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Abstract

Continual learning is often motivated by the idea, known as the big world hypothesis,
that the “world is bigger” than the agent. Recent problem formulations capture this
idea by explicitly constraining an agent relative to the environment. These constraints
lead to solutions in which the agent continually adapts to best use its limited capacity,
rather than converging to a fixed solution. However, explicit constraints can be ad hoc,
difficult to incorporate, and limiting to the effectiveness of scaling up the agent’s capac-
ity. In this paper, we characterize a problem setting in which an agent, regardless of its
capacity, is implicitly constrained by being embedded in the environment. In particular,
we introduce a computationally-embedded perspective that represents an embedded
agent as an automaton simulated within a universal (formal) computer. We prove that
such an automaton is implicitly constrained and that it is equivalent to an agent that
interacts with a reward-free and partially-observable Markov decision process over
a countably infinite state-space. We propose an objective for this setting, which we
call interactivity, that measures an agent’s ability to continually adapt its behaviour to
learn new predictions. To support experimentation on continual adaptation, we develop
a synthetic benchmark in which an interactivity-seeking agent constructs its own
non-stationary stream of experience from which it must continually learn to predict.

1 Introduction

The goal of this paper is to characterize a general problem setting in which the best use of an
agent’s limited capacity is to continually adapt (Abel et al., 2023). Our approach is motivated by the
idea, known as the big world hypothesis, that the “world is bigger” than the agent (Javed & Sutton,
2024). That is, an agent in a big world may lack the capacity to learn the fixed optimal solution,
and should instead continually adapt by updating its approximate solution (i.e., by tracking, Sutton
et al., 2007). However, formalizing the relationship between the agent and the environment presents
a challenge, because they are typically treated as separate entities in reinforcement learning (see
Figures 1b and 1c). We address this challenge by defining a general environment in which an agent
can be embedded, and derive a problem setting in which any such agent is (i) implicitly constrained
by its capacity, and (ii) suboptimal if it stops learning.

Explicit constraints on the agent have been previously considered in continual learning as a means
of capturing the big world hypothesis. For example, in continual learning experiments, it is
common practice to constrain what the agent can store (Prabhu et al., 2020), or the capacity of
its function approximator (Meyer et al., 2024). Other more general constraints on the agent have
also been considered, but these are difficult to incorporate. Such constraints include limits on the
agent’s compute (see discussion on measuring compute in Section 4.1, Verwimp et al., 2024) and
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Figure 1: Comparing the agent’s relationship to the environment in our work, traditional RL,
and AIXI. This work considers a universal-local environment (defined in Section 3), in which agents
of varying sizes are embedded and implicitly constrained (defined in Section 4). Traditional RL
involves a fixed environment and agents of varying size, where the agent is often unconstrained
by being “bigger” than the considered environment. AIXI involves a computationally universal
environment and an uncomputable agent, both of which are unconstrained.

on the energy used by the agent’s hardware (Javed & Sutton, 2024). Information theory provides
a framework to formalize explicit agent constraints (Kumar et al., 2023; 2024). However, outside
of simple and well-specified pairs of agent and environment, these constraints can be difficult to
characterize without knowledge of the true information-theoretic quantities involved between the
state maintained by the agent and its future sensory stream from the environment. This framework
also does not prescribe new algorithms that improve an agent’s capability for using its limited
capacity. In addition, explicit constraints hinder the effectiveness of scaling up the agent’s capacity,
which has been a source of progress in machine learning more broadly (Hestness et al., 2017;
Kaplan et al., 2020; Hoffmann et al., 2022). These limitations suggest that explicit constraints may
not be an effective way of capturing the big world hypothesis.

In contrast to explicit constraints, our approach considers the implicit constraint that arises from an
agent embedded in an environment (see Figure 1a). The embedded aspect of all intelligent systems,
by existing in the physical world, is not often considered to be part of the problem formulation
(Demski & Garrabrant, 2019). However, the physical world is a clear example of a world bigger than
any agent, suggesting that embedded agency may be useful in formulating the big world hypothesis.

To provide a general environment in which an agent can be embedded, we define a universal-local
environment. This environment is a Markov process that is computationally universal—capable of
simulating any computation—where the transition dynamics can be localized to a neighbourhood
of the state-space. Our approach is similar to universal artificial intelligence (Hutter, 2005), which
considers a computationally universal environment to explore the limits of the theoretically optimal,
but uncomputable, AIXI agent (Hutter, 2000). The AIXI agent was also extended to an embed-
ded agent, simulated within the computationally universal environment, providing an uncomputable
definition of a theoretically optimal capacity-bounded agent (Orseau & Ring, 2012). Our approach
similarly considers embedding an agent in a computationally universal environment, but with the
added restriction that the environment’s transition dynamics are local. In particular, our departure
is aimed towards capturing the big world hypothesis and avoiding the limitations of explicit agent
constraints, while also being amenable to computable approximation.

To define an embedded agent, we consider an embedded automaton simulated within the state-space
of our universal-local environment. This automaton interacts with a partially observable Markov
decision process, defined on the boundary between the automaton and the rest of the universal-local
environment. We then propose interactivity that measures an embedded automaton’s ability to adapt
its future behaviour, conditioned on its past behaviour, using Kolmogorov complexity. An agent’s
interactivity is a computational measure of its adaptivity, and as such is always upper bounded
by the capacity of the agent. Interactivity is similar to previously considered intrinsic motivation
objectives (Chentanez et al., 2004; Schmidhuber, 2010), and specifically predictive information
(Bialek et al., 2001; Still & Precup, 2012). However, interactivity differs because of its formulation



in terms of behaviours using Kolmogorov complexity. This makes interactivity better suited to
sequential decision making in the constrained and partially observable setting that we consider.

We also develop a reinforcement learning algorithm to maximize interactivity by recasting Kol-
mogorov complexity in terms of the prediction error incurred by the agent. Interactivity can be
viewed from this perspective is derived from a value function in the undiscounted setting that pre-
dicts the agent’s average future behaviour. Maximizing interactivity involves learning a policy to
direct the agent’s future behaviour to new experiences from which it continually learns. We show
that maximizing interactivity leads to the common desideratum of the continual learning problem,
in which any agent that stops learning is suboptimal. Finally, we develop a synthetic benchmark to
support experimentation on continual adaptation.

2 Background

The environment that we consider uses computational universality—the capability of performing
arbitrary computations—to embed an agent. In particular, we make use of the Church-Turing thesis,
which implies that all computationally universal systems are equivalent in their capabilities (Church,
1936; Turing, 1937). This allows us to define a general environment without reference to any
specific computationally universal system (e.g., a universal Turing machine). The Church-Turing
thesis also implies that any computationally universal system can simulate any other computational
system. We will use this to define the agent as an automaton performing a computation simulated
within the environment.

To understand the capabilities of such an agent, we will consider the properties of its input/output
behaviour. In particular, we will use the Kolmogorov complexity of a string, which is the length
of the shortest program that computes it and halts (Kolmogorov, 1965; Solomonoft, 1964; Chaitin,
1966). An automaton is a bounded computation, and thus it can only produce output strings with
bounded Kolmogorov complexity given its finite capacity.

Definition 1. The Kolmogorov complexity of a string x, conditioned on another string v, is the length
of the shortest program, |c|, that outputs x given y as input, K(x|y) = min{|c| : U(c,y) = z}, where
U is a reference universal Turing machine. The unconditional Kolmogorov complexity sets y to be
the empty string, denoted e.

While Kolmogorov complexity depends on the choice of a universal Turing machine, any specific
choice affects the Kolmogorov complexity by, at most, an additive constant independent of the
specific string (Li & Vitanyi, 2019). This is because, by the Church-Turing thesis, any universal
Turing machine can simulate another (e.g., via a compiler).

3 A Universal-Local Environment

We begin by defining a general notion of environment in which an agent can be embedded. Specif-
ically, we consider an environment that is capable of simulating arbitrary computations on its state-
space (Section 3.1), such that any bounded computation can be localized to a portion of the envi-
ronment’s state-space (Section 3.2). These two properties will be used in Section 4 to define an
automaton on the state-space of this environment. Such an automaton will be used to represent an
agent, ensuring that it is always implicitly constrained in its computational capacity relative to its
environment.

3.1 Markov Representation of a Computationally Universal Environment

We use environment to refer to a general history-based process that is defined over a finite set of
symbols, and without an explicit notion of agent.



Definition 2. An environment, £ = (X, C), is a discrete process defined over a finite symbol-set, 3,
that maps a string of symbols, 0g.;_1 = 0¢01 - - - 04_1, to the next-symbol that extends the string,
oy € X, using the construction function, oy = C(0¢.4—1).

An environment is computationally universal if it is equivalent to a universal Turing machine, mean-
ing that it is capable of simulating any computation given a suitable initial string of symbols. Such
an environment can also be represented as a Markov process on a countably infinite state-space.

Proposition 1 (Universal Markov Environment). There exists a Markov representation of a compu-
tationally universal environment, M(E) = (Q,U), defined over the countably infinite state-space,
Q, in which the state, w; € S, is updated using the transition function, wy+1 = U(wy).

All proofs of propositions and theorems can be found in Section A of the Appendix.

We emphasize that, despite using a Markov representation, the universal Markov environment is
more general than the Markov environments typically considered in reinforcement learning. In
particular, a universal Markov environment is capable of simulating any other computation, which
will be crucial to define an embedded agent in Section 4.

3.2 Defining Locality with Boundaried Markov Processes

Intuitively, locality means that we can consider the environment’s transition dynamics on a restricted
portion of the state-space. Specifically, we use the term substate-space to refer to the portion of the
state-space restricted to a finite index-set.

Definition 3. A substate-space, ()5, is defined as a restriction of the state-space, €, to a finite index-
set, Tdx(Q2n) := A where |A| < o, such that Qp = {wp : w € Q} where wp = {w;}ien. We use
square set notation to denote operations on the index set, such as 25 E € to denote the inclusion of
the index-set, A € 1dx(S)), and the union of index-sets, Qa0 Qa, = QA GA,-

We now consider the environment’s transition dynamics restricted to a generic substate-space,
X £ Q, without reference to the specific index-set, Idx(X). In particular, we define a boundaried
Markov process in which the one-step transition dynamics, U x, depend on another substate-space,
Bx £ (), referred to as the boundary-space for a given substate-space, X .

Definition 4. A boundaried Markov process, M x = (X, Bx,Ux), is a discrete process in which
the substate-space, X, and its boundary-space, Bx, together define the one-step transition dynamics
of the substate-space, 1111 = Ux (x4, by), for xy11,2¢ € X and by € By.

The boundary-space is defined for one-step dynamics; A larger boundary-space is generally needed
for multi-step transition dynamics. This is because the current substate, x; € X, and the current
boundary, b, € Bx, only define the next-substate, ;1 € X, and not the next-boundary, b; 1, € Bx.
We use this fact to define a local environment that consists of nested boundaried Markov processes.

Definition 5 (Locality). A universal Markov environment is local if, for any two proper substate-
spaces, W = X E Q, there exists boundaried Markov processes on these substate-spaces with cor-
responding index-sets that are properly contained, W u By = X 1 Bx.

Thus, a universal-local environment is a universal Markov environment that is also local. This envi-
ronment is capable of simulating arbitrary computations, and any bounded computation is localized
to a portion of the environment’s state-space. It can be understood as a computationally universal
Markov process in which longer-term dynamics are a function of a larger portion of the state-space.

3.3 Example of a Universal-Local Environment: Conway’s Game of Life

Conway’s Game of Life is an example of a universal-local environment (Conway, 1970). This en-
vironment is computationally universal because, within Conway’s Game of Life, a universal Turing
machine can be simulated (Berlekamp et al., 1982; Rendell, 2011). A substate-space in Conway’s
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Figure 2: Conway’s Game of Life is a cellular automaton and an example of a universal-local
environment. The state-space is an infinite 2D grid, in which cells live (black) with 2 or 3 neigh-
bours, but die (white) otherwise, and dead cells with 3 neighbours become alive. The blue and green
borders (left) correspond to neighbourhoods that determine the middle cell at time-steps t + 1 (mid-
dle) and t + 2 (right). Longer-term transition dynamics depend on larger neighbourhoods.

Game of Life is a finite subset of locations on the grid, specifying the possible values taken by
the cells at those locations. The one-step transition dynamics on any substate-space depend on the
adjacent neighbourhood of that substate-space, which defines the boundary-space (see Figure 2).
Conway’s game of life is local because if one substate-space contains another, then the boundary-
spaces (the adjacent neighbourhood of the substate-spaces) are also also contained.

While Conway’s Game of Life has the potential to simulate any computation using its local dynam-
ics, we are not suggesting to program an agent within it. We only point out Conway’s Game of Life
as a proof-of-existence for universal-local environments. Instead, we will consider and formalize
the implicit constraints faced by an agent if it were embedded in such an environment.

4 A Computationally-Embedded Agent

We define an embedded agent as an automaton that is simulated within the universal-local environ-
ment. This embedded automaton is equivalent to a boundaried Markov process, with the boundary-
space acting as an interface that separates the automaton from the rest of the universal-local envi-
ronment (Jiang, 2019; Harutyunyan, 2020). We prove that an embedded automaton is equivalent to
an agent interacting with a partially observable Markov decision process, under some conditions on
this boundary-space. Using Kolmogorov complexity, we propose interactivity as a measure of the
embedded agent’s ability to adapt its future behaviour, using experience from its past behaviour. We
prove that interactivity is constrained by any finite capacity and discuss the way in which interaci-
tivty measures a general capability for continual adaptation.

4.1 Embedding an Agent as an Automaton in a Universal-Local Environment

A universal-local environment can simulate arbitrary computations, which we use to define an em-
bedded automaton, .4, on the environment’s state-space, (2. Moreover, due to locality, the embedded
automaton can be localized to a substate-space, A = (2 (see Figure 3, left).

Definition 6. An embedded automaton is defined by A = (A, 14,04, U4, 74), where A E € is the
internal substate-space of the automaton, 14,0 o = B4 are input and output spaces defined on the
boundary-space, Ba, and U 5, 7 4 are the automaton’s transition and output function respectively.

Relating this to an agent in reinforcement learning, we may think of the input-space as the
observation-space,' the internal substate as the parameters of a function approximator, the output-
space as an action-space, the transition function as a learning rule, and the output function as a
policy.

I The input-space may also provide an external reward to the automaton, but this need not be the case.
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Figure 3: An illustrative depiction of a computationally-embedded agent interacting with its
environment. An embedded automaton is simulated on the substate-space of the universal-local
environment, A = (), reading from its input-space, I, updating its internal state with U4, and
writing to its output-space, O 4, with its output function, w4 (left). A computationally-embedded
agent is characterized by its input-output behaviour, with the goal of maximizing interactivity,
rather than the internal specification of its computations (middle). We consider an idealized setting,
referred to as a Big Agent, in which the agent has full control over its experience, and only observes
its previous output on the boundary-space, B (right).

Proposition 2 (Embedded Agent). An embedded automaton is equivalent to an agent interacting
with a (potentially reward-free) partially observable Markov decision process, if its boundary-space
consists of only the input and output spaces, [ 4 L1 Oq = Ba.

Now that we have defined both the embedded agent and its partially observable Markov decision
process within the same universal-local environment, we can describe their relationship.

Proposition 3 (Implicitly Constrained). Every embedded agent is implicitly constrained, relative to
its partially observable Markov decision process, limiting its memory and computational capacity.

While every embedded agent is implicitly constrained, some may generate simple output sequences
that do not require more than agent’s capacity. For example, a periodic output sequence would
not require more capacity than the period of the sequence. We will show, however, that agents are
constrained by their finite capacity when adapting to their past input/output experience.

4.2 Interactivity as a Computational Measure of Adaptivity

An agent’s capability for learning can be characterized by its ability to adapt its future behaviour
using its past experience. We propose inferactivity to measure an embedded agent’s intrinsic ability
to adapt its future behaviour, towards higher complexity, conditioned on its past behaviour. Specifi-
cally, we use Kolmogorov complexity to formalize this otherwise intuitive notion of adaptation and
complexity.

Following Proposition 2, we represent an embedded agent as an embedded automaton 4 where its
input and output spaces determine its boundary-space, 4 U O4 = Ba. Thus, the behaviour of
the agent is determined by the values taken on the boundary-space, by = (it, 74 (i;)) € B4 where
it € T4 and w4 (i¢) € O4. At any time t, the behaviour can be separated into past, bo.: = boby - - - by
and the T-horizon future, by 1.7 = bsy1bp10 - beyr.

Definition 7. An agent’s interactivity at time t is the average difference in the unconditional Kol-
mogorov complexity of its future behaviour and the conditional Kolmogorov complexity of its future
behaviour, conditioned on its past behaviour, I} (A) = limy_, % (K(th:T) — K(bt+1;T|b0;t)).

That is, interactivity measures the predictable complexity of an agent’s future behaviour, given its
past behaviour. Interactivity is high if (i) the future behaviour, b 1.7, has high unconditional Kol-
mogorov complexity and (ii) the past behaviour, by.¢, is predictive of this future behaviour, thereby
yielding a low conditional Kolmogorov complexity. However, interactivity is low if the future
behaviour has low Kolmogorov complexity, or if the past behaviour is not sufficiently predictive.



4.3 An Interactivity-Maximizing Agent Faces a Big World

The interactivity of any embedded agent is always constrained by its capacity. That is, with a
given capacity, an embedded agent can only sustain a given level of interactivity. However, if the
embedded agent is given more capacity, then it could use the additional capacity to increase its
interactivity.

Theorem 1 (Big World). The interactivity of an embedded agent is upper bounded by its capacity.

An interactivity-maximizing agent has an ability to continually adapt its future behaviour by using
its past experience. This suggests the following interactivity thesis:

Interactivity measures a general capability for continual adaptation.

We refer to this as the interactivity thesis, rather than a hypothesis, to reflect its speculative and philo-
sophical nature. An agent’s capability for continual adaptation with low interactivity is limited be-
cause its future behaviour is either: i) simple, or ii) complex, but not predictable from its past experi-
ence. In either case, the thesis stresses the relative notion of capabilities. A simple agent could be ca-
pable of some adaptation, but its capabilities would be greater if its past experience was used to pro-
duce more complex behaviour. Moreover, an agent that produces complex behaviour could only be
recognized as an adaptation if this complexity can be attributed, via prediction, to its past experience.
Embracing the interactivity thesis naturally leads to a relative spectrum of possible adaptive agents.

5 Maximizing Interactivity with Reinforcement Learning

Interactivity is defined using Kolmogorov complexity, which is not computable in general. How-
ever, for an automaton, Kolmogorov complexity is computable by enumerating all programs up to
the size of the automaton (Li & Vitdnyi, 2019). This brute-force approach would require more than
the capacity of the automaton, necessitating approximation (see Theorem 1).

To approximate interactivity, we use the distortion-rate perspective on Kolmogorov complexity that
considers the achievable error under a constraint (Vereshchagin & Vitanyi, 2010). Specifically, we (i)
impose a constraint by replacing the reference universal Turing machine with the embedded agent,
and (ii) measure the error achieved by the embedded agent under a choice of loss function.

Definition 8. The agent-relativized complexity, for a given embedded agent, A, of
a string x, given a string vy, is the error of the best prediction by the agent,
Aq(zly) = mina{ZLﬂl Uz, &) : & = Ala,y)}, where £ is a loss and a € A is a substate.

Agent-relativized complexity is determined by the agent’s predictions, making it to amenable to
learning. If the agent-relativized complexity of a string, =, conditioned on the empty string is large,
A 4 ¢(x|€) > 0, then the agent is unable to predict x accurately and the complexity of that string is
relatively high. If additional information, y, can be provided to the agent to reduce the prediction
error, A 4 ¢(x|y) = 0, then the conditional complexity of x is relatively low, and the additional
information is useful to the agent’s predictions.

We can now consider the interactivity relativized to an agent, A, where we replace Kolmogorov
complexity with agent-relativized complexity. Going forward, in the context of an agent, we will
refer to agent-relativized complexity simply as complexity.

I;(A) = lim l(AA(th:T) — Aa(bes1:7|bo:—1))-
T—owo T

The unconditional complexity, A 4(b:+1.7), measures the error incurred by the agent when predict-

ing its future behaviour, without having learned from prior experience. That is, without the current

substate, a;. Whereas conditional complexity, A 4(bs+1.7|bo:t—1), measures the error of the agents

predictions given the current substate, a;, encoding its past experience.



Using the agent-relativized perspective, we now develop a reinforcement learning algorithm for
maximizing interactivity. Our reinforcement learning approach involves (i) learning a prediction of
the conditional complexity via a value function, (ii) approximating the unconditional complexity
by using an agent that has access to a subset of the past experience, and (iii) learning a policy to
maximize the difference between these two predictions.

5.1 Learning Predictions of Conditional Agent-Relativized Complexity

Conditional complexity involves learning a prediction of the agent’s behaviour, and we show how
such a prediction can be learned via a value function. In particular, we consider the undiscounted
setting of reinforcement learning, where the discount factor is deprecated, v = 1, in favour of the
long-term average of signals (Sutton & Barto, 2018). However, we are interested in learning the
long-term average behaviour, rather than an externally provided reward signal.

Specifically, we consider an agent that produces a sequence of behaviour tuples of input and output,
by = (it,m(at, 1)), where at each timestep the agent also updates its internal substate a;q =
U(at, b:). We consider predictions made by this agent as part of its internal substate, rather than as
an output, because the predictions do not directly interface with the environment.

Given such an agent, we are interested in learning the conditional complexity of its behaviour,
A A (bty1.7|bo:t—1). Conditional complexity can be understood as a prediction about the long-term
average behaviour of the agent. In this undiscounted setting, the long-term average behaviour is
represented as the limit of the finite averages,? b(A) = limp o 7 ST by

The long-term average behaviour can be estimated with an online average. However, this online
estimate does not provide a prediction about future behaviour, which is needed in the definition
of conditional complexity. Instead, a differential value function can be defined recursively as,
vA(ag, by) = byy1 — b(A) + v*(ass1,bir1). An approximation to the differential value function,
©(a¢, bt ), can be learned with temporal difference learning, where b(.A) is replaced with the online
average, by, = by + B(bs — by), to form the temporal difference error, d;(ay, by, as11,bi11) =
bis1 — byy1 + 0(as1,be1) — O(ag, by). This differential value function can be interpreted as a
undiscounted version of successor features (Barreto et al., 2017), that also include the future actions
of the agent.

The conditional complexity is implicitly learned by learning this differential value function of future
behaviour with temporal difference learning. That is, if the temporal difference error is low, then the
estimate of the future behaviour is accurate. In particular, this implies that a suitable approximation
to the conditional complexity can be defined with a temporal difference error loss function,

T T
Aa(besrrlbos—1) ~ Aa(bryrrlboi1) = . ¢ (bwk,bwk(bo:tq)) = Y 0t
k=1 k=1

The temporal difference error is conditioned on past experience through the learned approximation
to the differential value function. Moreover, this prediction approach amortizes the minimization in
the definition of conditional complexity by iteratively learning the differential value function online.
While this approach does not directly learn a prediction of the future temporal difference errors, the
finite-horizon temporal difference errors provides an approximation.

5.2 Semi-Conditional Predictions of Unconditional Agent-Relativized Complexity

Maximizing interactivity also requires an approximation of the unconditional complexity. Without
it, maximizing interactivity would reduce to minimizing the conditional complexity, which would
simply minimize the temporal difference errors and learn the differential value function. However,
it is not clear how the unconditional complexity could be learned because, by definition, it is not
conditioned on any previous experience.

>The computational agents that we consider are determinsitic, meaning that we can drop the expected values in the
following definitions.



Figure 4: Maximizing Interactivity in Behavioural Self-Prediction With a step-size of 0.05, both
experience an initial drop in interactivity and slowly improve over time (left). With a step-size of
0.1, both networks surpass their initial interactivity, with the linear network diverging (right).

Rather than learning a completely unconditional complexity, we instead consider the behaviour of
agent if it had not learned on a particular finite horizon, denoted by H. That is, we approximate the
unconditional complexity with a semi-conditional complexity,

Ap(besrr) = Albey1.r|boi— 1) < Albgy 7).

Where the inequality follows, up to subadditive factors, because conditioning decreases complexity
(Grunwald & Vitanyi, 2004). In addition, the lower bound means that this approximation is also
effective for approximately maximizing interactivity.

5.3 Maximizing Interactivity as a Continual Learning Problem

Maximizing interactivity involves producing future behaviour that maximizes the difference between
unconditional and conditional complexity. This can be accomplished by optimizing the approxima-
tions provided by semi-conditional and conditional complexity, under a horizon, H,

1 /4 .
I (A) = Vi (A(bt:t+H|bo:t—H) - A(bzs:zs+H|bo:t)) (1)

H H

1

T (Z 0% (@ p, bryey @r—p, beign) — 5?+k(at+k7bt+k7at+k+17bt+k+1)) 2
k=1 k=1

Where the semi-conditional complexity maintains a fixed agent substate, a;—y. In practice, this
requires bi-level optimization to account for the agent’s substate changing in the agent’s conditional
complexity. This can be handled by auto-differentiation such as by MAML (Finn et al., 2017), but
with an online update rather than to initialization that is more similar to cross-prop (Veeriah et al.,
2017). Maximizing this lower bound on interactivity is thus possible with gradient-based learning,
and the approximation approaches the agent-relativized interactivity in the horizon limit, H — oo,
where we treat a, and by.. as empty for z < 0.

As the agent’s capacity increases, so too does its maximum possible interactivity. While all the
agents we consider are bounded by finite capacity, if we consider the agent’s infinite capacity limit
as computationally universal, then maximizing interactivity becomes uncomputable. In Section 4.3,
we proved that the interactivity of an embedded agent is upper bounded by its capacity. We now
show a similar result for an interactivity-maximizing reinforcement learning agent.

Theorem 2. Any bounded agent that seeks to maximize its interactivity through learning is i) limited
by its finite capacity constraint and, ii) suboptimal if it stops learning.

The desiderata of Theorem 2 were previously described as conditions for a big world simulator
(Kumar et al., 2024). This demonstrates that maximizing interactivity is well-characterized by the
big world hypothesis. Thus, maximizing interactivity appears to be a general problem setting in
which the best use of an agent’s limited resources is to continually adapt.

6 Evaluating Continual Adaptation With Behavioural Self-Prediction

Behavioural self-prediction provides a synthetic benchmark in which the agent creates its own non-
stationary stream of experience, from which it must continually learn. A learning algorithm pre-
dicting its own future learning behaviour faces an implicit constraint, because it cannot observe its



entire parameter set, or accurately predict what it will learn and output in the future. An illustrative
depiction of the problem setting is given in Figure 3 (right), in which an agent has full control over
its experience stream. The advantage of this approach is that it does not require an external envi-
ronment, or any collected data. Instead, it directly evaluates the learning algorithms capabilities for
learning from, and adapting to, the experience that it produces online. In particular, any learning
algorithms that stops learning achieves the lowest possible performance.

We trained a two-layer network using either Linear or ReLU activations on the H-horizon ap-
proximation to interactivity, I = 10. We used conventional stochastic gradient descent which is
generally more stable than adaptive methods (Finn et al., 2017), and used the same step-size for
inner-learning of average future behaviour and for outer-learning of interactivity-maximizing be-
haviour. While this network is relatively shallow, the meta-gradient calculation for maximizing
interactivity makes the effective network depth 2H = 20 layers. Our findings indicate that linear
methods are initially capable of fast adaptation, but that this always lead to performance collapse
(Figure 4). This is surprising because linear methods are known to be stable baselines in conven-
tional continual learning scenarios (Lewandowski et al., 2025; Dohare et al., 2024). This suggests
that continual adaptation requires balancing fast adaptation with stability. Please see Appendix B
for additional details.

7 Discussion

In this paper, we introduced a computationally-embedded perspective on the big world hypothesis,
which considers the implicit constraint faced by an embedded agent. Our contributions include:
(1) characterizing the implicit constrains faced by an embedded agent, (ii) proposing interactivity
as a computational measure of adaptivity, and (iii) developing a reinforcement learning algorithm
for maximizing interactivity. Our work shows that maximizing interactivity leads to the common
desideratum of the continual learning problem in which any agent that stops learning is suboptimal.

The key to Theorems 1 and 2 is the fact that interactivity does not depend on external feedback, but
rather is defined in terms of the past and future behaviour of the agent. This is a departure from
dogmas common to reinforcement learning (Abel et al., 2024). While interactivity could poten-
tially provide a rich source of intrinsic feedback, it also introduces challenges the stability of our
algorithms combining nonlinear representations, temporal difference learning, and online learning.

Maximizing interactivity provides a problem setting for studying continual learning in isolation. A
promising direction is the development of an efficient algorithms for maximizing interactivity, one
which bypasses costly meta-gradients and directly approximates agent-relativized complexity. Ex-
perimental evaluation in this setting also requires special consideration. Holding the agent fixed for
evaluation, as is commonly done in machine learning, is not be appropriate given that interactivity is
defined as an online objective. In addition, standard approaches to hyperparameter tuning may not
be feasible for evaluating the long-term performance of a continual learning agent (Mesbahi et al.,
2024). Overcoming these obstacles would require re-evaluation of several components of empirical
practice in machine learning, and we thus leave an empirical investigation for future work.

We close with the following conjecture regarding interactivity and its utility as a general objective in
an arbitrary environment: if an agent is capable of sustaining a particular level of interactivity, then
it is also capable of behaviours that achieve other goals in that environment—such as maximizing
external reward—that require equal or less interactivity.
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A Proofs

Proof of Proposition 1. Our proof is constructive, using the computationally universal environ-
ment’s symbol-set, 3, and construction function, C, we define a Markov environment on a countably
infinite state-space, {2 with a transition function, U.

Constructing the state-space (£2)

The state-space of the Markov environment is represented as a subset of a sequence-space over the
union of the symbol-set and a blank symbol, X U {o}. The finite string of symbols corresponds to a
finite set of indices, whereas the other indices are all represented by the blank symbol.
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For simplicity, we consider the bi-infinite sequence-space,
(XU {o})? = {{witiez : wi € ¥ U {o}}, indexed by the set of integers, Z. Other higher di-
mensional sequence-space are also possible, such as pairs of bi-infinite sequences, corresponding to
a grid.

Each finite string, o_4; € X%, is encoded as a sequence padded with blank symbols,
Elo ) =w={..,0,0 4,0 ¢41--.,00-1,04,0,...} € (X u{a})?  The state-space is a
countably infinite proper subset of the sequence-space considered, Q2 < (X U {o})%, because each
string is finite.

Constructing the transition function (U)

The transition function is defined by a composition of a function that decodes the string from the
sequence, and the construction function underlying the computationally universal environment.

The decoding function maps the current state, w;, and retrieves the string, D(w;) = o¢.¢. In the bi-
infinite sequence space that we consider, this involves scanning the input to find the blank symbols
that delimit the indices that enclose the non-blank symbols. The decoding function returns the first
and last symbol that is adjacent to the blank symbol, o.

With the decoding function, the transition function then uses the construction function to obtain the
next-symbol, 0,41 = C(0y.;). Finally, it concatenates the retrieved string with the next-symbol to
produce the next string, 0g.;+1. This string is then encoded as the next state, w;+1 = E(00.44+1). In
the bi-infinite sequence space that we consider, this involves replacing the last blank symbol with
the new symbol o,. O

Proof of Proposition 2. We outline the transition dynamics of an embedded automaton within the
environment. We will then show that, under assumptions of this boundary-space, such an automaton
is equivalent to an agent interacting with a partially-observable Markov decision process.

The next internal sub-state is determined by the automaton’s state-update function, U 4. By defi-
nition, the boundary-space of the automaton, By, determines the one-step transition dynamics of
the embedded automaton’s internal sub-state. This means that the automaton’s internal sub-state is
updated according to a;+1 = Ua(as, bs). Thus, the embedded automaton is a boundaried Markov
process.

In the case where the input and output determine the boundary-space, I41.1O4 = B4, the automaton
can be completely separated from the universal-local environment. That is, conditioned on the input
and output spaces, the automaton’s next substate is determined. Moreover, because the automaton
observes the input and output space, and because this determines the next-substate, the automaton
has agency in the determination of its future substate by the outputs that it takes. The automaton
can thus be viewed equivalent to an agent interacting with an environment, in the conventional
reinforcement learning paradigm.

While this agent can completely determine its output, conditioned on its substate and input, it cannot
in general predict or control its input. The input to such an embedded automaton is equivalent to
an observation provided to it by the environment. This environment, by definition, is a Markov
process in the countably infinite-state space (2. Thus, from the view of the automaton, it is facing a
partially-observable Markov decision process with a countably infinite state-space.

Note that the partially observable Markov decision process is, in general, reward-free. The en-
vironment could provide a reward to the agent, through the input-space, and the agent could be
programmed in such a way to maximize the sum of its future reward signal. However, this requires
additional assumptions about the environment and the agent and so we do not prescribe a reward
function.

Thus, when the input and output spaces determine the boundary-space of an embedded automaton, it
can be thought of as an agent interacting with a (reward-free) partially observable Markov decision
process with a countably infinite state-space. O
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Proof of Proposition 3. We first show that an embedded automaton is only capable of a limited
form of computation relative to the partially observable Markov decision process. We then outline
additional constraints that result from the automaton being embedded.

An embedded automaton is equivalent to a finite-state machine. This means that the automaton is
only capable of recognizing a regular language. The partially observable Markov decision process
that it faces, however, is a function of an unbounded substate-space of the computationally univer-
sal environment. This means that it can, in general, generate a recursively-enumerable language.
The embedded automaton is thus implicitly computationally constrained, because of the separation
between automaton and the environment in the Chomsky hierarchy (Chomsky, 1959).

Thus, an embedded automaton simulated in a universal-local environment is implicitly constrained
relative to its partially observable Markov decision process.

There are two additional ways in which an embedded automaton is implicitly constrained:

1. Minimum size: The size of an embedded automaton, including the size of its input and output
spaces, cannot be arbitrarily small, and thus there exists a minimum size. This implies that the
automaton cannot read and write to arbitrarily small parts of the environment, constraining its
observation and action spaces.

2. Simulation time: Simulating an embedded automaton in a universal-local environment may also
incur a simulation overhead. This constrains the automaton by the fact that several transitions in
the environment may be necessary to simulate a single transition for the automaton.

While the embedded automaton is computationally constrained relative to its environment, these two
additional constraints limit the information made available to the automaton about the environment.
Specifically, an automaton generally cannot observe, process and output information at the same
granularity, or at the same timescale, as the environment because of constraints on its size and its
simulation time. O

Proof of Theorem 1. We prove a more precise statement, that the maximum possible H-horizon
interactivity for a finite-state automaton is upper bounded by its capacity. For an automaton, A, the
capacity is proportional to the size of its internal sub-state space, |A|. Encoding an automaton on a
Turing machine is dominated by the cost of encoding its transition function which is on the order of
O(|Allog |A]).

Because we make no assumptions on the environment (and hence the inputs), we consider only the
complexity produced by the automaton’s outputs, conditioned on its inputs, which we write simply
by replacing b; with 7;. Thus, the H-horizon interactivity that we consider is,

57 (K(mem) — K | 704-1)),

and we show that we can upper bound it in terms of capacity, | A|. All inequalities below pertaining
to Kolmogorov complexity are subadditive, meaning they hide constant terms, O(1).

[ (A) =

By the symmetry of information (Li & Vitdnyi, 2019), we have

K(m:¢—1) = (K(me.mr) — K(7g. 17 | T0:6-1)) 3
Which we can use to upper bound H-horizon interactivity,
1 1
EK(Wo:t—ﬁ > (K(7e.2r) — (7.1 | m0:0-1)) = T (A) 4)

It remains to bound the complexity of the behaviour, K(7.;—1). Because the behaviour is produced
by an automaton, we have that the encoding length of the automaton upper bounds the minimum
program that produces the sequence

|Allog |A| = min{|c| : U(c) = mo:t—1} 1= K(mo:e—1)-
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Putting this together, we have the desired upper bound in terms of capacity,

Allog |A 1
VoI > (mo) > T (A),

For a fixed automaton size, asymptotically such an upper bound goes to zero. That is, any bounded
computation has bounded unnormalized interactivity, and zero asymptotic interactivity. However,
for large and finite H, this upper bound is tight.

O

Proof of Theorem 2. 'We provide a proof for each of the two desiderata

(i) The first property follows from an argument that is similar to Theorem 1, but adapted to a bounded
learning agent, A, with capacity C(A)

A bounded agent that maximizes its interactivity will have a non-zero unconditional agent-
relativized complexity, A(b;. ) > 0 (otherwise, its interactivity would be zero). This implies that
the unconditional Kolmogorov complexity of its behaviour is on the order of the the capacity of the
agent, K(b,.pr) = C(A) — O(1), where O(1) is a constant independent of the agent. Because the
behaviour is generated by the automaton, we know that the Kolmogorov complexity is also upper
bounded in terms of the capacity, C'(A) + O(1) = K(bg.i).

Such an agent will also have low conditional agent-relativized complexity (otherwise, its interac-
tivity would be low). An optimal learning agent that minimizes the agent-relativized complexity,
A(by.rr|bo.t) = 0, has conditional Kolmogorov complexity is strictly less than the capacity of the
agent, K(bs.pr]bo+) < C(A). In fact, we have, for o < 1, that K(bs.r]bo.+) < aC(A). This is be-
cause the agent can only use a fraction of its capacity on predicting its future behaviour (in addition
to making predictions, an agent selects actions, and updates its substate).

Taken together, interactivity is effectively bounded by capacity,
(1-—a)C(A) —0(1) <Iy(A) <C(A) + O(1).

An agent with a given capacity cannot maximize its interactivity without increasing its capacity.
Thus, a bounded agent that seeks to maximize its interactivity through learning is limited by its
finite capacity constraint.

(ii) For the second property, we demonstrate the necessity of continual adaptation for maximizing
interactivity, by considering the role of the embedded agent’s transition function.

Suppose that the agent were to stop learning at time ¢. For the corresponding finite-state automaton,
A, the state transition function, U4 encodes the learning rule. An agent that has stopped learning is
thus equivalent to an automaton that stops updating its internal state. In this case, the automaton’s
internal state remains constant ay = a for all ¢ > t.

A finite-state automaton has a capacity on the order of C'(A) = O(|L4]|A|log|A|). But, a finite-
state automaton that does not update its internal state, denoted by A, has a reduction in its capacity.
In particular, the capacity is reduced to C'(A~) = O(|14]), because the terms needed to encode the
transition function, O(]A|log |A|), are no longer needed for an automaton that does not use the
transition function.

Using the upper bounds on interactivity from the Theorem 1, we conclude that an agent that stops
learning reduces its future output complexity from O(|14||A|log |A]) to O(]14]). Thus, it is subop-
timal to stop learning.

O

16



B Experimental Details for Behavioural Self-Prediction

The problem that we consider involves predicting the learning algorithms own future predictions. We
consider a function approximator in which its input space is equal to its output space, myp : X — X,
and parameterized by 6. That is, the function approximator’s output can be used as subsequent input.
The learning algorithm updates the parameters of the function approximator, U : § — 6.

The function approximator is tasked with predicting the future average of its behaviour iteratively
and online. At the first timestep, we randomly initialize the function approximator’s parameters
6o ~ p(0) and randomly sample the initial input, by ~ p(b), according to standard initialization dis-
tributions. The function approximator, 7y is then trained to maximize its interactivity. Specifically,
the following steps are repeated at each timestep:

* A learning trajectory of H outputs is produced by iteratively updating the function approximator
along the trajectory, using the learning algorithm to learn successor features with 7D(0). The
sum of losses at each time step in the trajectory is a function of a sequence of parameter updates,
and provides the estimate A(bt;ﬂbo;t).

* The trajectory of outputs produced by the iteratively updated function approximator is then used
to update a copy of the function approximator which was not iteratively updated. Here, the sum
of losses at each time step in the trajectory is an estimate for A(by.7|bo.t—m)-

* Interactivity is estimated by the difference in the two estimated of the agent-relativized complexity,

A(bt:T|b():t7H) - A(b15:T|bO:t)~

* The same learning algorithm used to generate the learning trajectory is used to maximize the
estimate of interactivity, which produces a single update to the parameters, 8’ = U(6). This
updated parameter is used to produce the output which will be used as the next input.

B.1 Experimental Results

We trained a two-layer network using either Linear or ReLU activations on the H-horizon ap-
proximation to interactivity, I = 10. We used conventional stochastic gradient descent which is
generally more stable than adaptive methods (Finn et al., 2017), and used the same step-size for
inner-learning of average future behaviour and for outer-learning of interactivity-maximizing be-
haviour. While this network is relatively shallow, the meta-gradient calculation for maximizing
interactivity makes the effective network depth 2H = 20 layers. Our findings indicate that linear
methods are initially capable of fast adaptation, but that this always lead to performance collapse
(Figure 4). This is surprising because linear methods are known to be stable baselines in conven-
tional continual learning scenarios (Lewandowski et al., 2025; Dohare et al., 2024).

B.2 Interpreting Experimental Results As A Continual Learning Benchmark

Our experimental that maximizing interactivity requires balancing adaptation and stability. That is,
maximizing interactivity involves the canonical plasticity-stability trade-off of continual learning
(Grossberg & Grossberg, 1982; Parisi et al., 2019). This suggests that this synthetic benchmark iso-
lates the key challenge in continual learning, while also not requiring outside data or environments.

This is significant because few environments are designed specifically to evaluate continual adapta-
tion. This environment represents the implicit computational constraints faced by an agent learning
to predict its own future learning behaviour. Behavioural self-prediction specifically evaluates a
learning algorithm’s capabilities for continual adaptation. Thus, any algorithm that stops learning is
suboptimal in this setting, regardless of its capacity, must continually learn to be optimal.

B.3 Limitations of Experiments

Our experiments used seemingly shallow networks, with a depth of D = 2. However, with the
meta-gradient calculation over a finite horizon of H = 10, the effective depth of the networks
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during auto-differentiation is H - D = 20. Meta-gradient methods for deep networks at depth can
exhibit more pathological learning dynamics because they account for curvature when differentiating
through gradients. Understanding how to control curvature using only first-order methods is key for
effective meta-gradient descent in this setting.

The meta-gradient method poses several limitations in scaling. Ideally, we would prefer to scale the
horizon and the capacity of the function approximator. However, because meta-gradient is a second-
order method, and because the horizon is multiplicative with the depth of the network, we have a
computational complexity on the order O(H D?), where D is the depth of the network. Scaling both
the horizon and the capacity results in a effective cubic scaling.

A more promising direction involves bootstrapping meta-gradients (Flennerhag et al., 2022), and
other first-order approximation (Nichol et al., 2018).

C Additional Background and Related Work

C.1 Algorithmic complexity

The Kolmogorov complexity (Kolmogorov, 1965; Solomonoff, 1964; Chaitin, 1966) of an object
(encoded as a binary string) is the length of the shortest program that computes it and halts. Unlike
traditional information theory, it measures the complexity of an individual object without depending
on a stochastic source or ensemble.

The Kolmogorov complexity of a string depends on the choice of a universal Turing machine. How-
ever, since any universal Turing machine can simulate another (e.g., via a compiler), the choice of
the machine affects the Kolmogorov complexity by, at most, an additive constant independent of the
specific string (Li & Vitanyi, 2019).

Kolmogorov complexity is closely tied to compression, where the shortest description represents
the most efficient compression for the given universal Turing machine. Although Kolmogorov com-
plexity is uncomputable, it is possible to compute improving upper bounds by searching over all
possible programs in parallel and tracking the shortest candidate that generates the target string (Li
& Vitanyi, 2019).

C.2 AIXI

AIXI defines a general Bayes-optimal reinforcement learning agent in an unknown computable en-
vironment (Hutter, 2005). In this framework, the environment is represented by a Turing machine
with unidirectional input and output tapes, and bidirectional working/internal tapes. The agent’s
actions are received by the environment on its input tape, based on which it can write a computable
history-based reward and observation on its output tape.

The AIXI agent acts in a Bayes-optimal manner by planning based on a posterior estimate over
all computable environments, using Solomonoff’s universal prior as a starting point (Solomonoff,
1964). This prior assigns higher probability to ‘simpler’ environments—those with lower Kol-
mogorov complexity. However, both Solomonoff’s prior and AIXI are incomputable, making the
development of practical approximations within this framework a key area of interest (Veness et al.,
2011).

C.3 Connections to intrinsic motivation and the free energy principle

Previous work has explored several intrinsic drives that can guide agent behaviour without the need
for explicit external rewards (Schmidhuber, 2010; Barto, 2013). Many approaches to intrinsic mo-
tivation are developed within the framework of traditional RL, where the agents are not constrained
relative to the environment. As a result, these approaches may not be well-suited to a big world.
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Nevertheless, interactivity shares connections to ideas such as mutual information maximization in
intrinsic motivation.

The information gain of a dynamics model can serve as an intrinsic or auxiliary reward, promoting
curious exploration (Storck et al., 1995; Houthooft et al., 2016) Unlike curiosity driven by informa-
tion gain, the goal of interactivity is not to learn an accurate model of the world.

Another related concept is Empowerment (Klyubin et al., 2005), where an agent seeks to maximize
its control over its environment. Empowerment-seeking agents aim to maximize the mutual infor-
mation between their actions and future states. Such agents avoid states where their actions have low
influence and prefer states that allow for a wide range of controllable outcomes. This objective can
also be used to learn a set of behaviours (or options) that lead to different final states (Mohamed &
Jimenez Rezende, 2015; Gregor et al., 2016). As discussed earlier, interactivity-maximizing agents
produce complex yet predictable behaviour, which is not directly tied to the concept of control. Fur-
thermore, unlike objectives grounded in traditional (Shannon) information theory, interactivity relies
on asymmetric algorithmic mutual information between previous inputs and future outputs.

Active inference describes agentic behavior in partially observable environments as the minimization
of free energy (Friston et al., 2010; Sajid et al., 2021). Free-energy minimization prefers selecting
actions that lead to highly predictable states—inputs that are unsurprising to the agent’s model. In
contrast to free-energy minimization, maximizing interactivity actively discourages low-complexity
predictable states.
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