
SpeedE: Euclidean Geometric Knowledge Graph Embedding Strikes Back

Anonymous ACL submission

Abstract

Geometric knowledge graph embedding mod-001
els (gKGEs) have shown great potential for002
knowledge graph completion (KGC), i.e., au-003
tomatically predicting missing triples. How-004
ever, contemporary gKGEs require high embed-005
ding dimensionalities or complex embedding006
spaces for good KGC performance, drastically007
limiting their space and time efficiency. Fac-008
ing these challenges, we propose SpeedE, a009
lightweight Euclidean gKGE that (1) provides010
strong inference capabilities, (2) is competitive011
with state-of-the-art gKGEs, even significantly012
outperforming them on WN18RR, and (3) dra-013
matically increases their efficiency, in particu-014
lar, needing solely a fifth of the training time015
and a fourth of the parameters of the state-of-016
the-art ExpressivE model on WN18RR to reach017
the same KGC performance.018

1 Introduction019

Geometric knowledge graph embedding models020

(gKGEs) represent entities and relations of a knowl-021

edge graph (KG) as geometric shapes in the seman-022

tic vector space. gKGEs achieved promising per-023

formance on knowledge graph completion (KGC)024

and knowledge-driven applications (Wang et al.,025

2017; Broscheit et al., 2020); while allowing for an026

intuitive geometric interpretation of their captured027

patterns (Pavlović and Sallinger, 2023).028

Efficiency Problem. Recently, increasingly more029

complex embedding spaces were explored to boost030

the KGC performance of gKGEs (Sun et al., 2019;031

Zhang et al., 2019; Cao et al., 2021). However,032

more complex embedding spaces typically require033

more costly operations, leading to an increased034

time complexity compared to Euclidean gKGEs035

(Wang et al., 2021). Even more, most gKGEs re-036

quire high-dimensional embeddings to reach good037

KGC performance, leading to increased time and038

space requirements (Chami et al., 2020; Wang et al.,039

2021). Thus, the need for (1) complex embedding040

spaces and (2) high-dimensional embeddings in- 041

creases the time complexity and storage space of 042

gKGEs, hindering their application in resource- 043

constrained environments, especially in mobile 044

smart devices (Sun et al., 2019; Zhang et al., 2019; 045

Wang et al., 2021). 046

Table 1: This table reports for WN18RR each gKGE’s
embedding dimensionality, final MRR, convergence
time, and number of parameters.

Model Dim. MRR Conv. Time #Parameters

SpeedE 50 .500 6min 2M
ExpressivE 200 .500 31min 8M
HAKE 500 .497 50min 41M
ConE 500 .496 1.5h 20M
RotH 500 .496 2h 21M

Challenge and Methodology. Although there has 047

been much work on scalable gKGEs, any such work 048

has focused exclusively on either reducing the em- 049

bedding dimensionality (Balazevic et al., 2019a; 050

Chami et al., 2020; Bai et al., 2021) or using sim- 051

pler embedding spaces (Kazemi and Poole, 2018; 052

Zhang et al., 2020; Pavlović and Sallinger, 2023), 053

thus addressing only one side of the efficiency prob- 054

lem. Facing these challenges, this work aims to 055

design a Euclidean gKGE that performs well on 056

KGC under low-dimensional conditions, reducing 057

its storage space, inference, and training times. To 058

reach this goal, we analyze ExpressivE (Pavlović 059

and Sallinger, 2023), a Euclidean gKGE that has 060

shown promising performance on KGC under high- 061

dimensional conditions. 062

Contribution. Based on ExpressivE, we propose 063

the lightweight SpeedE model that (1) halves Ex- 064

pressivE’s inference time and (2) enhances Expres- 065

sivE’s distance function, significantly improving 066

its KGC performance. We evaluate SpeedE on 067

the two standard KGC benchmarks, WN18RR and 068

FB15k-237, finding that it (3) is competitive with 069

SotA gKGEs on FB15k-237 and even outperforms 070

1

them significantly on WN18RR. Furthermore, we071

find that (4) SpeedE preserves ExpressivE’s KGC072

performance on WN18RR with much fewer param-073

eters, in particular, requiring solely a fourth of the074

number of parameters of ExpressivE and solely a075

fifth of its training time to reach the same KGC076

performance (Table 1, also c.f. Section 5.3). In077

total, we propose the SpeedE model, which reaches078

strong KGC performance using low-dimensional079

embeddings while maintaining the low space and080

time requirements of Euclidean gKGEs.081

Organization. Our paper is organized as follows:082

Section 2 reviews related work to embed SpeedE083

in the context of contemporary literature. Section 3084

discusses the KGC problem, evaluation methods,085

and the ExpressivE model. Section 4 disassembles086

ExpressivE’s components to find a much simpler087

model that still supports the core inference patterns088

(c.f. Section 3.1) and continues by building on these089

results to introduce the lightweight SpeedE model.090

Section 5 empirically evaluates SpeedE’s KGC per-091

formance and studies its space and time efficiency.092

Finally, Section 6 summarizes our results, and the093

appendix lists all proofs of theorems and additional094

experimental details.095

2 Related Work096

The main focus of our work lies on gKGEs, i.e.,097

knowledge graph embedding models (KGEs) that098

allow for a geometric interpretation of their cap-099

tured inference patterns. Thus, we have excluded100

neural KGEs as they are typically less interpretable101

(Dettmers et al., 2018; Socher et al., 2013; Nathani102

et al., 2019; Wang et al., 2021). In the following,103

we review relevant literature:104

gKGEs can be grouped into families based on their105

scoring function, including: (1) functional and spa-106

tial models such as TransE (Bordes et al., 2013),107

RotatE (Sun et al., 2019), MuRP (Balazevic et al.,108

2019a), RotH (Chami et al., 2020), HAKE (Zhang109

et al., 2020), ConE (Bai et al., 2021), BoxE (Ab-110

boud et al., 2020), and ExpressivE (Pavlović and111

Sallinger, 2023); and (2) factorization-based mod-112

els such as RESCAL (Nickel et al., 2011), Dist-113

Mult (Yang et al., 2015), ComplEx (Trouillon et al.,114

2016), TuckER (Balazevic et al., 2019b), SimplE115

(Kazemi and Poole, 2018), QuatE (Zhang et al.,116

2019), and DualQuatE (Cao et al., 2021).117

Embedding Space Problem. Although these118

families are vastly different, many contemporary119

gKGEs typically overcome the limitations of for- 120

mer ones by exploring increasingly more complex 121

embedding spaces. For instance, while RESCAL 122

and DistMult use the Euclidean space, ComplEx 123

uses the complex space, QuatE the quaternion 124

space, and DualQuatE even the dual-quaternion 125

space. However, gKGEs based in increasingly 126

more complex embedding spaces typically require 127

increasingly more costly operations, raising their 128

time complexity compared to Euclidean gKGEs 129

(Wang et al., 2021). 130

High-Dimensionality Problem. Even more, most 131

gKGEs require high-dimensional embeddings to 132

reach good KGC performance (Chami et al., 2020; 133

Wang et al., 2021). However, the need for high 134

embedding dimensionalities of 200, 500, or even 135

1000 (Sun et al., 2019; Zhang et al., 2019) increases 136

the time complexity and storage space of gKGEs, 137

limiting their efficiency and application to resource- 138

constrained environments, especially mobile smart 139

devices (Wang et al., 2021). 140

Hyperbolic gKGEs such as RotH and AttH 141

(Chami et al., 2020) achieved promising KGC per- 142

formance using low-dimensional embeddings, ad- 143

dressing the high-dimensionality problem (Balaze- 144

vic et al., 2019a; Chami et al., 2020). Moreover, 145

hyperbolic gKGEs allow for high-fidelity and par- 146

simonious representations of hierarchical relations 147

(Balazevic et al., 2019a; Chami et al., 2020), i.e., 148

relations that describe hierarchies between entities, 149

such as part_of. Most hyperbolic gKGEs were 150

limited to expressing a single global entity hierar- 151

chy per relation. ConE (Bai et al., 2021) solves 152

this problem by embedding entities as hyperbolic 153

cones and relations as transformations between 154

these cones. However, any hyperbolic gKGE typi- 155

cally relies on far more costly operations — such as 156

Möbius Addition and Möbius Matrix-Vector Mul- 157

tiplication — than their Euclidean counterparts. 158

Thus, they fail to address the embedding space 159

problem, which results in high time requirements 160

for hyperbolic gKGEs (Wang et al., 2021). 161

Euclidean gKGEs have recently shown strong rep- 162

resentation, inference, and KGC capabilities under 163

high-dimensional conditions. On the one hand, 164

HAKE (Zhang et al., 2020) achieved promising 165

results for representing hierarchical relations on 166

which hyperbolic gKGEs are typically most effec- 167

tive. On the other hand, BoxE (Abboud et al., 2020) 168

managed to capture a large portion of the core in- 169

ference patterns (c.f. Section 3). Moreover, Expres- 170

2

sivE (Pavlović and Sallinger, 2023) enhances BoxE171

by improving BoxE’s inference capabilities while172

halving its space complexity. Although Euclidean173

gKGEs address the embedding space problem, their174

reported KGC results under low dimensionalities175

are dramatically lower than those of hyperbolic176

gKGEs (Chami et al., 2020). Thus, they currently177

fail to address the high-dimensionality problem.178

Our work is inspired by (1) the gap of gKGEs ad-179

dressing both sides of the efficiency problem, i.e.,180

the use of (a) complex embedding spaces and (b)181

high-dimensional embeddings (Wang et al., 2021),182

and (2) the promising results of Euclidean gKGEs183

(Zhang et al., 2020; Abboud et al., 2020; Pavlović184

and Sallinger, 2023) under high-dimensional con-185

ditions. In contrast to prior work, this paper jointly186

focuses on both sides of the efficiency problem to187

design a highly resource-efficient gKGE.188

3 Background189

3.1 Knowledge Graph Completion190

This section discusses the KGC problem and its191

empirical evaluation (Abboud et al., 2020). First,192

we introduce the triple vocabulary, consisting of193

a finite set of relations R and entities E. We use194

this vocabulary to define triples, i.e., expressions195

of the form rj(eh, et), where rj ∈ R, eh, et ∈ E,196

and where we call eh the triple’s head and et its197

tail. A finite set of triples over the triple vocabulary198

is called a knowledge graph G. KGC describes the199

problem of predicting missing triples of G.200

Empirical Evaluation. To experimentally evalu-201

ate gKGEs, a set of true and corrupted triples is202

required. True triples ri(eh, et) ∈ G are corrupted203

by substituting either eh or et with any ec ∈ E such204

that the corrupted triple does not occur in G. To205

estimate a given triple’s truth, gKGEs define scores206

over triples and are optimized to score true triples207

higher than false ones. The KGC performance of a208

gKGE is measured with the mean reciprocal rank209

(MRR), the average of inverse ranks (1/rank), and210

Hits@k, the proportion of true triples within the211

predicted ones whose rank is at maximum k.212

Inference Patterns. A gKGE’s theoretical capa-213

bilities are commonly evaluated by studying the214

inference patterns it captures. An inference pattern215

is a logical rule ϕ⇒ ψ, where ϕ is called its body216

and ψ its head. Following (Sun et al., 2019; Ab-217

boud et al., 2020; Pavlović and Sallinger, 2023), a218

gKGE captures an inference pattern ϕ⇒ ψ if there219

is an embedding instance such that the pattern is 220

captured exactly and exclusively as formalized in 221

the appendix. This means, at an intuitive level, that 222

there needs to be an embedding instance such that 223

(1) if the instance satisfies the pattern’s body, then 224

it also satisfies its head, and (2) the instance does 225

not capture any unwanted inference pattern. 226

In the following, we briefly list a set of impor- 227

tant inference patterns that are commonly stud- 228

ied in the gKGE literature (Sun et al., 2019; 229

Abboud et al., 2020; Pavlović and Sallinger, 230

2023): (1) symmetry r1(X,Y) ⇒ r1(Y,X), 231

(2) anti-symmetry r1(X,Y) ⇒ ¬r1(Y,X), (3) 232

inversion r1(X,Y) ⇔ r2(Y,X), (4) composi- 233

tion r1(X,Y) ∧ r2(Y, Z) ⇒ r3(X,Z), (5) hi- 234

erarchy r1(X,Y) ⇒ r2(X,Y), (6) intersection 235

r1(X,Y)∧ r2(X,Y) ⇒ r3(X,Y), and (7) mutual 236

exclusion r1(X,Y) ∧ r2(X,Y) ⇒ ⊥. We shall 237

call these seven types of patterns core inference 238

patterns henceforth. 239

3.2 The ExpressivE Model 240

This section reviews ExpressivE (Pavlović and 241

Sallinger, 2023), a Euclidean gKGE with strong 242

KGC performance under high dimensionalities. 243

Representation. ExpressivE embeds entities 244

eh ∈ E via vectors eh ∈ Rd and relations rj ∈ R 245

via hyper-parallelograms in R2d. The hyper- 246

parallelogram of a relation rj is parameterized 247

via the following three vectors: (1) a slope vector 248

sj ∈ R2d representing the slopes of its boundaries, 249

(2) a center vector cj ∈ R2d representing its center, 250

and (3) a width vector wj ∈ (R≥0)
2d representing 251

its width. At an intuitive level, a triple rj(eh, et) is 252

captured to be true by an ExpressivE embedding 253

if the concatenation of its head and tail embedding 254

is within rj’s hyper-parallelogram. Formally, this 255

means that a triple rj(eh, et) is true if the following 256

inequality is satisfied: 257

(eht − cj − sj ⊙ eth)
|.| ⪯ wj (1) 258

Where exy := (ex||ey) ∈ R2d with || representing 259

concatenation and ex, ey ∈ E. Furthermore, the in- 260

equality uses the following operators: the element- 261

wise less or equal operator ⪯, the element-wise 262

absolute value x|.| of a vector x, and the element- 263

wise (i.e., Hadamard) product ⊙. 264

Scoring. ExpressivE employs the typical distance 265

function D : E×R×E → R2d of spatial gKGEs 266

(Abboud et al., 2020; Pavlović and Sallinger, 2023), 267

which is defined as follows: 268

3

D(h, rj , t) =

{
τrj(h,t) ⊘mj , if τrj(h,t) ⪯ wj

τrj(h,t) ⊙mj − kj , otherwise
(2)269

Where ⊘ denotes the element-wise division270

operator, τrj(h,t) := (eht − cj − sj ⊙ eth)
|.|271

denotes the triple embedding, mj := 2⊙wj + 1272

represents the distance function’s slopes, and273

kj := 0.5⊙ (mj − 1)⊙ (mj − 1⊘mj).274

Based on the distance function, ExpressivE275

defines the scoring function for quantify-276

ing the plausibility of a triple rj(h, t) as277

s(h, rj , t) =−||D(h, rj , t)||2.278

4 The Methodology279

Our goal is to design a gKGE that addresses the280

efficiency problems raised by the use of (1) com-281

plex embedding spaces and (2) high-dimensional282

embeddings while (3) allowing for a geometric in-283

terpretation of its embeddings (Abboud et al., 2020;284

Pavlović and Sallinger, 2023). We reach this goal285

by designing a KGC model that (1) is based in286

the Euclidean space, (2) reaches high KGC perfor-287

mance under low-dimensional conditions while at288

the same time supports the core inference patterns289

(Section 3.1), and (3) is a gKGE.290

Toward our goal, Section 4.1 analyzes the SotA291

ExpressivE model, finding that it uses redundant292

parameters that negatively affect its inference time.293

By redundant parameters, we mean parameters that294

can be removed while preserving the support of the295

core inference patterns (Section 3.1). Facing this296

problem, we propose the lightweight Min_SpeedE297

model that removes these redundancies, halving298

ExpressivE’s inference time (Section 4.1).299

However, Min_SpeedE loses the ability to ad-300

just its distance function, which is important for301

representing hierarchical relations (as empirically302

verified in Section 5). Thus, Section 4.2 introduces303

SpeedE, a model that enhances Min_SpeedE by304

adding carefully designed parameters for flexibly305

adjusting the distance function while preserving306

Min_SpeedE’s low inference times.307

4.1 Min_SpeedE308

To design Min_SpeedE, let us first analyze Expres-309

sivE’s parameters, particularly its width vector. Ad-310

justing ExpressivE’s width vector wj has two com-311

peting effects: (1) it alters the distance function’s312

slopes (by mj in Inequality 2), and (2) it changes313

which entity pairs are inside the relation hyper-314

parallelogram (by wj in Inequality 1). To increase315

ExpressivE’s time efficiency substantially, we intro- 316

duce Min_SpeedE, a constrained version of Expres- 317

sivE that replaces the relation-wise width vectors 318

wj ∈ (R≥0)
2d by a constant value w ∈ R>0 - that 319

is shared across all relations rj ∈ R. The follow- 320

ing paragraphs theoretically analyze Min_SpeedE’s 321

inference capabilities and time efficiency. 322

Inference Capabilities. We find that Min_SpeedE 323

surprisingly still captures the core inference pat- 324

terns (given in Section 3.1) and prove this in The- 325

orem 4.1. We give the full proof in the appendix 326

and discuss one of the most interesting parts here, 327

namely, hierarchy patterns. 328

Theorem 4.1. Min_SpeedE captures the core in- 329

ference patterns, i.e., symmetry, anti-symmetry, in- 330

version, composition, hierarchy, intersection, and 331

mutual exclusion. 332

Hierarchy Patterns. According to Pavlović and 333

Sallinger (2023), an ExpressivE model captures a 334

hierarchy pattern r1(X,Y) ⇒ r2(X,Y) iff r1’s 335

hyper-parallelogram is a proper subset of r2’s. 336

Thus, one would expect that ExpressivE’s ability to 337

capture hierarchy patterns is lost in Min_SpeedE, 338

as the width parameter w ∈ R>0 (responsible for 339

adjusting a hyper-parallelogram’s size) is shared 340

across all hyper-parallelograms. However, the ac- 341

tual size of a hyper-parallelogram does not solely 342

depend on its width but also on its slope parameter 343

sj ∈ R2d, allowing one hyper-parallelogram H1 344

to properly subsume another H2 even when they 345

share the same width parameter w. We have visual- 346

ized two hyper-parallelograms H2 ⊂ H1 with the 347

same width parameter w in Figure 1. 348

Intuition. Min_SpeedE can capture H2 ⊂ H1 349

as w (depicted with orange dotted lines) rep- 350

resents the intersection of the bands (depicted 351

with blue and green dotted lines), expanded from 352

the hyper-parallelogram, and the axis of the 353

band’s corresponding dimension. Thus, a hyper- 354

parallelogram’s actual size can be adapted by solely 355

changing its slopes, removing the need for a learn- 356

able width parameter per dimension and relation. 357

Inference Time. The most costly operations dur- 358

ing inference are operations on vectors. Thus, we 359

can estimate ExpressivE’s and Min_SpeedE’s infer- 360

ence time by counting the number of vector opera- 361

tions necessary for computing a triple’s score: By 362

reducing the width vector to a scalar, many opera- 363

tions reduce from a vector to a scalar operation. In 364

particular, the calculation of mj and kj uses solely 365

scalars in Min_SpeedE instead of vectors. Thus, 366

4

Figure 1: Representation of the two-dimensional rela-
tion hyper-parallelograms H1 and H2, such that H1

subsumes H2 and such that they share the same width
parameter w in each dimension.

ExpressivE needs 15, whereas Min_SpeedE needs367

solely 8 vector operations to compute a triple’s368

score. This corresponds to Min_SpeedE using369

approximately half the number of vector opera-370

tions of ExpressivE for computing a triple’s score,371

thus roughly halving ExpressivE’s inference time,372

which aligns with Section 5.3’s empirical results.373

Key Insights. Fixing the width to a constant value374

w stops Min_SpeedE from adjusting the distance375

function’s slopes. As we will empirically see in376

Section 5, the effect of this is a severely degraded377

KGC performance on hierarchical relations. In-378

troducing independent parameters for adjusting379

the distance function’s slopes solves this problem.380

However, these parameters must be designed care-381

fully to (1) preserve ExpressivE’s geometric inter-382

pretation and (2) retain the reduced inference time383

provided by Min_SpeedE. Each of these aspects384

will be covered in detail in the next section.385

4.2 SpeedE386

SpeedE further enhances Min_SpeedE by adding387

the following two carefully designed scalar388

parameters to each relation embedding: (1)389

the inside distance slope sij ∈ [0, 1] and (2)390

the outside distance slope soj with sij ≤ soj .391

Let mi
j := 2sijw + 1, mo

j := 2sojw + 1, and392

kj := mo
j(m

o
j − 1)/2− (mi

j − 1)/(2mi
j), then393

SpeedE defines the following distance function:394

D(h, rj , t) =

{
τrj(h,t) ⊘mi

j , if τrj(h,t) ⪯ w

τrj(h,t) ⊙mo
j − kj , otherwise

(3)395

Again, the distance function is separated into two 396

piece-wise linear functions: (1) the inside distance 397

Di(h, rj , t) = τrj(h,t)⊘m
i
j for triples that are cap- 398

tured to be true (i.e., τrj(h,t) ⪯ w) and (2) the out- 399

side distance Do(h, rj , t) = τrj(h,t) ⊙mo
j − kj 400

for triples that are captured to be false (i.e., 401

τrj(h,t) ≻ w). Based on this function, SpeedE de- 402

fines the score as s(h, rj , t) =−||D(h, rj , t)||2. 403

Geometric Interpretation. The intuition of sij and 404

soj is that they control the slopes of the respective 405

linear inside and outside distance functions. How- 406

ever, without any constraints on sij and soj , SpeedE 407

would lose ExpressivE’s intuitive geometric inter- 408

pretation (Pavlović and Sallinger, 2023) as sij and 409

soj could be chosen in such a way that distances 410

of embeddings within the hyper-parallelogram are 411

larger than those outside. By constraining these 412

parameters to sij ∈ [0, 1] and sij ≤ soj , we pre- 413

serve lower distances within hyper-parallelograms 414

than outside and, thereby, the intuitive geometric 415

interpretation of our embeddings. 416

Inference Time. The additional introduction of 417

two scalar distance slope parameters sij , s
o
j ∈ R per 418

relation rj does not change the number of vector 419

operations necessary for computing a triple’s score 420

and, thus, does not significantly affect SpeedE’s in- 421

ference time. Thus, we expect that SpeedE retains 422

the time efficiency of Min_SpeedE, as empirically 423

validated in Section 5.3. 424

With this, we have finished our introduction and 425

theoretical analysis of SpeedE. What remains to be 426

shown is its empirical performance, which we shall 427

evaluate next. 428

5 Experiments 429

This section empirically evaluates SpeedE: Sec- 430

tion 5.1 describes the experimental setup. Sec- 431

tion 5.2 studies SpeedE’s KGC performance, find- 432

ing that it achieves competitive performance on 433

FB15k-237 to SotA gKGEs and even significantly 434

outperforms them on WN18RR. Section 5.3 stud- 435

ies SpeedE’s space and time efficiency, finding that 436

on WN18RR, SpeedE needs a quarter of Expres- 437

sivE’s parameters solely to reach the same KGC 438

performance while training five times faster than it. 439

5.1 Experimental Setup 440

Datasets. We empirically evaluate SpeedE on the 441

two standard KGC benchmarks, WN18RR (Bordes 442

et al., 2013; Dettmers et al., 2018) and FB15k-237 443

(Bordes et al., 2013; Toutanova and Chen, 2015). 444

5

WN18RR is extracted from the WordNet database445

(Miller, 1995), representing lexical relations be-446

tween English words, thus naturally containing447

many hierarchical relations (e.g., hypernym-of)448

(Chami et al., 2020). FB15k-237 is a subset of a449

collaborative database consisting of general knowl-450

edge (in English) called Freebase (Bollacker et al.,451

2007), which contains both hierarchical relations452

(e.g., part-of) and non-hierarchical ones (e.g., na-453

tionality) (Chami et al., 2020). Table 2 displays454

the following characteristics of both benchmarks:455

their number of entities |E| and relations |R|, their456

curvature CG (taken from Chami et al. (2020)),457

and the Krackhardt scores κ (taken from Bai et al.458

(2021)), consisting of the four metrics: (connect-459

edness, hierarchy, efficiency, LUBedness). Both460

CG and κ state how tree-like a benchmark is and,461

thus, how hierarchical its relations are. Following462

the procedure of Chami et al. (2020), we employ463

the standard augmentation protocol (Lacroix et al.,464

2018), adding inverse relations to the benchmarks.465

Table 2: Benchmark dataset characteristics. Curvature
CG is from (Chami et al., 2020); the lower, the more
hierarchical the data. Krackhardt scores κ are from (Bai
et al., 2021); the higher, the more hierarchical the data.

Dataset |E| |R| CG κ

FB15k-237 14,541 237 -0.65 (1.00, 0.18, 0.36, 0.06)
WN18RR 40,943 11 -2.54 (1.00, 0.61, 0.99, 0.50)

Setup. We compare our SpeedE model to (1)466

the Euclidean gKGEs ExpressivE (Pavlović and467

Sallinger, 2023), HAKE (Zhang et al., 2020),468

TuckER (Balazevic et al., 2019b), MuRE (Balaze-469

vic et al., 2019a), and RefE, RotE, and AttE (Chami470

et al., 2020), (2) the complex gKGEs ComplEx-471

N3 (Lacroix et al., 2018) and RotatE (Sun et al.,472

2019), and (3) the hyperbolic gKGEs ConE (Bai473

et al., 2021), MuRP (Balazevic et al., 2019a), and474

RefH, RotH, and AttH (Chami et al., 2020). Fol-475

lowing Pavlović and Sallinger (2023), we train476

SpeedE and ExpressivE for up to 1000 epochs477

using gradient descent and the Adam optimizer478

(Kingma and Ba, 2015) and stop the training if the479

validation H@10 score does not increase by mini-480

mally 0.5% for WN18RR and 1% for FB15k-237481

after 100 epochs. We average the experimental re-482

sults over three runs on each benchmark to handle483

marginal performance fluctuations. Furthermore,484

as in (Chami et al., 2020), we evaluate SpeedE and485

ExpressivE in the low-dimensional setting using an486

embedding dimensionality of 32.487

Reproducibility. We list further details on our 488

experimental setup, hardware, hyperparameters, li- 489

braries (Ali et al., 2021), and definitions of metrics 490

in the appendix. Furthermore, we include our code 491

and a link to pre-trained gKGEs in the supplemen- 492

tary material to facilitate reproducibility. 493

5.2 Knowledge Graph Completion 494

This section evaluates SpeedE’s and ExpressivE’s 495

KGC performance. Furthermore, we study how 496

well they represent hierarchical relations, on which 497

hyperbolic gKGEs are typically most effective (Bal- 498

azevic et al., 2019a; Chami et al., 2020). Finally, 499

we analyze the effect of embedding dimensionality 500

on SpeedE’s KGC performance. 501

Table 3: KGC performance under low dimensionalities
(d = 32) of SpeedE, Min_SpeedE, ExpressivE, and
SotA gKGEs on FB15k-237 and WN18RR split by em-
bedding space. The results of: SpeedE, Min_SpeedE,
and ExpressivE were obtained by us; ConE are from
(Bai et al., 2021), HAKE are from (Zheng et al., 2022),
and any other gKGE are from (Chami et al., 2020).

Space Model WN18RR FB15k-237

MRR H@1 H@10 MRR H@1 H@10

E
uc

lid
ea

n

SpeedE .493 .446 .584 .320 .227 .504
Min_SpeedE .485 .442 .573 .319 .226 .502
ExpressivE .485 .442 .571 .298 .208 .476
TuckER .428 .401 .474 .306 .223 .475
MuRE .458 .421 .525 .313 .226 .489
RefE .455 .419 .521 .302 .216 .474
RotE .463 .426 .529 .307 .220 .482
AttE .456 .419 .526 .311 .223 .488
HAKE .416 .389 .467 .296 .323 .463

N
on

-E
uc

lid
ea

n RotatE .387 .330 .491 .290 .208 .458
ComplEx-N3 .420 .390 .460 .294 .211 .463
MuRP .465 .420 .544 .323 .235 .501
RefH .447 .408 .518 .312 .224 .489
RotH .472 .428 .553 .314 .223 .497
AttH .466 .419 .551 .324 .236 .501
ConE .471 .436 .537 - - -

Low-Dimensional KGC. Following the evalua- 502

tion protocol of Chami et al. (2020), we evaluate 503

each gKGE’s performance under dimensionality 504

d = 32. Table 3 presents the results of this eval- 505

uation. Our enhanced SpeedE model is compet- 506

itive with SotA gKGEs on FB15k-237 and even 507

outperforms ExpressivE and any other competing 508

gKGE on WN18RR by a relative difference of 5% 509

on H@10. Furthermore, SpeedE’s performance 510

gain over Min_SpeedE on the highly hierarchical 511

dataset WN18RR (see Table 2) provides strong em- 512

pirical evidence for the effectiveness of the distance 513

slope parameters for representing hierarchical rela- 514

tions under low-dimensional conditions. SpeedE’s 515

performance on the more hierarchical WN18RR al- 516

ready questions the necessity of hyperbolic gKGEs 517

6

for representing hierarchical relations, which will518

be further investigated in the following.519

Hierarchical Relations (Chami et al., 2020; Zhang520

et al., 2020) describe hierarchies between entities,521

such as part_of. Hyperbolic gKGEs have shown522

great potential for representing hierarchical rela-523

tions, outperforming Euclidean gKGEs under low-524

dimensional conditions and thereby justifying the525

increased model complexity added by the hyper-526

bolic space (Chami et al., 2020). To study SpeedE’s527

performance on hierarchical relations, we evaluate528

SpeedE on the triples of any hierarchical relation of529

WN18RR following the methodology of Bai et al.530

(2021). Table 4 presents the results of this study. It531

reveals that SpeedE significantly improves over Ex-532

pressivE on most relations and outperforms RotH533

on five out of the seven hierarchical ones. Most534

notably, SpeedE improves over RotH by a relative535

difference of 23% on H@10 on the hierarchical re-536

lation _member_of_domain_usage, providing em-537

pirical evidence for SpeedE’s promising potential538

for representing hierarchical relations even under539

low-dimensional settings. The performance gain540

on hierarchical relations is likely due to the added541

distance slope parameters, which allow for inde-542

pendently adjusting the distance function’s slopes.543

Table 4: H@10 of ExpressivE, RotH, and SpeedE on
hierarchical relations (Bai et al., 2021) of WN18RR.

Relation ExpressivE RotH SpeedE

_member_meronym 0.362 0.399 0.379
_hypernym 0.276 0.276 0.301
_has_part 0.308 0.346 0.330
_instance_hypernym 0.509 0.520 0.543
_member_of_domain_region 0.365 0.365 0.397
_member_of_domain_usage 0.545 0.438 0.538
_synset_domain_topic_of 0.468 0.447 0.502

Dimensionality Study. To analyze the effect of544

the embedding dimensionality on the KGC per-545

formance, we evaluate state-of-the-art gKGEs on546

WN18RR under varied dimensionalities. Figure 2547

visualizes the results of this study, displaying er-548

ror bars for our SpeedE model with average MRR549

and standard deviation computed over three runs.550

The figure reveals that, surprisingly, ExpressivE551

significantly outperforms RotH, especially under552

low-dimensional conditions, and that the enhanced553

SpeedE model achieves an additional performance554

improvement over ExpressivE. This result provides555

further evidence for the great potential of Euclidean556

gKGEs under low-dimensional conditions.557

Figure 2: MRR of SotA gKGEs on WN18RR using
d ∈ {10, 16, 20, 32, 50, 200, 500}.

Figure 3: MRR of different ablations of SpeedE on
WN18RR using d ∈ {10, 16, 20, 32, 50, 200, 500}

High-Dimensional KGC. The KGC performance 558

of SotA gKGEs under high-dimensional conditions 559

(i.e., d ≥ 200) is listed in the appendix. It reveals 560

that on FB15k-237, SpeedE achieves highly com- 561

petitive KGC performance compared to gKGEs of 562

its own family while dramatically outperforming 563

any competing gKGE on WN18RR. 564

Ablation. Finally, to study the necessity of sij 565

and soj in SpeedE, we introduce two versions of 566

SpeedE: (1) Eq_SpeedE that forces sij = soj and (2) 567

Diff_SpeedE, where sij and soj can be different. We 568

hypothesize that the flexibility of different sij and 569

soj might be beneficial under lower dimensionali- 570

ties, while under higher dimensionalities, reducing 571

the number of parameters and thus setting sij = soj 572

might be beneficial. Figure 3 visualizes the result of 573

this analysis, empirically supporting our hypothe- 574

sis, as Diff_SpeedE outperforms Eq_SpeedE under 575

low dimensionalities and vice-versa in high ones. 576

5.3 Space and Time Efficiency 577

This section empirically analyzes SpeedE’s space 578

and time efficiency compared to SotA gKGEs. Fol- 579

lowing the methodology of Wang et al. (2021), 580

we first analyze the training time per epoch of 581

7

SpeedE, Min_SpeedE, and ExpressivE. Next, to582

allow for a fair comparison of the space and time583

efficiency of SpeedE and SotA gKGEs, we study584

each gKGE’s model size and convergence time un-585

der hyper-parameter settings that achieve approxi-586

mately equal KGC performance.587

Time per Epoch. Following the methodology of588

Wang et al. (2021), Table 5 displays the training589

time per epoch of SpeedE, Min_SpeedE, and Ex-590

pressivE for WN18RR and FB15k-237 with em-591

bedding dimensionality d = 32, negative sampling592

size n = 500, and batch size b = 500. The times593

per epoch were recorded on a GeForce RTX 2080594

Ti GPU of our internal cluster. The empirical re-595

sults of Table 5 align with the theoretical results596

of Sections 4.1 and 4.2, stating that SpeedE and597

Min_SpeedE approximately halve ExpressivE’s in-598

ference time and, thus, also its time per epoch.

Table 5: Time per epoch of SpeedE, Min_SpeedE, and
ExpressivE.

Model Time per Epoch

WN18RR FB15k-237
SpeedE 7s 22s

Min_SpeedE 6s 19s
ExpressivE 15s 46s

599
Next, to provide a fair comparison of each gKGE’s600

space and time efficiency, we measure the conver-601

gence time of gKGEs with approximately equal602

KGC performance. Specifically, we observed that603

SpeedE with dimensionality d = 50 achieves com-604

parable or slightly better KGC performance on605

WN18RR to ExpressivE with d = 200 and the606

best-published results of RotH, HAKE, and ConE607

with d = 500. In particular, the results are summa-608

rized in Table 1 (provided in Section 1).609

Hypotheses. Since (1) the dimensionality of610

SpeedE embeddings is much smaller in compari-611

son to RotH’s, HAKE’s, ConE’s, and ExpressivE’s612

dimensionality, while (2) SpeedE achieves compa-613

rable or even slightly better KGC performance, we614

expect a considerable improvement in SpeedE’s615

space and time efficiency at comparable KGC per-616

formance. Next, based on Table 1’s results, we617

analyze how strongly SpeedE reduces the model618

size and convergence time of competing gKGEs.619

Model Size Analysis. Since |R| << |E| in most620

graphs, (WN18RR: |R|/|E| = 0.00012) and since621

SpeedE, ExpressivE, ConE, and RotH embed each622

entity with a single real-valued vector, SpeedE 623

(d = 50) needs solely a quarter of ExpressivE’s 624

(d = 200) and a tenth of ConE’s and RotH’s 625

(d = 500) number of parameters, while preserv- 626

ing their KGC performance on WN18RR (Table 1). 627

As HAKE requires two real-valued vectors per en- 628

tity, SpeedE (d = 50) solely needs a twentieth of 629

HAKE’s (d = 500) parameters to achieve a slightly 630

better KGC performance. Table 1 lists the number 631

of parameters of trained SpeedE and SotA gKGE 632

models, empirically confirming that SpeedE signif- 633

icantly reduces the size of competing gKGEs. 634

Convergence Time Analysis. To quantify the con- 635

vergence time, we measure for each gKGE the 636

time to reach a validation MRR score of 0.490, 637

i.e., approximately 1% less than the worst reported 638

MRR score of Table 1. As outlined in the table, 639

SpeedE converges already after 6min. Thus, while 640

keeping strong KGC performance on WN18RR, 641

SpeedE speeds up ExpressivE’s convergence time 642

by a factor of 5, HAKE’s by a factor of 9, ConE’s 643

by a factor of 15, and RotH’s by a factor of 20. 644

Discussion. These results show that SpeedE 645

is not solely competitive with SotA gKGEs on 646

FB15k-237 and significantly outperforms them on 647

WN18RR, but even preserves their KGC perfor- 648

mance on WN18RR with much fewer parameters 649

and a dramatically shorter convergence time, in 650

particular speeding up the convergence time of the 651

SotA ExpressivE model by a factor of 5, while 652

using solely a fourth of its number of parameters. 653

6 Conclusion 654

Although there has been much work on resource- 655

efficient gKGEs, any such work has focused exclu- 656

sively on reducing the embedding dimensionality 657

(Balazevic et al., 2019a; Chami et al., 2020; Bai 658

et al., 2021) or using simpler embedding spaces 659

(Kazemi and Poole, 2018; Zhang et al., 2020; 660

Pavlović and Sallinger, 2023), thus addressing only 661

one side of the efficiency problem. In this work, we 662

address the embedding space and dimensionality 663

side jointly by introducing SpeedE, a lightweight 664

gKGE that (1) provides strong inference capabili- 665

ties, (2) is competitive with SotA gKGEs, even sig- 666

nificantly outperforming them on WN18RR, and 667

(3) dramatically increases the efficiency of current 668

gKGEs, in particular, needing solely a fifth of the 669

training time and a fourth of the number of param- 670

eters of the SotA ExpressivE model on WN18RR 671

to reach the same KGC performance. 672

8

7 Limitations and Ethical Impact673

As mentioned in the call for papers, we use this674

additional page to discuss our work’s limitations675

and ethical impact.676

7.1 Limitations677

Since gKGEs naturally provide a geometric inter-678

pretation of their learned patterns, how to automat-679

ically and efficiently mine these learned patterns680

from the embeddings — to make the implicitly681

learned knowledge explicit and further raise the682

model’s transparency — remains an open challenge683

and forms an exciting direction for future work.684

7.2 Ethical Impact685

We designed SpeedE with the goal of finding a686

highly resource-efficient model for KGC that, at687

the same time, provides a geometric interpretation688

of its captured patterns. Therefore, our work aligns689

with two pressing challenges of the machine learn-690

ing community in general and the KGC community691

in particular, namely, (1) raising the resource ef-692

ficiency of KGC models while (2) offering some693

degree of explainability via the geometric interpre-694

tation of captured patterns. Specifically, SpeedE695

reduces the training time — and thus the total com-696

pute — of the SotA ExpressivE model on WN18RR697

to one-fourth while sustaining ExpressivE’s KGC698

performance and geometric interpretation. There-699

fore, we do not foresee any negative impact but700

even expect a potential positive environmental (see701

1) and social impact (see 2) of our work by in-702

troducing a highly resource-efficient model that703

allows for some degree of explainability.704

References705

Ralph Abboud, İsmail İlkan Ceylan, Thomas706
Lukasiewicz, and Tommaso Salvatori. 2020. Boxe:707
A box embedding model for knowledge base708
completion. In Advances in Neural Information709
Processing Systems 33: Annual Conference on710
Neural Information Processing Systems 2020,711
NeurIPS 2020, December 6-12, 2020, virtual.712

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Lau-713
rent Vermue, Sahand Sharifzadeh, Volker Tresp, and714
Jens Lehmann. 2021. PyKEEN 1.0: A Python Li-715
brary for Training and Evaluating Knowledge Graph716
Embeddings. Journal of Machine Learning Research,717
22(82):1–6.718

Yushi Bai, Zhitao Ying, Hongyu Ren, and Jure719
Leskovec. 2021. Modeling heterogeneous hierar-720
chies with relation-specific hyperbolic cones. In Ad-721
vances in Neural Information Processing Systems 34:722

Annual Conference on Neural Information Process- 723
ing Systems 2021, NeurIPS 2021, December 6-14, 724
2021, virtual, pages 12316–12327. 725

Ivana Balazevic, Carl Allen, and Timothy Hospedales. 726
2019a. Multi-relational poincaré graph embeddings. 727
In Advances in Neural Information Processing Sys- 728
tems, volume 32. Curran Associates, Inc. 729

Ivana Balazevic, Carl Allen, and Timothy Hospedales. 730
2019b. TuckER: Tensor factorization for knowledge 731
graph completion. In Proceedings of the 2019 Con- 732
ference on Empirical Methods in Natural Language 733
Processing and the 9th International Joint Confer- 734
ence on Natural Language Processing (EMNLP- 735
IJCNLP), pages 5185–5194, Hong Kong, China. As- 736
sociation for Computational Linguistics. 737

Kurt D. Bollacker, Robert P. Cook, and Patrick Tufts. 738
2007. Freebase: A shared database of structured 739
general human knowledge. In Proceedings of the 740
Twenty-Second AAAI Conference on Artificial In- 741
telligence, July 22-26, 2007, Vancouver, British 742
Columbia, Canada, pages 1962–1963. AAAI Press. 743

Antoine Bordes, Nicolas Usunier, Alberto García- 744
Durán, Jason Weston, and Oksana Yakhnenko. 745
2013. Translating embeddings for modeling multi- 746
relational data. In Advances in Neural Information 747
Processing Systems 26: 27th Annual Conference on 748
Neural Information Processing Systems 2013. Pro- 749
ceedings of a meeting held December 5-8, 2013, Lake 750
Tahoe, Nevada, United States, pages 2787–2795. 751

Samuel Broscheit, Kiril Gashteovski, Yanjie Wang, and 752
Rainer Gemulla. 2020. Can we predict new facts 753
with open knowledge graph embeddings? A bench- 754
mark for open link prediction. In Proceedings of the 755
58th Annual Meeting of the Association for Compu- 756
tational Linguistics, ACL 2020, Online, July 5-10, 757
2020, pages 2296–2308. Association for Computa- 758
tional Linguistics. 759

Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xiaochun 760
Cao, and Qingming Huang. 2021. Dual quater- 761
nion knowledge graph embeddings. Proceedings 762
of the AAAI Conference on Artificial Intelligence, 763
35(8):6894–6902. 764

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic 765
Sala, Sujith Ravi, and Christopher Ré. 2020. Low- 766
dimensional hyperbolic knowledge graph embed- 767
dings. In Proceedings of the 58th Annual Meeting of 768
the Association for Computational Linguistics, pages 769
6901–6914, Online. Association for Computational 770
Linguistics. 771

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, 772
and Sebastian Riedel. 2018. Convolutional 2d knowl- 773
edge graph embeddings. In Proceedings of the Thirty- 774
Second AAAI Conference on Artificial Intelligence, 775
(AAAI-18), the 30th innovative Applications of Arti- 776
ficial Intelligence (IAAI-18), and the 8th AAAI Sym- 777
posium on Educational Advances in Artificial Intel- 778
ligence (EAAI-18), New Orleans, Louisiana, USA, 779
February 2-7, 2018, pages 1811–1818. AAAI Press. 780

9

https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html
http://jmlr.org/papers/v22/20-825.html
http://jmlr.org/papers/v22/20-825.html
http://jmlr.org/papers/v22/20-825.html
http://jmlr.org/papers/v22/20-825.html
http://jmlr.org/papers/v22/20-825.html
https://proceedings.neurips.cc/paper/2021/hash/662a2e96162905620397b19c9d249781-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/662a2e96162905620397b19c9d249781-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/662a2e96162905620397b19c9d249781-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f8b932c70d0b2e6bf071729a4fa68dfc-Abstract.html
https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D19-1522
https://dl.acm.org/doi/10.5555/1619797.1619981
https://dl.acm.org/doi/10.5555/1619797.1619981
https://dl.acm.org/doi/10.5555/1619797.1619981
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.209
https://doi.org/10.18653/v1/2020.acl-main.209
https://doi.org/10.18653/v1/2020.acl-main.209
https://doi.org/10.18653/v1/2020.acl-main.209
https://doi.org/10.18653/v1/2020.acl-main.209
https://doi.org/10.1609/aaai.v35i8.16850
https://doi.org/10.1609/aaai.v35i8.16850
https://doi.org/10.1609/aaai.v35i8.16850
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.1609/aaai.v32i1.11573
https://doi.org/10.1609/aaai.v32i1.11573
https://doi.org/10.1609/aaai.v32i1.11573

Seyed Mehran Kazemi and David Poole. 2018. Simple781
embedding for link prediction in knowledge graphs.782
In Advances in Neural Information Processing Sys-783
tems 31: Annual Conference on Neural Information784
Processing Systems 2018, NeurIPS 2018, December785
3-8, 2018, Montréal, Canada, pages 4289–4300.786

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A787
method for stochastic optimization. 3rd International788
Conference on Learning Representations, ICLR 2015,789
San Diego, CA, USA, May 7-9, 2015, Conference790
Track Proceedings.791

Alexandre Lacoste, Alexandra Luccioni, Victor792
Schmidt, and Thomas Dandres. 2019. Quantifying793
the carbon emissions of machine learning. arXiv794
preprint arXiv:1910.09700.795

Timothée Lacroix, Nicolas Usunier, and Guillaume796
Obozinski. 2018. Canonical tensor decomposition797
for knowledge base completion. In International798
Conference on Machine Learning.799

George A. Miller. 1995. Wordnet: A lexical database800
for english. Commun. ACM, 38(11):39–41.801

Deepak Nathani, Jatin Chauhan, Charu Sharma, and802
Manohar Kaul. 2019. Learning attention-based em-803
beddings for relation prediction in knowledge graphs.804
In Proceedings of the 57th Conference of the Associ-805
ation for Computational Linguistics, ACL 2019, Flo-806
rence, Italy, July 28- August 2, 2019, Volume 1: Long807
Papers, pages 4710–4723. Association for Computa-808
tional Linguistics.809

Maximilian Nickel, Volker Tresp, and Hans-Peter810
Kriegel. 2011. A three-way model for collective811
learning on multi-relational data. In Proceedings of812
the 28th International Conference on Machine Learn-813
ing, ICML 2011, Bellevue, Washington, USA, June814
28 - July 2, 2011, pages 809–816. Omnipress.815

Aleksandar Pavlović and Emanuel Sallinger. 2023. Ex-816
pressive: A spatio-functional embedding for knowl-817
edge graph completion. In 11th International Confer-818
ence on Learning Representations, ICLR 2023, Kigal,819
Rwanda, May 1-5, 2023.820

Richard Socher, Danqi Chen, Christopher D. Manning,821
and Andrew Y. Ng. 2013. Reasoning with neural822
tensor networks for knowledge base completion. In823
Advances in Neural Information Processing Systems824
26: 27th Annual Conference on Neural Information825
Processing Systems 2013. Proceedings of a meet-826
ing held December 5-8, 2013, Lake Tahoe, Nevada,827
United States, pages 926–934.828

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian829
Tang. 2019. Rotate: Knowledge graph embedding830
by relational rotation in complex space. In 7th In-831
ternational Conference on Learning Representations,832
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.833
OpenReview.net.834

Kristina Toutanova and Danqi Chen. 2015. Observed835
versus latent features for knowledge base and text836

inference. Proceedings of the 3rd Workshop on Con- 837
tinuous Vector Space Models and their Composition- 838
ality. 839

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric 840
Gaussier, and Guillaume Bouchard. 2016. Com- 841
plex embeddings for simple link prediction. In Pro- 842
ceedings of the 33nd International Conference on 843
Machine Learning, ICML 2016, New York City, NY, 844
USA, June 19-24, 2016, volume 48 of JMLR Work- 845
shop and Conference Proceedings, pages 2071–2080. 846
JMLR.org. 847

Kai Wang, Yu Liu, Dan Lin, and Michael Sheng. 2021. 848
Hyperbolic geometry is not necessary: Lightweight 849
Euclidean-based models for low-dimensional knowl- 850
edge graph embeddings. In Findings of the Associ- 851
ation for Computational Linguistics: EMNLP 2021, 852
pages 464–474, Punta Cana, Dominican Republic. 853
Association for Computational Linguistics. 854

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 855
2017. Knowledge graph embedding: A survey of 856
approaches and applications. IEEE Trans. Knowl. 857
Data Eng., 29(12):2724–2743. 858

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, 859
and Li Deng. 2015. Embedding entities and relations 860
for learning and inference in knowledge bases. In 861
3rd International Conference on Learning Represen- 862
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 863
2015, Conference Track Proceedings. 864

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019. 865
Quaternion knowledge graph embeddings. In Ad- 866
vances in Neural Information Processing Systems 32: 867
Annual Conference on Neural Information Process- 868
ing Systems 2019, NeurIPS 2019, December 8-14, 869
2019, Vancouver, BC, Canada, pages 2731–2741. 870

Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie 871
Wang. 2020. Learning hierarchy-aware knowledge 872
graph embeddings for link prediction. In The Thirty- 873
Fourth AAAI Conference on Artificial Intelligence, 874
AAAI 2020, The Thirty-Second Innovative Applica- 875
tions of Artificial Intelligence Conference, IAAI 2020, 876
The Tenth AAAI Symposium on Educational Advances 877
in Artificial Intelligence, EAAI 2020, New York, NY, 878
USA, February 7-12, 2020, pages 3065–3072. AAAI 879
Press. 880

Wenjie Zheng, Wenxue Wang, Fulan Qian, Shu Zhao, 881
and Yanping Zhang. 2022. Hyperbolic hierarchical 882
knowledge graph embeddings for link prediction in 883
low dimensions. CoRR, abs/2204.13704. 884

10

https://proceedings.neurips.cc/paper/2018/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1910.09700
http://arxiv.org/abs/1910.09700
http://arxiv.org/abs/1910.09700
http://proceedings.mlr.press/v80/lacroix18a.html
http://proceedings.mlr.press/v80/lacroix18a.html
http://proceedings.mlr.press/v80/lacroix18a.html
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.18653/v1/p19-1466
https://doi.org/10.18653/v1/p19-1466
https://doi.org/10.18653/v1/p19-1466
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://openreview.net/pdf?id=xkev3_np08z
https://openreview.net/pdf?id=xkev3_np08z
https://openreview.net/pdf?id=xkev3_np08z
https://openreview.net/pdf?id=xkev3_np08z
https://openreview.net/pdf?id=xkev3_np08z
https://proceedings.neurips.cc/paper/2013/hash/b337e84de8752b27eda3a12363109e80-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/b337e84de8752b27eda3a12363109e80-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/b337e84de8752b27eda3a12363109e80-Abstract.html
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
http://proceedings.mlr.press/v48/trouillon16.html
http://proceedings.mlr.press/v48/trouillon16.html
http://proceedings.mlr.press/v48/trouillon16.html
https://doi.org/10.18653/v1/2021.findings-emnlp.42
https://doi.org/10.18653/v1/2021.findings-emnlp.42
https://doi.org/10.18653/v1/2021.findings-emnlp.42
https://doi.org/10.18653/v1/2021.findings-emnlp.42
https://doi.org/10.18653/v1/2021.findings-emnlp.42
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1109/TKDE.2017.2754499
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
https://proceedings.neurips.cc/paper/2019/hash/d961e9f236177d65d21100592edb0769-Abstract.html
https://doi.org/10.1609/aaai.v34i03.5701
https://doi.org/10.1609/aaai.v34i03.5701
https://doi.org/10.1609/aaai.v34i03.5701
https://doi.org/10.48550/arXiv.2204.13704
https://doi.org/10.48550/arXiv.2204.13704
https://doi.org/10.48550/arXiv.2204.13704
https://doi.org/10.48550/arXiv.2204.13704
https://doi.org/10.48550/arXiv.2204.13704

A Organization 885

This appendix includes complete proofs, experimental setup details, and additional results. In particular, 886

Section B reports the KGC performance of SpeedE and SotA gKGEs under high-dimensional conditions. 887

Section C briefly summarizes the notation that is used throughout this paper. Section D formally defines 888

vital concepts for SpeedE that we will use in our proofs. Based on the introduced concepts, Section E 889

proves Theorem 4.1. Finally, Section F lists details on reproducing our results and on our implementation, 890

training setup, evaluation protocol, and estimated CO2 emissions. 891

B High-Dimensional Knowledge Graph Completion 892

This section reports the KGC performance of SotA gKGEs under high-dimensional conditions (i.e., 893

d ≥ 200). Table 6 displays these results, where the result for SpeedE was obtained by us, the result 894

for ExpressivE is from (Pavlović and Sallinger, 2023), the results for ConE and HAKE are from (Bai 895

et al., 2021), the results for DistMult, ConvE, and ComplEx are from (Dettmers et al., 2018), and the 896

results for any other gKGE are from (Chami et al., 2020). Table 6 reveals that on FB15k-237, SpeedE 897

achieves highly competitive KGC performance compared to gKGEs of its own family while dramatically 898

outperforming any competing gKGE on WN18RR. 899

Table 6: KGC performance under high dimensionalities of SpeedE and SotA gKGEs on FB15k-237 and WN18RR
split by model family.

Family Model WN18RR FB15k-237

MRR H@1 H@10 MRR H@1 H@10

Fu
nc

tio
na

l/
Sp

at
ia

l

SpeedE .512 .460 .615 .348 .253 .536
ExpressivE .508 .464 .597 .350 .256 .535
HAKE .497 .452 .582 .346 .250 .542
ConE .496 .453 .579 .345 .247 .540
MuRE .465 .436 .554 .336 .245 .521
RefE .473 .430 .561 .351 .256 .541
RotE .494 .446 .585 .346 .251 .538
AttE .490 .443 .581 .351 .255 .543
MuRP .481 .440 .566 .335 .243 .518
RefH .461 .404 .568 .346 .252 .536
RotH .496 .449 .586 .344 .246 .535
AttH .486 .443 .573 .348 .252 .540

B
ili

ne
ar

RotatE .476 .428 .571 .338 .241 .533
ComplEx .475 - .547 .348 - .536
Quaternion .488 .438 .582 .348 .248 .550
TuckER .470 .443 .526 .358 .266 .544

C Notation 900

In this section, we give a brief overview of the most important notations we use. Note that, for ease of 901

readability and comparability, we use exactly the same language as ExpressivE (Pavlović and Sallinger, 902

2023). 903

v . . . non-bold symbols represent scalars 904

v . . . bold symbols represent vectors, sets or tuples 905

0 . . . represents a vector of zeros (the same semantics apply to 0.5, 1, and 2) 906

⊘ . . . represents the element-wise division operator 907

⊙ . . . represents the element-wise (Hadamard) product operator 908

⪰ . . . represents the element-wise greater or equal operator 909

11

≻ . . . represents the element-wise greater operator910

⪯ . . . represents the element-wise less or equal operator911

≺ . . . represents the element-wise less operator912

x|.| . . . represents the element-wise absolute value913

|| . . . represents the concatenation operator914

D Definition of Capturing915

In this section, we introduce the formal semantics of SpeedE models. Note that, for ease of readability916

and comparability, we use exactly the same language as ExpressivE (Pavlović and Sallinger, 2023). In917

places where SpeedE significantly differs from ExpressivE, we will explicitly note this and compare the918

two. Specifically, this section introduces the notions of capturing a pattern in a SpeedE model that we919

informally discussed in Section 3.1. Furthermore, it introduces some additional notations, which will help920

us simplify the upcoming proofs and present them intuitively.921

Knowledge Graph. A tuple (G,E,R) is called a knowledge graph, where R is a finite set of relations,922

E is a finite set of entities, and G ⊆ E ×R×E is a finite set of triples. W.l.o.g., we assume that any923

relation is non-empty since removing any virtual entity pair embedding from a hyper-parallelogram would924

be trivial, just adding unnecessary complexity to the proofs.925

SpeedE Model. We define a SpeedE model as a tuple M+ = (ϵ,σ, w,ρ), where ϵ ⊂ 2R
d

is the set of926

entity embeddings, σ ⊂ 2R
d

is the set of center embeddings, w ∈ R>0 represents the width constant,927

and ρ ⊂ 2R
d

is the set of slope vectors. Note that this definition is slightly different from an ExpressivE928

model M = (ϵ,σ, δ,ρ), where instead of the width constant w, we have δ ⊂ 2R
d

that represents the set929

of width embeddings.930

Linking Embeddings to KGs. A SpeedE model M+ = (ϵ,σ, w,ρ) and a KG (G,E,R) are linked via931

the following assignment functions: The entity assignment function fe : E → ϵ assigns to each entity932

eh ∈ E an entity embedding eh ∈ ϵ. Based on fe, the virtual assignment function fv : E ×E → R2d933

defines for any pair of entities (eh, et) ∈ E a virtual entity pair embedding fv(eh, et) = (fe(eh)||fe(et)),934

where || represents the concatenation operator. Furthermore, we define SpeedE’s relation assignment935

function f+
h (rj) : R → R2d × R × R2d as f+

h (rj) = (chtj , w, s
th
j), where chtj = (chj ||ctj) with936

chj , c
t
j ∈ σ and where sthj = (stj ||shj) with stj , s

h
j ∈ ρ. Note that this is different from ExpressivE’s937

relation assignment function fh(rj) : R → R2d × R2d × R2d, where fh(rj) = (chtj ,w
ht
j , sthj) with938

wht
j = (wh

j ||wt
j) being two concatenated width embeddings.939

Virtual Triple Space. To be able to assign a geometric interpretation to f+
h (rj), we briefly recap the940

definition of the virtual triple space R2d introduced by Pavlović and Sallinger (2023). Specifically, the941

virtual triple space is constructed by concatenating the head and tail entity embeddings. In detail, this942

means that any pair of entities (eh, et) ∈ E×E defines a point in the virtual triple space by concatenating943

their entity embeddings eh, et ∈ Rd, i.e., (eh||et) ∈ R2d. We will henceforth call the first d dimensions944

of the virtual triple space the head dimensions and the second d dimensions the tail dimensions. A set945

of important sub-spaces of the virtual triple space are the 2-dimensional spaces created from the k-th946

dimension of the head and tail dimensions — i.e., the k-th and (d+ k)-th virtual triple space dimensions.947

We call them correlation subspaces as they visualize the captured relation-specific dependencies of head948

and tail entity embeddings. Moreover, we call the correlation subspace spanned by the k-th and (d+ k)-th949

virtual triple space dimension the k-th correlation subspace. Now, the geometric interpretation of f+
h (rj)950

within the virtual triple space is a hyper-parallelogram whose edges are solely crooked in each correlation951

subspace, representing the relationship between head and tail entity embeddings.952

Model Configuration. We call a SpeedE model M+ together with a concrete relation assignment953

function f+
h a relation configuration m+

h = (M+,f+
h). If m+

h additionally has a virtual assignment954

function fv, we call it a complete model configuration m+ = (M+,f+
h ,fv). Note that an ExpressivE955

relation configuration mh = (M ,fh) and a complete ExpressivE model configuration m = (M ,fh,fv)956

are defined differently by replacing M+ and f+
h with their ExpressivE equivalents, i.e., M and fh.957

12

Definition of Truth. A triple rj(eh, et) is captured to be true in some m+, with rj ∈ R and eh, et ∈ E iff 958

Inequality 4 holds for the assigned embeddings of h, t, and r. This means more precisely that Inequality 4 959

needs to hold for fv(eh, et) = (fe(eh)||fe(et)) = (eh, et) and f+
h (rj) = (chtj , w, s

th
j). Note that, for 960

ExpressivE, the definition of a triple’s truth is slightly different, as w in Inequality 4 would be exchanged 961

by the respective width embedding wht
j . 962

(eht − chtj − sthj ⊙ eth)
|.| ⪯ w, (4) 963

Intuition. At an intuitive level, a triple rj(eh, et) is captured to be true by some complete SpeedE 964

model configuration m+ iff the virtual pair embedding fv(eh, et) of entities eh and et lies within the 965

hyper-parallelogram of relation rj defined by f+
h (rj). 966

Simplifying Notations. Therefore, to simplify the upcoming proofs, we denote with fv(eh, et) ∈ f+
h (rj) 967

that the virtual pair embedding fv(eh, et) of an entity pair (eh, et) ∈ E × E lies within the hyper- 968

parallelogram f+
h (rj) of some relation rj ∈ R in the virtual triple space. Accordingly, for sets of virtual 969

pair embeddings P := {fv(eh1 , et1), . . . ,fv(ehn , etn)}, we denote with P ⊆ f+
h (rj) that all virtual 970

pair embeddings of P lie within the hyper-parallelogram of the relation rj . Furthermore, we denote with 971

fv(eh, et) ̸∈ f+
h (rj) that a virtual pair embedding fv(eh, et) does not lie within the hyper-parallelogram 972

of a relation rj and with P ̸⊆ f+
h (rj) we denote that an entire set of virtual pair embeddings P does not 973

lie within the hyper-parallelogram of a relation rj . 974

Capturing Inference Patterns. Based on the previous definitions, we define capturing patterns formally: 975

A relation configuration m+
h captures a pattern ψ exactly if for any ground pattern ϕB1 ∧· · ·∧ϕBm ⇒ ϕH 976

within the deductive closure of ψ and for any instantiation of fe and fv the following conditions are 977

satisfied: 978

• if ϕH is a triple and if m+
h captures the body triples to be true — i.e., fv(args(ϕB1)) ∈ 979

f+
h (rel(ϕB1)), . . . ,fv(args(ϕBm)) ∈ f+

h (rel(ϕBm)) — then m+
h also captures the head triple 980

to be true — i.e., fv(args(ϕH)) ∈ f+
h (rel(ϕH)). 981

• if ϕH = ⊥, then m+
h captures at least one of the body triples to be false — i.e., there is some 982

j ∈ {1, . . . ,m} such that fv(args(ϕBj)) ̸∈ f+
h (rel(ϕBj)). 983

where args() is the function that returns the arguments of a triple, and rel() is the function that returns 984

the relation of the triple. Furthermore, a relation configuration m+
h captures a pattern ψ exactly and 985

exclusively if (1) m+
h exactly captures ψ and (2) m+

h does not capture any positive pattern ϕ (i.e., 986

ϕ ∈ {symmetry , inversion, hierarchy , intersection, composition}) such that ψ ̸|= ϕ except where 987

the body of ϕ is not satisfied over m+
h . 988

Discussion. The following provides some intuition of the above definition of capturing a pattern. Capturing 989

a pattern exactly is defined straightforwardly by adhering to the semantics of logical implication ϕ := 990

ϕB ⇒ ϕH , i.e., a relation configuration m+
h needs to be found such that for any complete model 991

configuration m+ over m+
h if the body ϕB of the pattern is satisfied, then its head ϕH can be inferred. 992

Capturing a pattern exactly and exclusively imposes additional constraints. Here, the aim is not solely 993

to capture a pattern but additionally to showcase that a pattern can be captured independently from any 994

other pattern. Therefore, some notion of minimality/exclusiveness of a pattern is needed. As in Abboud 995

et al. (2020); Pavlović and Sallinger (2023), we define minimality by means of solely capturing those 996

positive patterns ϕ that directly follow from the deductive closure of the pattern ψ, except for those ϕ that 997

are captured trivially, i.e., except for those ϕ where their body is not satisfied over the constructed m+
h . 998

The authors of (Pavlović and Sallinger, 2023) have shown that any core inference patterns (given 999

in Section 3.1) can be expressed by means of spatial relations of the corresponding relation hyper- 1000

parallelograms in the virtual triple space. Therefore, exclusiveness is formulated intuitively as the ability 1001

to limit the intersection of hyper-parallelograms to only those intersections that directly follow from the 1002

13

captured pattern ψ for any known relation rj ∈ R, which is in accordance with the notion of exclusiveness1003

of the literature (Abboud et al., 2020; Pavlović and Sallinger, 2023).1004

Note that the definition of capturing patterns solely depends on relation configurations. This is vital1005

for SpeedE to capture patterns in a lifted manner, i.e., SpeedE shall be able to capture patterns without1006

grounding them first. Furthermore, being able to capture patterns in a lifted way is not only efficient but1007

also natural, as the aim is to capture patterns between relations. Thus, it would be unnatural if constraints1008

on entity embeddings were necessary to capture such relation-specific patterns.1009

As outlined in the previous paragraphs, the definition of capturing patterns is in accordance with the1010

literature (Abboud et al., 2020; Pavlović and Sallinger, 2023), focuses on efficiently capturing patterns,1011

and gives us a formal foundation for the upcoming proofs, which will show that SpeedE can capture the1012

core inference patterns.1013

E Proof of Theorem 4.11014

In Section 3.1, we have already briefly introduced inference patterns. To prove that SpeedE captures1015

the core inference patterns exactly and exclusively (Theorem 4.1), let us now first recall the full, formal1016

definition of these patterns.1017

Definition E.1. (Abboud et al., 2020; Pavlović and Sallinger, 2023) Let the inference patterns be defined1018

as follows:1019

• Patterns of the form r1(X,Y) ⇒ r1(Y,X) with r1 ∈ R are called symmetry patterns.1020

• Patterns of the form r1(X,Y) ⇒ ¬r1(Y,X) with r1 ∈ R are called anti-symmetry patterns.1021

• Patterns of the form r1(X,Y) ⇔ r2(Y,X) with r1, r2 ∈ R and r1 ̸= r2 are called inversion1022

patterns.1023

• Patterns of the form r1(X,Y) ∧ r2(Y,Z) ⇒ r3(X,Z) with r1, r2, r3 ∈ R and r1 ̸= r2 ̸= r3 are1024

called (general) composition patterns.1025

• Patterns of the form r1(X,Y) ⇒ r2(X,Y) with r1, r2 ∈ R and r1 ̸= r2 are called hierarchy1026

patterns.1027

• Patterns of the form r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y) with r1, r2, r3 ∈ R and r1 ̸= r2 ̸= r3 are1028

called intersection patterns.1029

• Patterns of the form r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ with r1, r2 ∈ R and r1 ̸= r2 are called mutual1030

exclusion patterns.1031

Based on these definitions, we will prove that SpeedE captures the core inference patterns exactly and1032

exclusively, thereby proving Theorem 4.1. To prove Theorem 4.1, we give the relevant propositions1033

obtained from and proved by Pavlović and Sallinger (2023) and adapt them to SpeedE. For each of them,1034

we give proofs, which in some situations follow from the ones in Pavlović and Sallinger (2023), and in1035

other situations are entirely new constructions.1036

The key change of SpeedE that will be of our concern in the following proofs is fixing the width to1037

a constant value, as this will require new proofs for some of the properties. Observe that SpeedE1038

additionally changes the distance function of ExpressivE. However, this does not affect ExpressivE’s1039

inference capabilities, i.e., which inference patterns can be captured. Careful inspection of the proofs of1040

inference capabilities given in (Pavlović and Sallinger, 2023) shows that the only property required of the1041

distance function is that scores within the hyper-parallelogram are larger than those outside. As the newly1042

defined distance function of SpeedE keeps this property, the change of distance function between the two1043

models does not affect the proofs of the inference capabilities given in (Pavlović and Sallinger, 2023).1044

Hence, the same proof argument can be applied.1045

14

The other observation that we will make in general before giving the specific proofs is that the “exactly” 1046

part, proved in (Pavlović and Sallinger (2023), Propositions F.1-F.7), of “exactly and exclusively” capturing 1047

patterns is not affected by the changes in the model. These proofs are all based on embedding pairs of 1048

entities as points in the virtual triple space and relations as hyper-parallelograms, which is still the case in 1049

SpeedE. Thus, we now proceed to proving that SpeedE captures the core inference patterns exactly and 1050

exclusively. 1051

Proposition E.2 (Inversion (Exactly and Exclusively)). Let m+
h = (M+,f+

h) be a relation configu- 1052

ration and r1, r2 ∈ R be relations where r1(X,Y) ⇔ r2(Y,X) holds for any entities X,Y ∈ E. Then 1053

m+
h can capture r1(X,Y) ⇔ r2(Y,X) exactly and exclusively. 1054

Proof. The proof of this property in Expressive (Pavlović and Sallinger (2023), Proposition G.3) is based 1055

on a key assumption, namely that there is an mh such that fh(r1) is the mirror image of fh(r2) with 1056

fh(r1) ̸= fh(r2). This is straightforward in ExpressivE but more complex in SpeedE. We will show 1057

this next. 1058

Let us first observe that in SpeedE, it is not trivially given that there is an m+
h = (M+,f+

h) such that 1059

f+
h (r1) is the mirror image of f+

h (r2) with f+
h (r1) ̸= f+

h (r2), as fh(rj)’s width embedding wht
j 1060

has been replaced by a shared width constant w in f+
h (rj) with j ∈ {1, 2}. Thus, what needs to be 1061

shown is that there is a relation configuration m+
h such that f+

h (r1) is the mirror image of f+
h (r2) 1062

with f+
h (r1) ̸= f+

h (r2), as then the original proof of ExpressivE can be directly applied to prove 1063

Proposition E.2’s claim, i.e., that m+
h can capture r1(X,Y) ⇔ r2(Y,X) exactly and exclusively. Now, it 1064

is interesting to see that fixing the width parameter in SpeedE as opposed to ExpressivE not only changes 1065

the model but actually allows a quite elegant construction witnessing this property. 1066

Let us now give this construction, thereby showing the claim. Specifically, let f+
h (r1) = (cht1 , w, s

th
1) 1067

with cht1 = (ch1 ||ct1) ∈ R2d, w ∈ R>0, and sth1 = (st1||sh1) ∈ R2d. Furthermore, let f+
h (r2) = 1068

(cht2 , w, s
th
2) with cht2 = (ct1||ch1) ∈ R2d, w ∈ R>0, and sth2 = (sh1 ||st1) ∈ R2d. We will, in the 1069

following, show that the constructed fh(r2) is the mirror image of fh(r1) to prove our claim. Let 1070

X,Y ∈ E be arbitrary entities and let fv be an arbitrary virtual assignment function defined over (X,Y) 1071

and (Y,X) with fv(X,Y) = exy and fv(Y,X) = eyx. Then by Inequality 4, a triple r1(X,Y) is 1072

captured to be true by m+ = (M+,f+
h ,fv) if Inequality 5 is satisfied. 1073

(exy − cht1 − sth1 ⊙ eyx)
|.| ⪯ w (5) 1074

(eyx − cth1 − sht1 ⊙ exy)
|.| ⪯ w (6) 1075

(eyx − cht2 − sth2 ⊙ exy)
|.| ⪯ w (7) 1076

Since Inequality 5 is element-wise, one can equivalently reformulate it by arbitrarily exchanging its 1077

dimensions. Using this insight, we can replace the head and tail dimensions for each embedding, thereby 1078

obtaining Inequality 6. Finally, by our construction of f+
h (r2), we have that cht2 = cth1 and sth2 = sht1 . 1079

We substitute these equations into Inequality 6, thereby obtaining Inequality 7. Now, Inequality 7 states by 1080

the definition of a triple’s truth (i.e., Inequality 4) that r2(Y,X) is captured by m+
h . Since Inequalities 5-7 1081

are all equivalent, we have shown that f+
h (r1) is the mirror image of f+

h (r2). Since, it is now easy to see 1082

that an m+
h exists such that f+

h (r1) is the mirror image of f+
h (r2) with f+

h (r1) ̸= f+
h (r2), the proof 1083

of (Pavlović and Sallinger (2023), Proposition G.4) can be directly applied to SpeedE. Thus, we have 1084

proven Proposition E.2, i.e., that m+
h can capture r1(X,Y) ⇔ r2(Y,X) exactly and exclusively. 1085

15

Table 7: Relation embeddings of a relation configuration m+
h that captures hierarchy (i.e., r1(X,Y) ⇒ r2(X,Y))

exactly and exclusively using width w = 1.

ch st ct sh

r1 −2.5 0.5 1.5 0

r2 1 −2 4.5 2

Proposition E.3 (Hierarchy (Exactly and Exclusively)). Let m+
h = (M+,f+

h) be a relation configu-1086

ration and r1, r2 ∈ R be relations where r1(X,Y) ⇒ r2(X,Y) holds for any entities X,Y ∈ E. Then1087

m+
h can capture r1(X,Y) ⇒ r2(X,Y) exactly and exclusively.1088

Proof. The proof of this property in Expressive (Pavlović and Sallinger (2023), Proposition G.4) is based1089

on a key assumption, namely that there is an mh such that fh(r1) ⊂ fh(r2) with fh(r1) ̸= fh(r2).1090

This is straightforward in ExpressivE but much more complex in SpeedE. We will show this next.1091

Let us first observe that in SpeedE, it is not trivially given that there is an m+
h = (M+,f+

h) such that1092

f+
h (r1) ⊂ f+

h (r2) with f+
h (r1) ̸= f+

h (r2), as fh(rj)’s width embedding wht
j has been replaced1093

by a shared width constant w in f+
h (rj) with j ∈ {1, 2}. Thus, what needs to be shown is that there1094

is a relation configuration m+
h such that f+

h (r1) ⊂ f+
h (r2) with f+

h (r1) ̸= f+
h (r2), as then the1095

original proof of ExpressivE can be directly applied to prove Proposition E.3’s claim, i.e., that m+
h can1096

capture r1(X,Y) ⇒ r2(X,Y) exactly and exclusively. In the following, we construct such a relation1097

configuration m+
h = (M+,f+

h), where f+
h (r1) ⊂ f+

h (r2) with f+
h (r1) ̸= f+

h (r2) to prove the1098

claim of Proposition E.3:1099

Figure 1 (given on Page 5 of the main body) visualizes the relation configuration m+
h = (M+,f+

h)1100

provided in Table 7. As can be easily seen in Figure 1, m+
h captures f+

h (r1) ⊂ f+
h (r2) with f+

h (r1) ̸=1101

f+
h (r2). Thus, we have proven Proposition E.3, as (1) we have shown the existence of an m+

h that1102

captures f+
h (r1) ⊂ f+

h (r2) with f+
h (r1) ̸= f+

h (r2) and (2) the proof of (Pavlović and Sallinger (2023),1103

Proposition G.4) can be directly applied to SpeedE since an m+
h exists such that f+

h (r1) ⊂ f+
h (r2)1104

with f+
h (r1) ̸= f+

h (r2).1105

Figure 4: Relation embeddings of a relation configuration mh that captures intersection (i.e., r1(X,Y) ∧
r2(X,Y) ⇒ r3(X,Y)) exactly and exclusively using width w = 1.

16

Table 8: Relation embeddings of a relation configuration m+
h that captures intersection (i.e., r1(X,Y)∧r2(X,Y) ⇒

r3(X,Y)) exactly and exclusively using width w = 1.

ch st ct sh

r1 −3.75 0.5 1 0

r2 1 −2 5 2

r3 −3.5 0.5 0.5 −1

Proposition E.4 (Intersection (Exactly and Exclusively)). Let m+
h = (M+,f+

h) be a relation config- 1106

uration and r1, r2, r3 ∈ R be relations where r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y) holds for any entities 1107

X,Y ∈ E. Then m+
h can capture r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y) exactly and exclusively. 1108

Proof Sketch. This is similar in construction to the previous proof. Hence, we only give a proof sketch for 1109

ease of readability. To prove Proposition E.4, observe that in (Pavlović and Sallinger (2023), Proposition 1110

G.5) an ExpressivE relation configuration mh with several different width embeddings is constructed. 1111

However, the key observation we will make is that choosing the width embeddings differently is not 1112

necessary. In fact, an interested reader inspecting the original proof can obtain a proof applicable to 1113

SpeedE by following the proof of (Pavlović and Sallinger (2023), Proposition G.5) analogously for the 1114

SpeedE relation configuration m+
h described in Table 8 and visualized by Figure 4. Thus, the proof 1115

for Proposition E.4 is straightforward given m+
h defined in Table 8 and (Pavlović and Sallinger (2023), 1116

Proposition G.5). 1117

Table 9: Relation embeddings of a relation configuration m+
h that captures composition (i.e., r1(X,Y)∧r2(Y,Z) ⇒

r3(X,Z)) exactly and exclusively using width w = 1.

ch st ct sh

r1 −7 3 5 1

r2 −7.5 1 2 3

r3 −19.5 2 13 2

Figure 5: Relation embeddings of a relation configuration mh that captures composition (i.e., r1(X,Y) ∧
r2(Y, Z) ⇒ r3(X,Z)) exactly and exclusively using width w = 1.

17

Proposition E.5 (Composition (Exactly and Exclusively)). Let r1, r2, r3 ∈ R be relations and let1118

m+
h = (M+,f+

h) be a relation configuration, where f+
h is defined over r1, r2, and r3. Furthermore1119

let r3 be the composite relation of r1 and r2, i.e., r1(X,Y) ∧ r2(Y,Z) ⇒ r3(X,Z) holds for all entities1120

X,Y, Z ∈ E. Then m+
h can capture r1(X,Y) ∧ r2(Y,Z) ⇒ r3(X,Z) exactly and exclusively.1121

Proof Sketch. This is similar in construction to the proof of Proposition E.3. Hence, we only give a proof1122

sketch for ease of readability. To prove Proposition E.5, observe that in (Pavlović and Sallinger (2023),1123

Proposition G.6), an ExpressivE relation configuration mh with several different width embeddings is1124

constructed. However, choosing the width embeddings differently is not necessary. In fact, an interested1125

reader inspecting the original proof can obtain a proof applicable to SpeedE by following the proof of1126

(Pavlović and Sallinger (2023), Proposition G.6) analogously for the SpeedE relation configuration m+
h1127

described in Table 9 and visualized by Figure 5. Thus, the proof for Proposition E.5 is straightforward1128

given m+
h defined in Table 9 and (Pavlović and Sallinger (2023), Proposition G.6).1129

Proposition E.6 (Symmetry (Exactly and Exclusively)). Let m+
h = (M+,f+

h) be a relation configu-1130

ration and r1 ∈ R be a symmetric relation, i.e., r1(X,Y) ⇒ r1(Y,X) holds for any entities X,Y ∈ E.1131

Then m+
h can capture r1(X,Y) ⇒ r1(Y,X) exactly and exclusively.1132

Proposition E.7 (Anti-Symmetry (Exactly and Exclusively)). Let m+
h = (M+,f+

h) be a relation1133

configuration and r1 ∈ R be an anti-symmetric relation, i.e., r1(X,Y) ⇒ ¬r1(Y,X) holds for any1134

entities X,Y ∈ E. Then m+
h can capture r1(X,Y) ⇒ ¬r1(Y,X) exactly and exclusively.1135

The proofs for Proposition E.6-E.7 are straightforward and work analogously to the proofs of (Pavlović and1136

Sallinger (2023), Proposition G.1-G.2). This is the case, as (1) any of these patterns contain at most one1137

relation, (2) thus we solely need to show that no unwanted patterns over at most one relation are captured,1138

as any considered pattern over more than one relation (precisely inversion, hierarchy, intersection, and1139

composition) requires by Definition E.1 at least two or three distinct relations and thus is not applicable,1140

and (3) it is easy to see that, for instance, a relation hyper-parallelogram can be symmetric without being1141

anti-symmetric, or vice versa (i.e., without capturing any unwanted pattern).1142

Proposition E.8 (Mutual Exclusion (Exactly and Exclusively)). Let m+
h = (M+,f+

h) be a relation1143

configuration and r1, r2 ∈ R be mutually exclusive relations, i.e., r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ holds for1144

any entities X,Y ∈ E. Then m+
h can capture r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ exactly and exclusively.1145

The proof for Proposition E.8 is trivial, as it is straight-forward to see that (1) there is an m+
h = (M+,f+

h)1146

such that f+
h (r1) ∩ f+

h (r2) = ∅, thereby m+
h captures r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ exactly, (2) neither1147

f+
h (r1) nor f+

h (r2) need to be symmetric, thereby no unwanted symmetry pattern is captured, (3) f+
h (r1)1148

does not need to be the mirror image of f+
h (r2), thus no unwanted inversion pattern is captured, and1149

finally (4) since f+
h (r1) and f+

h (r2) are disjoint, neither f+
h (r1) can subsume f+

h (r2) nor vice versa,1150

thus no unwanted hierarchy pattern is captured. Thus by Points 1-4, we have shown that m+
h captures1151

r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ exactly and that it does not capture any unwanted positive pattern that is1152

applicable, i.e., requires at most two different relations (symmetry, inversion, and hierarchy). Thus, we1153

have shown Proposition E.8, i.e., that m+
h can capture r1(X,Y)∧ r2(X,Y) ⇒ ⊥ exactly and exclusively.1154

Finally, by Propositions E.2-E.8, we have shown Theorem 4.1, i.e., that SpeedE captures the core inference1155

patterns exactly and exclusively.1156

F Experimental Details1157

The details of our experiment’s setup, benchmarks, and evaluation protocol are covered in this section.1158

Specifically, details on SpeedE’s implementation and about reproducing our results are covered in1159

Section F.1. Each benchmark’s properties are discussed in Section F.2. Our experimental setup is1160

described in Section F.3, including details about the chosen learning setup, hardware, and hyperparameters.1161

The evaluation protocol and the used metrics are discussed in Section F.4. Finally, the size of CO21162

emissions resulting from our experiments is estimated in Section F.5.1163

18

F.1 Implementation Details & Reproducibility 1164

Following Pavlović and Sallinger (2023), we have implemented our gKGE using PyKEEN 1.7 (Ali et al., 1165

2021), a Python library that runs under the MIT license and offers support for numerous benchmarks 1166

and gKGEs. In doing so, we facilitate the comfortable reuse of SpeedE for upcoming benchmarks and 1167

experiments. To ease reproducing our findings, we have included our code in the supplementary material, 1168

and, in addition, we have included a ReadMe.md file stating library dependencies, running instructions, 1169

and a link to pre-trained SpeedE models. Upon our paper’s acceptance, we will make SpeedE’s source 1170

code available in a public GitHub repository. 1171

F.2 Benchmarks and Licenses 1172

The details of the two standard benchmarks, WN18RR (Dettmers et al., 2018) and FB15k-237 (Toutanova 1173

and Chen, 2015), used in our experiments are discussed in this section. Specifically, Table 2 (given on 1174

Page 6 of the main body) has already stated important characteristics of the benchmarks, including their 1175

number of entities, relations, and metrics describing how hierarchical the relations within the benchmark 1176

are. WN18RR and FB15k-237 already provide a split into a training, validation, and testing set, which we 1177

directly adopted in any reported experiments. Table 10 lists characteristics of these splits, specifically the 1178

number of training, validation, and testing triples. Furthermore, the table lists the number of entities and 1179

relations of each benchmark. Finally, concerning licensing, we did not find a license for WN18RR nor its 1180

superset WN18 (Bordes et al., 2013). Also, we did not find a license for FB15k-237, but we found that its 1181

superset FB15k (Bordes et al., 2013) uses the CC BY 2.5 license. 1182

Table 10: Benchmark split characteristics: Number of entities, relations, and training, validation, and testing triples.

Dataset |E| |R| #training triples #validation triples #testing triples

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

F.3 Training Setup 1183

Training Details. We have trained each model on one of four GeForce RTX 2080 Ti GPUs of our internal 1184

cluster. In particular, during the training phase, we optimize the self-adversarial negative sampling loss 1185

(Sun et al., 2019) using the Adam optimizer (Kingma and Ba, 2015). We use gradient descent to optimize 1186

SpeedE’s parameters, stopping the training after 1000 epochs early if the H@10 score did not rise by 1187

at least 0.5% for WN18RR and 1% for FB15k-237. Any experiment was run three times to average 1188

over light performance variations. We will discuss the optimization of hyperparameters in the following 1189

paragraph. 1190

Hyperparameter Optimization. Following similar optimization principles as Balazevic et al. (2019a); 1191

Chami et al. (2020); Pavlović and Sallinger (2023), we manually tuned the following hyperparameters 1192

within the listed ranges: (1) the learning rate λ ∈ {b ∗ 10−c | b ∈ {1, 2, 5} ∧ c ∈ {2, 3, 4, 5, 6}}, 1193

(2) the negative sample size n ∈ {100, 150, 200, 250}, (3) the loss margin γ ∈ {2, 3, 4, 5, 6}, (4) 1194

the adversarial temperature α ∈ {1, 2, 3, 4}, (5) the batch size b ∈ {100, 250, 500, 1000}, and (6) 1195

constraining the distance slope parameters to be equal — i.e., sij = soj for each relation rj ∈ R — or 1196

not EqDS ∈ {true, false}. In accordance with Pavlović and Sallinger (2023), we chose self-adversarial 1197

negative sampling (Sun et al., 2019) for generating negative triples. We list the best hyperparameters for 1198

SpeedE split by benchmark and embedding dimensionality in Table 11. Following Chami et al. (2020), we 1199

used one parameter set for any low-dimensional experiment (i.e., d ≤ 50) and one parameter set for any 1200

high-dimensional experiment (i.e., d > 50). Furthermore, for ExpressivE, we used the hyperparameters 1201

of Pavlović and Sallinger (2023) under high-dimensional conditions, as they report the best-published 1202

results for ExpressivE. For low-dimensional conditions, ExpressivE’s best hyperparameter setting was 1203

unknown. Thus, we optimized ExpressivE’s hyperparameters manually, finding the hyperparameters of 1204

Table 12 to produce the best KGC results for ExpressivE under low dimensionalities. For RotH, we used 1205

19

the hyperparameters of Chami et al. (2020), as they report the best-published results for RotH. Finally, we1206

used the same hyperparameters for each of SpeedE’s model variants to directly compare SpeedE to them,1207

i.e., Min_SpeedE, Diff_SpeedE, and Eq_SpeedE.1208

Table 11: Hyperparameters of SpeedE models that achieve the best performance on WN18RR and FB15k-237 split
by low-dimensional (i.e., d ≤ 50) and high-dimensional setting (i.e., d > 50).

Dataset
Embedding

Dimensionality
Margin

Learning
Rate

Adversarial
Temperature

Negative
Sample Size

Batch
Size

EqDS

WN18RR d ≤ 50 3 5 ∗ 10−3 2 200 250 false
WN18RR d > 50 3 1 ∗ 10−3 2 200 250 true

FB15k-237 d ≤ 50 2 5 ∗ 10−4 4 250 100 false
FB15k-237 d > 50 4 1 ∗ 10−4 4 150 1000 false

Table 12: Hyperparameters of ExpressivE that achieve the best performance on WN18RR and FB15k-237 under
low-dimensional conditions (i.e., d ≤ 50).

Dataset
Embedding

Dimensionality
Margin

Learning
Rate

Adversarial
Temperature

Negative
Sample Size

Batch
Size

WN18RR d ≤ 50 2 5 ∗ 10−3 3 200 250

FB15k-237 d ≤ 50 2 5 ∗ 10−4 4 250 100

F.4 Evaluation Protocol1209

Following the standard KGC evaluation protocol as described by Sun et al. (2019); Balazevic et al.1210

(2019b); Chami et al. (2020); Pavlović and Sallinger (2023), we have evaluated ExpressivE by measuring1211

the ranking quality of each test set triple ri(eh, et) over all possible heads e′h and tails e′t: ri(e
′
h, et) for1212

all e′h ∈ E and ri(eh, e′t) for all e′t ∈ E. The typical metrics for evaluating the KGC performance are1213

the mean reciprocal rank (MRR) and Hits@k (Bordes et al., 2013). In particular, we have presented the1214

filtered metrics (Bordes et al., 2013), i.e., all triples occurring in the training, validation, and testing set1215

are deleted from the ranking (apart from the test triple that must be ranked), as scoring these triples highly1216

does not indicate a wrong inference. The most used metrics for assessing gKGEs are the filtered MRR,1217

Hits@1, and Hits@10 (Sun et al., 2019; Trouillon et al., 2016; Balazevic et al., 2019b; Abboud et al.,1218

2020). Finally, we will briefly review how these metrics are defined: The proportion of true triples among1219

the predicted triples whose rank is at maximum k is represented by Hits@k, whereas the MRR reflects the1220

average of inverse ranks (1/rank).1221

F.5 CO2 Emissions1222

The sum of all reported experiments took less than 150 GPU hours. This corresponds to an estimate of1223

approximately 16.20kg CO2-eq , based on the OECD’s 2014 carbon efficiency average of 0.432kg/kWh1224

and the usage of an RTX 2080 Ti on private infrastructure. We computed these estimates using the1225

MachineLearning Impact calculator (Lacoste et al., 2019).1226

20

https://mlco2.github.io/impact#compute

	Introduction
	Related Work
	Background
	Knowledge Graph Completion
	The ExpressivE Model

	The Methodology
	Min_SpeedE
	SpeedE

	Experiments
	Experimental Setup
	Knowledge Graph Completion
	Space and Time Efficiency

	Conclusion
	Limitations and Ethical Impact
	Limitations
	Ethical Impact

	Organization
	High-Dimensional Knowledge Graph Completion
	Notation
	Definition of Capturing
	Proof of Theorem 4.1
	Experimental Details
	Implementation Details & Reproducibility
	Benchmarks and Licenses
	Training Setup
	Evaluation Protocol
	CO2 Emissions

