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Abstract

We present Y-MAP-Net, a Y-shaped neural network archi-
tecture designed for real-time multi-task learning on RGB
images. Y-MAP-Net simultaneously predicts depth, surface
normals, human pose, semantic segmentation, and gener-
ates multi-label captions—all from a single network eval-
uation. To achieve this, we adopt a multi-teacher, single-
student training paradigm, where task-specific foundation
models supervise the network’s learning, enabling it to dis-
till their capabilities into a lightweight architecture suitable
for real-time applications. Y-MAP-Net exhibits strong gen-
eralization, simplicity, and computational efficiency, mak-
ing it ideal for robotics and other practical scenarios. To
support future research, we will release our code publicly.

1. Introduction

Decades of research have yielded powerful methods that
robustly tackle long standing problems for computer vi-
sion and pattern recognition. These so-called foundation
models stand out for their exceptional generalization abil-
ity, achieved through immense scale and complexity. These
models, with billions of parameters, are trained on vast
datasets, enabling zero-shot problem-solving across diverse
tasks and robust performance on in-the-wild data. However
this sheer size comes at a cost: they require PetaFLOP-
scale computational resources and data centers equipped
with thousands of GPGPU accelerators for a single training
session, hindering reproducibility. Finally, they are expen-
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Figure 1. Given an RGB frame, Y-MAP-Net estimates human
pose, depth, surface normals, segmentation and image captioning
in real-time. The figure shows pose keypoints, depth and normal
estimations on publicly available images from factory floors.

sive to deploy and impractical for real-time applications.

Meanwhile, we observe a class of much sparser convo-
lutional models, such as the successful family of You Only
Look Once (YOLO) [48] models, which are profoundly in-
fluential in many different real-world applications. This
motivates us to develop a framework that bridges the gap
between real-time, multifaceted scene understanding and
high-fidelity dense output. Once provided, it can be used as
a building block to solve other general problems, in vision,
robotics, human-computer interaction, surveillance, etc, by
providing a unified, streamlined source of multi-modal data.

Given this motivation, in this work, we propose Y-MAP-
Net, a Y-shaped Multi Attribute Prediction neural network



(NN) model that can be used as a closed-loop processor for
RGB streams supplying human pose, depth, surface nor-
mals, image segmentation and a textual multiclass caption
for each incoming frame (Fig. 6). To achieve this, we adopt
a multi-teacher, single-student training paradigm [4, 74],
where Y-MAP-Net learns from task-specific foundation
models supervising its predictions.

This approach distills large models into a compact archi-
tecture, enabling efficient multi-task learning without sac-
rificing generalization. In particular, Y-MAP-Net accepts
monocular RGB input and delivers 44 heatmap / image out-
puts and 8 caption tokens.

In summary, our main contributions are the following:

* Y-MAP-Net is the first convolutional NN method to
achieve simultaneous depth, normal and human pose esti-
mation while also providing scene segmentation and cap-
tioning from monocular RGB in a monolithic network.

* Due to its efficiency, the method we present performs in
real-time and thus opens the way to many practical appli-
cations, especially in the field of robotics, complementing
existing models for the various tasks we undertake.

* The proposed Y-MAP-Net topology offers a novel, sim-
ple and pragmatic framework for multi-task learning.

2. Related Work

The proposed method attempts to simultaneously tackle
multiple mature sub-fields of the computer vision research
landscape. To achieve such a generalist technique we stud-
ied the various domains, identified their commonalities,
best practices, useful data primitives and then gradually in-
tegrated them under a common unified formulation.

Image Classification and Captioning: AlexNET [33] was
the first method to successfully deploy a large scale convo-
lutional neural network, train it with a large dataset and per-
form 1000-way softmax classification. Although more than
a decade has passed since this seminal work [1], GPGPU ac-
celeration and techniques like data augmentation, dropout,
and ReLU activations have become mainstream and are
used with small changes in our work. The VGG net-
work family [53] demonstrated the importance of increasing
depth, with depth ranging from 11 to 19 layers, also lever-
aging 3 x 3 convolutions. GoogLeNet [57] introduced an
even deeper architecture featuring multiple data paths with
different kernel sizes between layers, pioneering 1 x 1 con-
volution kernels. Finally, ResNETs [20] introduced resid-
ual connections that improved gradient flows throughout
the network, allowing NNs to grow up to 1202 layers deep,
dealing with the same classification task. Meanwhile, works
like DenseCap [24] moved away from labels to dense text
captioning while in the Natural Language Processing (NLP)
field Word2Vec [40, 41], GloVe [44] and Fasttext [26] em-
beddings encoded text in a multi-dimensional representa-
tion with conceptual relations between vectors. The advent
of transformers [60], a technique built from the ground up
to capture textual relations, replaced other LSTM [22] or
GRU [8] based attempts. ConvCAP [2] was the last major
purely convolutional dense captioning work. Vision trans-

formers (ViTs) [13] inspired development of techniques like
CLIP [46] and DINO [6] that directly associated image and
text embeddings, paving the way for state of the art VLLM
foundation models like GPT4 [15] and LLAMA 3.2 [14]
that successfully tackle the problem at its core.

Scene Segmentation: An alternative approach to scene
captioning is annotating visible parts of the scene.
YOLO [48] served as a seminal work for image region clas-
sification. Building on this, Mask R-CNN [21] and Faster
R-CNN [49] advanced dense segmentation and per-pixel
label classification, inspiring subsequent works like Mask
YOLO [55]—fusing earlier approaches [21, 48]—as well as
Detectron 2 [64], DPText [71], and Segment Anything [31].
Pose Estimation: AlexNET [33] directly inspired Human
Pose Estimation (HPE) methods [58, 59] that adapted it for
joint heatmap regression. VGGs [70] and ResNETs [36,
54], followed by stacked hourglass networks [42] were
among the first new NN topologies for the HPE task. Open-
Pose was a landmark work that introduced part affinity
fields (PAFs) [5]. During the same year, LCR-Net [50] and
Coarse-to-fine 3D human pose [43] also made significant
contributions in terms of 3D accuracy. DensePose [19] ex-
plored an alternative formulation of the problem by regress-
ing UV-mapped coordinates to a 3D model, thus providing
a much denser result than 3D joint positions. HRNET [56]
modified U-NETs [51] by featuring a pyramid of different
input resolutions and achieved new levels of accuracy. This
inspired a host of more approaches [7, 61, 67, 75]. The ad-
vent of ViTs [13] shifted focus to transformer-based archi-
tectures [ 1 1], with the Sapiens [28] foundation model being
the first to achieve 2D joint, depth and normal estimation,
as well as part segmentation but focusing only on humans.
Depth and Normals Estimation: MiDaS [47] was a major
push towards monocular depth estimation showcasing the
power of relative depth. ZoeDepth [3], Metric3D [73] and
Marigold [27] further refined accuracy, while Dust3R [63],
UniDepth [45] and DepthAnything (DA) [68] scaled in both
model size and training data leading to DAv2 [69] a mature
framework we use as the teacher for our depth training.
Training Datasets: A wide variety of data sources like
LAION-5B [52], Instagram-3.5B [37], JFT-300M [54],
and V.Genome [32], take advantage of big-data effective-
ness in deep learning, providing enormous training cor-
pora, especially fitting for image captioning. Humans-
300M [30], Panoptic [25], AMASS [38] and Motion-X [34]
are the largest HPE datasets. Common Objects in Context
(COCO) [35] remains a balanced middle-ground for cap-
tioning, scene segmentation and HPE. It has sufficient size
and scope to facilitate reproducible research without being
overly encumbering in terms of required training resources.
Our approach stands on the “shoulders of giants” of prior
research, drawing from a substantial body of computer vi-
sion work. At its core, our NN topology has similarities
to U-NETs [51], however being pushed to new limits in-
terms of multiple concurrent tasks. Although Y-shaped ar-
chitectures featuring two output branches have been pro-
posed to tackle specialized medical applications [39, 62],



our Y-MAP-Net formulation is novel by providing captions
output using GloVe [44] embeddings. In contrast to other
caption works like ConvCAP [2], it does not iteratively
query the network for each captioning token. Additionally,
our model simultaneously regresses 2D joint heatmaps and
PAFs, inspired by OpenPose [5], and predicts depth and sur-
face normals supervised by DepthAnything [68], with con-
ceptual parallels to DensePose [19]. Moreover, supervised
by Detectron 2 [64] and DP-Text [71] our work is equipped
with per pixel object and scene segmentation capabilities.
A method with multi-modal output and conceptual simi-
larities to Y-MAP-Net, though not directly comparable, is
the Sapiens [30] foundation model. Unlike our method,
Sapiens focuses solely on the human body, not produc-
ing results for the entire input image. While Sapiens
uses a S00M training corpus, our approach relies on just
0.1M samples. Architecturally, Sapiens is transformer-
based, whereas we adopt a convolutional approach. In-
stead of Sapiens’ separate encoder models for each modal-
ity [29]—ranging from 0.3B to 2.0B parameters—our
monolithic model is 4 x smaller than the aggregate size of
the minimum Sapiens setup to tackle all tasks. In our mono-
lithic model, weights are shared between tasks, in contrast
to the sequential approach adopted in Sapiens. Finally, we
include captioning on the same model, in contrast to Sapi-
ens [30] which lacks this functionality. All these differences
render our approach not directly comparable to Sapiens.

3. Y-MAP-Net Model Architecture

Y-MAP-Net has a single input or encoder branch, marked
with green in Figure 2. Its outputs diverge in two dedicated
paths. The first, marked with magenta, is related to picto-
rial or decoder output: depth, normals, heatmaps, PAFs,
and segmentation masks. The second, marked with blue, is
related to token/caption output.

These two paths are separated at the bridge section (or-
ange color in Fig. 2). This structure effectively combines
a U-NET-like [51] architecture for pixel-level related tasks
with a densely connected token encoder ensemble for cap-
tion generation.

Encoder branch: This branch gradually distills lower di-
mensional feature embeddings until arriving at the bridge
section. This is achieved through a series of convolutions
with 3 x 3 kernels followed by average pooling (see Fig. 3).
Bridge segment: Unlike regular U-NETs [51], our bridge
segment consists of three densely connected layers, instead
of only one that is usually employed. This is designed to
handle the multi-modal GloVe [44] embeddings of the token
branch as well as the multi-faceted pictorial output.

Pictorial decoder branch: The pictorial decoder branch of
the network produces 44 image channels containing pixel-
level output. We observed that adding a 1 x 1 convolution
layer with a very high number of filters prior to the out-
put layer increases the fidelity of these images. We use a
1 x 1 x 1500 layer, a decision affected by available H/W
resources (we train our network using an NVIDIA RTX
A6000 GPGPU with ~ 49GB VRAM). We attribute the
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Figure 2. Architecture of the proposed Y-MAP-Net. The flow of
data from input to outputs is highlighted with cyan arrows. Resid-
ual connections are indicated with + signs, while rectangles give a
dimensionality overview for each layer. Green layers (top left) sig-
nify encoder blocks originating from 1 RGB image. The network
bridge layers appear in orange color (middle). Blue layers (bot-
tom) depict 8 captioning output token GloVe [44] vectors. These
can be optionally converted to multi-hot labels with the addition
of 2 dense layers for some applications. Magenta (top right) signi-
fies decoder blocks that lead to 44 multi-modal outputs. Detailed
encoder and decoder layer architecture is provided in Figure 3.

benefits of this “pixel-wise” layer to increased capacity for
a wider range of activated features directly before the final
layer of the network.

Both the pictorial/image output and the GloVe token em-
beddings use hyperbolic tangent (tanh) activations in the
output layer. This choice forces output in the range of [-
1..1], effectively controlling gradient flow. Remaining lay-
ers utilize Leaky ReLU [65] activations that also allow a
small gradient when inactive to mitigate vanishing gradi-
ents. Towards the same end, GloVe vectors from captioning
output are also normalized to [-1..1], while the first layer
after RGB input also rescales RGB values to [0..1]. As seen
in Fig. 3, the encoder blocks of the network feature residual
connections once again as a measure to diminish vanish-
ing gradients. Residual connections are also featured, di-
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Figure 3. Encoder (green) and decoder (magenta) blocks of Y-
MAP-Net (Fig. 2) are tasked with down-scaling input images to
the bridge representation and then up-scaling to pictorial outputs.
They consist of layers and skip connections shown in this figure.

rectly connecting encoder blocks to their respective same-
dimensional decoder counterparts.
Token/caption output branch: The token/caption output
branch departs from previous designs. In the past, typical
captioning networks used LSTMs [22] or GRUs [8] fea-
turing recurrent connections. ConvCAP [2] maintained a
purely convolutional approach. However, recurrence was
still maintained because the network expected as input the
previously regressed tokens in order to iteratively produce
the next ones until forming a full sentence. This would
be a prohibitive design choice for Y-MAP-Net because it
would immensely slow down the processing framerate. It
is worth noting that although ConvCAP experimented with
an early pairwise mechanism similar to transformer atten-
tion, this proved to have a very small positive impact upon
the core ConvCAP architecture. Similarly, modern trans-
former architectures rely on positional encodings [60] that
vastly increase the complexity of the network by calculating
attention scores for all possible output pairs. Architectures
like differential transformers [72] are now specifically built
to tackle this problem by canceling out attention scores on
“noisy”/unimportant [72] token pairs, while research is be-
ing conducted on the attention heads themselves [76] and
the roles they are called to accomplish. In contrast to all
this complexity, we follow a much more straight forward
approach by eliminating the so called stop-word [16] to-
kens, using GloVe as our token vector space. This helps
with ordering the various responses of the network while
training it. Lastly, residual connections from each token
output to the next are incorporated in an effort to form en-
coding chains between tokens that build on previous tokens.
It should be noted that the Y-MAP-Net captioning
branch features Layer- instead of Batch normalization be-
tween layers. 20% dropout is applied after each token layer
and gets conversely reduced as we go through from the first
to the last token. Residual connections from one token to
the next are scaled to 30% of their initial magnitude to
tackle the network producing the same token multiple times.
Finally, output dimensions can vary depending on the task
and computational resources. Overall, the full network we
present outputs 44 heatmaps and 8 tokens: Heatmaps #0

to #16 encode 2D joints, #17-#28 PAFs [5], heatmap #29
depth, #30-#32 normals and #33 to #43 segmentation data.

3.1. 2D Human Pose Estimation (HPE)

HPE can be formulated as a series of transformations of an
input RGB image to heatmaps that are active only in the
vicinity of a specific human body joint. Typical skeletons
like the one used in COCO include 17 joints that contain the
eyes, ears, shoulders, elbows, hands, hips, knees and ankles
of a person. Y-MAP-Net can scale to more than COCO
body joints. However, in an effort to constrain its already
very broad scope, we opted to just focus on these 17 joints.

Being able to return 2D keypoints is very useful for de-
tecting the presence of humans in the scene. However,
connecting the dots of joints to form complete skeletons is
equally important. The output of a 2D HPE module should
not only be 2D joints but a list of humans with each joint
associated to a specific skeleton. PAFs [5] were proposed to
tackle this exact problem, indicating connected joint pairs.
Therefore, we include regression of PAFs in outputs #17-
#28 which are heatmaps that are active in the areas between
neighboring joints and zero everywhere else.

3.2. Depth and Normals Estimation

COCO17 [35], much like virtually all non-synthetic, in-
the-wild datasets, does not contain depth data for train-
ing. For this reason, we selected Depth Anything V2
(DAv2) [68, 69] as a teacher model to generate them. DAv2
offers state of the art accuracy, and with it we can produce
a depthmap for each RGB training sample of COCO17. Al-
though DAv2 produces FP32 depth (similar to Y-MAP-Net)
its implementation’s .png output is encoded as 8-bit values.
We therefore modify it to encode depth as 16-bit. DAv?2 fea-
tures 2 families of models, extracting metric and normalized
range depth results. It also features multiple model sizes.
We use the biggest one publicly available (vitl 335M) and
use normalized depth ranges since they produce rich details
and are a superior choice in terms of visual fidelity [47].

Given a depth image D; for each training sample, we
; : 8D Dy :
compute the partial gradients 57- and 0 by applying So-
bel filters along the x and y directions, respectively. After
performing gradient calculations, we compute the norm of
the vectors, also adding a small value € to avoid division by
zero. We then compute the normal images n;, n, and n.

At first glance, including normal data as an output of
our NN seems counter-intuitive, since a network regressing
depth already encodes normals in the depthmap. In prac-
tice, we observe that normal output has better fidelity com-
pared to depth output. This is attributed to neighboring data
that have a similar appearance in RGB maintaining simi-
lar n,,n, and n, in their local neighborhoods, effectively
reducing noise. We thus leverage this behavior, using the
output normals to refine output depth as seen in Figure 4.

Iterative depth refinement: Assuming an output depth im-
age Do and normal maps N, N, and N, we compute gra-




Figure 4. NN output normals (right) enforced on NN depth output
(left) through our iterative algorithm can improve depth (mid).

dients in x and y directions by locally sampling depth:

0Do 0Do
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We normalize gradients with their magnitude M to obtain
the normalized gradient maps G, G5, G and we cal-
culate target normals and the gradients differences of the
normalized depth map to find inconsistencies:
Ay =N, -Gy, Ay=N, -Gy, A,=N,-G".
We finally update the improved output depth map Do by
minimizing the normal difference:

Do=Do+a(A;-Ga+A, -Gy, +A,).

This process is executed iteratively for 35 iterations with
a = 0.01. We mask-out low depth (far) areas to skip calcu-
lations and respect our real-time target. As seen in Figure 4,
this process produces noticeable improvements, sharpening
resulting depthmaps and suppressing noisy values.

3.3. Image Segmentation

COCO 17 contains 183 segmentation label categories con-
taining vehicles, animals, objects and other elements com-
monly visible in digital photographs. To perform per pixel
segmentation, we need to arrange data in a way where, for
each pixel, there is an associated output label. Encoding
all possible discrete values into a single heatmap proved in-
feasible, since the neural network predictably lacks the ca-
pacity to produce such finely detailed activations at the seg-
mentation output layer. We thus need to decouple various
labels as different heatmaps, similarly to how 2D joints are
treated to make the task feasible for HPE.

However, using 183 separate 256 x 256 heatmaps, re-
sults in broadcasting ~ 12 million elements per training
sample, leading to excessively long training times. We at-
tempt to encode all classes in one image yielding only 65K
for transit to the GPGPU per training sample, and perform
one hot encoding inside the loss function. Although this
restores training times, with some expressivity loss, the ca-
pacity of the output layer doesn’t allow this to work in prac-
tice. To overcome this problem, we group segmentation
classes in 11 broad categories, namely Persons, Vehicles,
Animals, Objects, Furniture, Appliances, Materials, Obsta-
cles, Building, Nature and Text. Each label is assigned to its
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Figure 5. The frequency of tokens encountered while captioning
an image follows a very heavy-tail distribution. Red: Top-80 fre-
quency words, when not using stop-words [16]. Token ‘a’ appears
several orders of magnitude more than e.g. the token ‘cat’. This
very heavy class imbalance negatively impacts training. Green:
After removing tokens: ‘(’, °)’, *’, ‘a’, ‘an’, ‘s’, ‘of’, ‘on’, ‘and’,
‘I, ‘in’, ‘the’, ‘is’, ‘it’, ‘at’, ‘to’, ‘with’, ‘for’ and ‘from’, we get
the second distribution (green frame) which is more balanced.

respective group yielding 11 segmentation images with the
union of all visible classes. This balanced, divide & con-
quer approach helps the network successfully tackle a large
number of labels while minimizing overheads.

3.4. Multi-Label Captioning

Captioning an image can be posed as selecting words that
describe it and putting them in a sentence. However, as seen
in Fig. 5 there’s severe class imbalance among different to-
kens/labels. Works like [23] highlight the intricate differ-
ences between multi-label, multi-instance, and regular cap-
tioning, motivating us to follow the former. To improve data
distribution and conserve NN capacity, we remove stop-
words (Fig. 5). After limiting tokens to the 2048 most pop-
ular ones, initially, we naively attempted to perform multi-
hot encoding for 8 output tokens, yielding 8 x 2048 caption-
ing outputs for each sample. This approach however did not
work since token order is very important and the task proves
too difficult for a lightweight convolutional approach.
Performing the union over these tokens and emitting a
multi-hot 2048 class vector with 8 active labels per sam-
ple showed promise. This training approach effectively re-
moved token ordering, significantly simplifying the task.
Despite performing class weighting based on the frequen-
cies shown in Figure 5 however, the model tended to only
produce results for a subset of tokens, and frequently made
errors. This behavior is understandable: tokens like man,
boy, woman, girl, person, and human have visually simi-
lar representations in images. Yet, despite their conceptual
similarity, misclassifying a person as a man versus a cat in-
curs the same loss penalty, leading to problematic training.
To improve upon this, we employed Global Vectors
(GloVe) [44] for word representation. GloVe offers differ-
ent pre-trained databases. The vocabulary and source mate-
rial for training can also vary ranging from Wikipedia, Gi-
gaword, Common Crawl and Twitter/X for the pretrained



models. We select GloVe 6B which is uncased, is trained on
Wikipedia 2014 and Gigaword 5, with 6B tokens, a 400K
vocabulary, and offers 50, 100, 200 or 300 dimensional em-
beddings for each word. Employing GloVe we lose the abil-
ity to perform a union (or sum) of words as a combined out-
put. However, attempting to predict 8 x 300 captioning out-
puts, this time using a MSE loss, showed signs of promise
even from very early experiments. Observed output artifacts
included having multiple outputs regress similar embedding
values. During runtime, to transform the GloVe 300D out-
put back to words we follow three steps. First we threshold
the norm of the 300D GloVe vector against zero, filtering
it out if it is very close to zero. We then select the word
token that has the highest cosine similarity with our output.
As a final step we can perform a second threshold operation
filtering out tokens with low cosine similarities.

In order to improve token sequences we introduced
residual connections from each token to the next. We ob-
served that this further increased token repetition. Using
tanh output activations, normalizing GloVe embeddings to
[-1..1], employing dropout, and layer instead of batch nor-
malization, as well as scaling down the magnitude of the
residual connections to 30% mitigated this. As reported by
methods like ConvCAP [2], GloVe embeddings can be used
as intermediate output supervision. Adding a final 2-layer
densely connected tail (bottom of Figure 2) with sigmoid or
softmax activations yields easy-to-use outputs for applica-
tions. This eliminates the need for extra computations, since
thresholding the returned pseudo-probabilities is sufficient.

3.5. Data Augmentation

COCOL17 contains 118K training samples. To enhance
Y-MAP-Net’s generalization with this relatively limited
amount of data and allow for a multi-epoch training regime
without over-fitting, we employ aggressive data augmenta-
tion. The average sample dimension of COCO17 is close
to VGA resolution. Our input and output images, how-
ever, have a 256 x 256 size. We thus resize the images
while respecting aspect ratios, and with black padding. For
each image we also apply a randomization scheme with
the following properties. Each augmentation has an inde-
pendent chance to be activated thus allowing multiple aug-
mentations on an image. A sample has 45% chance to be
panned & zoomed. It has 50% chance to have its bright-
ness/contrast altered, out of which, for half of the samples
we perform uniform brightness/contrast changes across all
channels, while the rest have R,G,B channels individually
altered with up to a 20% change. There is a 15% chance
of Gaussian noise perturbation, 50% chance of adding up
to 10 burned pixels (up to 1/6553 corruption in 256 x 256
images). Finally, if a sample does not contain any persons
there is a 1% chance of completely replacing the image with
random noise. This ensures not hurting human pose due to
our limited training data while at the same time conditions
the network to filter out erratic input. An important detail of
the pan & zoom augmentation is that it has a strict limit of
up to 110%. If zooming is left unchecked, captioned areas

of the image might be cropped out. This can cause con-
cept drift, with tokens like surfboards associated with e.g.
the sea. Captions describe the whole image and erroneous
zooming may e.g. crop-out visible surfing boards which oc-
cupy less space than the sea. Finally, if persons are present,
our randomization ensures at least 30% of existing joints of
depicted persons visible inside the cropped image.

3.6. Model Training

We train our model using Keras 3.1.1 with Tensorflow
2.16.1 as a backend. We develop a data loader written from
scratch in C and thoroughly profile and optimize it. We
use a batch size of 30, corresponding to 30 threads con-
currently executing on an AMD Ryzen Threadripper PRO
3955WX 16-Cores/32-Thread CPU. Back propagation is
executed on an NVIDIA RTX A6000 GPU, where train-
ing occupies 47.2GB of the available 49.1GB VRAM. We
also utilize a RAMFS to reduce I/O overhead. Our model
weights are in FP32 precision; however, to enhance training
throughput, we use INTS8 representations for images during
their transfer to the GPU. All training sessions start from
weights following the Glorot/Xavier [18] initialization. We
use the ADAM [12] optimizer with a learning rate starting
at 2.4 x 10~* and decaying linearly to 1.0 x 10~% after 100
epochs. In total, we allow 250 training epochs, with check-
points [9] and early stopping [10] with 65 epoch patience.
Heatmap target outputs also have a decay schedule with
joints having a Gaussian size of 23 x 23 during the start of
training and decaying down to a target limit of 6 x 6. In a
similar manner, PAFs start from a line width of 6 and decay
down to 2. This reduction happens linearly with the size be-
ing reduced by one step every 20 epochs. This helps the NN
both identify joints early on during training since their mag-
nitude is comparable to other output modalities, but also
ensures better localized joint responses for maturely trained
models. The loss function £ we use is the following:

N
1
L=w- Zgi N Z (Yurve, i,j — ypred,i,j)2 .
i j=1

In the above equation, ¢ runs over 7 different terms. Each
MSE term represents the mean squared error between
the true and predicted values for the respective channels,
weighted by its corresponding gain g;. We experimentally
determined g; values that promote harder aspects of the
problem by increasing their relative contribution to the total
loss. These 7 values are: go = 10.0 - for GloVe tokens
(chan. 0-7), g5 = 2.4 - for joint heatmaps (chan. 0-16),
gpar = 0.8 - for PAFs (chan. 17-28), gp = 1.0 (for Depth -
chan. 29), gy = 1.0 (for Normals - chan. 30-32), gr = 1.0
(for Text - chan. 33) and gs = 3.0 (for Segmentation -
chan. > 34). We use cosine similarity to monitor GloVe
tokens. For image output we define Heatmap Distance
Metric (HDM). Essentially, HDM measures the fraction of
all predicted pixels within relative threshold 7 from their
target value. In experiments (Tables 1, 2), 7 = 0.1 unless
stated otherwise. Assuming that %y and ypreq are true and
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3] 7 172M 256 256 16K v |V v < 37066 072
47 213M 256 256 17K v |V v < - 2053 059

[15] 7 298M 256 25 15K v | v v v < 11]064 072

Table 1. Ablation study for Y-MAP-Net. We record enc/dec
branch layer depth, model size (millions of weights), input and
output dimensionality (images are rectangular so 256 is equiv-
alent to 256x256), NN features such as pixelwise layer before
output (Figure 2), residual connections in enc/dec blocks (Fig-
ure 3), output modalities enabled in an experiment (PAFs, Nor-
mals, Class segmentation) and the training/validation HDM score
for each configuration. Up: Limiting output to joint+depth modal-
ities we experimentally find that shallow networks perform better
than more complex ones that over-fit. Down: As more modali-
ties are introduced the problem becomes harder and tensor sizes
need to be reduced to maintain real-time performance. The final
row contains the Y-MAP-Net 1-8-44 configuration. Its weights
are increased compared to previous experiments due to the added
captioning branch. Each experiment requires ~ 1 week to run.

predicted heatmaps in the [0..1] range, HDM is defined as:

1 if ‘ytrue - ypred‘ < Ta

Y = .
0 otherwise.

HDM =) " 1(Y = 1)/(#pixels).

4. Experiments

Our method addresses a broad range of computer vision
sub-topics, making it the first to jointly tackle them. It
uses DAv2 [68], Detectron 2 [64], DP-Text [71] and Vi-
sionGPT2 [17] as teacher models in the multi-teacher,
single-student setting we adopt. It is trained on COCO17
with a training set of 118K samples, which is orders of mag-
nitude smaller than the millions of samples training corpora
of our teacher models. Furthermore, in order to provide di-
verse functionality in real-time, our model is less than half
the size compared to the sum of weights of its teachers (Ta-
ble 3). Last but not least, our method uses the same weights
to simultaneously deal with all different output modalities,
while each of its teachers only deals with a single problem.
We thus expect our method to produce “distilled” output
of reduced yet comparable accuracy, compared to its teach-
ers. As discussed in detail in the paragraph concluding Sec-
tion 2 the conceptually closest method, Sapiens, is not di-
rectly comparable to ours. In the absence of other methods

combining the functionality we propose, we base our exper-
imental comparisons primarily against our teacher models.

4.1. Ablation Study

We conduct a series of ablation experiments with different
/0 sizes, different relative depths of the network, gradually
adding output modalities and broadening the size and scope
of our NN until successfully accommodating pose, depth,
normal, segmentation and captioning and reaching our tar-
get. These experiments are summarized in Table 1. We
control network size by altering the number of filters in the
enc/dec branches (Fig. 2). For example, as seen in rows #6
and #7 we can have a bigger NN that has enc/dec depth of
6 layers and a 3x larger NN handling half of the dimen-
sionality of input and output in each dimension. As seen
in experiment #4, a 5-layer enc/dec architecture that tackles
just pose and depth has excellent performance. Achieving
a similar HDM metric with #4 for all involved outputs, we
need a substantially larger architecture with more capacity,
like exp. #13. Residual connections and the 1x 1 pixelwise
layer, add representational capacity allowing stronger net-
works that tackle more modalities. Pixelwise layer width
however, is limited by GPU VRAM. Adding a caption-
ing branch, extra weights do not increase the image output
branch. Caption features arriving at the bridge layer (Fig-
ure 2) however seem beneficial for the decoder branch.

4.2. Quantitative Experiments

We evaluated our model on the COCO17 validation set, us-
ing ground truth data generated by our teacher models. Our
quantitative metrics, summarized in Table 2, reveal vary-
ing performance across different tasks. Depth estimation
yielded the lowest accuracy, which aligns with its inherent
complexity. In contrast to Joints, PAFs and class segmen-
tations that have coarse “on/off” values and large inactive
areas, depth maps return a response for all pixels. Fur-
thermore even minor inaccuracies in depth predictions re-
sult in significantly larger error contributions, particularly
when depth is assigned to an incorrect distance. Estimat-
ing object depth in in-the-wild images presents additional
challenges due to an absence of reference scale, multiple
viewpoints, or motion cues, as discussed in [66]. Our depth
teacher, DAv2 [68, 69] is trained on over 60M images, two
orders of magnitude more than our training corpus, it has a
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Table 3. We tackle a wide variety of tasks via a monolithic network
using 41.88% of the weights typically needed to perform the task.
We use [17, 64,69, 71] as teachers for Y-MAP-Net training.

larger size, and is dedicated to this single task as seen in Ta-
ble 3. Normals perform better, with improved fidelity in ar-
eas with edges. We take advantage of this with our iterative
algorithm (Figure 4). Class segmentation performs better
and Joint/PAF estimation achieves the highest accuracy. We
partly attribute this to the quality of human-annotated train-
ing data, since unsupervised model-generated labels may
introduce inaccuracies. In captioning tasks, we use the co-
sine similarity metric achieving 0.59, 0.62, 0.64, 0.64, 0.53,
0.27, 0.08 and 0.01 scores for caption tokens 1 to 8. Overall
we observe labels delivering a good generic image descrip-
tion. Our .keras encoded model occupies 1.1 GB on disk.
Although beyond the scope of this study, FP16 quantiza-
tion could be beneficial due to our straightforward convolu-
tional architecture. Benchmarking an unoptimized Python
runtime on Intel i7-4790 / NVIDIA GTX 1070, it needs 7.5
GB of VRAM and reaches a 5.6 Hz refresh rate. On an
AMD Ryzen 7 3800X / NVIDIA RTX 4080 SUPER, it uti-
lizes 14 GB VRAM, achieving a real-time rate of 15.9 Hz.

4.3. Qualitative Experiments

We test our method on a variety of input sources. We ob-
serve good generalization on the COCO17 validation set,
showcased in Figure 6. Since we aim at real-time appli-
cations in production environments, we experiment with
Youtube videos featuring workers in production lines (see
Fig. 1). Further samples of qualitative results are shown in
Fig. 6. We observe normal and depth estimation consistent
with input, pose estimation results that follow the bodies
even when wearing protective equipment, multi-token cap-
tioning output that describes the major visible components
of the RGB image and class segmentation that, when ob-
serving a few objects / subjects, is very sharp. More quali-
tative results are provided in the supplementary material.

5. Conclusions

We presented the first work to jointly address depth, normal,
pose, class segmentation and multi-label captioning in real-
time. The proposed work offers an elegant and compact
architecture that could have an important impact on the field
due to its versatility, with the potential to become a staple
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Figure 6. Qualitative results from COCO17 validation data show-
casing various raw outputs of our model. Joints and PAFs contain
the union of joint and PAF heatmaps, while column Segment. con-
tains the union of columns 7-12 to showcase their synthesis.

S

along sparse architectures like YOLO and offering multi-
modal vision capabilities in an efficient and scalable way.
Future work includes using a mixture of experts supervision
from multiple teacher models per modality and increased
training corpus. To support research on the topic, our code
will be made publicly available on github.
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