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Abstract

A central issue in machine learning is how to train models on sensitive user data.
Industry has widely adopted a simple algorithm: Stochastic Gradient Descent with
noise (a.k.a. Stochastic Gradient Langevin Dynamics). However, foundational
theoretical questions about this algorithm’s privacy loss remain open—even in
the seemingly simple setting of smooth convex losses over a bounded domain.
Our main result resolves these questions: for a large range of parameters, we
characterize the differential privacy up to a constant. This result reveals that all
previous analyses for this setting have the wrong qualitative behavior. Specifically,
while previous privacy analyses increase ad infinitum in the number of iterations,
we show that after a small burn-in period, running SGD longer leaks no further
privacy. Our analysis departs from previous approaches based on fast mixing,
instead using techniques based on optimal transport (namely, Privacy Amplification
by Iteration) and the Sampled Gaussian Mechanism (namely, Privacy Amplification
by Sampling). Our techniques readily extend to other settings.

1 Introduction

Convex optimization is a fundamental task in machine learning. When models are learnt on sensitive
data, privacy becomes a major concern—motivating a large body of work on differentially private
convex optimization [3, 4, 5, 8, 13, 19, 21, 30]. In practice, the most common approach for training
private models is NOISY-SGD, i.e., Stochastic Gradient Descent with noise added each iteration. This
algorithm is simple and natural, has optimal utility bounds [3, 4], and is implemented in mainstream
machine learning platforms such as Tensorflow (TF Privacy) [1], PyTorch (Opacus) [35], and JAX [6].

Yet, despite the simplicity and ubiquity of this NOISY-SGD algorithm, we do not understand basic
questions about its privacy loss1—i.e., how sensitive the output of NOISY-SGD is with respect to the
training data. Specifically:
Question 1.1. What is the privacy loss of NOISY-SGD as a function of the number of iterations?

Even in the seemingly simple setting of smooth convex losses over a bounded domain, this funda-
mental question has remained wide open. In fact, even more basic questions are open:
Question 1.2. Does the privacy loss of NOISY-SGD increase ad infinitum in the number of iterations?

The purpose of this paper is to understand these fundamental theoretical questions. Specifically, we
resolve Questions 1.1 and 1.2 by characterizing the privacy loss of NOISY-SGD up to a constant
factor in this (and other) settings for a large range of parameters. Below, we first provide context by
describing previous analyses in §1.1, and then describe our result in §1.2 and techniques in §1.3.

The Supplementary Material contains a full version of this paper with proofs and more discussion.
1Throughout, we follow the literature by writing “privacy loss” to refer to the differential privacy parameters.
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1.1 Previous approaches and limitations

Although there is a large body of research devoted to understanding the privacy loss of NOISY-SGD,
all existing analyses have (at least) one of the following two drawbacks.

Privacy bounds that increase ad infinitum. One type of analysis approach yields upper bounds
on the DP (resp., Rényi DP) that scale as

√
T (resp., T ). This includes the original analyses

of NOISY-SGD, which were based on the techniques of Privacy Amplification by Sampling and
Advanced Composition [2, 3], as well as alternative analyses based on the technique of Privacy
Amplification by Iteration [12]. A key issue with these analyses is that they increase unboundedly in
the number of iterations T . This limits the number of iterations that NOISY-SGD can be run given a
reasonable privacy budget, typically leading to suboptimal optimization error in practice. Is this a
failure of existing analysis techniques or an inherent fact about the privacy loss of NOISY-SGD?

Privacy bounds that apply for large T and require strong additional assumptions. The second
type of analysis approach yields convergent upper bounds on the privacy loss, but requires strong
additional assumptions. This approach is based on connections to sampling. The high-level intuition
is that NOISY-SGD is a discretization of a continuous-time algorithm with bounded privacy loss.
Specifically, NOISY-SGD can be interpreted as the Stochastic Gradient Langevin Dynamics (SGLD)
algorithm [33], which is a discretization of a continuous-time Markov process whose stationary
distribution is equivalent to the exponential mechanism [23] and thus is differentially private under
certain assumptions.

However, making this connection precise requires strong additional assumptions and/or the resolution
of longstanding open questions about the mixing time of SGLD (see §1.4 for details). Only recently
did a large effort in this direction culminate in the breakthrough work by Chourasia et al. [9] which
proves that full batch2 Langevin dynamics (a.k.a., NOISY-GD rather than NOISY-SGD) has a privacy
loss that converges as T →∞ in this setting where the smooth losses are additionally assumed to be
strongly convex.

Unfortunately, the assumption of strong convexity seems unavoidable with current techniques.
Indeed, in the absence of strong convexity, it is not even known if NOISY-SGD converges to a private
stationary distribution, let alone if this convergence occurs in a reasonable amount of time. (The
tour-de-force work [7] shows mixing in (large) polynomial time, but only in total variation distance
which does not have implications for privacy.) There are fundamental challenges for proving such a
result. In short, SGD is only a weakly contractive process without strong convexity, which means
that its instability increases with the number of iterations [18]—or in other words, it is plausible that
NOISY-SGD could run for a long time while memorizing training data, which would of course mean
it is not a privacy-preserving algorithm. As such, given state-of-the-art analyses in both sampling and
optimization, it is unclear if the privacy loss of NOISY-SGD should even remain bounded; i.e., it is
unclear what answer one should even expect for Question 1.2, let alone Question 1.1.

1.2 Contributions

The purpose of this paper is to resolve Questions 1.1 and 1.2. To state our result requires first
recalling the parameters of the problem. Throughout, we prefer to state our results in terms of Rényi
Differential Privacy (RDP); these RDP bounds are easily translated to DP bounds, as mentioned
below in Remark 1.4. See the preliminaries section §2 for definitions and background on privacy.

We consider the basic NOISY-SGD algorithm run on a dataset X = {x1, . . . , xn}, where each xi

defines a convex, L-Lipschitz, and M -smooth loss function fi(⋅) on a convex set K of diameter D.
For any step size η ⩽ 2/M , batch size b, and initialization ω0 ∈ K, we iterate T times the update

ωt+1 ← ΠK[ωt − η(Gt +Zt)],

where Gt denotes the average gradient vector on a random batch of size b, Zt ∼ N (0, σ2Id) is an
isotropic Gaussian, and ΠK denotes the Euclidean projection onto K.

2Recently, Ye and Shokri [34] and Ryffel et al. [27], in works concurrent to the present paper, extended the
result of [9] to SGLD by removing the full batch assumption; we also obtain the same result by a direct extension
of our (completely different) techniques, see the Supplementary Materials. Note that both papers [27, 34] still
require strongly convex losses, and in fact state in their conclusions that removing this assumption is an open
problem that “would pave the way for wide adoption by data scientists.” Our main result resolves this question.
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Figure 1: Even in the basic setting of smooth convex optimization over a bounded domain, exist-
ing implementations and theoretical analyses of NOISY-SGD—the standard algorithm for private
optimization—leak privacy ad infinitum as the number of iterations T increases. Our main result
establishes that after a small burn-in period of T̄ = Θ(n) iterations, there is no further privacy loss.
For simplicity, this plot sets L = 1 (wlog by rescaling), α = O(1) (the regime in practice), and omits
logarithmic factors; see the main text for our precise (and optimal) dependence on all parameters.

Known privacy analyses of NOISY-SGD give an (α, ε)-RDP upper bound of

ε ≲ αL2

n2σ2
T (1.1)

which increases ad infinitum as the number of iterations T →∞ [2, 3, 12]. Our main result is a tight
characterization of the privacy loss, answering Question 1.1. This result also answers Question 1.2
and shows that previous analyses have the wrong qualitative behavior: after a small burn-in period of
T̄ = Θ(nD

Lη
) iterations, NOISY-SGD leaks no further privacy. See Figure 1.

Theorem 1.3 (Informal statement of main result: tight characterization of the privacy of NOISY-SGD).
For a large range of parameters, NOISY-SGD satisfies (α, ε)-RDP for

ε ≲ αL2

n2σ2
min{T, Dn

Lη
} , (1.2)

and moreover this bound is tight up to a constant factor.

Observe that the privacy bound in Theorem 1.3 is identical to the previous bound (1.1) when the
number of iterations T is small, but stops increasing when T ⩾ T̄ . Intuitively, T̄ can be interpreted as
the smallest number of iterations required for two NOISY-SGD processes run on adjacent datasets to,
with reasonable probability, reach opposite ends of the constraint set.3 In other words, T̄ is effectively
the smallest number of iterations before the final iterates could be maximally distinguishable.

To prove Theorem 1.3, we show a matching upper bound (in §3) and lower bound (in §4). These two
bounds are formally stated as Theorems 3.1 and 4.1, respectively. See §1.3 for an overview of our
techniques and how they depart from previous approaches.

We conclude this section with several remarks about Theorem 1.3.
Remark 1.4 (Tight DP characterization). While Theorem 1.3 characterizes the privacy loss of
NOISY-SGD in terms of RDP, our results can be restated in terms of standard DP bounds. Specifically,
by a standard conversion from RDP to DP [25, Proposition 1], if δ is not smaller than exponentially
small in −bσ/n and if the resulting bound is ε ≲ 1, it follows that NOISY-SGD is (ε, δ)-DP for

ε ≲ L

nσ

√
min{T, Dn

Lη
} log 1/δ. (1.3)

A matching DP lower bound is proved along the way when we establish our RDP lower bound in §4.
3Details: NOISY-SGD updates on adjacent datasets differ by at most ηL/b if the different datapoint is in

the current batch (i.e., with probability b/n), and otherwise are identical. Thus, in expectation and with high
probability, it takes T̄ ≍ (Dn)/(ηL) iterations for the two NOISY-SGD processes to differ by distance D.
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Discussion of assumptions in Theorem 1.3.

Boundedness. All previous privacy analyses are oblivious to any sort of diameter bound and therefore
unavoidably increase ad infinitum4, c.f. our lower bound in Theorem 1.3. Our analysis is the first to
exploit boundedness: whereas previous analyses can only argue that having a smaller constraint set
does not worsen the privacy loss, we show that this strictly improves the privacy loss, in fact making
it convergent as T →∞. See the techniques section §1.3. We emphasize that this diameter bound
is a mild constraint. Indeed, every utility/optimization guarantee for (non-strongly) convex losses
inevitably has a similar dependence, simply due to the difference between initialization and optimum.
We also mention that one can solve an unconstrained problem by solving constrained problems with
norm bounds, paying only a small logarithmic overhead on the number of solves and a constant
overhead in the privacy loss using known techniques [22]. Moreover, in many optimization problems,
the solution set is naturally constrained either from the problem formulation or application.

Smoothness. The smoothness assumption on the losses can be relaxed by running NOISY-SGD on
a smoothed version of the objective. This can be done using standard techniques, e.g., Gaussian
convolution smoothing [12, §5.5], or Moreau-Yousida smoothing by replacing gradient steps with
proximal steps [4, §4].

Convexity. Convexity appears to be essential for privacy bounds that do not increase ad infinitum
in T . Our analysis uses convexity in an essential way to ensure that NOISY-SGD is a contractive
process. However, convexity is too restrictive when training deep networks, and it is an interesting
open question if the assumption of convexity be relaxed. Any such result appears to require entirely
new techniques—if even true. The key technical challenge is that for any iterative process whose
set of reachable fixed points is non-convex, there will be non-contractivity at the boundary between
basins of attraction—and this precludes arguments based on Privacy Amplification by Iteration.

Lipschitzness. This assumption can be safely removed since smoothness and boundedness imply
Lipschitzness for L = MD. We write our result in this way in order to clearly isolate where this
dependence comes from, and also because the Lipschitz parameter L may be much better than MD.

Mild assumptions on parameters. The lower bound makes the mild assumption that the diameter D
of the decision set is neither asymptotically smaller than the movement size from one gradient step,
nor asymptotically smaller than the standard deviation from T̄ random increments of Gaussian noise
N (0, η2σ2) so that the noise does not overwhelm the learning. The upper bound uses the technique
of Privacy Amplification by Sampling, and thus inherits an upper bound assumption on α from the
analysis of the Sampled Gaussian mechanism, as well as mild bounds on the batch size b that only
affect the complete range {1, . . . , n} up to a constant factor assuming that the noise σ is not so small
that it is asymptotically overwhelmed by one gradient step. These restrictions neither affect numerical
bounds which can be computed for any α and b (see §2.3), nor do they affect the asymptotic (ε, δ)-DP
bounds in most parameter regimes of interest.

Extensions. Our analysis techniques extend to related settings, as will be investigated in an extended
journal version of this paper. We mention here that if the convexity assumption on the losses is
replaced by strong convexity, then NOISY-SGD enjoys better privacy. Specifically, Theorem 1.3
extends identically except that the threshold T̄ for no further privacy loss improves from linear to
logarithmic in n, namely Õ(κ) where κ denotes the condition number of the losses. This matches the
independent results of [27, 34] (see Footnote 2), and uses completely different techniques from them.

1.3 Techniques

Upper bound on privacy. Our analysis technique departs from recent approaches based on fast
mixing. This allows us to bypass the many longstanding technical challenges discussed in §1.1.

Instead, our analysis combines the techniques of Privacy Amplification by Iteration and Privacy
Amplification by Sampling. As discussed in §1.1, previous analyses based on these techniques yield
loose privacy bounds that increase ad infinitum in T . Indeed, bounds based on Privacy Amplification
by Sampling inevitably diverge since they “pay” for releasing the entire sequence of T iterates, each
of which leaks more information about the private data [2, 3]. Privacy Amplification by Iteration
avoids releasing the entire sequence by directly arguing about the final iterate; however, previous

4For strongly convex losses, boundedness is unnecessary for convergent privacy; see the Supplement.
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arguments based on this technique are unable to exploit a diameter bound on the constraint set, and
therefore inevitably lead to privacy bounds which grow unboundedly in T [12].

Our analysis is based on the observation that when the iterates are constrained to a bounded domain,
we can combine the techniques of Privacy Amplification by Iteration and Privacy Amplification
by Sampling in order to only pay for the privacy loss from the final T̄ = (Dn)/(Lη) iterations.
Specifically, we partition the execution of NOISY-SGD into the initial T − T̄ iterations and the final
T̄ iterations. Recall that to show privacy, we must show that NOISY-SGD produces a similar output
if run on a given dataset or another dataset that is changed slightly. On one hand, if the partially
learned model ωT−T̄ were fixed, then the privacy loss from the last T̄ iterations could be bounded by
the standard analysis of NOISY-SGD based on Privacy Amplification by Sampling and Advanced
Composition. On the other hand, irrespective of the input dataset, ωT−T̄ lies in a set of diameter D.
If the remaining iterations were now run on the same dataset, the Privacy Amplification by Iteration
Argument can be used to show that the algorithm “forgets” this initial displacement by up to D. (This
is formalized in Proposition 3.2, which is the first Privacy Amplification by Iteration argument that
is not vacuous as T →∞). In other words, we can control the privacy loss if we change the dataset
either in the first T − T̄ iterations or in the final T̄ iterations. At a high-level, our analysis proceeds by
carefully running these arguments in parallel.

Lower bound on privacy. We construct two adjacent datasets on which the NOISY-SGD iterates
are generated by random walks—one symmetric, one biased—constrained within an interval of
length D. In this way, we reduce the question of how large is the privacy loss of NOISY-SGD, to the
question of how distinguishable is a constrained symmetric random walk from a constrained biased
random walk. The core technical challenge is that the distributions of the iterates of these random
walks are intractable to reason about explicitly—due to the highly non-linear interactions between
the projections and random increments. Briefly, our key technique here is a way to modify these
processes so that on one hand, their distinguishability is essentially the same, and the other hand, no
projections occur with high probability—allowing us to explicitly compute their distributions and
thus also their distinguishability. Details in §4.

1.4 Other related work

Private sampling. The mixing time of (stochastic) Langevin Dynamics has been extensively studied
in recent years starting with [10, 11], and other more recent works have analyzed mixing in other
notions of distance. From the point of view of privacy, more stringent notions of mixing are needed,
and mixing in Rènyi divergence was studied by Vempala and Wibisono [32] and Ganesh and Talwar
[15]. In addition to the aforementioned works, several recent works have studied algorithms for
sampling from the distribution exp(ε∑i fi(ω)) or its regularized versions from a privacy viewpoint.
[24] proposed a mechanism of this kind that works when f may be unbounded and showed that
it satisfies (ε, δ)-DP. Recently, [17] gave better privacy bounds for such a regularized exponential
mechanism, and designed an efficient sampler based only on function evaluation. [16] showed a
number of results about the continuous Langevin Diffusion, showing that it gives optimal utility
bounds for different variants of private optimization problems with different parameters.

As alluded to in §1.1, there are several core issues with trying to prove DP bounds for NOISY-SGD
by directly combining “fast mixing” bounds with “private once mixed” bounds. First, mixing results
typically do not apply, e.g., since DP requires mixing in stringent divergences like Rényi, or because
realistic settings with constraints, stochasticity, and lack of strong convexity are difficult to analyze—
indeed, understanding the mixing time for such settings is a challenging open problem. Second,
even when fast mixing bounds do apply, directly combining them with “private once mixed” bounds
unavoidably leads to DP bounds that are loose to the point of being essentially useless (e.g., the
inevitable dimension dependence in mixing bounds to the stationary distribution of the continuous-
time Langevin Diffusion would lead to dimension dependence in DP bounds, which should not
occur—as we show). Third, even if a Markov chain were private after mixing, one cannot conclude
from this that it is private beforehand—indeed, there are simple Markov chains which are private
after mixing, yet are exponentially non-private beforehand [14].

Utility bounds. In the field of private optimization, one separately analyzes two properties of
algorithms: (i) the privacy loss as a function of the number of iterations, and (ii) the utility (a.k.a.,
optimization error) as a function of the number of iterations. These two properties can then be
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combined to obtain privacy-utility tradeoffs. The purpose of this paper is to completely resolve (i);
this result can then be combined with any bound on (ii).

Utility bounds for SGD are well understood [28], and these analyses have enabled understanding
utility bounds for NOISY-SGD in empirical [3] and population [4] settings. However, there is a big
difference between the minimax-optimal utility bounds in theory versus what is desired in practice.
Indeed, while in theory a single pass of NOISY-SGD achieves the minimax-optimal population
risk [13], in practice NOISY-SGD benefits from running longer to get more accurate training. In fact,
this divergence is even true and well-documented for non-private SGD as well, where one epoch is
minimax-optimal in theory, but in practice more epochs help. Said simply, this is because typical
problems are not worst-case problems (i.e., minimax-optimal theoretical bounds are typically not
representative of practice). For these practical settings, in order to run NOISY-SGD longer, it is
essential to have privacy bounds which do not increase ad infinitum. Our paper resolves this.

2 Preliminaries

In this section, we recall relevant preliminaries about convex optimization (§2.1), differential privacy
(§2.2), and two by-now-standard techniques for analyzing the privacy of optimization algorithms—
namely, Privacy Amplification by Sampling (§2.3) and Privacy Amplification by Iteration (§2.4).

Notation. We write PX to denote the law of a random variable X , and PX ∣Y =y to denote the law of
X given the event Y = y. We write ZS∶T as shorthand for the vector concatenating ZS , . . . , ZT . We
write f#µ to denote the pushforward of a distribution µ under a (possibly random) function f , i.e.,
the law of f(X) where X ∼ µ. We write λµ + (1 − λ)ν to denote the mixture distribution that is µ
with probability λ and ν with probability 1 − λ. We write A(X ) to denote the output of an algorithm
A run on input X ; this is a probability distribution if A is a randomized algorithm.

2.1 Convex optimization

Throughout, the loss function corresponding to a data point xi or x′i is denoted by fi or f ′i , respectively.
While the dependence on the data point is arbitrary, the loss functions are assumed to be convex
in the argument ω ∈ K (a.k.a., the machine learning model we seek to train). Throughout, the set
K of possible models is a convex subset of Rd. In order to establish both optimization and privacy
guarantees, two additional assumptions are required on the loss functions. Recall that a differentiable
function g ∶ K → Rd is: L-Lipschitz if ∥g(ω) − g(ω′)∥ ⩽ L∥ω −ω′∥ for all ω,ω′ ∈ K; and M -smooth
if ∥∇g(ω) −∇g(ω′)∥ ⩽M∥ω − ω′∥ for all ω,ω′ ∈ K.

2.2 Differential privacy and Rényi differential privacy

In order to prove DP guarantees, we work with the related notion of Rényi Differential Privacy (RDP)
introduced by [25], since RDP is more amenable to our analysis techniques and is readily converted
to DP guarantees [25, Proposition 1]. RDP measures how distinguishable the output of an algorithm
is when run on two “adjacent” datasets—i.e., two datasets which differ on at most one datapoint—in
Rényi divergence. We therefore first recall the definition of Rényi divergence.

Definition 2.1 (Rényi divergence). The Rényi divergence between probability measures µ and ν of
order α ∈ (1,∞) isDα (µ ∥ ν) = 1

α−1
log ∫ (µ(x)/ν(x))αν(x)dx, if µ≪ ν, and∞ otherwise. Here

0/0 = 0 and x/0 =∞ for x > 0. The Rényi divergences of order α ∈ {1,∞} are defined by continuity.

Definition 2.2 (Rényi Differential Privacy). A randomized algorithm A satisfies (α, ε)-RDP if
Dα (A(X ) ∥ A(X ′)) ⩽ ε for any two adjacent datasets X ,X ′.

Following, we recall two basic properties of RDP that we use in our analysis. Proofs can be found,
e.g., in [31, Theorem 9] and [25, Proposition 3], respectively.

Lemma 2.3 (Post-processing property of Rényi divergence). For any Rényi parameter α ⩾ 1, any
(possibly random) function h, and any probability distributions µ, ν,

Dα (h#µ ∥ h#ν) ⩽ Dα (µ ∥ ν) .
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Lemma 2.4 (Strong composition for RDP). For any Rényi parameter α ⩾ 1, and any two sequences
of random variables X1, . . . ,Xk and Y1, . . . , Yk,

Dα (PX1∶k
∥PY1∶k

) ⩽
k

∑
i=1

sup
x1∶i−1

Dα (PXi∣X1∶i−1=x1∶i−1
∥ PYi∣Y1∶i−1=x1∶i−1

) .

2.3 Privacy Amplification by Sampling

A core technique in the DP literature is Privacy Amplification by Sampling [20], which quantifies the
idea that a private algorithm run on a small random sample of the input become more private. We
recall a convenient statement of this from [26, Theorem 11] in terms of the RDP of the “Sampled
Gaussian Mechanism” (which is a composition of subsampling and additive Gaussian noise).

Definition 2.5 (Rényi Divergence of the Sampled Gaussian Mechanism). For Rényi parameter α ⩾ 1,
mixing probability q ∈ (0,1), and noise parameter σ > 0, define

Sα(q, σ) ∶= Dα (N (0, σ2) ∥ (1 − q)N (0, σ2) + qN (1, σ2)) .

Lemma 2.6 (Bound on Rényi Divergence of the Sampled Gaussian Mechanism). Consider Rényi
parameter α > 1, mixing probability q ∈ (0,1/5), and noise level σ ⩾ 4. If α ⩽ α∗(q, σ), then

Sα(q, σ) ⩽ 2αq2/σ2.

This bound restricts to Rényi parameter at most α∗(q, σ), which is defined to be the largest α
satisfying α ⩽Mσ2/2 − log(σ2) and α ⩽ (M2σ2/2 − log(5σ2))/(M + log(qα) + 1/(2σ2)), where
M ∶= log(1+1/(q(α−1)). While we use Lemma 2.6 to prove the asymptotic bounds in Theorem 1.3,
we emphasize that i) our bounds can be computed numerically for any α ⩾ 1, and ii) this upper bound
does not preclude α from the typical parameter regime of interest, see the discussion in §1.2.

2.4 Privacy Amplification by Iteration

The Privacy Amplification by Iteration technique of [12] bounds the privacy loss of an iterative
algorithm without “releasing” the entire sequence of iterates—unlike arguments based on Privacy
Amplification by Sampling, c.f., §1.3. This technique applies to processes generated by a Contractive
Noisy Iteration (CNI). We begin by recalling this definition, albeit in a slightly more general form
that allows for two differences. The first difference is allowing the contractions to be random; albeit
simple, this generalization is critical for analyzing NOISY-SGD because a stochastic gradient update
is random. The second difference is that we project each iterate; this generalization is solely for
convenience as it simplifies the exposition.5

Definition 2.7 (Contractive Noisy Iteration). Consider a (random) initial state X0 ∈ Rd, a sequence
of (random) contractions ϕt ∶ Rd → Rd, a sequence of noise distributions ξt, and a convex set K. The
Projected Contractive Noisy Iteration CNI(X0,{ϕt},{ξt},K) is the final iterate XT of the process

Xt+1 ∶= ϕt+1(Xt) +Zt+1,

where Zt+1 is drawn independently from ξt+1.

Proposition 2.8 (Original6 PABI bound). Let XT and X ′T denote the outputs of
CNI(X0,{ϕt},{ξt},K) and CNI(X0,{ϕ′t},{ξt},K) where ξt = N (0, σ2

t Id). Let st ∶= ∥ϕt − ϕ′t∥∞,
and consider any sequence a1, . . . , aT such that zt ∶= ∑t

i=1(si − ai) is non-negative for all t and
satisfies zT = 0. Then

Dα (PXT
∥ PX′

T
) ⩽ α

2

T

∑
t=1

a2t
σ2
t

.

5Since projections are contractive, these processes could be dubbed Contractive Noisy Contractive Processes
(CNCI); however, we use Definition 2.7 as it more closely mirrors previous usages of CNI. Alternatively, since
the composition of contractions is a contraction, the projection can be combined with ϕt to obtain a bona fide
CNI; however, this requires defining auxiliary shifted processes which leads to a more complicated analysis.

6Strictly speaking, Proposition 2.8 is a generalization of [12, Theorem 22] since it allows for randomized
contractions and projections in the CNI. See the Supplementary Materials for a proof.
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3 Upper bound on privacy

In this section, we prove the upper bound in Theorem 1.3. The formal statement of this result is as
follows; see §1.2 for a discussion of the mild assumptions on the parameters.
Theorem 3.1 (Privacy upper bound for NOISY-SGD). Let K ⊆ Rd be a convex set of diameter D,
and consider optimizing convex losses over K that are L-Lipschitz and M -smooth. Consider any
number of iterations T , dataset size n ∈ N, batch size b ⩽ n, stepsize η ⩽ 2/M , noise parameter σ > 0,
and initialization ω0 ∈ K such that b < n/5 and bσ > 8

√
2L. Then NOISY-SGD satisfies (α, ε)-RDP

if 1 < α ⩽ α∗( b
n
, bσ

2
√

2L
) and

ε ≲ αL2

n2σ2
min{T, Dn

Lη
} .

3.1 Privacy Amplification by Iteration bounds that are not vacuous as T →∞

Recall from the preliminaries section §2.4 that PABI arguments, while tight for a small number of
iterations T , provide vacuous bounds as T →∞ (c.f., Proposition 2.8). The following proposition
overcomes this by establishing privacy bounds which are independent of the number of iterations T .
This result only requires additionally making the mild assumption that the CNI iterates are bounded.
Proposition 3.2 (New PABI bound that is not vacuous as T → ∞). Let XT , X ′T , and st be
as in Proposition 2.8. Consider any τ ∈ {0, . . . , T − 1} and sequence aτ+1, . . . , aT such that
zt ∶=D +∑t

i=τ+1(si − ai) is non-negative for all t and satisfies zT = 0. If K has diameter D, then:

Dα (PXT
∥ PX′

T
) ⩽ α

2

T

∑
t=τ+1

a2t
σ2
t

.

Proof idea. We first recall the basic idea of the proof of the original PABI bound (Proposition 2.8).
Briefly, that proof uses as a potential a certain shifted Rényi divergence, which allows for uncertainty
in one of the two distributions as measured in optimal transport distance (making it geometrically
aware). The original argument bounds the shifted divergence at iteration T (which is precisely the
RDP in question), by the shifted divergence at iteration T − 1, and so on to the shifted divergence
at iteration 0 (which vanishes since NOISY-SGD always has the same initialization). In this way,
by keeping track of the privacy loss at each iteration, PABI bounds the RDP. The main idea behind
Proposition 3.2 is to change this argument by simply stopping the induction earlier. Specifically,
unroll to iteration τ , and then use boundedness of the iterates to control the shifted divergence at that
intermediate time τ . For brevity, the proof is deferred to the Supplementary Materials.

We remark that this new version of PABI uses the shift in the shifted Rényi divergence for a different
purpose than previous work: rather than just using the shift to bound the bias incurred from updating
on two different losses, here we also use the shift to exploit the boundedness of the constraint set.

3.2 Proof sketch of Theorem 3.1 (full details in the Supplementary Materials)

Step 1: Coupling the iterates. Suppose X = {x1, . . . , xn} and X ′ = {x′1, . . . , x′n} are adjacent
datasets; that is, they agree xi = x′i on all indices i ∈ [n] ∖ {i∗} except for at most one index
i∗ ∈ [n]. Denote the corresponding loss functions by fi and f ′i , where fi = f ′i except possibly
fi∗ ≠ f ′i∗ . Consider running NOISY-SGD on either X or X ′ for T iterations—call the resulting
iterates {Wt}Tt=0 and {W ′

t}Tt=0, respectively—where we start from the same point w0 ∈ K and couple
the sequence of random batches {Bt}T−1t=0 and the random noise in each iteration. That is,

Wt+1 = ΠK[Wt − η
b ∑
i∈Bt

∇fi(Wt) + Yt +Zt]

W ′

t+1 = ΠK[W ′

t − η
b ∑
i∈Bt

∇fi(W ′

t) + Yt +Z ′t]

for all t ⩽ T − 1, where we have split the noise into terms Yt ∼ N (0, η2σ2
1), Zt ∼ N (0, η2σ2

2),
Z ′t ∼ N (0, η2σ2

2) + η
b
[∇fi∗(W ′

t) −∇f ′i∗(W ′

t)] ⋅ 1i∗∈Bt , for any σ1, σ2 > 0 satisfying σ2
1 + σ2

2 = σ2

(we set σ1 = σ2 = σ/
√
2 later for asymptotics). In words, this noise-splitting lets us use the noise for

both the Privacy Amplification by Sampling and Privacy Amplification by Iteration arguments below.
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Importantly, notice that in the definition of W ′

t+1, the gradient is taken w.r.t. loss functions corre-
sponding to data set X rather than X ′; this is corrected via the bias in the noise term Z ′t. Notice also
that this bias term is only realized (i.e., Z ′t is possibly non-centered) with probability 1 − b/n because
the probability that i∗ is in a random size-b subset of [n] is b/n.

Step 2: Interpretation as conditional CNI sequences. Observe that conditional on the event that
Zt = Z ′t are equal (call their value zt), then

Wt+1 = ΠK [ϕt(Wt) + Yt]
W ′

t+1 = ΠK [ϕt(W ′

t) + Yt]
where

ϕt(ω) ∶= ω −
η

b
∑
i∈Bt

∇fi(ω) + zt . (3.1)

This gives us a CNI since ϕt is contractive. (This contractivity follows from the fact that a stochastic
gradient update on a smooth convex function is contractive; details in the Supplementary Materials.)

Step 3: Bounding the privacy loss. Recall that we seek to upper bound Dα(PWT
∥ PW ′

T
). Let

τ ∈ {0, . . . , T − 1} be a threshold parameter to be chosen shortly. Then

Dα (PWT
∥ PW ′

T
) ⩽ Dα (PWT ,Zτ ∶T−1

∥ PW ′

T
,Z′

τ ∶T−1
)

⩽ Dα (PZτ ∶T−1
∥ PZ′

τ ∶T−1
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1

+ sup
z
Dα (PWT ∣Zτ ∶T−1=z ∥ PW ′

T
∣Z′

τ ∶T−1
=z)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2

(3.2)

Above, the first step is by the post-processing inequality for the Rényi divergence (Lemma 2.3), and
the second step is by the strong composition rule for the Rényi divergence (Lemma 2.4).

Step 3a: Bounding the first term in (3.2), using Privacy Amplification by Sampling. In words,
this is the privacy loss from releasing T − τ noisy gradients. This can be bounded by Privacy
Amplification by Sampling (Lemma 2.6) and Advanced Composition (Lemma 2.4) via a standard
argument [2]. This yields the bound (T − τ)Sα ( bn ,

bσ2

2L
); full details in the Supplementary Materials.

Step 3b: Bounding the second term in (3.2), using Privacy Amplification by Iteration. From step 2,
we know that conditional on the event that Zt = Z ′t for all t ⩾ τ , then {Wt}t⩾τ and {W ′

t}t⩾τ are
projected CNI (c.f., Definition 2.7) with respect to the same update functions. Thus we may apply
the new Privacy Amplification by Iteration bound (Proposition 3.2) with st ≡ 0 and at ≡D/(T − τ)
to obtain the bound αD2/(2η2σ2

1(T − τ)).
Step 4: Putting the bounds together. By plugging into (3.2) the bounds in Steps 3a-3b, we conclude
that NOISY-SGD is (α, ε)-RDP for

ε ⩽ min
τ∈{0,...,T−1}

{(T − τ)Sα (
b

n
,
bσ2

2L
) + αD2

2η2σ2
1(T − τ)

} (3.3)

By bounding Sα( bn ,
bσ2

2L
) using Lemma 2.6, setting σ1 = σ2 = σ

√

2
, setting τ = T −Θ(Dn

Lη
) if D

ηL
≲ T

n
,

and otherwise using the simple bound (1.1) which scales linearly in T , and simplifying, we obtain
the desired privacy bound on ε, proving Theorem 3.1; full details in the Supplementary Materials.

4 Lower bound on privacy

In this section, we prove the lower bound in Theorem 1.3. This is stated formally below and holds
even for linear loss functions in one dimension, in fact even when all but one of the loss functions are
zero. See §1.2 for a discussion of the mild assumptions on the diameter. Below let T̄ ∶= 0.75Dn

Lη
.

Theorem 4.1 (Privacy lower bound for NOISY-SGD). There exist universal constants cD, cσ, cα,
ᾱ and a family of L-Lipschitz linear functions over the interval K = [−D/2,D/2] such that the
following holds. Consider running NOISY-SGD from arbitrary initialization ω0 with any parameters
satisfying D ⩾ cDηL and σ2 ⩽ cσD2/(η2T̄ ). Then NOISY-SGD is not (ᾱ, ε)-RDP for

ε ⩽ cα
ᾱL2

n2σ2
min{T, T̄} . (4.1)
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Construction. Consider datasets X = {x1, . . . , xn−1, xn} and X ′ = {x1, . . . , xn−1, x
′

n} which differ
only on x′n, and corresponding functions which are all zero f1(⋅) = ⋅ ⋅ ⋅ = fn(⋅) = 0, except for
f ′n(ω) = L(D − ω). Clearly these functions are linear and L-Lipschitz. The intuition behind this
construction is that running NOISY-SGD on X or X ′ generates a random walk that is clamped to stay
within the interval K—but with the key difference that running NOISY-SGD on dataset X generates
a symmetric random walk {ωt}, whereas running NOISY-SGD on dataset X ′ generates a biased
random walk {ω′t} that biases right with probability b/n each step. That is,

ωt+1 = ΠK[ωt +Zt] and ω′t+1 = ΠK[ω′t + Yt +Zt]

where the processes are initialized at ω0 = ω′0 = 0, each random increment Zt ∼ N (0, η2σ2) is an
independent Gaussian, and each bias Yt is ηL/b with probability b/n and otherwise is 0.

Key obstacle for analysis: intractability of reasoning about the iterates’ distributions. The
high-level intuition behind this construction is simple to state: the bias of the random walk {ω′t}
makes it distinguishable (to the minimax optimal extent, as we show) from the symmetric random
walk {ωt}. However, making this intution precise is challenging because the distributions of the
iterates ωt, ω

′

t are intractable to reason about explicitly—due to the highly non-linear interactions
between the projections and the random increments. Thus we must establish the distinguishability of
ωT , ω

′

T in a way that avoids reasoning explicitly about their distributions. We show how to do this in
the Supplementary Materials and give a full proof of Theorem 4.1 there.

5 Discussion

The results of this paper suggest several natural directions for future work:

Clipped gradients? NOISY-SGD implementations sometimes clip gradients to ensure small norms [2].
For generalized linear models, the clipped gradients are gradients of an auxiliary convex loss [29],
so our results can be applied directly. However, in general, clipped gradients do not correspond to
gradients of a convex loss, in which case our results (as well as all other works in the literature that
aim at proving convergent privacy bounds) do not apply. Can this be remedied?

Average iterate? Can similar privacy guarantees be established for the average iterate rather than the
last iterate? There are fundamental difficulties with trying to proving this: indeed, the average iterate
is provably not as private for NOISY-CSGD [4].

Adaptive stepsizes? Can similar privacy guarantees be established for optimization algorithms with
adaptive stepsizes? The main technical obstacle is how to control the privacy loss from how past
iterates affect the adaptivity in later iterates. This appears to preclude using our analysis techniques,
at least in their current form.

Beyond convexity? Convergent privacy bounds break down without convexity. This precludes appli-
cability to deep neural networks. Is there any hope of establishing similar results under some sort of
mild non-convexity? Due to simple non-convex counterexamples where the privacy of NOISY-SGD
diverges, any such extension would have to make additional structural assumptions on the non-
convexity (and also possibly change the NOISY-SGD algorithm), although it is unclear how this
would even look. Moreover, this appears to require significant new machinery as our techniques are
the only known way to solve the convex problem, and they break down in the non-convex setting (see
also the discussion in §1.2).

General techniques? Can the analysis techniques developed in this paper be used in other settings?
Our techniques readily generalize to any iterative algorithm which interleaves contractive steps and
noise convolutions. Such algorithms are common in differentially private optimization, and it would
be interesting to apply them to other variants of NOISY-SGD.
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