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ABSTRACT

We introduce NeoWorld, a deep learning framework for generating interactive 3D
virtual worlds from a single input image. Inspired by the on-demand worldbuilding
concept in the science fiction novel Simulacron-3 (1964), our system constructs
expansive environments where only the regions actively explored by the user are
rendered with high visual realism through object-centric 3D representations. Un-
like previous approaches that rely on global world generation or 2D hallucination,
NeoWorld models key foreground objects in full 3D, while synthesizing back-
grounds and non-interacted regions in 2D to ensure efficiency. This hybrid scene
structure, implemented with cutting-edge representation learning and object-to-3D
techniques, enables flexible viewpoint manipulation and physically plausible scene
animation, allowing users to control object appearance and dynamics using natural
language commands. As users interact with the environment, the virtual world
progressively unfolds with increasing 3D detail, delivering a dynamic, immersive,
and visually coherent exploration experience. NeoWorld significantly outperforms
existing 2D and depth-layered 2.5D methods on the WorldScore benchmark.

1 INTRODUCTION

In the 1964 science fiction novel Simulacron-3, the protagonist, Douglas Hall, navigates a virtual
simulation of 1937 Los Angeles, where he discovers that only the areas he actively interacts with are
rendered in detail. This on-demand worldbuilding concept inspires our NeoWorld framework, which
leverages neural networks to construct an infinite, interactive virtual world from a single image. In
NeoWorld, the simulated environment is initially represented in 2D and progressively evolves into
detailed 3D models as users engage with it. This user-driven rendering strategy provides immersive
experiences while maintaining computational efficiency.

NeoWorld builds upon recent progress in learning-based interactive world generation (Yu et al.,
2025; 2024), which has demonstrated promising capabilities in open-vocabulary and view-consistent
environment synthesis. These approaches, though effective for infinite static rendering or camera-path
navigation, are not designed for interactive exploration where users may dynamically uncover or
manipulate different parts of the world. They often rely on 2D extrapolation (Rombach et al., 2022;
Zhuang et al., 2024; Corneanu et al., 2024) or 2.5D layered representations (Yu et al., 2025), which
result in noticeable artifacts under large viewpoint changes and fall short in supporting dynamic,
interactive scene manipulation.

How can we enable AI systems to simulate infinitely expandable digital worlds with both high-fidelity
visual realism and physically grounded dynamics? This requires meeting two key conditions. First,
the scene should be object-centric, allowing fine-grained manipulation and interaction with individual
entities. Second, the system must balance 3D immersion with computational efficiency. While full 3D
modeling (Qiu et al., 2024; Xie et al., 2024; Guan et al., 2022) supports physics-consistent interaction
and coherent view synthesis, it is often computationally expensive. To address this, NeoWorld
introduces a hybrid object-centric scene structure that progressively unfolds 2D object representations
into 3D, guided by object proximity along the camera trajectory or user-specified prompts.

Unlike prior approaches (Yu et al., 2025; 2024), we propose a deep learning framework that begins
with an inverse rendering pipeline, reconstructing the input image using lightweight, object-centric
2D representations enriched with instance-level semantic information. As shown in Fig. 1, this design
enables precise object selection in response to novel scene descriptions specified by the user. To
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Figure 1: An overview of our approach. NeoWorld constructs an infinitely expandable virtual world
by integrating object-centric representation learning, image-to-3D reconstruction, and dynamics sim-
ulation. It progressively unfolds a 3D scene through user exploration or natural language commands

enhance physical realism and facilitate user interaction within the constructed digital environment,
such as changing viewpoints or controlling object motions via natural language, we first incorporate
large language models (LLMs) (Team et al., 2023; Bai et al., 2023; Achiam et al., 2023; Liu et al.,
2024a) for on-demand object selection, and then apply an image-to-3D technique (Wu et al., 2025) to
progressively convert frequently accessed or viewpoint-relevant objects into full 3D representations.
These 3D representations are then tightly aligned with the original 2D image at the object level,
enabling seamless integration and consistent visual coherence.

NeoWorld outperforms prior 2D (Hong et al., 2023; Wan et al., 2025) and 2.5D (Yu et al., 2025;
2024) methods in interactive world generation, delivering more consistent 3D rendering quality and
greater user engagement. In summary, the main contributions of NeoWorld are as follows:

• NeoWorld is a pilot study on interactive world generation with 3D dynamics from a single image. Its
core idea is to enhance virtual realism while preserving computational efficiency by progressively
unfolding 3D content along user exploration paths or in response to user prompts.

• It introduces a hybrid object-centric scene structure, rendering background regions as lightweight
2D surfaces while modeling foreground objects in full 3D to enrich user interaction. Accordingly,
NeoWorld incorporates cutting-edge differentiable rendering, representation learning, and image-
to-3D reconstruction techniques to create a unified world generation pipeline.

• Building on these features, NeoWorld enables new interactive capabilities not available in prior
work, including 3D-consistent scene exploration and physics-based object manipulation.

2 PRELIMINARIES

Interactive world generation. This task aims to construct a coherent sequence of spatially and
semantically connected 3D scenes {E0, E1, . . .} starting from a single input image I0, controlled by
user-specified content prompts Pi and camera trajectories Ci. This task involves two main stages
that operate in an iterative reconstruction-then-generation manner:

• Reconstruction: At each time step i, a 3D scene representation Ei is generated from the current
observation image Ii using an image-to-3D module: Ei ∼ M3D(Ii), where M3D denotes a model
that lifts 2D observations to explicit 3D scene representations.

• Generation: Based on the current scene representation Ei, a user-defined camera movement Ci+1,
and a text description Pi+1 of the new observation, the system synthesizes the next-view image:
Ii+1 ∼ G(Ei,Ci+1,Pi+1), where G is an image synthesis model constrained by view-consistency
and semantic alignment.

This iterative process allows the virtual world to progressively unfold as the user explores it, while
maintaining spatial and temporal consistency.

Existing methods and challenges. Recent approaches such as WonderJourney (Yu et al., 2024) and
WonderWorld (Yu et al., 2025) typically follow a two-step computation scheme for interactive world
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Figure 2: The model architecture and rendering pipeline. To enable 3D-consistent generation
of dynamic physical worlds, NeoWorld consists of three main components: (i) an object-centric
representation module, (ii) a progressive object-to-3D unfolding module, and (iii) a user interface
that interprets natural language commands and drives simulation based on the 3D scene.

generation. First, user interactions or scripted camera paths determine the exploration trajectory.
Then, generative inpainting models synthesize novel views conditioned on prior observations. The
synthesized images are projected into 3D representations (e.g., point clouds, meshes, or simplified
2.5D FLAGS (Yu et al., 2025)) and integrated into the existing environment, enabling the incremental
construction of large-scale virtual worlds. However, these methods face several key limitations:

• Limited interactions: Existing methods primarily support visual navigation but lack support for
physical interactions or dynamic animation. Without explicit object-centric modeling, fine-grained
interaction with the generated world remains challenging.

• Efficiency bottleneck in immersive 3D modeling: Full-scene 3D generation is computationally
expensive. While layered 2.5D representations (e.g., FLAGS in WonderWorld (Yu et al., 2025))
offer higher efficiency, they inherently restrict the range of valid viewing angles. As a result, large
viewpoint shifts often lead to geometric distortions or occlusion artifacts in the generated content.

3 METHOD

3.1 OVERVIEW

To tackle the aforementioned challenges, we propose NeoWorld, a unified framework that progres-
sively constructs an open-ended interactive world from a single input image through an iterative
3D-unfolding-2D-generation pipeline. Beyond visual navigation, NeoWorld focuses on object-centric
world generation that is both efficient and immersive, and supports intuitive user–world interaction.

An overview is shown in Fig. 2. Given a single input image, the scene is first reconstructed into
object-centric Gaussian layers (2.5D) using panoptic segmentation. Key foreground objects are then
reconstructed in full 3D, determined by predefined foreground categories and their distance to the
camera. In this way, the scene is represented in a hybrid structure that combines object-centric 2.5D
backgrounds with fully 3D foregrounds. This design offers two advantages: (i) balancing immersion
and computational efficiency, and (ii) enabling object-level interaction with the generated world. As
the user navigates or interacts with the scene, the system incrementally unfolds new regions of the
world, guided by camera motion and user prompts. User commands—such as object manipulation or
text-driven dynamics—are grounded in the generated entities; if the selected entity is in 2.5D, it will
be reconstructed into 3D, thereby enabling interactive control and physically plausible animation.

Specifically, NeoWorld introduces three key innovations: (i) an object-centric neural scene representa-
tion, (ii) a progressive 2.5D-to-3D scene unfolding mechanism prioritized by object proximity or user
prompts, and (iii) a user–scene interaction module that enables intuitive object-level manipulation and
physics-based animation within the constructed world. These components are stated in Sec. 3.2–3.4.
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3.2 OBJECT-CENTRIC GAUSSIAN LAYERS

To enable object-aware 3D world construction from a single image, NeoWorld adopts an object-
centric scene representation that combines layered Gaussian Spaltting (Yu et al., 2025) with compact
instance-aware features. Refer to WonderWorld, we decompose the input image Ii into two depth
layers—foreground, background—using depth edges and object segmentations: Ii = {Iifg, Iibg}. Each
layer is represented as a set of 2D Gaussian primitives: Ei = {E i

fg, E i
bg}. Each primitive can be

regarded as a degenerate 3D Gaussian with a compressed depth scale (ϵ), which preserves surface
fidelity while maintaining efficient rendering. Unlike WonderWorld, we enrich each Gaussian with
a learnable object-centric attribute coefficient γn ∈ RC , which encods instance-level semantics in
a low-dimensional embedding space (detailed in the next paragraph). This yields an object-centric
scene layout. We initialize Gaussians using estimated depth and surface normals (Yu et al., 2025)
(See Appendix E), and optimize their parameters with the photometric reconstruction loss between
the rendered and input image Ii. For scene extrapolation, we render novel views from the optimized
Gaussian layers and apply an image inpainting model to complete missing regions. By repeating
the cohesive loop of scene decomposition, optimizing object-centric Gaussian layers, novel-view
rendering and inpainting, NeoWorld incrementally grows the world: {E0, E1, . . .}. Next, we describe
how the 2.5D Gaussian layers are bound with the object-centric attribute coefficients γn.

Efficient object-centric attribute binding. To derive γn for each Gaussian primitive, we apply an
off-the-shelf panoptic segmentation model (Jain et al., 2023) gseg independently to the foreground
and background layers: [Mi

fg,S
i
fg] = gseg(I

i
fg) and [Mi

bg,S
i
bg] = gseg(I

i
bg), where Mi ∈ RH×W×K

denotes an instance-level segmentation mask assigning each pixel to one of K distinct objects, K
is an assumed maximum number of objects in the scene, and Si ∈ RK provides the associated
semantic categories, which are later used in object selections. A naive approach is to define γ as a K-
dimensional one-hot vector corresponding to object IDs, enabling segmentation masks to be rendered
as: M̂(u) =

∑
n∈S(u) Tn(u) · αn · γn with Tn(u) =

∏
m∈S(u),om<on

(1− αm) for pixel u, where
S(u) denotes Gaussians projected onto u, sorted by depth, and α denotes opacity. The attributes
γn can then be optimized by a cross-entropy loss between M̂ and the ground-truth segmentation
M. However, in the context of infinite world generation, the total number of objects K can be
extremely large. To address this, we introduce a compact codebook F ∈ RK×C with C ≪ K, which
significantly reduces memory and computation cost: F = {f1, f2, . . . , fK} , fk ∈ RC , ∥fk∥2 = 1.
Each embedding vector is uniformly sampled from the unit sphere in C-dimensional space, and
their pairwise cosine similarities are constrained below a threshold δ to ensure robust instance
discrimination. The codebook remains fixed after initialization for efficiency and stability. We render
predicted embeddings γ into segmentation space M̂ and optimize them by minimizing the cosine
distance to the codebook-augmented ground truth M · F:

Lcos = 1− 1

|Ω|
∑
u∈Ω

M̂(u)⊤ (M · F) (u)
|M̂(u)|·|(M · F) (u)|

, (1)

where Ω denotes the set of valid pixels. During initialization, Gaussian attributes are associated with
codebook vectors according to 2D instance labels. At inference time, the instance label for a pixel
u is predicted by selecting the nearest codebook vector: y(u) = argmaxk∈1,...,K

M̂(u)⊤fk

|M̂(u)|·|fk|
. This

compact embedding strategy provides efficient and scalable feature encoding, making object-centric
Gaussian representations feasible for infinite 3D world generation.

Optimization. The object-centric Gaissian layers are optimized by minimizing L = 0.8L1 +
0.2LD-SSIM + Lcos, where L1 and LD-SSIM denote L1 and SSIM losses between the rendered and
input image Ii, and Lcos measures the cosine distance between γ and f . To further promote spatial
smoothness of object-centric representations, we periodically replace each γ with the mean value
of its k-nearest neighbors during training (KNN smoothing). This strategy effectively suppresses
floaters (i.e., outlier Gaussians) and enhances overall geometric consistency across the scene.

Cross-scene alignment. A key challenge is ensuring that object-centric Gaussian layers maintain
instance-level continuity across different viewpoints. To address this, we establish correspondences
between the newly obtained panoptic masks and the previously predicted instance labels. Given a
panoptic segmentation mask Mi at the current viewpoint Ci and the predicted instance label map
yi−1 rendered from the prior scene representation, we perform correspondence matching within the
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overlapping regions. Specifically, each current panoptic instance k is re-assigned to the predicted label
yi−1 if their overlapping area exceeds a predefined threshold θ. This matching procedure enables
consistent label propagation across views, ensuring that the object-centric attributes γ attached to
each Gaussian remain coherent as the scene evolves. Therefore, NeoWorld constructs a continuous
object-centric representation for incrementally expanding environments.

3.3 PROGRESSIVE 2.5D-TO-3D UNFOLDING

Although object-centric Gaussian layers are efficient, they are not well-suited for interactions such as
object manipulation and animation. Meanwhile, 2.5D layers often introduce noticeable artifacts under
extreme viewpoint changes. Therefore, it is essential to reconstruct interaction-relevant objects with
full 3D geometry. In particular, since foreground objects are the most likely to involve interactions,
we prioritize those belonging to predefined foreground categories and located closest to the current
viewpoint, selecting the top N objects by proximity. In such cases—or when explicitly specified
by user prompts—we invoke an image-to-3D module (Amodal3R (Wu et al., 2025) in practice) for
object completion and alignment (Sec. 3.3).

3D object alignment. Reconstructed 3D objects are often misaligned in position, rotation, or scale
relative to the existing Gaussian layers Ei and the object’s original placement. To seamlessly integrate
them into the scene, we perform alignment by optimizing uniform scale S ∈ R+, rotation R ∈ R3×3,
and translation T ∈ R3. This procedure consists of two stages. (1) Coarse alignment. Prior work
typically searches over a discrete set of yaw, pitch, and roll angles and selects the best hypothesis via
a perceptual metric (e.g., DINOv2) (Hu et al., 2025). This approach is computationally expensive
due to the large candidate set and repeated perceptual evaluations. Instead, we leverage the priors of
an image-to-3D reconstruction model and fine-tune it to jointly diffuse object geometry and pose.
Concretely, we fine-tune the Sparse Structure Transformer of the Amodal3R, and augment the DiT
input with an additional pose token E(p), where p ∈ R6 is a 6D rotation parameterization. During
training, the ground-truth pose p⋆ is perturbed along a flow-matching path pt and fed to the DiT,
which predicts velocity fields for both geometry and pose under a flow-matching objective. At
inference, we sample pT ∼ N (0, I6) and integrate the reverse flow to obtain p0. The 6D rotation
is mapped to SO(3) via Gram–Schmidt. Scale S is initialized by matching the longest edge of
the reconstructed bounding box to the target, and translation T aligns centers. Since our method
adds only one token, pose estimation incurs negligible overhead compared to the base image-to-3D
pipeline. (2) Fine alignment. We further refine translation, scale, and rotation by minimizing a
differentiable rendering objective on the original scene. Specifically, we employ a depth loss and
a silhouette Dice loss between renderings of the reconstructed object and the ground-truth target,
ensuring precise alignment and seamless integration.

Fallback for unreliable 3D reconstruction. Although recent advances in image-to-3D reconstruc-
tion (Wu et al., 2025; Xiang et al., 2024; Yushi et al., 2025) have demonstrated strong performance,
errors may still arise, particularly when object segmentation is inaccurate under occlusion. To enhance
the robustness of NeoWorld, we introduce a fallback strategy: after unfolding and aligning the object
to the input image, we evaluate reconstruction fidelity by computing the cosine similarity between
DINOv2 features of the re-rendered object and its corresponding masked region in the input. If the
similarity score falls below a threshold τ , the object is reverted to a 2.5D representation, as low
similarity typically reflects segmentation errors or degraded 3D reconstruction under severe occlusion.
Additional ablation details are provided in Appendix B.

3.4 INTUITIVE USER-WORLD INTERACTION

Recall that the generated world is object-centric, consisting of 3D foreground objects and object-
centric Gaussian layers. We further enable user prompts to manipulate or animate arbitrary objects
within the world. To achieve this, we employ a Large Language Model (gLLM, Gemini-2.5pro (Co-
manici et al., 2025)) to interpret user intent. The input to gLLM is decomposed into three components:
the instruction J (defining scene interaction rules), the user prompt U (specifying the desired manip-
ulation), and O (describing all scene objects by their spatial centers, scales, and categories). Given
these inputs, gLLM predicts the target object index I and the corresponding manipulation attributes A:
[I,A] = gLLM(J ,O,U). Examples and further implementation details are provided in Appendix E.
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The attributes A are task-dependent and may include translations and rotations for basic manipula-
tions, transformation sequences for animations (e.g., lists of translations and rotations), or physical
parameters (e.g., material properties for MPM-based dynamic simulation). To support more complex
interactions, we further allow objects to be converted into meshes or substituted with high-fidelity 3D
assets. These assets can then be animated using keyframe techniques, thereby enhancing both realism
and immersion in interactive world generation.

4 EXPERIMENTS

Due to space limitations, ablation studies are deferred to Appendix B.
Implementation details Following WonderWorld, we use StableDiffusion-v2.0-Inpainting (Rom-
bach et al., 2022) as the backbone for inpainting and distilled StableDiffusion-XL for object removal.
For panoptic segmentation, we adopt OneFormer (Jain et al., 2023). Normal and depth estimation
are performed with Marigold Normal and Marigold Depth (Ke et al., 2024) to ensure high-quality
geometric information. For scene alignment, we fine-tune Amodal3R for 20 epochs on a mixture of
3D synthetic datasets: 3D-FUTURE (Fu et al., 2021), ABO (Collins et al., 2022), and HSSD (Khanna
et al., 2024). Hyperparameters are set as follows: codebook dimension C = 16, cosine similarity
threshold δ = 0.5, and fallback score threshold τ = 0.4. We sample 3 viewpoints along the fixed
panoramic path and 15 additional viewpoints at 30◦ intervals on the orbiting path. All images are
rendered at 512× 512 resolution with evenly spaced viewpoints.

Baselines. Since no prior work supports interactive 3D object-centric world generation, we perform
best-effort comparisons with three groups of baselines, each targeting a different aspect of NeoWorld.
• Unbounded world generation: We compare with recent 3D world generation methods (Wonder-

Journey (Yu et al., 2024), WonderWorld (Yu et al., 2025)), video diffusion models (CogVideoX-
I2V-5B (Hong et al., 2023), Wan2.1-I2V-14B (Wan et al., 2025)), and Matrix-Game2 (He et al.,
2025), an interactive 2D world generation baseline.

• Object-centric accuracy: We evaluate against 3D object-centric learning methods, Gaussian-
Grouping (Ye et al., 2024) and OmniSeg3DGS (Ying et al., 2024). GaussianGrouping distills 3D
segmentations from 2D masks (SAM (Kirillov et al., 2023), DEVA (Cheng et al., 2023)), while
OmniSeg3DGS learns 3D feature fields from SAM masks via contrastive learning (Li et al., 2020).

• Interactive manipulation: As ground-truth 3D dynamics are unavailable, we compare with strong
video models (Kling 1.6 (Kuaishou, 2025), CogVideo-I2V, Wan2.1-I2V) and PhysGen3D (Chen
et al., 2025), which targets physics-plausible world dynamics.

Benchmarks. We construct our evaluation benchmark following three prior works: WonderWorld,
WorldScore (Duan et al., 2025), and WonderJourney. To ensure consistency, we exclude wide-angle
landscape photos with vast scenery or ambiguous composition, resulting in a curated set of 28
images covering 7 distinct styles and occlusion conditions. Following the automatic evaluation
protocol of WonderWorld, we procedurally generate 4 3D environments per image, yielding 112
diverse scenes spanning both photorealistic and artistic styles. Scene descriptions are produced
using ChatGPT (Achiam et al., 2023), and the camera trajectory is fixed to a panoramic path (see
WonderWorld for procedural generation details). For novel-view evaluation, we additionally adopt an
orbiting trajectory with azimuth sweeping from 0◦ to 90◦, inspired by WorldScore.

Metrics. Following prior work (Yu et al., 2025; Duan et al., 2025), we evaluate both static world
generation and novel-view exploration. We use CIQA+ (Wang et al., 2023) and Q-Align (Wu et al.,
2024a) to assess perceptual and semantic image quality; 3D consistency and Scene quality to measure
scene realism and overall video quality along generation and exploration trajectories; ImageCLIP
for text–scene alignment; and CLIP score for long-term consistency between the input image and
novel views. We also report IoU for segmentation accuracy against ground-truth masks. For dynamic
world generation, we consider multi-object scenarios where prompts involve spatial cues (e.g.,
“the chair on the left”), requiring precise identification and object-level animation. We evaluate
text–video alignment with two metrics: Prompt alignment (a human study of text–video similarity),
and VideoCLIP similarity, an automated score computed with VideoCLIP-XL (Wang et al., 2024).

4.1 EVALUATION ON UNBOUNDED WORLD GENERATION

Table 1 reports quantitative results of NeoWorld against two state-of-the-art 3D world generation
methods (WonderJourney, WonderWorld) and three video diffusion models (CogVideo-I2V, Wan2.1-
I2V, Matrix-Game2).
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Input image Exploration view Novel view

CogVideo-I2V

Wan2.1-I2V

WonderJourney

WonderWorld

NeoWorld

Matrix-Game2

Figure 3: Qualitative comparison of exploration view and novel view rendering. Camera
viewpoints follow the illustrated trajectory, with the novel view path shown in blue.

3D scene realism. We evaluate 3D consistency (3D-Const) and overall scene quality (SceneQuality)
through a human study comparing WonderJourney, WonderWorld, and NeoWorld. Over 45% of
participants preferred NeoWorld. Video diffusion models are excluded as they do not support 3D
world generation or accurate viewpoint control. On CIQA+ and Q-Align, Wan2.1-I2V and CogVideo-
I2V achieve higher scores due to minimal camera motion and limited viewpoint changes, producing
frames that closely match the input images. Nevertheless, NeoWorld surpasses WonderJourney and
WonderWorld on both metrics, demonstrating stronger visual realism in interactive 3D generation.

Text-to-scene alignment and long-term consistency. NeoWorld achieves a comparable Image-
CLIP score to WonderJourney and WonderWorld, while diffusion-based methods show markedly

Table 1: Interactive world generation performance. Human evaluation results are indicated with †.
The time required to generate each novel view is measured on an NVIDIA H20 GPU. For all metrics
except time cost, higher values indicate better performance.

Method CIQA+ Q-Align 3D-Const† SceneQuality† ImageCLIP CS Time/view (s)

CogVideo-I2V 0.65 4.09 N/A N/A 76.23 92.47 242.53
Wan2.1-I2V 0.67 4.28 N/A N/A 74.54 95.43 721.20
Matrix-Game2 0.58 3.76 N/A N/A N/A 70.36 8.57

WonderJourney 0.49 1.73 20.33 20.51 78.91 66.00 179.11
WonderWorld 0.55 2.34 32.42 32.26 78.35 69.20 10.71
NeoWorld 0.59 2.66 47.25 47.23 78.63 72.46 18.14
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Table 2: Quantitative analysis of the proposed object-centric representation(Metric: IoU).

OmniSeg3DGS GaussianGrouping NeoWorld w/o Joint Optim. w/o KNN Smooth

33.24 36.70 70.53 64.26 68.59

Table 3: Interactive dynamic world animation performance. Higher values indicate better
performance. Similarly, human evaluation results are indicated with †.

Method PromptAlign† VideoCLIP

CogVideo-I2V 8.63 16.34
Wan2.1-I2V 8.52 16.26
Kling 1.6 20.90 16.19

WonderJourney N/A N/A
WonderWorld N/A N/A
NeoWorld 61.95 17.05

lower text-to-scene similarity, reflecting weaker geometric grounding. Matrix-Game2 is excluded
from ImageCLIP as it lacks text input. For temporal coherence, NeoWorld attains the highest CLIP
score among Matrix-Game2, WonderJourney, and WonderWorld; Wan2.1-I2V and CogVideo-I2V
score higher because near-static cameras inflate frame-level similarity without true 3D consistency.

Efficiency. NeoWorld attains the second-best rendering speed among 3D unbounded world gen-
eration methods. Its efficiency mainly stems from the progressive 3D unfolding procedure, despite
incorporating object-centric learning and object-to-3D generation. Overall, NeoWorld offers the best
balance of realism, exploration, and efficiency.

Qualitative results. In Fig. 3, we present a qualitative comparison of exploration-view and novel-
view renderings across NeoWorld, CogVideo-I2V, Wan2.1-I2V, Matrix-Game2, WonderWorld, and
WonderJourney. We can see that only NeoWorld can keep 3D view realism without explicit holes,
benefiting from its hybrid scene representation. More showcases are included in the Appendix D.

4.2 EVALUATION ON OBJECT-CENTRIC REPRESENTATIONS

We manually annotated instance-level masks as ground truth and computed the IoU against the
rendered masks. Quantitative results are reported in Table 2. Even without joint optimization or KNN
smoothing (see Sec. 3.2), NeoWorld significantly outperforms OmniSeg3DGS and GaussianGrouping.
When jointly optimized with image reconstruction loss (L1 and LD-SSIM) and object-centric loss Lcos,
the IoU improves from 64.26 to 70.53, demonstrating the benefit of leveraging implicit correlations
between appearance and instance semantics. Applying KNN smoothing further suppresses Gaussian
floaters, increasing IoU from 68.59 to 70.53. Qualitative comparisons in Fig. 4 show that the instance
masks generated by NeoWorld align more accurately and smoothly with the RGB images than those
of OmniSeg3DGS, further validating the effectiveness of our object-centric representation.

4.3 EVALUATION ON USER INTERACTIONS

By leveraging the parsing capabilities of LLMs, NeoWorld enables user-prompt–controlled object
manipulation and animation. As shown in Fig. 5, given prompts such as “rightmost boat” or
“right chair,” the manipulation targets are correctly located and animated. Compared with strong
video diffusion models, including CogVideo-I2V (Hong et al., 2023), Wan2.1-I2V (Wan et al.,
2025), and the commercial Kling1.6 (Kuaishou, 2025), NeoWorld achieves superior text–motion
alignment. Quantitative results in Table 3 confirm this: both human study results (PromptAlign)
and VideoCLIP scores demonstrate the effectiveness of NeoWorld in aligning generated dynamics
with user instructions. In contrast, previous interactive 3D world generation models (WonderJourney
and WonderWorld) are not object-centric; they support only visual navigation and cannot enable
text-guided object control. Due to space limitations, we refer readers to Appendix B, D for additional
examples of object manipulation and further analysis of LLM design and behavior.
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Figure 4: Qualitative comparison of object-centric representation. .
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Figure 5: Qualitative results of dynamic simulation.

5 CONCLUSIONS AND LIMITATIONS

In this work, we introduced NeoWorld, a novel deep learning framework for interactive world
generation with object-level semantics and 3D physical consistency. In contrast to existing approaches
that are constrained to static world generation and limited to visual navigation, NeoWorld enables user-
driven object manipulation and physics-based dynamic simulation within a continuously expanding
3D environment. To achieve this, we designed a cascaded architecture that starts with lightweight 2D
object-centric representations and progressively unfolds full 3D geometry based on user interactions,
effectively balancing computational efficiency with immersive visual and physical realism.

Rather than a single unified model, NeoWorld is a cascade of external, pre-trained modules. Conse-
quently, end-to-end robustness is constrained by the weakest link, and upstream errors can propagate
to the final world simulation. Typical failures include: (i) alignment failures; (ii) ambiguous or overly
complex prompts that lead to LLM misinterpretation; (iii) image-to-3D reconstruction errors under
heavy occlusion or highly complex/reflective textures; and (iv) under- or over-segmentation results,
which corrupt object masks and the following reconstruction. Please refer to the Appendix F for
detailed analyses and visualizations.
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6 REPRODUCIBILITY STATEMENT

We include anonymized code in the supplementary material to reproduce all experiments, figures,
and tables. The Implementation Details section in the appendix specifies all hyperparameter settings.
We will release a de-anonymized repository upon acceptance.
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APPENDIX

This supplementary material includes the following:

• Related Work: Introduction os related direction, including infinite world generation and object-level
3D scene decomposition.

• Ablation study: Ablation study of key components and hyperparameters (Sec. B).

• Quantitive results: Detailed benchmark description and quantitive results (Sec. C).

• Qualitative results: Additional visualizations of generated scenes and simulations (Sec. D).

• Further Implementation details: Additional information on the initialization of the Gaussian layer,
human study, and prompt design for LLMs (Sec. E).

• Failure case analysis: Visualizations and analysis of typical failure cases ( F).

A RELATED WORK

A.1 INFINITE WORLD GENERATION

Infinite world generation aims to construct an unbounded world from a single image, enabling
real-time control via camera motion and content prompts. Early research focused on perpetual video
generation along a given camera trajectory. The seminal work InfiniteImages (KANEVA et al., 2010)
introduced a non-parametric method for infinite 2D extrapolation through classical 2D image retrieval,
stitching, and blending. Subsequent learning-based methods (Liu et al., 2021; Lin et al., 2022; Li
et al., 2022b; Cai et al., 2023; Chai et al., 2023; Raistrick et al., 2023; Bruce et al., 2024; Yang et al.,
2024b; Feng et al., 2024; Raistrick et al., 2024; Zhou et al., 2025; Ni et al., 2025) auto-regressively
synthesized new scenes with generative models (Zhuang et al., 2024; Karras et al., 2019; Rombach
et al., 2022; Song & Ermon, 2019; Podell et al., 2024; Ke et al., 2024). Recent advances have
extended from 2D to 3D scene exploration (Hu et al., 2021; Yu et al., 2024; Fridman et al., 2023; Yu
et al., 2025; Höllein et al., 2023; Lu et al., 2024; Zhang et al., 2024; Lin et al., 2023) by integrating
image-to-3D generation (Xiang et al., 2024; Wu et al., 2024b; Hong et al., 2024; Yushi et al., 2025;
Wu et al., 2025) after the image extrapolation step. Wonderworld (Yu et al., 2025) even realized
real-time performance through the proposed efficient 2.5D layered scene representation. However,
existing methods remain limited to view-controlled navigation, lacking support for fine-grained
user-world interactions like physical manipulation or dynamic animation.

A.2 OBJECT-LEVEL 3D SCENE DECOMPOSITION

2D scene decomposition (Greff et al., 2016; 2019; Burgess et al., 2019; Engelcke et al., 2020;
Elsayed et al., 2022; Kipf et al., 2022; Singh et al., 2022; Xie et al., 2022) typically uses open-
vocabulary segmentation (Zhang et al., 2023; Qin et al., 2023; Zhu & Chen, 2024; Liu et al., 2024b)
or unsupervised methods like slot attention (Locatello et al., 2020). For 3D, recent works (Qiu et al.,
2024; Zhao et al., 2025; 2024; Kabra et al., 2021; Sajjadi et al., 2022; Chen et al., 2021; Driess et al.,
2023; Yang et al., 2024a; Luo et al., 2024; Qin et al., 2024; Kobayashi et al., 2022; Tschernezki
et al., 2022; Siddiqui et al., 2023; Kerr et al., 2023) attach semantics into neural fields (Mildenhall
et al., 2020; Kerbl et al., 2023) by distilling features from models (e.g., CLIP (Radford et al., 2021),
DINO (Caron et al., 2021; Oquab et al., 2024), LSeg (Li et al., 2022a), or SAM (Kirillov et al.,
2023; Ravi et al., 2025)), across multiple viewpoints. There are also some efforts (Kohli et al., 2020;
Stelzner et al., 2021; Zhi et al., 2021; Liu et al., 2023) that leverage direct supervision (e.g., depth or
instance maps). However, current approaches require dense views and suffer from high training or
optimization costs. The key challenge remains: online semantic reconstruction from sparse (even
monocular) input.

B ABLATION STUDY

Alternative designs for object-centric representations. As discussed in Sec. 3.2, a straightforward
approach for object-centric learning is to define γ as a K-dimensional one-hot vector, which directly
corresponds to object IDs. Additionally, prior work has proposed alternative designs, such as
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employing an autoencoder to first compress feature vectors into a lower-dimensional space (Qin et al.,
2024), or utilizing a single linear layer to map the rendered feature map from a lower-dimensional
space back to its original high-dimensional representation (Ye et al., 2024).

We report the IoU, the average training time for a single scene layer (e.g., Lfg), and the memory
footprint for a world consisting of 9 scenes in Table. 4. From the results, it can be observed that
one-hot encoding achieves the highest IoU, but at the cost of significantly higher training time and
memory consumption. This makes it impractical for interactive infinity world generation, where
computational efficiency is essential. In contrast, both the autoencoder and linear mapping achieve
suboptimal results for different reasons.

The autoencoder suffers from the lack of explicit constraints on the distances of the compressed
representations, leading to reduced robustness. On the other hand, linear mapping approaches are
usually applied in offline settings, where the entire set of scenes is pre-defined and known beforehand.
In our online scenario, where scenes are generated incrementally, linear mapping faces catastrophic
forgetting issues. Furthermore, linear mapping requires projecting low-dimensional features into
high-dimensional space for loss computation, which is notably slower compared to our approach,
where cosine similarity is directly applied in the low-dimensional codebook.

Notably, different from Sec. 4.2, here we evaluate the performance using the IoU between the
predicted labels and the panoptic mask generated by OneFormer (Jain et al., 2023). This metric
provides a clearer and more intuitive way to reflect distillation errors. Overall, our method strikes
a good balance between performance and efficiency, making it a suitable choice for infinite world
generation under interactive scenarios.

Ablation study of object alignment. In Table. 5 and Fig. 6, we ablate our alignment pipeline by:
(i) removing coarse alignment, (ii) removing fine alignment, and (iii) replacing coarse alignment
with Flash Sculptor (Hu et al., 2025), which performs a discrete search over predefined angles using
DINOv2 similarity. We evaluate physical plausibility, visual coherence (via a human-in-the-loop
study), and efficiency, where for coarse alignment the reported time is measured as the overhead
relative to the original image-to-3D pipeline. The results show that our coarse alignment achieves
strong alignment results with almost no additional time cost, and is critical for producing plausible
and coherent outputs, while fine alignment further refines the results. Overall, our method delivers
the highest alignment quality with substantially lower runtime than Flash Sculptor.

Hyperparameter analyses. In Table. 6, we analyze the impact of two key hyperparameters: the
codebook dimension C and the cosine similarity threshold δ. A higher threshold δ enables the use
of a smaller codebook dimension C, improving computational efficiency. However, this comes at
the expense of reduced robustness, as higher similarity thresholds may result in less distinct object
representations. In this experiment, we tuned δ and adjusted C to the minimum value that satisfies
the threshold. In our final model, we set δ = 0.5 and C = 16, achieving a favorable balance between
efficiency and robustness.

Ablation study of LLMs. To constrain LLM outputs to be physically plausible and within a
reasonable operating range, we augment the instruction prompt J with targeted selection guidance.
As an alternative, we supply few-shot exemplars during prompting to encourage the LLM to produce
more accurate, context-aware manipulation attributes. To quantify the effect of in-context learning on
overall system performance, we conduct the following study. Specifically, we inject 4 exemplars into

Table 4: Comparison of alternative designs for object-centric representations. These results are
achieved on 9 scenes using 3 different seeds. Our codebook design yields a great balance between the
object-centric scene decomposition quality and rendering efficiency. The Time and Memory metrics
refer to the resources required to train a single layer.

Method IoU Time (s) Memory

One-hot Encoding 92.16 ± 1.92 52.90 2726M
AutoEncoder 24.42 ± 2.40 2.59 334M
Linear Mapping 45.54 ± 4.60 3.95 333M
Codebook (Final model) 86.27 ± 1.23 2.54 333M
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Table 5: Comparison of difference alignment strategies. Plausibility and coherence are evaluated
through a human-in-the-loop study. Our approach achieves the best overall alignment performance
while maintaining reasonable efficiency.

Method Plausibility Coherence Time(s)

w/o Coarse 10.71 11.20 1.86
w/o Fine 25.67 26.17 0.06
Flash Sculptor (Hu et al., 2025) 29.75 30.18 105.06
Full model 33.87 32.45 1.92

Input image w/o Coarse w/o Fine Full modelFlash Sculptor

Figure 6: Comparison of object alignment methods.

the prompt, each comprising a user instruction, relevant object metadata, and the expected outputs.
The model is evaluated on 8 diverse scenes spanning a broad stylistic spectrum and both simple and
complex cases. For comparison, we also evaluate a no-guidance baseline in which all attribute cues
are removed from the prompt. We report quantitative results on three metrics:

• Object selection accuracy: We manually annotated the dataset comprising prompts and
their corresponding target objects to evaluate whether the model accurately selects the
intended object.

• Motion alignment: We conducted a human-in-the-loop study to assess whether the simu-
lated or animated movements reflect the user’s intent.

Table 6: Sensitivity analyses. We evaluate the impact of varying the cosine similarity threshold δ
and the codebook dimension C on the performance of object-centric representation learning. The
results are derived from 9 scenes using 3 different seeds. The Time and Memory metrics refer to the
resources required to train a single layer.

Hyperparameters IoU Time(s) Memory

δ = 0.9, C = 8 83.09 ± 2.80 2.28 257M
δ = 0.7, C = 11 84.34 ± 1.90 2.40 287M
δ = 0.5, C = 16 (Final model) 86.27 ± 1.23 2.54 333M
δ = 0.3, C = 90 87.24 ± 1.50 7.94 564M
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Table 7: We evaluate the impact of in-context learning and prompt guidance on LLMs. The results
are derived from 8 diverse scenes, including both simple and complex cases.

Simulation Animation

Method ObjAcc↑ MotionAlign↑ ObjAcc↑ MotionAlign↑ Penetration↓
NeoWorld 100 83.33 100 83.34 26.67
w. in-context 100 82.92 100 80.47 29.04
w/o guidance 87.5 28.33 100 70.95 33.33

• Penetration rate (for animation): Similar to motion alignment, we employed a human-in-
the-loop study to evaluate whether objects exhibit unnatural interpenetration.

As shown in Table. 7, the results show that our guidance achieves performance comparable to in-
context learning, while removing all guidance leads to significant degradation, especially in simulation
tasks, where outputs exhibit unrealistic physical parameters and incorrect material generation.

Furthermore, we find that NeoWorld outputs with and without in-context learning are often similar
across many scenarios. This indicates that our guidance effectively fulfills the role of in-context
learning by providing the model with essential cues to generate context-aware, high-quality results. It
enhances the system’s understanding of task requirements and helps infer correct attributes, similar
to how structured examples guide in-context learning.

Analysis of LLMs behaviors. We analyze how the system handles ambiguous instructions by
exposing its internal reasoning process and evaluating its robustness. For instance, given the prompt
“Move a boat slightly to the right” in a scene with four boats and no further specification, the LLM
generates the following internal reasoning trace:

The user wants to move a boat to the right. First, I need to figure out *which* boat
to move. The scene has a few options, I’ll review their positions and sizes to select
a visually prominent one – a good starting point is one that’s closer and larger.
Instance ID 2 seems ideal; it’s at the front (z=0.00) and has a reasonable size. So,
Boat 2 it is.
Next, I have to consider interactions, but I’m instructed to ignore background
elements like the sea. So, the movement of the boat won’t explicitly interact with
the water, the simulation will only apply to the boat.
Now for the material properties. The instructions specify ’jelly’ with a high Young’s
modulus for rigid objects. I’ll set a high Young’s modulus, let’s go with ‘1e6‘, and
use a typical Poisson’s ratio of ‘0.3‘. For the friction angle, a standard ‘35‘ degrees
will do. I’ll go with a density of ‘800‘ kg/m³, a reasonable value for something like
wood or composite.
Finally, I need to determine the force. The task is to move the boat slightly to
the right, which is the positive x-direction. The magnitude of the force should be
between 5 and 20, I’ll set the force vector to ‘[10, 0, 0]‘.
I’m now ready to formulate the JSON.

This example illustrates how the LLM resolves ambiguity by leveraging spatial context, salience, and
domain priors. It shows that the system consistently produces plausible and physically grounded
decisions, even under incomplete instructions.

Table 8: Ablation study of the fallback strategy in NeoWorld.

Method CIQA+ Q-Align ImageCLIP CS

w/o fallback 0.58 2.68 77.81 72.03
Full model 0.59 2.66 78.63 72.46
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We also analyze how the system interprets complex relational prompts by exposing the LLM’s internal
reasoning process. Specifically, we consider the instruction: “Move the right chair next to the left
chair.”

The user wants the right chair moved next to the left chair. My first task is to zero
in on what’s actually supposed to *move*. I’ll need to locate the "right chair" and
generate a trajectory for it. I confirm that instance ID 4 is indeed the "right chair"
based on its X-coordinate being further right than the "left chair" at instance ID 6.
Now for the animation. The right chair (ID 4) needs to end up beside the left chair.
"Next to" implies a close proximity, and side-by-side is a good interpretation here.
I calculate the final position of the right chair, so that its right edge is just touching
the left chair’s left edge. I will calculate the total delta for the right chair: I’ll move
it to the left, so it is next to the left chair, and also move it slightly back into the
scene, to better align the two chairs. No y-axis movement. The math says: move it
by -0.09 in the x direction, and +0.09 in the z direction.
Next, I need to generate a smooth animation path. I will use 100 timesteps. I’ll use
a smooth curve for the translation, based on a sine function to give a natural feel.
The chair will slide over the floor. And for the rotation? For simplicity’s sake, I’ll
go with no rotation at all throughout.
Finally, I’ll generate the 100 keyframes for translation and rotation, generating the
appropriate JSON format that will be passed to the user.

This example illustrates the LLM’s ability to handle complex instructions, including understanding
intricate spatial relationships and avoiding collisions.

Ablation study of object removal. Unlike WonderWorld (Yu et al., 2025), which employs an
inpainting model (Rombach et al., 2022) to remove foreground objects, we distill StableDiffusion-
XL (Podell et al., 2024) into an 8-step student model specialized for this task using DMD2 (Yin
et al., 2024). In Table. 9 and Fig. 11, we compare conventional inpainting models with our distilled
model in terms of visual quality and unintended object emergence. These results show that while
both methods produce comparable visual quality, the SDXL removal method significantly reduces
semantic artifacts, which is critical for maintaining controllable and coherent scene editing.

Ablation study of fallback strategy. In Fig. 12, we analyze the effect of fallback strategy in
NeoWorld. The results show that fallback strategy successfully filters failure cases arising from
severe occlusions (1st row) and segmentation failures (2nd row). In Table. 8, we further quantify
this effect: the differences with and without fallback are marginal, indicating that such failures are
infrequent and underscoring the overall robustness of NeoWorld.

C DETAILED QUANTITIVE RESULTS

The benchmark of NeoWorld includes 7 distinct styles and occlusion conditions:

• Photorealistic: Realistic environments with detailed textures and geometry.

• Ink Painting: Highly abstract visuals featuring brush-like textures.

• Oil Painting: Scenes with rich, layered colors and blended geometric edges.

• Cyber-punk: Futuristic, neon-lit environments with dense layouts and visual clutter.

• Minecraft: Blocky, pixelated worlds with low-resolution textures.

Table 9: Comparison of object removal methods. We evaluate the removal model in terms of visual
quality and unintended object emergence.

Method CIQA+ Q-Align Emergence rate↓
Direct inpainting 0.72 4.32 37.04
SDXL removal 0.71 4.30 7.40
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Table 10: Detailed performance of interactive world generation (Part 1).

Photorealistic Ink painting

Method Q-Align Clip-Score 3D-Const SceneQuality Q-Align Clip-Score 3D-Const SceneQuality

WonderJourney 1.71 59.05 18.45 18.19 1.53 63.03 22.86 23.81
WonderWorld 2.45 67.32 39.31 34.38 1.90 62.85 28.57 28.57
NeoWorld 2.84 69.78 42.24 47.43 2.33 66.16 48.57 47.62

• Anime: Stylized 2D visuals with vibrant palettes and simplified geometric representations.

• Complex Scenes: High object occlusions and intricate layouts.

In Tables 10, 11, and 12, we present the detailed performance of NeoWorld across different scene
categories. The results show that NeoWorld consistently surpasses the baseline models and demon-
strates robustness across diverse image styles, including challenging cases with occlusions and visual
clutter.

D MORE VISUALIZATION RESULTS

Figs 7 and 8 compare the exploration and novel views generated by different methods. The 2D video
diffusion models (e.g., Wan2.1-I2V) lack explicit control over camera trajectories and tend to produce
frames that closely resemble the input image. The 2D interactive method Matrix-Game2 fails to
provide accurate camera control and does not preserve object-level 3D consistency. Furthermore,
compared to existing interactive world generation methods such as WonderWorld and WonderJourney,
which rely on surface-level representations, our method demonstrates significantly higher 3D consis-
tency in the generated views. In Fig. 9, we also include visualizations of dynamic scene simulations
annotated with user prompts, illustrating how our method responds to motion-specific instructions
and maintains temporal coherence across frames.

In Fig. 10, we further showcase the visualizations of translation, rotation, and animation. For the
animation, the 3D character is reconstructed with an existing Image-to-3D tool (Tripo 3D (Tripo 3D,
2025)) and subsequently animated using Mixamo (Adobe Inc., 2025).

E FURTHER IMPLEMENTATION DETAILS

E.1 GAUSSIAN LAYER INITIALIZATION

Following WonderWorld (Yu et al., 2025), we adopt guided depth diffusion using marigold depth and
marigold normals to initialize the geometry of Gaussian layers. Specifically, given a scene image Ii,
the guided depth diffusion estimates the depth based on existing geometries (i.e., the depth rendered
from previously constructed scenes), ensuring multi-scene geometric coherence. Next, normals are
computed using Marigold normals.

Each pixel is then initialized as a 2D Gaussian, where the position is derived from its pixel coordinate
and depth, the quaternion is computed from the normals, the color is set based on the corresponding
pixel color, and the scale is determined according to the Nyquist sampling theorem. During optimiza-

Table 11: Detailed performance of interactive world generation (Part 2).

Oil painting Cyber-punk

Method Q-Align Clip-Score 3D-Const SceneQuality Q-Align Clip-Score 3D-Const SceneQuality

WonderJourney 1.67 68.38 14.29 20.00 1.56 72.00 25.24 21.90
WonderWorld 2.95 63.16 31.43 29.52 2.16 72.13 28.57 29.06
NeoWorld 2.95 64.86 54.29 50.48 2.37 74.94 46.19 49.04
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Table 12: Detailed performance of interactive world generation(Part 3). Metric names are abbreviated
for compact presentation.

MineCraft Anime Complex

Method QA CS 3DCons SQ QA CS 3DCons SQ QA CS 3DCons SQ

WonderJourney 1.69 73.93 19.05 22.86 1.79 64.59 17.38 16.19 2.02 74.41 25.40 25.71
WonderWorld 2.39 79.27 33.33 29.52 2.03 69.53 23.33 32.62 2.39 72.04 29.84 33.33
NeoWorld 2.45 81.42 47.62 47.62 2.69 72.12 59.29 51.19 2.65 75.86 44.76 40.96

tion, the position and color remain fixed, while the scale, opacity, and quaternions are updated to
refine the representation.

E.2 HUMAN STUDY DETAILS

We recruited 105 participants for a blind preference study. In each trial, participants were shown
video clips generated by different methods for the same scene. The method order is randomized
per trial. Participants are instructed to select exactly one best video based on 3D consistency, scene
quality, and other metrics. The survey is fully anonymous. We report results as preference rates, i.e.,
the percentage of trials in which each method is chosen.

Input image Exploration view Novel view

CogVideo-I2V

Wan2.1-I2V

WonderJourney

WonderWorld

NeoWorld

Matrix-Game2

Figure 7: Additional examples of interactive world generation (Part 1).
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Input image Exploration view Novel view

CogVideo-I2V

Wan2.1-I2V

WonderJourney

WonderWorld

NeoWorld

Matrix-Game2

Figure 8: Additional examples of interactive world generation (Part 2).
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the right is 
moving 
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CogVideo-I2V

Figure 9: Showcases of dynamic scene simulation.

E.3 LLM-BASED USER INTERACTION

In user interaction and dynamic simulation, we employ an LLM gLLM to derive the target object
index and manipulation attributes: I,A = gLLM(J ,O,U). where J represents the instruction
prompt, O contains the object-related information, and U denotes the user input prompt. Specifically,
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Figure 10: Qualitative results of manipulation: transition (1st row), rotation (2nd row), and
animation (3rd row).

Input image Inpainting removal SDXL removal

Figure 11: Comparison of object removal methods. The inpainting-based removal result (middle)
introduces unintended artifacts and objects, which can complicate subsequent scene generation. To
address this issue, we adopt the distilled SDXL specialized for this task (right), which yields cleaner
and more controllable removal results.

object-related information O comprises the 3D position and size of each object, as well as its instance
index and category.

For the simulation task, the instruction prompt J describes the intended dynamics of the scene. For
the animation task, a similar instruction prompt is used; however, the output is extended to include a
sequence of translations and rotations applied to each object instance, enabling fine-grained control
over individual motions.

The instruction prompt J for the simulation task is defined as follows:
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Input image w/o Fallback Full model

Figure 12: Comparison of world unfolding results with and without fallback. Fallback effectively
filters out common failures caused by image-to-3D degradation (1st row) and segmentation errors
(2nd row).

You are a simulation assistant. Next, you will be provided with object information
in a scene and a user prompt. You need to identify the foreground objects most
likely to interact with each other, and estimate appropriate material point method
(MPM) attributes for each. When selecting an object to simulate:

1. Pay close attention to any spatial indicators in the user prompt (e.g., "the
apple on the left", "the top plate", "the apple falling onto the plate").

2. Consider object descriptions (e.g., position, size) when multiple objects of the
same category exist.

3. Select objects that are mentioned in the user prompt or are likely to participate
in the described interaction.

4. Most scenes involve 1–3 foreground objects interacting with each other.
5. Coordinate system: Defined as follows: +x points to the right of the image,

+y points upward, and +z points into the scene (i.e., away from the viewer).

For each selected object, you should provide simulation parameters including:

• Material type: Choose from the following list: [’jelly’, ’sand’,
’foam’, ’snow’, ’plasticine’].

• Young’s modulus (E): Represents stiffness. Higher values indicate stiffer
materials.

• Poisson’s ratio (nu): Represents how much a material contracts in directions
perpendicular to the direction it is stretched.

• Density and Friction angle should be set appropriately based on the material
and object type.

• Force: Provide a 3D vector [fx, fy, fz] representing the applied force, which
should be set appropriately based on the description of dynamics in the user
prompt. Suitable force magnitudes typically range from 5 to 20 to create
visible motion and interaction effects.
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Here’s a guide to help you select the appropriate material:

• jelly: For elastic objects that can deform and return to their original shape
(like rubber, soft fruits, gelatin-like substances). Best for simulating bouncy,
elastic objects. Young’s modulus (E): 1e4-1e6, Poisson’s ratio (nu): 0.3-0.45

• sand: For granular materials that can flow but maintain volume (like sand,
sugar, rice). Best for simulating grainy substances that pour. Young’s modulus
(E): 1e6-1e8, Poisson’s ratio (nu): 0.2-0.3, frictionangle : 30− 45

• foam: For soft, compressible materials that absorb impact (like cushions,
sponges, styrofoam). Young’s modulus (E): 1e3-1e5, Poisson’s ratio (nu):
0.1-0.3

• snow: For brittle, lightweight materials that can break apart and accumulate
(like snow, powder). Young’s modulus (E): 1e4-1e6, Poisson’s ratio (nu):
0.2-0.3

• plasticine: For materials that deform permanently and don’t return to original
shape (like clay, dough, plasticine). Best for simulating objects that can be
molded. Young’s modulus (E): 1e5-1e7, Poisson’s ratio (nu): 0.3-0.4

For rigid objects like furniture, use ’jelly’ with a high Young’s modulus (E: 1e5-
1e7). For soft objects like fruits, pillows, use ’jelly’ with low Young’s modulus (E:
1e2-1e4). For moldable objects like clay or dough, use ’plasticine’. For grainy
substances like sugar or salt, use ’sand’. Please use the following JSON format
for the output:

{
"objects": [

{
"instance_id": instance_id_1,
"material_params": {

"material": material_1,
"E": E_1,
"nu": nu_1,
"friction_angle": friction_angle_1,
"density": density_1

},
"force": [f_x_1, f_y_1, f_z_1]

},
{

"instance_id": instance_id_2,
"material_params": {

"material": material_2,
"E": E_2,
"nu": nu_2,
"friction_angle": friction_angle_2,
"density": density_2

},
"force": [f_x_2, f_y_2, f_z_2]

}
]

}

Finally, we apply several lightweight post-processing steps to improve the quality of LLM outputs.
For simulation, we clamp generated force values to a physically plausible range to ensure stable,
realistic dynamics. For animation, we resample and interpolate translation and rotation trajectories to
match the target duration, since the LLM outputs may not perfectly align with the intended length.
We also apply a temporal smoothing filter to the translation and rotation signals to produce coherent,
artifact-free motion.
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Input image Failure case Input image Failure case

Figure 13: Visualizations of failure cases. Examples of failures caused by alignment (1st row),
image-to-3D degradation (2nd row), and segmentation errors (3rd row).

F FAILURE CASE ANALYSIS

Despite incorporating fallback strategy and several robustness mechanisms, failures can still occur
under severe occlusions or segmentation errors. Fig. 13 illustrates typical cases: (i) alignment errors
(1st row), where the reconstructed 3D object is misaligned with the target, yielding incoherent
results; (ii) image-to-3D degradation (2nd row), where the image-to-3D module either fails to recover
fine object details—leading to visual degradation—or lacks sufficient cues under heavy occlusion,
causing failures; and (iii) segmentation errors (3rd row), where over- or under-segmentation produces
inaccurate 3D geometry.

To address these limitations, promising directions include employing more capable image-to-3D
models for both reconstruction and alignment, refining masks with interactive segmentation methods
(e.g., SAM (Kirillov et al., 2023)), and replacing the current fallback scheme with a multimodal large
language model to further improve robustness.
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