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Abstract

Continual learning is often motivated by the idea, known as the big world hypothesis,1
that the “world is bigger” than the agent. Recent problem formulations capture this2
idea by explicitly constraining an agent relative to the environment. These constraints3
lead to solutions in which the agent continually adapts to best use its limited capacity,4
rather than converging to a fixed solution. However, explicit constraints can be ad hoc,5
difficult to incorporate, and limiting to the effectiveness of scaling up the agent’s capac-6
ity. In this paper, we characterize a problem setting in which an agent, regardless of its7
capacity, is implicitly constrained by being embedded in the environment. In particular,8
we introduce a computationally-embedded perspective that represents an embedded9
agent as an automaton simulated within a universal (formal) computer. We prove that10
such an automaton is implicitly constrained and that it is equivalent to an agent that11
interacts with a reward-free and partially-observable Markov decision process over12
a countably infinite state-space. We propose an objective for this setting, which we13
call interactivity, that measures an agent’s ability to continually adapt its behaviour to14
learn new predictions. To support experimentation on continual adaptation, we develop15
a synthetic benchmark in which an interactivity-seeking agent constructs its own16
non-stationary stream of experience from which it must continually learn to predict.17

1 Introduction18

The goal of this paper is to characterize a general problem setting in which the best use of an19
agent’s limited capacity is to continually adapt (Abel et al., 2023). Our approach is motivated by the20
idea, known as the big world hypothesis, that the “world is bigger” than the agent (Javed & Sutton,21
2024). That is, an agent in a big world may lack the capacity to learn the fixed optimal solution,22
and should instead continually adapt by updating its approximate solution (i.e., by tracking, Sutton23
et al., 2007). However, formalizing the relationship between the agent and the environment presents24
a challenge, because they are typically treated as separate entities in reinforcement learning (see25
Figures 1b and 1c). We address this challenge by defining a general environment in which an agent26
can be embedded, and derive a problem setting in which any such agent is (i) implicitly constrained27
by its capacity, and (ii) suboptimal if it stops learning.28

Explicit constraints on the agent have been previously considered in continual learning as a means29
of capturing the big world hypothesis. For example, in continual learning experiments, it is30
common practice to constrain what the agent can store (Prabhu et al., 2020), or the capacity of31
its function approximator (Meyer et al., 2024). Other more general constraints on the agent have32
also been considered, but these are difficult to incorporate. Such constraints include limits on the33
agent’s compute (see discussion on measuring compute in Section 4.1, Verwimp et al., 2024) and34
on the energy used by the agent’s hardware (Javed & Sutton, 2024). Information theory provides35
a framework to formalize explicit agent constraints (Kumar et al., 2023; 2024). However, outside36
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Figure 1: Comparing the agent’s relationship to the environment in our work, traditional RL,
and AIXI. This work considers a universal-local environment (defined in Section 3), in which agents
of varying sizes are embedded and implicitly constrained (defined in Section 4). Traditional RL
involves a fixed environment and agents of varying size, where the agent is often unconstrained
by being “bigger” than the considered environment. AIXI involves a computationally universal
environment and an uncomputable agent, both of which are unconstrained.

of simple and well-specified pairs of agent and environment, these constraints can be difficult to37
characterize without knowledge of the true information-theoretic quantities involved between the38
state maintained by the agent and its future sensory stream from the environment. This framework39
also does not prescribe new algorithms that improve an agent’s capability for using its limited40
capacity. In addition, explicit constraints hinder the effectiveness of scaling up the agent’s capacity,41
which has been a source of progress in machine learning more broadly (Hestness et al., 2017;42
Kaplan et al., 2020; Hoffmann et al., 2022). These limitations suggest that explicit constraints may43
not be an effective way of capturing the big world hypothesis.44

In contrast to explicit constraints, our approach considers the implicit constraint that arises from an45
agent embedded in an environment (see Figure 1a). The embedded aspect of all intelligent systems,46
by existing in the physical world, is not often considered to be part of the problem formulation47
(Demski & Garrabrant, 2019). However, the physical world is a clear example of a world bigger than48
any agent, suggesting that embedded agency may be useful in formulating the big world hypothesis.49

To provide a general environment in which an agent can be embedded, we define a universal-local50
environment. This environment is a Markov process that is computationally universal—capable of51
simulating any computation—where the transition dynamics can be localized to a neighbourhood52
of the state-space. Our approach is similar to universal artificial intelligence (Hutter, 2005), which53
considers a computationally universal environment to explore the limits of the theoretically optimal,54
but uncomputable, AIXI agent (Hutter, 2000). The AIXI agent was also extended to an embed-55
ded agent, simulated within the computationally universal environment, providing an uncomputable56
definition of a theoretically optimal capacity-bounded agent (Orseau & Ring, 2012). Our approach57
similarly considers embedding an agent in a computationally universal environment, but with the58
added restriction that the environment’s transition dynamics are local. In particular, our departure59
is aimed towards capturing the big world hypothesis and avoiding the limitations of explicit agent60
constraints, while also being amenable to computable approximation.61

To define an embedded agent, we consider an embedded automaton simulated within the state-space62
of our universal-local environment. This automaton interacts with a partially observable Markov63
decision process, defined on the boundary between the automaton and the rest of the universal-local64
environment. We then propose interactivity that measures an embedded automaton’s ability to adapt65
its future behaviour, conditioned on its past behaviour, using Kolmogorov complexity. An agent’s66
interactivity is a computational measure of its adaptivity, and as such is always upper bounded67
by the capacity of the agent. Interactivity is similar to previously considered intrinsic motivation68
objectives (Chentanez et al., 2004; Schmidhuber, 2010), and specifically predictive information69
(Bialek et al., 2001; Still & Precup, 2012). However, interactivity differs because of its formulation70
in terms of behaviours using Kolmogorov complexity. This makes interactivity better suited to71
sequential decision making in the constrained and partially observable setting that we consider.72
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We also develop a reinforcement learning algorithm to maximize interactivity by recasting Kol-73
mogorov complexity in terms of the prediction error incurred by the agent. Interactivity can be74
viewed from this perspective is derived from a value function in the undiscounted setting that pre-75
dicts the agent’s average future behaviour. Maximizing interactivity involves learning a policy to76
direct the agent’s future behaviour to new experiences from which it continually learns. We show77
that maximizing interactivity leads to the common desideratum of the continual learning problem,78
in which any agent that stops learning is suboptimal. Finally, we develop a synthetic benchmark to79
support experimentation on continual adaptation.80

2 Background81

The environment that we consider uses computational universality—the capability of performing82
arbitrary computations—to embed an agent. In particular, we make use of the Church-Turing thesis,83
which implies that all computationally universal systems are equivalent in their capabilities (Church,84
1936; Turing, 1937). This allows us to define a general environment without reference to any85
specific computationally universal system (e.g., a universal Turing machine). The Church-Turing86
thesis also implies that any computationally universal system can simulate any other computational87
system. We will use this to define the agent as an automaton performing a computation simulated88
within the environment.89

To understand the capabilities of such an agent, we will consider the properties of its input/output90
behaviour. In particular, we will use the Kolmogorov complexity of a string, which is the length91
of the shortest program that computes it and halts (Kolmogorov, 1965; Solomonoff, 1964; Chaitin,92
1966). An automaton is a bounded computation, and thus it can only produce output strings with93
bounded Kolmogorov complexity given its finite capacity.94

Definition 1. The Kolmogorov complexity of a string x, conditioned on another string y, is the length95
of the shortest program, |c|, that outputs x given y as input, Kpx|yq “ mint|c| : Upc, yq “ xu, where96
U is a reference universal Turing machine. The unconditional Kolmogorov complexity sets y to be97
the empty string, denoted ϵ.98

While Kolmogorov complexity depends on the choice of a universal Turing machine, any specific99
choice affects the Kolmogorov complexity by, at most, an additive constant independent of the100
specific string (Li & Vitányi, 2019). This is because, by the Church-Turing thesis, any universal101
Turing machine can simulate another (e.g., via a compiler).102

3 A Universal-Local Environment103

We begin by defining a general notion of environment in which an agent can be embedded. Specif-104
ically, we consider an environment that is capable of simulating arbitrary computations on its state-105
space (Section 3.1), such that any bounded computation can be localized to a portion of the envi-106
ronment’s state-space (Section 3.2). These two properties will be used in Section 4 to define an107
automaton on the state-space of this environment. Such an automaton will be used to represent an108
agent, ensuring that it is always implicitly constrained in its computational capacity relative to its109
environment.110

3.1 Markov Representation of a Computationally Universal Environment111

We use environment to refer to a general history-based process that is defined over a finite set of112
symbols, and without an explicit notion of agent.113

Definition 2. An environment, E “ pΣ,Cq, is a discrete process defined over a finite symbol-set, Σ,114
that maps a string of symbols, σ0:t´1 “ σ0σ1 ¨ ¨ ¨σt´1, to the next-symbol that extends the string,115
σt P Σ, using the construction function, σt “ Cpσ0:t´1q.116
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An environment is computationally universal if it is equivalent to a universal Turing machine, mean-117
ing that it is capable of simulating any computation given a suitable initial string of symbols. Such118
an environment can also be represented as a Markov process on a countably infinite state-space.119

Proposition 1 (Universal Markov Environment). There exists a Markov representation of a compu-120
tationally universal environment, MpEq “ pΩ,Uq, defined over the countably infinite state-space,121
Ω, in which the state, ωt P Ω, is updated using the transition function, ωt`1 “ Upωtq.122

All proofs of propositions and theorems can be found in Section A of the Appendix.123

We emphasize that, despite using a Markov representation, the universal Markov environment is124
more general than the Markov environments typically considered in reinforcement learning. In125
particular, a universal Markov environment is capable of simulating any other computation, which126
will be crucial to define an embedded agent in Section 4.127

3.2 Defining Locality with Boundaried Markov Processes128

Intuitively, locality means that we can consider the environment’s transition dynamics on a restricted129
portion of the state-space. Specifically, we use the term substate-space to refer to the portion of the130
state-space restricted to a finite index-set.131

Definition 3. A substate-space, ΩΛ, is defined as a restriction of the state-space, Ω, to a finite index-132
set, IdxpΩΛq :“ Λ where |Λ| ă 8, such that ΩΛ “ tωΛ : ω P Ωu where ωΛ “ tωiuiPΛ. We use133
square set notation to denote operations on the index set, such as ΩΛ Ď Ω to denote the inclusion of134
the index-set, Λ Ď IdxpΩq, and the union of index-sets, ΩΛ1

\ ΩΛ2
“ ΩΛ1YΛ2

.135

We now consider the environment’s transition dynamics restricted to a generic substate-space,136
X Ď Ω, without reference to the specific index-set, IdxpXq. In particular, we define a boundaried137
Markov process in which the one-step transition dynamics, UX , depend on another substate-space,138
BX Ď Ω, referred to as the boundary-space for a given substate-space, X .139

Definition 4. A boundaried Markov process, MX “ pX,BX ,UXq, is a discrete process in which140
the substate-space, X , and its boundary-space, BX , together define the one-step transition dynamics141
of the substate-space, xt`1 “ UXpxt, btq, for xt`1, xt P X and bt P BX .142

The boundary-space is defined for one-step dynamics; A larger boundary-space is generally needed143
for multi-step transition dynamics. This is because the current substate, xt P X , and the current144
boundary, bt P BX , only define the next-substate, xt`1 P X , and not the next-boundary, bt`1 P BX .145
We use this fact to define a local environment that consists of nested boundaried Markov processes.146

Definition 5 (Locality). A universal Markov environment is local if, for any two proper substate-147
spaces, W Ĺ X Ď Ω, there exists boundaried Markov processes on these substate-spaces with cor-148
responding index-sets that are properly contained, W \ BW Ĺ X\ BX .149

Thus, a universal-local environment is a universal Markov environment that is also local. This envi-150
ronment is capable of simulating arbitrary computations, and any bounded computation is localized151
to a portion of the environment’s state-space. It can be understood as a computationally universal152
Markov process in which longer-term dynamics are a function of a larger portion of the state-space.153

3.3 Example of a Universal-Local Environment: Conway’s Game of Life154

Conway’s Game of Life is an example of a universal-local environment (Conway, 1970). This en-155
vironment is computationally universal because, within Conway’s Game of Life, a universal Turing156
machine can be simulated (Berlekamp et al., 1982; Rendell, 2011). A substate-space in Conway’s157
Game of Life is a finite subset of locations on the grid, specifying the possible values taken by158
the cells at those locations. The one-step transition dynamics on any substate-space depend on the159
adjacent neighbourhood of that substate-space, which defines the boundary-space (see Figure 2).160
Conway’s game of life is local because if one substate-space contains another, then the boundary-161
spaces (the adjacent neighbourhood of the substate-spaces) are also also contained.162
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t t ` 1 t ` 2

Figure 2: Conway’s Game of Life is a cellular automaton and an example of a universal-local
environment. The state-space is an infinite 2D grid, in which cells live (black) with 2 or 3 neigh-
bours, but die (white) otherwise, and dead cells with 3 neighbours become alive. The blue and green
borders (left) correspond to neighbourhoods that determine the middle cell at time-steps t ` 1 (mid-
dle) and t ` 2 (right). Longer-term transition dynamics depend on larger neighbourhoods.

While Conway’s Game of Life has the potential to simulate any computation using its local dynam-163
ics, we are not suggesting to program an agent within it. We only point out Conway’s Game of Life164
as a proof-of-existence for universal-local environments. Instead, we will consider and formalize165
the implicit constraints faced by an agent if it were embedded in such an environment.166

4 A Computationally-Embedded Agent167

We define an embedded agent as an automaton that is simulated within the universal-local environ-168
ment. This embedded automaton is equivalent to a boundaried Markov process, with the boundary-169
space acting as an interface that separates the automaton from the rest of the universal-local envi-170
ronment (Jiang, 2019; Harutyunyan, 2020). We prove that an embedded automaton is equivalent to171
an agent interacting with a partially observable Markov decision process, under some conditions on172
this boundary-space. Using Kolmogorov complexity, we propose interactivity as a measure of the173
embedded agent’s ability to adapt its future behaviour, using experience from its past behaviour. We174
prove that interactivity is constrained by any finite capacity and discuss the way in which interaci-175
tivty measures a general capability for continual adaptation.176

4.1 Embedding an Agent as an Automaton in a Universal-Local Environment177

A universal-local environment can simulate arbitrary computations, which we use to define an em-178
bedded automaton, A, on the environment’s state-space, Ω. Moreover, due to locality, the embedded179
automaton can be localized to a substate-space, A Ď Ω (see Figure 3, left).180

Definition 6. An embedded automaton is defined by A “ pA, IA, OA,UA, πAq, where A Ď Ω is the181
internal substate-space of the automaton, IA, OA Ď BA are input and output spaces defined on the182
boundary-space, BA, and UA, πA are the automaton’s transition and output function respectively.183

Relating this to an agent in reinforcement learning, we may think of the input-space as the184
observation-space,1 the internal substate as the parameters of a function approximator, the output-185
space as an action-space, the transition function as a learning rule, and the output function as a186
policy.187

Proposition 2 (Embedded Agent). An embedded automaton is equivalent to an agent interacting188
with a (potentially reward-free) partially observable Markov decision process, if its boundary-space189
consists of only the input and output spaces, IA \ OA “ BA.190

Now that we have defined both the embedded agent and its partially observable Markov decision191
process within the same universal-local environment, we can describe their relationship.192

Proposition 3 (Implicitly Constrained). Every embedded agent is implicitly constrained, relative to193
its partially observable Markov decision process, limiting its memory and computational capacity.194

1The input-space may also provide an external reward to the automaton, but this need not be the case.
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Figure 3: An illustrative depiction of a computationally-embedded agent interacting with its
environment. An embedded automaton is simulated on the substate-space of the universal-local
environment, A Ď Ω, reading from its input-space, IA, updating its internal state with UA, and
writing to its output-space, OA, with its output function, πA (left). A computationally-embedded
agent is characterized by its input-output behaviour, with the goal of maximizing interactivity,
rather than the internal specification of its computations (middle). We consider an idealized setting,
referred to as a Big Agent, in which the agent has full control over its experience, and only observes
its previous output on the boundary-space, B (right).

While every embedded agent is implicitly constrained, some may generate simple output sequences195
that do not require more than agent’s capacity. For example, a periodic output sequence would196
not require more capacity than the period of the sequence. We will show, however, that agents are197
constrained by their finite capacity when adapting to their past input/output experience.198

4.2 Interactivity as a Computational Measure of Adaptivity199

An agent’s capability for learning can be characterized by its ability to adapt its future behaviour200
using its past experience. We propose interactivity to measure an embedded agent’s intrinsic ability201
to adapt its future behaviour, towards higher complexity, conditioned on its past behaviour. Specifi-202
cally, we use Kolmogorov complexity to formalize this otherwise intuitive notion of adaptation and203
complexity.204

Following Proposition 2, we represent an embedded agent as an embedded automaton A where its205
input and output spaces determine its boundary-space, IA Y OA “ BA. Thus, the behaviour of206
the agent is determined by the values taken on the boundary-space, bt “ pit, πApitqq P BA where207
it P IA and πApitq P OA. At any time t, the behaviour can be separated into past, b0:t “ b0b1 ¨ ¨ ¨ bt208
and the T -horizon future, bt`1:T “ bt`1bt`2 ¨ ¨ ¨ bt`T .209

Definition 7. An agent’s interactivity at time t is the average difference in the unconditional Kol-210
mogorov complexity of its future behaviour and the conditional Kolmogorov complexity of its future211
behaviour, conditioned on its past behaviour, I˚

t pAq “ limTÑ8
1
T

`

Kpbt`1:T q ´ Kpbt`1:T |b0:tq
˘

.212

That is, interactivity measures the predictable complexity of an agent’s future behaviour, given its213
past behaviour. Interactivity is high if (i) the future behaviour, bt`1:T , has high unconditional Kol-214
mogorov complexity and (ii) the past behaviour, b0:t, is predictive of this future behaviour, thereby215
yielding a low conditional Kolmogorov complexity. However, interactivity is low if the future216
behaviour has low Kolmogorov complexity, or if the past behaviour is not sufficiently predictive.217

4.3 An Interactivity-Maximizing Agent Faces a Big World218

The interactivity of any embedded agent is always constrained by its capacity. That is, with a219
given capacity, an embedded agent can only sustain a given level of interactivity. However, if the220
embedded agent is given more capacity, then it could use the additional capacity to increase its221
interactivity.222

Theorem 1 (Big World). The interactivity of an embedded agent is upper bounded by its capacity.223

An interactivity-maximizing agent has an ability to continually adapt its future behaviour by using224
its past experience. This suggests the following interactivity thesis:225
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Interactivity measures a general capability for continual adaptation.226

We refer to this as the interactivity thesis, rather than a hypothesis, to reflect its speculative and philo-227
sophical nature. An agent’s capability for continual adaptation with low interactivity is limited be-228
cause its future behaviour is either: i) simple, or ii) complex, but not predictable from its past experi-229
ence. In either case, the thesis stresses the relative notion of capabilities. A simple agent could be ca-230
pable of some adaptation, but its capabilities would be greater if its past experience was used to pro-231
duce more complex behaviour. Moreover, an agent that produces complex behaviour could only be232
recognized as an adaptation if this complexity can be attributed, via prediction, to its past experience.233
Embracing the interactivity thesis naturally leads to a relative spectrum of possible adaptive agents.234

5 Maximizing Interactivity with Reinforcement Learning235

Interactivity is defined using Kolmogorov complexity, which is not computable in general. How-236
ever, for an automaton, Kolmogorov complexity is computable by enumerating all programs up to237
the size of the automaton (Li & Vitányi, 2019). This brute-force approach would require more than238
the capacity of the automaton, necessitating approximation (see Theorem 1).239

To approximate interactivity, we use the distortion-rate perspective on Kolmogorov complexity that240
considers the achievable error under a constraint (Vereshchagin & Vitányi, 2010). Specifically, we (i)241
impose a constraint by replacing the reference universal Turing machine with the embedded agent,242
and (ii) measure the error achieved by the embedded agent under a choice of loss function.243

Definition 8. The agent-relativized complexity, for a given embedded agent, A, of244
a string x, given a string y, is the error of the best prediction by the agent,245
AApx|yq “ minat

ř|x|

i“1 ℓpxi, x̂iq : x̂ “ Apa, yqu, where ℓ is a loss and a P A is a substate.246

Agent-relativized complexity is determined by the agent’s predictions, making it to amenable to247
learning. If the agent-relativized complexity of a string, x, conditioned on the empty string is large,248
AA,ℓpx|ϵq ą 0, then the agent is unable to predict x accurately and the complexity of that string is249
relatively high. If additional information, y, can be provided to the agent to reduce the prediction250
error, AA,ℓpx|yq “ 0, then the conditional complexity of x is relatively low, and the additional251
information is useful to the agent’s predictions.252

We can now consider the interactivity relativized to an agent, A, where we replace Kolmogorov
complexity with agent-relativized complexity. Going forward, in the context of an agent, we will
refer to agent-relativized complexity simply as complexity.

ItpAq “ lim
TÑ8

1

T

`

AApbt`1:T q ´ AApbt`1:T |b0:t´1q
˘

.

The unconditional complexity, AApbt`1:T q, measures the error incurred by the agent when predict-253
ing its future behaviour, without having learned from prior experience. That is, without the current254
substate, at. Whereas conditional complexity, AApbt`1:T |b0:t´1q, measures the error of the agents255
predictions given the current substate, at, encoding its past experience.256

Using the agent-relativized perspective, we now develop a reinforcement learning algorithm for257
maximizing interactivity. Our reinforcement learning approach involves (i) learning a prediction of258
the conditional complexity via a value function, (ii) approximating the unconditional complexity259
by using an agent that has access to a subset of the past experience, and (iii) learning a policy to260
maximize the difference between these two predictions.261

5.1 Learning Predictions of Conditional Agent-Relativized Complexity262

Conditional complexity involves learning a prediction of the agent’s behaviour, and we show how263
such a prediction can be learned via a value function. In particular, we consider the undiscounted264
setting of reinforcement learning, where the discount factor is deprecated, γ “ 1, in favour of the265
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long-term average of signals (Sutton & Barto, 2018). However, we are interested in learning the266
long-term average behaviour, rather than an externally provided reward signal.267

Specifically, we consider an agent that produces a sequence of behaviour tuples of input and output,268
bt “ pit, πpat, itqq, where at each timestep the agent also updates its internal substate at`1 “269
Upat, btq. We consider predictions made by this agent as part of its internal substate, rather than as270
an output, because the predictions do not directly interface with the environment.271

Given such an agent, we are interested in learning the conditional complexity of its behaviour,272
AApbt`1:T |b0:t´1q. Conditional complexity can be understood as a prediction about the long-term273
average behaviour of the agent. In this undiscounted setting, the long-term average behaviour is274
represented as the limit of the finite averages,2 bpAq “ limTÑ8

1
T

řT
t“1 bt.275

The long-term average behaviour can be estimated with an online average. However, this online276
estimate does not provide a prediction about future behaviour, which is needed in the definition277
of conditional complexity. Instead, a differential value function can be defined recursively as,278
vApat, btq “ bt`1 ´ bpAq ` vApat`1, bt`1q. An approximation to the differential value function,279
v̂pat, btq, can be learned with temporal difference learning, where bpAq is replaced with the online280
average, b̄t`1 “ b̄t ` βpbt ´ btq, to form the temporal difference error, δtpat, bt, at`1, bt`1q “281
bt`1 ´ b̄t`1 ` v̂pat`1, bt`1q ´ v̂pat, btq. This differential value function can be interpreted as a282
undiscounted version of successor features (Barreto et al., 2017), that also include the future actions283
of the agent.284

The conditional complexity is implicitly learned by learning this differential value function of future
behaviour with temporal difference learning. That is, if the temporal difference error is low, then the
estimate of the future behaviour is accurate. In particular, this implies that a suitable approximation
to the conditional complexity can be defined with a temporal difference error loss function,

AApbt`1:T |b0:t´1q « ÂApbt`1:T |b0:t´1q “

T
ÿ

k“1

ℓ
´

bt`k, b̂t`kpb0:t´1q

¯

“

T
ÿ

k“1

δ2t`k.

The temporal difference error is conditioned on past experience through the learned approximation285
to the differential value function. Moreover, this prediction approach amortizes the minimization in286
the definition of conditional complexity by iteratively learning the differential value function online.287
While this approach does not directly learn a prediction of the future temporal difference errors, the288
finite-horizon temporal difference errors provides an approximation.289

5.2 Semi-Conditional Predictions of Unconditional Agent-Relativized Complexity290

Maximizing interactivity also requires an approximation of the unconditional complexity. Without291
it, maximizing interactivity would reduce to minimizing the conditional complexity, which would292
simply minimize the temporal difference errors and learn the differential value function. However,293
it is not clear how the unconditional complexity could be learned because, by definition, it is not294
conditioned on any previous experience.295

Rather than learning a completely unconditional complexity, we instead consider the behaviour of
agent if it had not learned on a particular finite horizon, denoted by H . That is, we approximate the
unconditional complexity with a semi-conditional complexity,

ÂHpbt`1:T q :“ Apbt`1:T |b0:t´Hq ď Apbt`1:T q.

Where the inequality follows, up to subadditive factors, because conditioning decreases complexity296
(Grunwald & Vitányi, 2004). In addition, the lower bound means that this approximation is also297
effective for approximately maximizing interactivity.298

2The computational agents that we consider are determinsitic, meaning that we can drop the expected values in the
following definitions.
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Figure 4: Maximizing Interactivity in Behavioural Self-Prediction With a step-size of 0.05, both
experience an initial drop in interactivity and slowly improve over time (left). With a step-size of
0.1, both networks surpass their initial interactivity, with the linear network diverging (right).

5.3 Maximizing Interactivity as a Continual Learning Problem299

Maximizing interactivity involves producing future behaviour that maximizes the difference between300
unconditional and conditional complexity. This can be accomplished by optimizing the approxima-301
tions provided by semi-conditional and conditional complexity, under a horizon, H ,302

IHt pAq “
1

H

´

Âpbt:t`H |b0:t´Hq ´ Âpbt:t`H |b0:tq
¯

(1)

1

H

˜

H
ÿ

k“1

δ2t`kpat´H , bt`k, at´H , bt`k`1q ´

H
ÿ

k“1

δ2t`kpat`k, bt`k, at`k`1, bt`k`1q

¸

(2)

Where the semi-conditional complexity maintains a fixed agent substate, at´H . In practice, this303
requires bi-level optimization to account for the agent’s substate changing in the agent’s conditional304
complexity. This can be handled by auto-differentiation such as by MAML (Finn et al., 2017), but305
with an online update rather than to initialization that is more similar to cross-prop (Veeriah et al.,306
2017). Maximizing this lower bound on interactivity is thus possible with gradient-based learning,307
and the approximation approaches the agent-relativized interactivity in the horizon limit, H Ñ 8,308
where we treat az and b0:z as empty for z ă 0.309

As the agent’s capacity increases, so too does its maximum possible interactivity. While all the310
agents we consider are bounded by finite capacity, if we consider the agent’s infinite capacity limit311
as computationally universal, then maximizing interactivity becomes uncomputable. In Section 4.3,312
we proved that the interactivity of an embedded agent is upper bounded by its capacity. We now313
show a similar result for an interactivity-maximizing reinforcement learning agent.314

Theorem 2. Any bounded agent that seeks to maximize its interactivity through learning is i) limited315
by its finite capacity constraint and, ii) suboptimal if it stops learning.316

The desiderata of Theorem 2 were previously described as conditions for a big world simulator317
(Kumar et al., 2024). This demonstrates that maximizing interactivity is well-characterized by the318
big world hypothesis. Thus, maximizing interactivity appears to be a general problem setting in319
which the best use of an agent’s limited resources is to continually adapt.320

6 Evaluating Continual Adaptation With Behavioural Self-Prediction321

Behavioural self-prediction provides a synthetic benchmark in which the agent creates its own non-322
stationary stream of experience, from which it must continually learn. A learning algorithm pre-323
dicting its own future learning behaviour faces an implicit constraint, because it cannot observe its324
entire parameter set, or accurately predict what it will learn and output in the future. An illustrative325
depiction of the problem setting is given in Figure 3 (right), in which an agent has full control over326
its experience stream. The advantage of this approach is that it does not require an external envi-327
ronment, or any collected data. Instead, it directly evaluates the learning algorithms capabilities for328
learning from, and adapting to, the experience that it produces online. In particular, any learning329
algorithms that stops learning achieves the lowest possible performance.330

We trained a two-layer network using either Linear or ReLU activations on the H-horizon ap-331
proximation to interactivity, H “ 10. We used conventional stochastic gradient descent which is332
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generally more stable than adaptive methods (Finn et al., 2017), and used the same step-size for333
inner-learning of average future behaviour and for outer-learning of interactivity-maximizing be-334
haviour. While this network is relatively shallow, the meta-gradient calculation for maximizing335
interactivity makes the effective network depth 2H “ 20 layers. Our findings indicate that linear336
methods are initially capable of fast adaptation, but that this always lead to performance collapse337
(Figure 4). This is surprising because linear methods are known to be stable baselines in conven-338
tional continual learning scenarios (Lewandowski et al., 2025; Dohare et al., 2024). This suggests339
that continual adaptation requires balancing fast adaptation with stability. Please see Appendix B340
for additional details.341

7 Discussion342

In this paper, we introduced a computationally-embedded perspective on the big world hypothesis,343
which considers the implicit constraint faced by an embedded agent. Our contributions include:344
(i) characterizing the implicit constrains faced by an embedded agent, (ii) proposing interactivity345
as a computational measure of adaptivity, and (iii) developing a reinforcement learning algorithm346
for maximizing interactivity. Our work shows that maximizing interactivity leads to the common347
desideratum of the continual learning problem in which any agent that stops learning is suboptimal.348

The key to Theorems 1 and 2 is the fact that interactivity does not depend on external feedback, but349
rather is defined in terms of the past and future behaviour of the agent. This is a departure from350
dogmas common to reinforcement learning (Abel et al., 2024). While interactivity could poten-351
tially provide a rich source of intrinsic feedback, it also introduces challenges the stability of our352
algorithms combining nonlinear representations, temporal difference learning, and online learning.353

Maximizing interactivity provides a problem setting for studying continual learning in isolation. A354
promising direction is the development of an efficient algorithms for maximizing interactivity, one355
which bypasses costly meta-gradients and directly approximates agent-relativized complexity. Ex-356
perimental evaluation in this setting also requires special consideration. Holding the agent fixed for357
evaluation, as is commonly done in machine learning, is not be appropriate given that interactivity is358
defined as an online objective. In addition, standard approaches to hyperparameter tuning may not359
be feasible for evaluating the long-term performance of a continual learning agent (Mesbahi et al.,360
2024). Overcoming these obstacles would require re-evaluation of several components of empirical361
practice in machine learning, and we thus leave an empirical investigation for future work.362

We close with the following conjecture regarding interactivity and its utility as a general objective in363
an arbitrary environment: if an agent is capable of sustaining a particular level of interactivity, then364
it is also capable of behaviours that achieve other goals in that environment—such as maximizing365
external reward—that require equal or less interactivity.366
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A Proofs492

Proof of Proposition 1. Our proof is constructive, using the computationally universal environ-493
ment’s symbol-set, Σ, and construction function, C, we define a Markov environment on a countably494
infinite state-space, Ω with a transition function, U.495

Constructing the state-space (Ω)496

The state-space of the Markov environment is represented as a subset of a sequence-space over the497
union of the symbol-set and a blank symbol, Σ Y t˝u. The finite string of symbols corresponds to a498
finite set of indices, whereas the other indices are all represented by the blank symbol.499

For simplicity, we consider the bi-infinite sequence-space,500
pΣ Y t˝uqZ “ ttωiuiPZ : ωi P Σ Y t˝uu, indexed by the set of integers, Z. Other higher di-501
mensional sequence-space are also possible, such as pairs of bi-infinite sequences, corresponding to502
a grid.503

Each finite string, σ´t:t P Σ‹, is encoded as a sequence padded with blank symbols,504
Epσ´t:tq “ ω “ t. . . , ˝, σ´t, σ´t`1 . . . , σt´1, σt, ˝, . . . u P pΣ Y t˝uqZ. The state-space is a505

13

https://doi.org/10.1613/jair.3125


Under review for RLC 2025, to be published in RLJ 2025

countably infinite proper subset of the sequence-space considered, Ω Ĺ pΣ Y t˝uqZ, because each506
string is finite.507

Constructing the transition function (U)508

The transition function is defined by a composition of a function that decodes the string from the509
sequence, and the construction function underlying the computationally universal environment.510

The decoding function maps the current state, ωt, and retrieves the string, Dpωtq “ σ0:t. In the bi-511
infinite sequence space that we consider, this involves scanning the input to find the blank symbols512
that delimit the indices that enclose the non-blank symbols. The decoding function returns the first513
and last symbol that is adjacent to the blank symbol, ˝.514

With the decoding function, the transition function then uses the construction function to obtain the515
next-symbol, σt`1 “ Cpσ0:tq. Finally, it concatenates the retrieved string with the next-symbol to516
produce the next string, σ0:t`1. This string is then encoded as the next state, ωt`1 “ Epσ0:t`1q. In517
the bi-infinite sequence space that we consider, this involves replacing the last blank symbol with518
the new symbol σt.519

Proof of Proposition 2. We outline the transition dynamics of an embedded automaton within the520
environment. We will then show that, under assumptions of this boundary-space, such an automaton521
is equivalent to an agent interacting with a partially-observable Markov decision process.522

The next internal sub-state is determined by the automaton’s state-update function, UA. By defi-523
nition, the boundary-space of the automaton, BA, determines the one-step transition dynamics of524
the embedded automaton’s internal sub-state. This means that the automaton’s internal sub-state is525
updated according to at`1 “ UApat, btq. Thus, the embedded automaton is a boundaried Markov526
process.527

In the case where the input and output determine the boundary-space, IA\OA “ BA, the automaton528
can be completely separated from the universal-local environment. That is, conditioned on the input529
and output spaces, the automaton’s next substate is determined. Moreover, because the automaton530
observes the input and output space, and because this determines the next-substate, the automaton531
has agency in the determination of its future substate by the outputs that it takes. The automaton532
can thus be viewed equivalent to an agent interacting with an environment, in the conventional533
reinforcement learning paradigm.534

While this agent can completely determine its output, conditioned on its substate and input, it cannot535
in general predict or control its input. The input to such an embedded automaton is equivalent to536
an observation provided to it by the environment. This environment, by definition, is a Markov537
process in the countably infinite-state space Ω. Thus, from the view of the automaton, it is facing a538
partially-observable Markov decision process with a countably infinite state-space.539

Note that the partially observable Markov decision process is, in general, reward-free. The en-540
vironment could provide a reward to the agent, through the input-space, and the agent could be541
programmed in such a way to maximize the sum of its future reward signal. However, this requires542
additional assumptions about the environment and the agent and so we do not prescribe a reward543
function.544

Thus, when the input and output spaces determine the boundary-space of an embedded automaton, it545
can be thought of as an agent interacting with a (reward-free) partially observable Markov decision546
process with a countably infinite state-space.547

Proof of Proposition 3. We first show that an embedded automaton is only capable of a limited548
form of computation relative to the partially observable Markov decision process. We then outline549
additional constraints that result from the automaton being embedded.550

An embedded automaton is equivalent to a finite-state machine. This means that the automaton is551
only capable of recognizing a regular language. The partially observable Markov decision process552
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that it faces, however, is a function of an unbounded substate-space of the computationally univer-553
sal environment. This means that it can, in general, generate a recursively-enumerable language.554
The embedded automaton is thus implicitly computationally constrained, because of the separation555
between automaton and the environment in the Chomsky hierarchy (Chomsky, 1959).556

Thus, an embedded automaton simulated in a universal-local environment is implicitly constrained557
relative to its partially observable Markov decision process.558

There are two additional ways in which an embedded automaton is implicitly constrained:559

1. Minimum size: The size of an embedded automaton, including the size of its input and output560
spaces, cannot be arbitrarily small, and thus there exists a minimum size. This implies that the561
automaton cannot read and write to arbitrarily small parts of the environment, constraining its562
observation and action spaces.563

2. Simulation time: Simulating an embedded automaton in a universal-local environment may also564
incur a simulation overhead. This constrains the automaton by the fact that several transitions in565
the environment may be necessary to simulate a single transition for the automaton.566

While the embedded automaton is computationally constrained relative to its environment, these two567
additional constraints limit the information made available to the automaton about the environment.568
Specifically, an automaton generally cannot observe, process and output information at the same569
granularity, or at the same timescale, as the environment because of constraints on its size and its570
simulation time.571

Proof of Theorem 1. We prove a more precise statement, that the maximum possible H-horizon572
interactivity for a finite-state automaton is upper bounded by its capacity. For an automaton, A, the573
capacity is proportional to the size of its internal sub-state space, |A|. Encoding an automaton on a574
Turing machine is dominated by the cost of encoding its transition function which is on the order of575
Op|A| log |A|q.576

Because we make no assumptions on the environment (and hence the inputs), we consider only the
complexity produced by the automaton’s outputs, conditioned on its inputs, which we write simply
by replacing bt with πt. Thus, the H-horizon interactivity that we consider is,

I‹
HpAq “

1

H
pKpπt:Hq ´ Kpπt:H |π0:t´1qq ,

and we show that we can upper bound it in terms of capacity, |A|. All inequalities below pertaining577
to Kolmogorov complexity are subadditive, meaning they hide constant terms, Op1q.578

By the symmetry of information (Li & Vitányi, 2019), we have579

Kpπ0:t´1q ě pKpπt:Hq ´ Kpπt:H |π0:t´1qq (3)

Which we can use to upper bound H-horizon interactivity,580

1

H
Kpπ0:t´1q ě

1

H
pKpπt:Hq ´ Kpπt:H |π0:t´1qq “ I˚

HpAq (4)

It remains to bound the complexity of the behaviour, Kpπ0:t´1q. Because the behaviour is produced
by an automaton, we have that the encoding length of the automaton upper bounds the minimum
program that produces the sequence

|A| log |A| ě mint|c| : Upcq “ π0:t´1u :“ Kpπ0:t´1q.

Putting this together, we have the desired upper bound in terms of capacity,

|A| log |A|

H
ě

1

H
Kpπ0:t´1q ě I‹

HpAq.
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For a fixed automaton size, asymptotically such an upper bound goes to zero. That is, any bounded581
computation has bounded unnormalized interactivity, and zero asymptotic interactivity. However,582
for large and finite H , this upper bound is tight.583

584

Proof of Theorem 2. We provide a proof for each of the two desiderata585

(i) The first property follows from an argument that is similar to Theorem 1, but adapted to a bounded586
learning agent, A, with capacity CpAq587

A bounded agent that maximizes its interactivity will have a non-zero unconditional agent-588
relativized complexity, Apbt:Hq ą 0 (otherwise, its interactivity would be zero). This implies that589
the unconditional Kolmogorov complexity of its behaviour is on the order of the the capacity of the590
agent, Kpbt:Hq ě CpAq ´ Op1q, where Op1q is a constant independent of the agent. Because the591
behaviour is generated by the automaton, we know that the Kolmogorov complexity is also upper592
bounded in terms of the capacity, CpAq ` Op1q ě Kpbt:Hq.593

Such an agent will also have low conditional agent-relativized complexity (otherwise, its interac-594
tivity would be low). An optimal learning agent that minimizes the agent-relativized complexity,595
Apbt:H |b0:tq “ 0, has conditional Kolmogorov complexity is strictly less than the capacity of the596
agent, Kpbt:H |b0:tq ă CpAq. In fact, we have, for α ă 1, that Kpbt:H |b0:tq ď αCpAq. This is be-597
cause the agent can only use a fraction of its capacity on predicting its future behaviour (in addition598
to making predictions, an agent selects actions, and updates its substate).599

Taken together, interactivity is effectively bounded by capacity,

p1 ´ αqCpAq ´ Op1q ď I‹
HpAq ď CpAq ` Op1q.

An agent with a given capacity cannot maximize its interactivity without increasing its capacity.600
Thus, a bounded agent that seeks to maximize its interactivity through learning is limited by its601
finite capacity constraint.602

(ii) For the second property, we demonstrate the necessity of continual adaptation for maximizing603
interactivity, by considering the role of the embedded agent’s transition function.604

Suppose that the agent were to stop learning at time t. For the corresponding finite-state automaton,605
A, the state transition function, UA encodes the learning rule. An agent that has stopped learning is606
thus equivalent to an automaton that stops updating its internal state. In this case, the automaton’s607
internal state remains constant at1 “ a for all t1 ą t.608

A finite-state automaton has a capacity on the order of CpAq “ Op|IA||A| log |A|q. But, a finite-609
state automaton that does not update its internal state, denoted by A´, has a reduction in its capacity.610
In particular, the capacity is reduced to CpA´q “ Op|IA|q, because the terms needed to encode the611
transition function, Op|A| log |A|q, are no longer needed for an automaton that does not use the612
transition function.613

Using the upper bounds on interactivity from the Theorem 1, we conclude that an agent that stops614
learning reduces its future output complexity from Op|IA||A| log |A|q to Op|IA|q. Thus, it is subop-615
timal to stop learning.616

617

B Experimental Details for Behavioural Self-Prediction618

The problem that we consider involves predicting the learning algorithms own future predictions. We619
consider a function approximator in which its input space is equal to its output space, πθ : X Ñ X ,620
and parameterized by θ. That is, the function approximator’s output can be used as subsequent input.621
The learning algorithm updates the parameters of the function approximator, U : θ Ñ θ.622
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The function approximator is tasked with predicting the future average of its behaviour iteratively623
and online. At the first timestep, we randomly initialize the function approximator’s parameters624
θ0 „ ppθq and randomly sample the initial input, b0 „ ppbq, according to standard initialization dis-625
tributions. The function approximator, πθ is then trained to maximize its interactivity. Specifically,626
the following steps are repeated at each timestep:627

• A learning trajectory of H outputs is produced by iteratively updating the function approximator628
along the trajectory, using the learning algorithm to learn successor features with TDp0q. The629
sum of losses at each time step in the trajectory is a function of a sequence of parameter updates,630
and provides the estimate Âpbt:T |b0:tq.631

• The trajectory of outputs produced by the iteratively updated function approximator is then used632
to update a copy of the function approximator which was not iteratively updated. Here, the sum633
of losses at each time step in the trajectory is an estimate for Âpbt:T |b0:t´Hq.634

• Interactivity is estimated by the difference in the two estimated of the agent-relativized complexity,635
Âpbt:T |b0:t´Hq ´ Âpbt:T |b0:tq.636

• The same learning algorithm used to generate the learning trajectory is used to maximize the637
estimate of interactivity, which produces a single update to the parameters, θ1 “ Upθq. This638
updated parameter is used to produce the output which will be used as the next input.639

B.1 Experimental Results640

We trained a two-layer network using either Linear or ReLU activations on the H-horizon ap-641
proximation to interactivity, H “ 10. We used conventional stochastic gradient descent which is642
generally more stable than adaptive methods (Finn et al., 2017), and used the same step-size for643
inner-learning of average future behaviour and for outer-learning of interactivity-maximizing be-644
haviour. While this network is relatively shallow, the meta-gradient calculation for maximizing645
interactivity makes the effective network depth 2H “ 20 layers. Our findings indicate that linear646
methods are initially capable of fast adaptation, but that this always lead to performance collapse647
(Figure 4). This is surprising because linear methods are known to be stable baselines in conven-648
tional continual learning scenarios (Lewandowski et al., 2025; Dohare et al., 2024).649

B.2 Interpreting Experimental Results As A Continual Learning Benchmark650

Our experimental that maximizing interactivity requires balancing adaptation and stability. That is,651
maximizing interactivity involves the canonical plasticity-stability trade-off of continual learning652
(Grossberg & Grossberg, 1982; Parisi et al., 2019). This suggests that this synthetic benchmark iso-653
lates the key challenge in continual learning, while also not requiring outside data or environments.654

This is significant because few environments are designed specifically to evaluate continual adapta-655
tion. This environment represents the implicit computational constraints faced by an agent learning656
to predict its own future learning behaviour. Behavioural self-prediction specifically evaluates a657
learning algorithm’s capabilities for continual adaptation. Thus, any algorithm that stops learning is658
suboptimal in this setting, regardless of its capacity, must continually learn to be optimal.659

B.3 Limitations of Experiments660

Our experiments used seemingly shallow networks, with a depth of D “ 2. However, with the661
meta-gradient calculation over a finite horizon of H “ 10, the effective depth of the networks662
during auto-differentiation is H ¨ D “ 20. Meta-gradient methods for deep networks at depth can663
exhibit more pathological learning dynamics because they account for curvature when differentiating664
through gradients. Understanding how to control curvature using only first-order methods is key for665
effective meta-gradient descent in this setting.666

The meta-gradient method poses several limitations in scaling. Ideally, we would prefer to scale the667
horizon and the capacity of the function approximator. However, because meta-gradient is a second-668
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order method, and because the horizon is multiplicative with the depth of the network, we have a669
computational complexity on the order OpHD2q, where D is the depth of the network. Scaling both670
the horizon and the capacity results in a effective cubic scaling.671

A more promising direction involves bootstrapping meta-gradients (Flennerhag et al., 2022), and672
other first-order approximation (Nichol et al., 2018).673

C Additional Background and Related Work674

C.1 Algorithmic complexity675

The Kolmogorov complexity (Kolmogorov, 1965; Solomonoff, 1964; Chaitin, 1966) of an object676
(encoded as a binary string) is the length of the shortest program that computes it and halts. Unlike677
traditional information theory, it measures the complexity of an individual object without depending678
on a stochastic source or ensemble.679

The Kolmogorov complexity of a string depends on the choice of a universal Turing machine. How-680
ever, since any universal Turing machine can simulate another (e.g., via a compiler), the choice of681
the machine affects the Kolmogorov complexity by, at most, an additive constant independent of the682
specific string (Li & Vitányi, 2019).683

Kolmogorov complexity is closely tied to compression, where the shortest description represents684
the most efficient compression for the given universal Turing machine. Although Kolmogorov com-685
plexity is uncomputable, it is possible to compute improving upper bounds by searching over all686
possible programs in parallel and tracking the shortest candidate that generates the target string (Li687
& Vitányi, 2019).688

C.2 AIXI689

AIXI defines a general Bayes-optimal reinforcement learning agent in an unknown computable en-690
vironment (Hutter, 2005). In this framework, the environment is represented by a Turing machine691
with unidirectional input and output tapes, and bidirectional working/internal tapes. The agent’s692
actions are received by the environment on its input tape, based on which it can write a computable693
history-based reward and observation on its output tape.694

The AIXI agent acts in a Bayes-optimal manner by planning based on a posterior estimate over695
all computable environments, using Solomonoff’s universal prior as a starting point (Solomonoff,696
1964). This prior assigns higher probability to ‘simpler’ environments–those with lower Kol-697
mogorov complexity. However, both Solomonoff’s prior and AIXI are incomputable, making the698
development of practical approximations within this framework a key area of interest (Veness et al.,699
2011).700

C.3 Connections to intrinsic motivation and the free energy principle701

Previous work has explored several intrinsic drives that can guide agent behaviour without the need702
for explicit external rewards (Schmidhuber, 2010; Barto, 2013). Many approaches to intrinsic mo-703
tivation are developed within the framework of traditional RL, where the agents are not constrained704
relative to the environment. As a result, these approaches may not be well-suited to a big world.705
Nevertheless, interactivity shares connections to ideas such as mutual information maximization in706
intrinsic motivation.707

The information gain of a dynamics model can serve as an intrinsic or auxiliary reward, promoting708
curious exploration (Storck et al., 1995; Houthooft et al., 2016) Unlike curiosity driven by informa-709
tion gain, the goal of interactivity is not to learn an accurate model of the world.710

Another related concept is Empowerment (Klyubin et al., 2005), where an agent seeks to maximize711
its control over its environment. Empowerment-seeking agents aim to maximize the mutual infor-712
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mation between their actions and future states. Such agents avoid states where their actions have low713
influence and prefer states that allow for a wide range of controllable outcomes. This objective can714
also be used to learn a set of behaviours (or options) that lead to different final states (Mohamed &715
Jimenez Rezende, 2015; Gregor et al., 2016). As discussed earlier, interactivity-maximizing agents716
produce complex yet predictable behaviour, which is not directly tied to the concept of control. Fur-717
thermore, unlike objectives grounded in traditional (Shannon) information theory, interactivity relies718
on asymmetric algorithmic mutual information between previous inputs and future outputs.719

Active inference describes agentic behavior in partially observable environments as the minimization720
of free energy (Friston et al., 2010; Sajid et al., 2021). Free-energy minimization prefers selecting721
actions that lead to highly predictable states—inputs that are unsurprising to the agent’s model. In722
contrast to free-energy minimization, maximizing interactivity actively discourages low-complexity723
predictable states.724
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