **Comparison of world unfolding results with and without fallback.** Fallback effectively filters out common failures caused by image-to-3D degradation (1st row) and segmentation errors (2nd row).

Figure 18: **Visualizations of failure cases.** Examples of failures caused by alignment (1st row), image-to-3D degradation (2nd row), and segmentation errors (3rd row).

1868 Figure 19: **Comparison of different image-to-3D backbones.**

1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889