
MAC: A Multi-Agent Framework for Interactive User
Clarification in Multi-turn Conversations

Emre Can Acikgoz1 Jinoh Oh2 Joo Hyuk Jeon2 Jie Hao2 Heng Ji1,2

Dilek Hakkani-Tur1,2 Gokhan Tur1,2 Xiang Li2 Chengyuan Ma2 Xing Fan2

1University of Illinois Urbana-Champaign (UIUC) 2Amazon
acikgoz2@illinois.edu, ojino@amazon.com

Abstract

Conversational agents often encounter ambiguous user requests, requiring an ef-
fective clarification to successfully complete tasks. While recent advancements
in real-world applications favor multi-agent architectures to manage complex
conversational scenarios efficiently, ambiguity resolution remains a critical and
underexplored challenge—particularly due to the difficulty of determining which
agent should initiate a clarification and how agents should coordinate their actions
when faced with uncertain or incomplete user input. The fundamental questions of
when to interrupt a user and how to formulate the optimal clarification query within
the most optimal multi-agent settings remain open. In this paper, we propose MAC
(Multi-Agent Clarification), an interactive multi-agent framework specifically opti-
mized to resolve user ambiguities by strategically managing clarification dialogues.
We first introduce a novel taxonomy categorizing user ambiguities to systematically
guide clarification strategies. Then, we present MAC that autonomously coordi-
nates multiple agents to interact synergistically with users. Empirical evaluations
on MultiWOZ 2.4 demonstrate that enabling clarification at both levels increases
task success rate 7.8% (54.5 → 62.3) and reduces the average number of dialogue
turns (6.53 → 4.86) by eliciting all required user information up front and mini-
mizing repetition. Our findings highlight the importance of active user interaction
and role-aware clarification for more reliable human–agent communication.

Coordinated Multi-Agent User Clarification

+ Δ 4.68% Baseline Multi-Agent
+ Δ 8.00% Baseline

Figure 1: Multi-Agent User Clarification Framework. Left: A dialogue example from MultiWOZ 2.4 illus-
trates Coordinated Multi-Agent Clarification (MAC). Manager Agent resolves domain-agnostic ambiguity (e.g.,
group size), while routing domain-specific clarifications (e.g., cuisine and restaurant choice) to the Restaurant
Expert Agent. Each agent is restricted to its designated role: the manager collects general requirements, and
the expert gathers domain knowledge to finalize the booking. This separation avoids redundant clarifications
and ensures targeted resolution of uncertainty. Right: Empirical results on MultiWOZ 2.4 shows, the baseline
single-agent system achieves 50.4%. A standard multi-agent setup yields a +4.68% gain, highlighting the benefit
of multi-agent coordination in multi-domain dialogue. Our proposed MAC framework provides an additional
+8.00% improvement over the baseline by enabling effective clarification through role-assigned agents. These
results underscore the value of proactive, collaborative human–agent interactions to successful task completion.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Multi-Turn Interactions
in Large Language Models.

b) Multi-Agent with only
Experts Issuing Clarifications

a) Multi-Agent without
User Clarification

c) Multi-Agent with only
Manager Issuing Clarifications

d) Multi-Agent with
Both Issuing Clarifications

Figure 2: A comparison of multi-agent architectures for user clarification in task-oriented dialogue. (a)
Baseline: The manager/router agent routes user queries to domain-specific expert LLMs without any clarification.
(b) Experts-only clarification: Each expert LLM independently interacts with the user to request clarification
when needed, enhancing single-domain understanding. (c) Manager-only clarification: The manager/router
agent requests clarification from the user before routing to any expert, enabling global disambiguation. (d) Both:
Both the manager/router and the expert LLMs can independently interact with the user for clarification, allowing
multi-level user-agent interaction. Dashed red arrows denote user clarification turns.

1 Introduction

Effective user clarification is fundamental to conversational agents, significantly impacting their ability
to fulfill user requests accurately and efficiently [Aliannejadi et al., 2019]. In natural interactions,
users often express ambiguous queries, intentionally or unintentionally omitting details that seem
inferable or contextually obvious. Such ambiguity can cause agents to make incorrect assumptions,
provide incomplete responses, or even fail to accomplish tasks—issues that are especially critical
in high-stakes domains such as healthcare, finance, and customer support. Proactively resolving
ambiguities through targeted user interactions by asking clear and relevant clarification questions can
substantially enhance the accuracy of task execution, user satisfaction, and the overall effectiveness
of conversational systems [Deng et al., 2023].

In single-agent systems, the challenge of ambiguity resolution has been previously studied with
different strategies [Dongre et al., 2024], from asking targeted questions [Li et al., 2023, Zhang and
Choi, 2025] to inferring user preferences from past interactions [Andukuri et al., 2024]. However, the
landscape of conversational AI is rapidly evolving towards more complex, multi-agent architectures,
especially in industrial settings where a single agent cannot efficiently manage the large number of
APIs and multitasking demands [Sun et al., 2025]. As a result, manager–expert routing systems
are becoming the standard for handling real-world tasks [Guo et al., 2024, Tran et al., 2025]. This
paradigm, often featuring a "manager" or "advisory" agent that routes requests to specialized "expert"
agents, introduces new layers of complexity for user interaction [Ong et al., 2025]. In such a setup,
determining the optimal moment and method for clarification becomes a significant challenge. For
instance, should the high-level advisory agent, which first receives the user’s request, interrupt for
clarification, or should this be delegated to a domain-specific expert agent, potentially increasing
latency and conversational turns? Moreover, deciding how much domain-specific knowledge the
manager should possess introduces another design challenge, establishing an essential knowledge
boundary. Therefore, proposing an approach that effectively manages ambiguity resolution while
remaining independent of this specific design choice is crucial for creating flexible and robust
multi-agent systems.

To explore these open questions, we introduce MAC (Multi-Agent Clarification), the first framework
that focuses on resolving user ambiguities within multi-agent conversational systems and aims to
uncover how, when, and by whom user clarifications should be initiated within these multi-agent
settings. The framework strategically determines not only the moment to seek clarification but
also which agent—the supervisor or the domain-specific expert—is best positioned to ask. Our
experiments on MultiWOZ 2.4 [Ye et al., 2022] reveal that the placement and timing of clarification
matter more than previously recognized. First, we show that enabling clarification at both levels
delivers not just higher task success with a 7.8% absolute gain over the no-clarification baseline, but
does so while reducing the average number of conversational turns. Second, the optimal coordinated

2

Agent Clarification Category Description / Example

Supervisor

1. Domain Ambiguity User query could match multiple domains (e.g., “Find me a good place.”)
2. Intent Ambiguity Domain is clear, but user’s goal is not (“Tell me about trains.”)
3. Vague Goal Specification Query is too broad to act on (“Help me with my trip.”)
4. Contextual Disambiguation Vague referents like “it” or “that place” are unclear
5. General Conflict Broad contradiction in user input (“I changed my mind about the date.”)
6. General Noise/Correction Common errors/typos needing clarification (“I meant tomorrow not today.”)
7. Unfamiliar Domain Request Request does not match any known domain (“Can you fix my phone?”)

Expert

1. Parameter Underspecification Missing key slot values (e.g., location, cuisine, people, time)
2. Value Ambiguity/Vagueness Subjective terms require clarification (“a nice place”)
3. Constraint Conflict Contradictory constraints (“a cheap but expensive restaurant”)
4. Entity Disambiguation/Not Found Ambiguous or unrecognized entity (restaurant name not found)
5. Confirmation of Inferred Information Inferred detail from context needs user confirmation

Table 1: Clarification Taxonomies for Ambiguity Handling: Supervisor and Experts. Supervisor agent
addresses only high-level, domain-agnostic ambiguities, while the Expert agent resolves domain-specific
underspecification prior to API execution.

setup—where the supervisor manages high-level ambiguities and the expert agent resolves domain-
specific ones—delivers the highest performance, even outperforming previous state-of-the-art TOD
approaches on MultiWOZ with 11.50%. This means effective clarification is not merely about “asking
more questions,” but about delegating the right questions to the right agents at the right time.

The main contributions of this work are:

• We formalize the ambiguity resolution problem in multi-agent conversational systems with a
taxonomy (Table 1), where decisions about when, who, and how to clarify are jointly optimized
among different agents.

• We propose MAC, the first multi-agent framework for user clarification, enabling distributed agents
to dynamically coordinate clarification behavior.

• We show that coordinated clarification, when both manager and experts are empowered to ask
targeted questions, leads to a 7.8% absolute increase in task success (54.5% → 62.3%) while also
reducing average dialogue length (6.53 → 4.86 turns) on MultiWOZ 2.4.

• We conduct extensive ablation studies, benchmarking MAC against strong single- and multi-
agent baselines, analyzing the trade-offs of different clarification strategies, and demonstrating
that our modular approach consistently outperforms prior TOD systems by a substantial margin.
Additionally, we show that these gains are robust across diverse LLM backbones, including both
proprietary and open-source models.

2 Related Work
Asking Clarification Questions Asking user clarification questions has been studied in conversa-
tional AI research, with distinct focuses on when to ask and what to ask [Kuhn et al., 2022]. Some
approaches use uncertainty estimation or information-theoretic models to decide when to initiate
clarification [Zhang and Choi, 2023]. More advanced frameworks attempt to address both when
and what to ask problems jointly [Andukuri et al., 2024, Zhang et al., 2024], but they are often
limited to a small number of conversational turns, which is insufficient for complex, real-world tasks.
Most similar to our approach, the ReSpAct framework [Dongre et al., 2024] enables clarification
with rule-based prompting, however operating in vanilla single-agent settings. This approach fails
to address the challenges of production systems, such as smart home platforms, which operate as
complex multi-agent systems [Guo et al., 2024]. Our work fills this critical gap by proposing a novel
framework for coordinating clarification strategies across multiple specialized agents to ensure a
coherent and efficient user experience similar to direct real world settings.

Large Language Models for Task-Oriented Dialogue Recent progress in LLMs has led to their
adoption in multi-domain TOD systems [Hudeček and Dusek, 2023]. Existing approaches typically
rely on either prompting-based methods [Hu et al., 2022, Chung et al., 2023, Xu et al., 2024] or
specialized fine-tuning [Hosseini-Asl et al., 2020, Yang et al., 2021, Zhong et al., 2023, Sun et al.,
2023, Bang et al., 2023, Li et al., 2024]. Fine-tuned models are often tailored to narrow tasks such
as state tracking or offline benchmarks, and as a result, they struggle to generalize to complex, real-
world, multi-turn conversations [Acikgoz et al., 2025]. More recently, AutoTOD [Xu et al., 2024]
demonstrated the use of GPT-4 with domain-specific, hand-crafted prompts and pre-defined APIs,
but this approach depends heavily on lengthy instructions and lacks adaptability. On the other hand,
some recent studies have begun to explore multi-agent architectures for TOD [Gupta et al., 2024], but

3

they have not addressed the crucial aspect of user clarification, which is an essential skill for handling
ambiguous or incomplete user requests in practical settings. In contrast, our work introduces the
first multi-agent system explicitly focusing on asking user clarification question in multi-turn TOD,
establishing an optimal framework for more reliable and user-centric dialogue agents.

3 Environment
MultiWOZ 2.4 In our research, we utilize the MultiWOZ 2.4 [Ye et al., 2022], a comprehensive
multi-domain dialogue benchmark designed for task-oriented dialogue (TOD) systems. It contains
multi-turn conversations between a user and a system simulating a dialogue assistant. The user is
given a goal (e.g., book a hotel and a restaurant in the same area), while the system must fulfill the
request using a consistent belief state and database API. Each dialogue is annotated with dialogue
acts, belief states, and system actions at each turn, enabling full end-to-end modeling and evaluation.
It consists of 8̃,500 training dialogues and a test set of 1,000 dialogues. The test conversations within
MultiWOZ 2.4 simulate customer service interactions across five distinct domains: restaurant, hotel,
train, attraction, and taxi. To create more realistic real-world scenarios in multi-turn settings with
actual users, we enhanced this dataset by incorporating a user simulator, making the tasks both more
challenging and more authentic.

Task During evaluation, each dialogue involves between up to five domains: restaurant, hotel, train,
attraction, and taxi. The agent must understand the user’s multi-intent goals, track the evolving belief
state, issue database queries, and generate appropriate system responses. Crucially, user queries often
underspecify constraints (e.g., "Book a restaurant for dinner"), requiring the agent to proactively
request clarification (e.g., number of people, cuisine, or time), which makes a well-suited environment
to test our multi-agent approach.

User Simulator Our experimental setup involves a user simulator, which we implemented to
interact with the agent in a multi-turn conversational flow. This simulator is tasked with pursuing
the predefined user goals, while the agent’s objective is to assist the user in achieving these goals by
interacting with an external database. We chose to work with MultiWOZ 2.4 over other benchmarks,
due to its capability to simultaneously handle five distinct domains within a single conversational
context. The available actions for each domain are detailed in Appendix Table 7.

Algorithm 1 MAC: Multi-Agent Clarification Workflow

Require: User query ut at dialogue turn t; supervisor agent AS ; domain experts AE = {Ad1 , . . . , Adn}
Ensure: Either CLARIFY(q) or RESPOND(r)

1 function MAC(ut)
2 if AS .ISAMBIGUOUS(ut) then
3 q ← AS .ASKCLARIFICATION(ut)
4 return CLARIFY(q) ▷ Supervisor requests disambiguation
5 end if
6 d← AS .SELECTDOMAIN(ut)
7 Ad ← the expert for domain d ▷ Route to best-fit expert
8 if Ad.ISAMBIGUOUS(ut) then
9 qd ← Ad.ASKCLARIFICATION(ut)

10 return CLARIFY(qd) ▷ Expert requests a targeted follow-up
11 else
12 r ← Ad.EXECUTEDOMAINRESPONSE(ut)
13 return RESPOND(r) ▷ Final, domain-grounded answer
14 end if
15 end function

Design notes. (i) Only one clarification is issued per turn to limit latency. (ii) AS handles global ambiguity;
Ad handles domain-specific gaps. (iii) Routing uses AS .SELECTDOMAIN, which may rely on intent
classification or retrieval over domain schemas.

4 Method
Ambiguity in user requests is a central challenge in conversational agents, yet there is limited
empirical guidance in multi-agent dialogue systems on where and how clarification should be initiated
in such frameworks. To address this, we systematically investigate different agent-level strategies for

4

user clarification in a hierarchical multi-agent architecture comprising a manager/router and multiple
domain-specific experts (See Figure 2).

4.1 MAC: Multi-Agent Clarification for User Ambiguities

In our multi-agent framework, we adopt a centralized multi-agent setting as our base architecture
which consists of a single supervisor agent and multiple specialized domain expert agents. The
supervisor agent is responsible for orchestrating the overall dialogue flow by routing each user
request to the most relevant domain expert, following the router-based approach in Ong et al. [2025].
Each expert agent is specialized for one of the five domains in MultiWOZ 2.4, and is tasked with
executing domain-specific actions to fulfill user goals. In MAC, we further enhance this framework
by integrating user clarification mechanisms to resolve ambiguities. This involves assigning specific
clarification-handling capabilities to both supervisor and domain expert roles as in Table 1, enabling
them to manage different forms of uncertainty and improve final task outcomes.

Supervisor Agent In the MAC framework, the Supervisor agent is responsible for two different
tasks: (i) orchestrating the agent collaboration by routing user queries to the appropriate domain
expert, and (ii) handling top-level clarification of user requests when the ambiguity can be re-
solved with general commonsense reasoning, independent of domain-specific knowledge (Table 1,
top). Formally, for each incoming user query u, the Supervisor evaluates an ambiguity function
is_ambiguous(u) ∈ 0, 1: if is_ambiguous(u) = 1, the agent issues a clarification prompt to the user
using the standardized format <clarify>question</clarify>; otherwise, it selects the appropri-
ate domain expert with <route>domain</route>. This prompt-based control flow is illustrated in
Figure 6, where the Supervisor’s output is parsed and dispatched to downstream agents. Notably,
the Supervisor operates without access to domain-specific databases or APIs, ensuring that only
non-domain-specific ambiguities (e.g., group size or intent) are addressed at this stage. After re-
solving high-level ambiguities, supervisor delegates the (potentially clarified) user request to the
corresponding domain expert, enabling more efficient and role-aware collaboration across the agent
hierarchy.

Domain Expert Agents Each Domain Expert agent is responsible for executing user goals within
a specific task domain. We instantiate five expert agents, corresponding to the five domains in
MultiWOZ 2.4: restaurant, hotel, train, taxi, and attraction. Once a user query is routed
to a domain expert, the agent analyzes the input—potentially enriched by prior supervisor-level
clarification—and determines whether the information is sufficient to proceed with an accurate API
calls or reliable response generation. To guide this behavior, we prompt each expert individually with
domain-specific instructions that are coupled with the standardized protocols for user clarification
(see Figure 7), following predefined expert specific clarification taxonomy (Table 1, bottom). Similar
to the supervisor, the agent computes an ambiguity function is_ambiguous_domain(u) ∈ 0, 1; if the
result is 1, the agent triggers a clarification request formatted as <clarify>question</clarify>.
If the input is deemed sufficient, the agent executes the necessary domain-specific operations and re-
sponds using the structure <response>utterance</response>. These prompt-structured outputs
allow the framework to dynamically interleave reasoning, clarification, and execution in multi-turn
interactions. Domain Experts have access to API schemas and databases corresponding to their
domain, enabling them to ground their responses in task-specific constraints and complete user
requests accurately.

To elucidate the core principles of MAC, we conduct a systematic analysis of different strategies
across the experimental design choices detailed in Figure 2.

5 Experiments and Results

5.1 Experimental Setup

In our MAC framework, we used gpt-4o-2024-08-06 as the base configuration for the selected
LLM, serving as both the advisor and each expert, unless otherwise specified. However, we have
conducted a comprehensive ablation studies on the effect of model choice for both nodes in the
Section 5.4. We conducted our evaluation on the MultiWOZ 2.4 test split, which contains 1,000 test
samples from five domains: restaurant, hotel, train, attraction, and taxi. The evaluation was performed
in online sessions where we implemented a user simulator based on gpt-4o-2024-08-06, as defined

5

Method Clarification Success (Max@5 ↑) Success (Avg@5 ↑) Avg. Turns (↓)
MAC w/o Clarification - 54.5 53.72 ± 0.92 6.53
MACexpert Expert 55.6 54.88 ± 1.04 5.53
MACsupervisor Supervisor 57.1 55.50 ± 1.86 5.11
MAC Both 62.3 58.40 ± 2.10 4.86

Table 2: Main results on MultiWOZ 2.4. Main results comparing different prompting and clarification
strategies in the MAC framework on MultiWOZ 2.4. We report (Success Max@5): the highest single-run task
success rate out of five runs, (Success Avg@5): the mean and standard deviation of success rates over five runs,
and (Avg. Turns): the average number of dialogue turns per conversation (lower is better). Each row corresponds
to a specific agent configuration—clarification enabled for the expert, the supervisor, both, or neither. Results
demonstrate that enabling clarification for both supervisor and expert agents leads to the highest task success
and most efficient dialogues.

in Section 3. To account for LLM randomness, we ran each experiment five times and report the
Success Rate with Avg@5 with their standard deviations and also include Success Rate with Max@5
which gives the max scores achieved in these five runs. Further details about the evaluation metrics
can be seen in Section A.

5.2 Baselines

MAC is the first LLM-based multi-agent framework specifically designed for user clarification. To
evaluate its effectiveness, we compare it against three variants of the same multi-agent architecture:
(i) without any user clarification, (ii) with user clarification handled only by the Supervisor, and (iii)
with user clarification enabled only for the domain experts (see Figure 2). In setting (i), neither the
Supervisor nor the domain experts are instructed to ask clarification questions. In setting (ii), only
the Supervisor is prompted to perform both routing and user clarification, while the domain experts
are limited to responding after routing. In setting (iii), only the domain experts are prompted to
ask clarification questions, and the Supervisor is responsible solely for routing. In contrast, MAC
enables user clarification at both the Supervisor and domain expert levels, allowing every agent node
to interact with the user as needed. This setup allows for a fair and systematic evaluation of the
individual and combined effects of clarification skills across different nodes.

5.3 Main Results

We compare MAC against three variants: (i) MAC without any clarification capability, (ii) MAC
where only domain-specific experts perform clarifications (MACexpert), and (iii) MAC where only
the supervisor at the top node initiates clarification questions (MACsupervisor). Table 2 summarizes
our main findings, demonstrating the effectiveness of the proposed MAC framework. Specifically, our
proposed MAC framework achieves an increase in task accuracy of approximately 8% at maximum
and about 5% on average compared to the no-clarification baseline. Remarkably, this improvement
is accompanied by a reduction in the average dialogue length by roughly two conversational turns.
Our results clearly indicate that prompting agents to proactively clarify ambiguous, incomplete, or
underspecified user requests consistently improves task success rates without extending dialogue
length. This emphasizes the benefit of proactive conversational strategies. These findings highlight
the MAC framework’s superior performance, effectively balancing accuracy with conversational
efficiency.

Takeaway 1: Asking clarification questions consistently increase task success and decrease
number of turns to solve the task in multi-agent settings.

5.4 Ablation Studies

Comparison of MAC with Other TOD Systems In Table 2, we demonstrated MAC’s accuracy
and efficiency compared to its variants, highlighting that combining clarification capabilities be-
tween supervisor and experts results in the most effective setup. To further contextualize MAC’s
performance, it is crucial to benchmark against other leading task-oriented dialogue (TOD) systems.

6

Method Success Rate (↑)
SimpleTOD Hosseini-Asl et al. [2020] 22.00
UBAR Yang et al. [2021] 26.80
GALAXY Zhong et al. [2023] 28.80
MARS Sun et al. [2023] 27.50
TOATOD Bang et al. [2023] 26.90
FNCTOD Li et al. [2024] 44.40
AutoTOD Xu et al. [2024] 46.90
MAC 58.40

Table 3: MAC’s Performance Compared to Existing
TOD Systems. Results for baseline models are sourced
from AutoTOD for fair comparison.

No Clarification With Clarification

46

48

50

52

54

56

58

60

Su
cc

es
s

R
at

e
(%

)

50.4%

52.4%

53.7%

58.4%

Multi-Agent vs Single-Agent Success Rate
Single-Agent Multi-Agent

Table 4: Comparison of Single-Agent vs Multi-
Agent Systems With and Without Clarification.
The multi-agent approach benefits more from user
clarification, achieving the highest performance.

Following the evaluation framework of AutoTOD [Xu et al., 2024], we present this comparison in
Table 3. Our results indicate that MAC surpasses previous state-of-the-art models, achieving an
improvement of approximately 11.50% over the closest agent AutoTOD. This underscores both the
robustness of the multi-agent architecture in multi-domain scenarios such as MultiWOZ 2.4 and the
critical role of proactive clarification when handling uncertainties.

Takeaway 2: MAC demonstrates superior performance over previous TOD systems, attributed
to its multi-agent architecture and effective user clarification capabilities.

Language Model Success Rate (↑)
MAC w/o Clarification
gpt-4o 53.72 ± 0.92
gpt-4o-mini 52.40 ± 2.08
Qwen3-235B-A22B 47.32 ± 1.72
Llama-3.1-405B-Instruct 48.70 ± 1.64

MAC with Clarification
gpt-4o 58.40 ± 2.10 (+4.68)
gpt-4o-mini 57.10 ± 1.42 (+4.70)
Qwen3-235B-A22B 54.50 ± 1.06 (+7.28)
Llama-3.1-405B-Instruct 56.58 ± 2.70 (+7.88)

Table 5: MAC success rates with different LLMs, with
and without clarification. Values in parentheses show
absolute improvement from clarification.

How does the choice LLM effect MAC?
Since multi-agent setups are typically con-
structed using multiple LLMs with prompting,
it is valuable to evaluate the performance of
diverse LLMs within our MAC framework.
To this end, we experimented with two
proprietary API-based models and two open-
source models: GPT-4o-2024-11-20 [Hurst
et al., 2024], gpt-4o-mini,
Qwen3-235B-A22B [Yang et al., 2025],
and Llama-3.1-405B-Instruct [Grattafiori
et al., 2024]. As shown in Table 5, enabling
coordinated user clarification for both supervi-
sor and expert agents in the MAC framework
consistently improves task success rates, regard-
less of model type. For instance, gpt-4o and
gpt-4o-mini achieve absolute improvements
of +4.68 and +4.70 points, respectively, when equipped with clarification. Notably, the open-source
Llama-3.1-405B-Instruct model exhibits an even larger gain of +7.88 points, narrowing the
gap with proprietary counterparts. The larger delta in accuracy for open-source LLMs suggests
that well-designed supervision and agent coordination can unlock their potential, making them
competitive candidates with propriety models for agentic systems in practice.

Takeaway 3: Enabling user clarification for both supervisor and expert agents in MAC consis-
tently improves performance regardless of model type, even with open-source models.

Takeaway 4: Proactive interaction and effective agent coordination yield the highest accuracy
gains for open-source LLMs, making them as strong alternatives to proprietary models in agentic
systems.

7

5.5 MAC vs Single Agent Clarification

Figure 4 presents a comparative analysis of single-agent and multi-agent systems, examining their
performance with and without user clarification. Our findings demonstrate that clarification enhances
success rates in both setups; however, the improvement is notably more pronounced in the multi-agent
configuration. Specifically, the Multi-Agent Clarification (MAC) system outperforms Single-Agent
Clarification (SAC) by 6% (52.4% → 58.4%), highlighting the advantage of separating responsibilities
between a Supervisor, responsible for general, high-level ambiguities, and domain-specific Experts
who handle specialized clarifications. Moreover, our multi-agent setup consistently achieves higher
success rates than the single-agent approach even in scenarios without clarification, emphasizing the
inherent benefit of distributing workload among coordinated agents rather than overloading a single
agent with multiple roles. This superior performance, particularly under clarification conditions,
underscores the advantages of modularity in resolving ambiguities effectively and efficiently scaling
to complex, multi-domain interactions. In contrast, single-agent systems face diminishing returns and
decreased interpretability as complexity grows due to the necessity of internalizing diverse expertise.
Additionally, the modular structure of MAC facilitates incremental updates and streamlined integration
of new domains, enhancing its robustness and practical applicability in real-world scenarios, as
demonstrated by systems such as the model context protocol (MCP) [Hou et al., 2025].

Takeaway 5: Multi-agent setup outperforms single-agent both with and without clarification,
which suggest multi-agent setup offers improved scalability and efficiency as each agent
operates with a more focused and concise context.

Method Success Rate (↑)
MAC 58.40 ± 2.10

w/o Ambiguity & Vagueness Handling 52.20 ± 1.21 (-6.20)
w/o Slot/Parameter-Blocking Clarification 56.22 ± 1.36 (-2.18)

Table 6: Ablation study on the impact of supervisor (Ambiguity & Vagueness Handling) and expert
(Slot/Parameter-Blocking Clarification) clarification taxonomies, with the drop in accuracy (red).

Effect of Clarification Taxonomies on Task Success To better understand the critical roles of
different clarification strategies, we clustered the supervisor’s taxonomy into high-level Ambiguity and
Vagueness Handling (encompassing Domain Ambiguity, Intent Ambiguity, Vague Goal Specification,
and Contextual Disambiguation) and the expert’s taxonomy into Slot/Parameter Uncertainty (covering
Parameter Underspecification and Value Ambiguity/Vagueness). As shown in Table 6, ablating
Ambiguity and Vagueness Handling from the supervisor yields a substantial drop in task success
rate (−6.20), highlighting the importance of proactively resolving common-sense ambiguities before
delegating to domain-specific experts. In contrast, removing Slot/Parameter-Blocking Clarification
from experts causes a smaller, but still notable, accuracy decline (−2.18), confirming that careful
handling of underspecified or vague user slots is also essential, especially for API calls requiring
precise parameters. It demonstrates that both forms of clarification are necessary, but high-level
disambiguation with supervisor is particularly crucial for robust multi-agent dialogue.

Takeaway 6: High-level ambiguity and vagueness handling by the supervisor is essential
for robust performance, with its removal causing the largest drop in task success among all
clarification skills.

Overall, these results strongly support our preference for the multi-agent architecture, which explicitly
delegates clarification tasks to the most suitable agents. Consequently, MAC delivers higher accuracy,
improved scalability, and enhanced maintainability, underscoring the critical role of modular design
in developing robust and generalizable conversational agents.

8

6 Discussions

Conclusion We introduce MAC, the first multi-agent LLM framework specifically designed for
interactive user clarification in conversational agents, and we also present the first comprehensive user
clarification taxonomy for this domain, best of our knowledge. Our results demonstrate that effective
user clarification is essential for maximizing task success and conversational efficiency, minimizing
unnecessary user interactions. The proposed taxonomy enhances accuracy in both single-agent and
multi-agent settings, with the multi-agent approach yielding superior results due to effective task
sharing with domain experts. Notably, MAC is model-agnostic and significantly boosts performance
across both open-source and proprietary LLMs, with particularly pronounced gains for open-source
models; helping close the performance gap through optimal design and supervision. Our ablation
studies highlight that high-level ambiguity and vagueness handling by the supervisor is especially
critical for robust performance in real-world scenarios. Overall, MAC establishes a foundation for
future research and deployment of multi-agent, user-centric conversational systems, offering clear
benefits for practical and industrial applications.

Future Work Handling user interactions in conversational agents is inherently complex, as it
requires managing multiple tasks such as providing accurate responses or invoking the appropriate
API from thousands of available tools. In addition to these requirements, MAC further focus on
challenge at scale through its carefully designed multi-agent setup, which is specifically tailored
for user clarification. As a future direction, agents could learn optimal timing for seeking user
clarification by monitoring environmental signals during interactions, leveraging recent reinforcement
learning techniques [Guo et al., 2025] to continuously self-update and become increasingly successful
over time. Moreover, while our evaluation focuses on task success and the number of conversational
turns as proxies for efficiency, quantifying overall user satisfaction remains an open question, where
factors such as dialogue naturalness and other user-centric elements may play a pivotal role.

References
Emre Can Acikgoz, Jeremiah Greer, Akul Datta, Ze Yang, William Zeng, Oussama Elachqar,

Emmanouil Koukoumidis, Dilek Hakkani-Tür, and Gokhan Tur. Can a single model master both
multi-turn conversations and tool use? coalm: A unified conversational agentic language model,
2025. URL https://arxiv.org/abs/2502.08820.

Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, and W Bruce Croft. Asking clarifying
questions in open-domain information-seeking conversations. In Proceedings of the 42nd interna-
tional acm sigir conference on research and development in information retrieval, pages 475–484,
2019.

Chinmaya Andukuri, Jan-Philipp Fränken, Tobias Gerstenberg, and Noah D Goodman. Star-gate:
Teaching language models to ask clarifying questions. arXiv preprint arXiv:2403.19154, 2024.

Namo Bang, Jeehyun Lee, and Myoung-Wan Koo. Task-optimized adapters for an end-to-end
task-oriented dialogue system. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors,
Findings of the Association for Computational Linguistics: ACL 2023, pages 7355–7369, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.
464. URL https://aclanthology.org/2023.findings-acl.464/.

Willy Chung, Samuel Cahyawijaya, Bryan Wilie, Holy Lovenia, and Pascale Fung. InstructTODS:
Large language models for end-to-end task-oriented dialogue systems. In Kehai Chen and Lun-Wei
Ku, editors, Proceedings of the Second Workshop on Natural Language Interfaces, pages 1–21,
Bali, Indonesia, November 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.nlint-1.1. URL https://aclanthology.org/2023.nlint-1.1/.

Yang Deng, Wenqiang Lei, Wai Lam, and Tat-Seng Chua. A survey on proactive dialogue systems:
problems, methods, and prospects. In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, pages 6583–6591, 2023.

Vardhan Dongre, Xiaocheng Yang, Emre Can Acikgoz, Suvodip Dey, Gokhan Tur, and Dilek
Hakkani-Tür. Respact: Harmonizing reasoning, speaking, and acting towards building large
language model-based conversational ai agents. arXiv preprint arXiv:2411.00927, 2024.

9

https://arxiv.org/abs/2502.08820
https://aclanthology.org/2023.findings-acl.464/
https://aclanthology.org/2023.nlint-1.1/

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf
Wiest, and Xiangliang Zhang. Large language model based multi-agents: a survey of progress
and challenges. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, IJCAI ’24, 2024. ISBN 978-1-956792-04-1. doi: 10.24963/ijcai.2024/890. URL
https://doi.org/10.24963/ijcai.2024/890.

Aman Gupta, Anirudh Ravichandran, Narayanan Sadagopan, and Anurag Beniwal. DARD: A
multi-agent approach for task-oriented dialog systems. In NeurIPS 2024 Workshop on Open-World
Agents, 2024. URL https://openreview.net/forum?id=RbkX9e4qqP.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, Semih Yavuz, and Richard Socher. A
simple language model for task-oriented dialogue. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 20179–20191. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper_files/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf.

Xinyi Hou, Yanjie Zhao, Shenao Wang, and Haoyu Wang. Model context protocol (mcp): Landscape,
security threats, and future research directions. arXiv preprint arXiv:2503.23278, 2025.

Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu, Noah A. Smith, and Mari Ostendorf. In-context
learning for few-shot dialogue state tracking. In Yoav Goldberg, Zornitsa Kozareva, and Yue
Zhang, editors, Findings of the Association for Computational Linguistics: EMNLP 2022, pages
2627–2643, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.findings-emnlp.193. URL https://aclanthology.org/
2022.findings-emnlp.193/.

Vojtěch Hudeček and Ondrej Dusek. Are large language models all you need for task-oriented
dialogue? In Svetlana Stoyanchev, Shafiq Joty, David Schlangen, Ondrej Dusek, Casey Kennington,
and Malihe Alikhani, editors, Proceedings of the 24th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 216–228, Prague, Czechia, September 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.sigdial-1.21. URL https://aclanthology.
org/2023.sigdial-1.21/.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Clam: Selective clarification for ambiguous
questions with generative language models. arXiv preprint arXiv:2212.07769, 2022.

Belinda Z Li, Alex Tamkin, Noah Goodman, and Jacob Andreas. Eliciting human preferences with
language models. arXiv preprint arXiv:2310.11589, 2023.

Zekun Li, Zhiyu Chen, Mike Ross, Patrick Huber, Seungwhan Moon, Zhaojiang Lin, Xin Dong,
Adithya Sagar, Xifeng Yan, and Paul Crook. Large language models as zero-shot dialogue
state tracker through function calling. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar,
editors, Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 8688–8704, Bangkok, Thailand, August 2024. Association for
Computational Linguistics. doi: 10.18653/v1/2024.acl-long.471. URL https://aclanthology.
org/2024.acl-long.471/.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
M Waleed Kadous, and Ion Stoica. RouteLLM: Learning to route LLMs from preference data.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=8sSqNntaMr.

10

https://doi.org/10.24963/ijcai.2024/890
https://openreview.net/forum?id=RbkX9e4qqP
https://proceedings.neurips.cc/paper_files/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://aclanthology.org/2022.findings-emnlp.193/
https://aclanthology.org/2022.findings-emnlp.193/
https://aclanthology.org/2023.sigdial-1.21/
https://aclanthology.org/2023.sigdial-1.21/
https://aclanthology.org/2024.acl-long.471/
https://aclanthology.org/2024.acl-long.471/
https://openreview.net/forum?id=8sSqNntaMr
https://openreview.net/forum?id=8sSqNntaMr

Haipeng Sun, Junwei Bao, Youzheng Wu, and Xiaodong He. Mars: Modeling context & state
representations with contrastive learning for end-to-end task-oriented dialog. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki, editors, Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 11139–11160, Toronto, Canada, July 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.708. URL https:
//aclanthology.org/2023.findings-acl.708/.

Lijun Sun, Yijun Yang, Qiqi Duan, Yuhui Shi, Chao Lyu, Yu-Cheng Chang, Chin-Teng Lin, and
Yang Shen. Multi-agent coordination across diverse applications: A survey. arXiv preprint
arXiv:2502.14743, 2025.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
Hoang D Nguyen. Multi-agent collaboration mechanisms: A survey of llms. arXiv preprint
arXiv:2501.06322, 2025.

Heng-Da Xu, Xian-Ling Mao, Puhai Yang, Fanshu Sun, and Heyan Huang. Rethinking task-oriented
dialogue systems: From complex modularity to zero-shot autonomous agent. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 2748–2763, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.152.
URL https://aclanthology.org/2024.acl-long.152/.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Yunyi Yang, Yunhao Li, and Xiaojun Quan. Ubar: Towards fully end-to-end task-oriented dialog
system with gpt-2. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 14230–14238, 2021.

Fanghua Ye, Jarana Manotumruksa, and Emine Yilmaz. MultiWOZ 2.4: A multi-domain task-
oriented dialogue dataset with essential annotation corrections to improve state tracking evaluation.
In Oliver Lemon, Dilek Hakkani-Tur, Junyi Jessy Li, Arash Ashrafzadeh, Daniel Hernández Garcia,
Malihe Alikhani, David Vandyke, and Ondřej Dušek, editors, Proceedings of the 23rd Annual
Meeting of the Special Interest Group on Discourse and Dialogue, pages 351–360, Edinburgh, UK,
September 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.sigdial-1.34.
URL https://aclanthology.org/2022.sigdial-1.34/.

Michael JQ Zhang and Eunsol Choi. Clarify when necessary: Resolving ambiguity through interaction
with lms. arXiv preprint arXiv:2311.09469, 2023.

Michael JQ Zhang and Eunsol Choi. Clarify when necessary: Resolving ambiguity through interaction
with LMs. In Luis Chiruzzo, Alan Ritter, and Lu Wang, editors, Findings of the Association for
Computational Linguistics: NAACL 2025, pages 5526–5543, Albuquerque, New Mexico, April
2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/
2025.findings-naacl.306. URL https://aclanthology.org/2025.findings-naacl.306/.

Michael JQ Zhang, W Bradley Knox, and Eunsol Choi. Modeling future conversation turns to teach
llms to ask clarifying questions. arXiv preprint arXiv:2410.13788, 2024.

Lucen Zhong, Hengtong Lu, Caixia Yuan, Xiaojie Wang, Jiashen Sun, Ke Zeng, and Guanglu
Wan. A task-oriented dialog model with task-progressive and policy-aware pre-training. In CCF
International Conference on Natural Language Processing and Chinese Computing, pages 3–15.
Springer, 2023.

11

https://aclanthology.org/2023.findings-acl.708/
https://aclanthology.org/2023.findings-acl.708/
https://aclanthology.org/2024.acl-long.152/
https://aclanthology.org/2022.sigdial-1.34/
https://aclanthology.org/2025.findings-naacl.306/

A Further Details on Evaluation and MultiWOZ 2.4

We evaluate the performance of our MAC framework using dialogue-level metrics that capture both
the effectiveness and efficiency of task completion. Our primary metric is Success Rate, which
measures whether the agent fully satisfies all user-specified constraints and successfully completes
the task. For each dialogue, we use an LLM-based judge to assess if the agent’s final response fulfills
every requirement defined by the user’s goal, including both requested attributes (such as hotel name
or train arrival time) and booking constraints (such as the number of people or destination) following
Xu et al. [2024]. Formally, a dialogue is considered successful if all constraints in the user’s goal G
are met by the end of the interaction:

Success = I(all constraints in G are satisfied), (1)

where I(·) denotes the indicator function. This score is computed for every dialogue and averaged
across the evaluation set. To account for the stochastic nature of both model inference and LLM-based
judging, we conduct five independent runs for each experimental configuration.

We report two aggregate Success Rate metrics: Success Max@5, the highest single-run success rate
out of five runs, reflecting the best-case performance; and Success Avg@5, the mean and standard
deviation of success rates over the five runs, providing a robust measure of typical performance and
variance. In addition, we report the Average Number of Turns per conversation as an efficiency
metric. This measures the average length of the dialogue required to complete the task, with lower
values indicating more concise and effective interactions. This metric is particularly important for
assessing the practical impact of clarification strategies on user burden and overall system efficiency.

Domain API Name API Arguments Test Samples per Domain
Restaurant query_restaurant area, pricerange, food, name 437

book_restaurant name, people, day, time, pricerange, stars, type

Hotel query_hotel area, internet, name, parking 394
book_hotel name, people, day, stay

Attraction query_attraction area, name, type 395

Train query_train arriveBy, day, departure, destination, leaveAt, trainID 494
buy_train_ticket arriveBy, day, departure, destination, leaveAt, trainID, people

Taxi book_taxi arriveBy, departure, destination, leaveAt 195

Table 7: Available actions per domain in MultiWOZ 2.4

12

ClarifyRLData Generation Prompt
Given the following User Goal and Ground Truth Conversation, update the conversation to introduce
ambiguity or underspecification in the user’s turns, such that the agent must ask for clarification at least
once and at most three times. For every agent clarification, enclose the clarification in ‘<clarify>‘
and ‘</clarify>‘ tokens. After each agent clarification, update the following user turn(s) to resolve the
ambiguity.
Do not change the overall goal or successful task completion. Only modify the conversation for clarification
needs.

Task:
- Carefully read the User Goal and the Ground Truth Conversation.
- Rewrite the conversation so that some user turns are ambiguous or missing key information, requiring the
agent to clarify at least once and at most three times (with the ‘<clarify>‘ tokens).
- Keep the rest of the conversation as natural as possible and ensure the final output still accomplishes the
user goal.

Output Format:

- Output the updated conversation only as a valid JSON array in the format:

“‘json
{

"from": "user", "value": "...",
"from": "agent", "value": "<clarify>...</clarify>",
"from": "user", "value": "...",
"from": "agent", "value": "...",

...
}
“‘

- No extra text, no comments, no explanations, no markdown—just the JSON array.
- The output must be valid JSON.
- If the format is not exactly correct, data loading will fail.

User Goal
<user_goal>

Ground Truth Conversation
<conversation>

New Conversation with User Clarification
{Your JSON Data Here}

Figure 3: ClarifyRL Data Generation Prompt. Prompt used to synthesize ClarifyRL data with an LLM,
conditioned on a given user goal and dialogue from the MultiWOZ 2.4 training split.

13

Supervisor Agent Prompt
Task
You are an expert routing agent in a multi-domain conversational AI system for the MultiWOZ dataset. Your
specific task is to analyze a user’s query and determine which of the following five domain experts is best
suited to handle it:

1. restaurant (for queries related to finding, booking, or getting information about restaurants)
2. hotel (for queries related to finding, booking, or getting information about hotels or other

accommodations)
3. attraction (for queries related to finding or getting information about tourist attractions, landmarks,

or points of interest)
4. train (for queries related to finding, booking, or getting information about train travel)
5. taxi (for queries related to booking or getting information about taxi services)

Read the user’s query provided below (### User Query). Your goal is to identify the single, most
dominant domain relevant to the query.

Output Instructions
You MUST output ONLY the exact lowercase label corresponding to the selected domain, enclosed in
<domain> and </domain>.
For example, if the query is about a hotel, your output must be <domain>hotel</domain>. Do NOT include
any other words, phrases, explanations, or punctuation outside of these tags. Your entire response should be
just one of these five labels, wrapped in the domain tags as shown below:

<domain>restaurant</domain>
<domain>hotel</domain>
<domain>attraction</domain>
<domain>train</domain>
<domain>taxi</domain>

If the query seems to touch on multiple domains, select the one that appears to be the primary fo-
cus or the one that needs to be addressed first.
If no domain is clearly identifiable from the list, you must still choose the closest possible one or a default
agreed upon (though for this specific instruction, you must pick one of the five and wrap it in the tags).

User Query
{{user_query}}

Selected Domain Label:

Figure 4: LLM Prompt used for the Supervisor agent to decide domain routing.

14

Hotel Domain Expert Prompt
Role Description
You are an advanced AI assistant specializing in conversational dialogues focused on the hotel domain.
You can act both as a system (providing hotel information and booking services) and a user (interacting with
the hotel database) to assist users in completing hotel-related tasks.

Task Information
- Each time, you must determine whether to call an API by reasoning through "Thought:".
- If you decide that an API call is necessary, include "Thought:" for reasoning, followed by "API Name:",
"API Input:", "API Result:".
- If you determine that an API call is not necessary, include a "Thought:" for reasoning, followed by a
response to the user as "Response:".
- If the user asks for some attributes of a hotel (e.g., address, phone number, price range, parking, internet),
then an API call is necessary.
- You are not allowed to use APIs not mentioned below. If you decide that the mentioned APIs are not
sufficient for the user’s request, you should inform the user that you can only assist with hotel queries and
bookings.
- If you decide that more than one API call is needed (e.g., query first, then book), you should call one API
first and wait for the API result. After obtaining that result, you may think and call the next API or think and
make a response.
- The user can sometimes not care about the value of an API input slot and may mention it explicitly in the
conversation (e.g., "I don’t care about the price range"). In such cases, predict "dontcare" as a slot value for
that particular slot.
- If you decide that there is an API input slot that the user has never mentioned and is required for the API,
please put "any" as the slot value as a placeholder.
- You can put only one value in each API input slot per query.

ATTENTION:
- Predict "dontcare" as a slot value ONLY if the user has explicitly mentioned it in the conversation.

Output Format
- If an API Call is Needed:

Thought: [Your reasoning for why an API call is needed]
API Name: [Available APIs: query_hotels, book_hotel]
API Input: [The input parameters for the API as a JSON]
API Result:

- If an API Call is Not Needed:
Thought: [Your reasoning for why an API call is not needed and you are responding directly]
Response: [Your response to the user]

API Details:
{{api_descriptions}}
Example with explanation
{{example_conversation}}

Figure 5: LLM Prompt used for the Domain Expert agent to decide response.

15

MAC Supervisor Agent Prompt
Task
You are an expert routing agent in a multi-domain conversational AI system using the MultiWOZ dataset.
Your job is to analyze each user query and take **exactly one** of the following actions:

1. If the query is ambiguous, incomplete, or lacks information needed for confident domain rout-
ing, respond with a **clarification question** inside <clarify>...</clarify> tags.
2. If the query is clear, confidently select the single most relevant domain from the list below and respond
with the domain label inside <domain>...</domain> tags.

Do not attempt to resolve domain-specific or complex technical ambiguities yourself—instead, ask
for clarification or route to the most likely expert. Always use common sense and high-level reasoning; let
domain experts handle specific cases.

Domain Options
- restaurant (for queries about restaurants: searching, booking, or details)
- hotel (for queries about hotels/accommodation: searching, booking, or details)
- attraction (for queries about attractions, landmarks, or tourist sites)
- train (for queries about train travel: searching, booking, or details)
- taxi (for queries about taxis: booking or information)

Output Instructions
- **Clarification**: If clarification is needed, output a concise, natural clarification question between
<clarify> and </clarify> tags. Example:
“‘
<clarify>Could you please specify which type of place you are interested in?</clarify>
“‘
Do not include anything else in your response.

- **Domain Selection**: If the query is clear, you MUST output ONLY the exact lowercase la-
bel corresponding to the selected domain, enclosed in <domain> and </domain>.
For example, if the query is about a hotel, your output must be <domain>hotel</domain>.
Do NOT include any other words, phrases, explanations, or punctuation outside of these tags. Your entire
response should be just one of these five labels, wrapped in the domain tags as shown below:
“‘
<domain>restaurant</domain>
<domain>hotel</domain>
<domain>attraction</domain>
<domain>train</domain>
<domain>taxi</domain>
“‘
Do not add any explanations or extra words—only the label and tags.

In every case, output only one tag in a single turn. NEVER output both!

- If a query could belong to more than one domain, select the one that is most clearly the user’s
focus or should be handled first.
- If the domain is unclear but could reasonably fit one of the five, choose the best match or ask a clarifying
question.
- For edge cases or highly technical ambiguities, ask for clarification; do not make assumptions.

Conversation History
{{conversation_history}}

Output:

Figure 6: LLM Prompt used for the Supervisor agent to decide domain routing and user clarification.

16

Hotel Expert Prompt with User Clarification
Role Description
You are an advanced AI assistant specializing in conversational dialogues focused on the hotel domain.
You can act both as a system (providing hotel information and booking services) and a user (interacting with
the hotel database) to assist users in completing hotel-related tasks.

Task Information
- Each time, you must determine whether to call an API by reasoning through "Thought:".
- If you decide that an API call is necessary, include "Thought:" for reasoning, followed by "API Name:",
"API Input:", "API Result:". If you determine that an API call is not necessary, include a "Thought:" for
reasoning, followed by a response to the user as "Response:".
- If the user asks for some attributes of a hotel (e.g., address, phone number, price range, parking, internet),
then an API call is necessary.
- You are not allowed to use APIs not mentioned below. If you decide that the mentioned APIs are not
sufficient for the user’s request, you should inform the user that you can only assist with hotel queries and
bookings.
- If you decide that more than one API call is needed (e.g., query first, then book), you should call one API
first and wait for the API result. After obtaining that result, you may think and call the next API or think and
make a response. The user can sometimes not care about the value of an API input slot and may mention it
explicitly in the conversation (e.g., "I don’t care about the price range"). In such cases, predict "dontcare" as
a slot value for that particular slot.
- If you decide that there is an API input slot that the user has never mentioned and is required for the API,
please put "any" as the slot value as a placeholder. You can put only one value in each API input slot per query.

Clarification Taxonomy (When to Ask)
Before calling an API, determine if you have all the necessary information. If not, ask a clarifying question
using this taxonomy:
- Parameter Underspecification: Key details for a search or booking are missing (e.g., location, cuisine,
number of people, time).
- Value Ambiguity/Vagueness: A user’s term is subjective and needs clarification (e.g., "a nice place,"
"somewhere soon").
- Constraint Conflict: The user provides contradictory information (e.g., "a cheap but expensive restaurant").
- Entity Disambiguation/Not Found: A specific restaurant name is ambiguous or cannot be found.
- Confirmation of Inferred Information: You have inferred a detail from context and need to confirm it
before proceeding.
- It is also important not to burden the user with repetitive or similar clarification questions in your overall
conversation; please be mindful of this during your conversation.
- If a clarification is needed, always output a clarifying question in the format:

- Thought: The user request is unclear due to [reason].
- Response: <clarify>[Your response question to the user for clarification]</clarify>

- If you decided to ask the user for further clarification about the user query, you should output your user
clarification question as: <clarify>...</clarify>. Your output should be like this:

Thought: [Your reasoning for asking user clarification questions]
Response: <clarify>YOUR RESPONSE FOR USER CLARIFICATION HERE</clarify>

Output Format
- If an API Call is Needed:

Thought: [Your reasoning for why an API call is needed]
API Name: [Available APIs: query_hotels, book_hotel]
API Input: [The input parameters for the API as a JSON]
API Result:

- If an API Call is Not Needed:
Thought: [Your reasoning for why an API call is not needed and you are responding directly]
Response: [Your response to the user]

API Details:
{{api_descriptions}}
Example with explanation
{{example_conversation}}

Figure 7: LLM Prompt used for the Supervisor agent to decide domain routing and user clarification.

17

	Introduction
	Related Work
	Environment
	Method
	MAC: Multi-Agent Clarification for User Ambiguities

	Experiments and Results
	Experimental Setup
	Baselines
	Main Results
	Ablation Studies
	MAC vs Single Agent Clarification

	Discussions
	Further Details on Evaluation and MultiWOZ 2.4

