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Abstract

The world’s languages exhibit certain so-called001
typological or implicational universals; for ex-002
ample, Subject-Object-Verb (SOV) word order003
typically employs postpositions. Explaining004
the source of such biases is a key goal in lin-005
guistics. We study the word-order universals006
through a computational simulation with lan-007
guage models (LMs). Our experiments show008
that typologically typical word orders tend to009
have lower perplexity estimated by LMs with010
cognitively plausible biases: syntactic biases,011
specific parsing strategies, and memory limita-012
tions. This suggests that the interplay of these013
cognitive biases and predictability (perplexity)014
can explain many aspects of word-order uni-015
versals. This also showcases the advantage of016
cognitively-motivated LMs, which are typically017
employed in cognitive modeling, in the compu-018
tational simulation of language universals.1019

1 Introduction020

There are thousands of attested languages, but they021

exhibit certain universal tendencies in their design.022

For example, Subject-Object-Verb (SOV) word or-023

der often combines with postpositions, while SVO024

order typically employs prepositions (Greenberg025

et al., 1963). Researchers have argued that such im-026

plicational universals are not arbitrary but shaped027

by their advantage for human language process-028

ing (Hawkins, 2004; Culbertson et al., 2012, 2020).029

Such language universals have been recently030

studied through neural-based computational sim-031

ulation to elucidate the mechanisms behind the032

universals (Lian et al., 2023). The languages which033

emerge, however, have typically not been human-034

like (Chaabouni et al., 2019a,b; Rita et al., 2022;035

Ueda et al., 2022). Such mismatch arguably stems036

from the lack of human-like cognitive biases in037

neural agents (Galke et al., 2022), but injecting038

1We will make our data/code available upon acceptance.
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Figure 1: We compare the word orders challenging for
LMs to those infrequent in attested languages (§3). We
examine the advantage of cognitively motivated LMs
(§4) in simulating the word-order universals (§5).

cognitive biases into systems and showing their 039

benefits has proved challenging (Lian et al., 2021). 040

In this study, expanding on a study of word- 041

order biases in language models (LMs) (White 042

and Cotterell, 2021), we demonstrate the advan- 043

tage of cognitively-motivated LMs, which can sim- 044

ulate human cognitive load during sentence pro- 045

cessing well (Hale et al., 2018; Futrell et al., 2020a; 046

Yoshida et al., 2021; Kuribayashi et al., 2022), and 047

thus predict many implicational word-order uni- 048

versals in terms of their inductive biases. Specif- 049

ically, we train various types of LMs in artificial 050

languages with different word-order configurations 051

(§3). Our experiments show that perplexities esti- 052

mated by LMs with cognitively motivated biases 053

(i.e., syntactic biases, specific parsing strategies, 054

and memory limitations) (§4) correlate better with 055

frequent word-order configurations in attested lan- 056

guages than standard LMs (§5). Our experimen- 057

tal results confirm that such biases are a poten- 058

tial source of the word-order universals, as well as 059

demonstrate the advantage of cognitively motivated 060

LMs as models of human language processing. 061
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2 Related research062

2.1 Impossible languages and LMs063

Generative linguistic theory has traditionally fo-064

cussed on delineating the impossible from possible065

languages in terms of universal grammar. Chom-066

sky et al. (2023) has recently argued that neural067

LMs cannot distinguish possible human languages068

from impossible, unnatural languages, based on the069

experiments by Mitchell and Bowers (2020), and070

are, therefore, of no interest to linguistic theory.071

Kallini et al. (2024) challenge this claim, demon-072

strating that a standard transformer-based autore-073

gressive model (GPT-2) assigns higher perplex-074

ity and greater surprisal to a range of artificially-075

generated, unattested and thus putatively impossi-076

ble candidate languages when compared to English.077

In this work, by contrast, we explore the ability of078

a variety of neural LMs to distinguish typologically079

rare combinations of word orders from the common080

attested combinations as predicted by Greenberg’s081

implicational universals (Greenberg et al., 1963).082

2.2 The Chomsky hierarchy and LMs083

We test how easy it is to learn a specific artificial084

language (with a specific word-order configura-085

tion) for certain LMs. Such exploration is related086

to the investigation of the capabilities of neural087

LMs to generate formal, artificial languages in a088

specific class of the Chomsky hierarchy, such as ir-089

reducibly context-free (such as the Dyck languages)090

or mildly context-sensitive (such as anbncn) lan-091

guages (Weiss et al., 2018; Suzgun et al., 2019;092

Hewitt et al., 2020; Deletang et al., 2022). While093

this line of research can elucidate whether specific094

models (LSTMs, Transformers, etc.) are capable095

in principle of expressing and generalizing such096

languages, and thus also generating their putative097

analogs in natural language, in this work we fo-098

cus on artificial languages which are more human099

language-like in that they exhibit a range of attested100

construction types, a more realistic vocabulary, and101

are less marked in terms of features like average102

sentence length, at least compared to the formal lan-103

guages adopted in this line of research (App. A).104

2.3 Word order preferences of LMs105

Researchers have asked what kind of language is106

hard to language-model (Cotterell et al., 2018;107

Mielke et al., 2019), motivated by concern over108

whether the current language-modeling paradigm is109

equally suitable for all languages. However, exper-110

iments using only attested language corpora made 111

it difficult to single out impactful factors since at- 112

tested languages differ from each other in multiple 113

dimensions (Cotterell et al., 2018; Mielke et al., 114

2019). Thus, prior studies adopted the use of artifi- 115

cially controlled language(-like) data as a lens to 116

quantify the inductive bias of models (Wang and 117

Eisner, 2016; White and Cotterell, 2021; Hopkins, 118

2022). Specifically, White and Cotterell (2021) 119

pointed out some differences between LM’s word- 120

order preferences and common attested word or- 121

ders (typological markedness). We expand on their 122

research by exploring which models, including cog- 123

nitively motivated ones, exhibit preferences more 124

aligned with common typological patterns. 125

2.4 Cognitively motivated LMs 126

Computational psycholinguists have explored LMs 127

mirroring the cognitive load of human sentence 128

processing (Goodkind and Bicknell, 2018; Wilcox 129

et al., 2020; Oh and Schuler, 2023). For example, 130

the syntactic biases, parsing strategies, and mem- 131

ory limitations exhibited are of interest (Hale et al., 132

2018; Yoshida et al., 2021; Futrell et al., 2020a; 133

Kuribayashi et al., 2022; Oh et al., 2024). We 134

demonstrate their advantage in the computational 135

simulation of typological markedness of word or- 136

ders. Such psycholinguistic findings are typically 137

overlooked in the line of emergent language re- 138

search (Lian et al., 2023). 139

3 Experimental design 140

We explain the assumptions behind this research in 141

§3.1. Then, we confirm the word-order biases in 142

human languages in §3.2 and investigate how well 143

a particular LM simulates the attested word-order 144

biases in §3.3. 145

3.1 Preliminary 146

Given the theory that language has evolved to pro- 147

mote its processing efficiency (Hawkins, 2004; Gib- 148

son et al., 2019), we posit that the frequency (Freq) 149

of a word order o will be proportional to the nega- 150

tive of effort required to process it: 151

Freq(o) ∝ −Effort(o) . (1) 152

We further posit that processing effort is deter- 153

mined by the predictability of a word in con- 154

text p(wk|w<k), based on expectation-based the- 155

ory (Levy, 2008; Smith and Levy, 2013). Thus, 156

we estimate the processing difficulty of a word- 157

order configuration o by measuring the average 158
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processing effort required to process sentences with159

word order o. This can be quantified by perplexity160

(PPL),2 the geometric mean of word predictability,161

of a corpus Lo following the word order o:162

Effort(o) ∼
∏

wi∈Lo

pθ(wi|w<i)
− 1

|Lo| . (2)163

Here, the probability is computed by an LM θ.164

Note that, more generally, human language is165

arguably designed to minimize complexity (how166

unpredictable symbols are) while maintaining infor-167

mativity (how easy it is to extract a message from168

symbols) (i Cancho and Solé, 2003; Piantadosi169

et al., 2012; Fedzechkina et al., 2012; Kemp and170

Regier, 2012; Frank and Goodman, 2012; Kirby171

et al., 2015; Kanwal et al., 2017; Gibson et al.,172

2019; Xu et al., 2020; Hahn et al., 2020). The con-173

nection to this bi-dimensional view is discussed174

in §7.1.175

3.2 Word order biases in attested languages176

Branching directionality: Branching direction-177

ality, the concept of whether a dependent phrase is178

positioned left (L) or right (R) of its head in a partic-179

ular constituent, is a key component of typological180

theory. For example, suppose a noun phrase (NP)181

and a verb phrase (VP) are dependent and head182

phrases, respectively. The word order of NPVP183

is left-branching, while VPNP is right-branching.184

Based on such branching directionalities, attested185

languages can be classified based on six different186

parameters (Table 1); for example, the parameter187

sS determines the order of the subject NP and188

the VP. The six parameters result in 26 = 64189

types of word-order configurations O; each order190

o ∈ O is denoted by a sequence of L/R in the order191

of [sSi , s
VP
i , sPP

i , sNP
i , sRel

i , sCase
i ]. For example,192

LRLLLR ∈ O is the configuration where all phrases,193

except for VP and Case, are left-branching.194

Word-order universals: The 64 word-order195

configurations are not uniformly distributed among196

attested languages (blue points in Figure 2). This197

distribution is estimated by the frequency of198

word orders in The World Atlas of Language199

Structures (WALS) (Dryer and Haspelmath,200

2Note that using the average surprisal value
− 1

|Lo|
∑

i log p(wi|w<i) instead of PPL is more aligned
with surprisal theory (Smith and Levy, 2013), but we observe
that such a logarithmic conversion does not change our results
(§6). Thus, we use PPL as a proxy for average processing
effort through the corpus in this paper.

Param. L R

sS Cat eats. Eats cat.
sVP Cat mouse eats. Cat eats mouse.
sPP Cat table on eats. Cat on table eats.
sNP Small cat eats. Cat small eats.
sRel Likes milk that cat eats. Cat that likes milk eats.
sCase Cat-sub eats. Sub-cat eats.

Table 1: Word-order parameters and example construc-
tions with different assignments, L or R (See Apps. A
and B and White and Cotterell (2021) for details).

Normalized frequency 
within attested langs.
Preference of LM A
Preference of LM B

Figure 2: The frequency distribution of 64 = 26 word-
order configurations within attested languages (blue
points) sorted in descending order. Suppose particu-
lar LMs A/B prefer word order as green/red points. The
LM A (green points) is considered to have typologically
more aligned inductive bias than the LM B (red points).

2013),3 which is also denoted as a vector f = 201

[freq(LLLLLL), freq(LLLLLR), · · · , freq(RRRRRR)]. 202

Notably, particular configurations, typically with 203

harmonic (consistent) branching-directionality 204

(e.g., LLLLLL, LRRRRR), are common; such a 205

skewed distribution (typological markedness or 206

word-order universals) has been studied from 207

multiple perspectives typically tied with human 208

cognitive biases (Vennemann, 1974; Gibson et al., 209

2000; Briscoe, 2000; Levy, 2005; Christiansen and 210

Chater, 2008; Culbertson et al., 2012; Temperley 211

and Gildea, 2018; Futrell and Levy, 2019; Futrell 212

et al., 2020b). We aim to simulate the word-order 213

universals with LMs’ inductive biases. 214

3.3 Word order biases in LMs 215

Artificial languages: We quantify which word 216

orders are harder for a particular LM. Here, we 217

adopt4 the set of artificial languages L created 218

3We used the word order statistics of 1,616 languages,
out of 2,679, where at least one parameter is annotated. If a
particular parameter is missing or non-binary (X), one count
is distributed between its compatible word orderings, e.g.,
LLLLLR, LLLLRR, LRLLLR, and LRLLRR each gets a 1/4 count
for LXLLXR. See App. B for the details of the WALS.

4We introduce the Case parameter determining the posi-
tion of case marker, while White and Cotterell (2021) fixed it
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by White and Cotterell (2021) as a lens to quan-219

tify the LMs’ biases. These languages share the220

same default probabilistic context-free grammar221

and differ from each other only in their word-order222

configuration o ∈ O (§3.2) overriding the word223

order rules in the default grammar, resulting in 64224

corpora with different word order o. Note that the225

64 corpora generated have the same probabilities226

under the respective grammar; thus, differences in227

language-modeling difficulties can only stem from228

the model’s biases. See App. A for the detailed229

configurations of artificial languages.230

Word-order preferences of LMs: We train an231

LM on each corpus (word order o) and measure232

the PPL of tokens x in the respective held-out233

set. Repeatedly conducting the training/evaluation234

across the 64 corpora produces a PPL score vec-235

tor, p = [PPLLLLLLL(x),PPLLLLLLR(x), · · · ,PPLRRRRRR(x)],236

which indicates that the word-order preferences of237

an LM.238

3.4 Metrics239

Global correlation: We measure the Pearson240

correlation coefficient between negative PPL −p241

(§3.3) and their respective word order frequencies242

f (§3.2), Corr(−p,f) (henceforth, global corre-243

lation), considering lower PPL is better. A high244

global correlation indicates that the LMs’ word-245

order preferences reflect typological markedness.246

Local correlation: White and Cotterell (2021)247

reported that simulating the word-order dis-248

tribution among subject, object, and verb249

(SOV≻SVO≻VOS≻OVS), which is determined250

by the first two parameters of sS and sVP, is chal-251

lenging. First, therefore, we assess how easy it is252

to simulate the markedness of the other parameters’253

assignments. Specifically, we measure a relaxed254

version of the correlation ignoring the subject, ob-255

ject, and verb order (local correlation), which is de-256

fined by the averaged correlation within each base257

word-order group: SOV (LL...), SVO (LR...),258

OVS (RL...), and VOS (RR...).259

1

4
(Corr(−pLL,f LL) + Corr(−pLR,f LR)

+ Corr(−pRL,f RL) + Corr(−pRR,f RR)) .
(3)260

to be L. We omitted the Comp switch controlling the com-
plementizer position, e.g., “that,” due to the lack of large-scale
statistics on its order. We experimented with prepositional
and postpositional complementizer settings in each of the 64
settings and used the average perplexities of the two settings.

Here, pXY and f XY are the list of perplexities and 261

frequencies, limited to the languages with sS = X 262

and sVP = Y. If this relaxed correlation is high 263

and the global correlation is low, the ordering of 264

subject, object, and verb remains challenging. 265

4 Models 266

We examine 23 types of LMs. All the mod- 267

els are uni-directional and trained with subwords 268

split by byte-pair-encoding (Sennrich et al., 2016). 269

See App. C for model details. 270

4.1 Standard LMs 271

We test the PPL estimated by a Transformer 272

(Vaswani et al., 2017), LSTM (Hochreiter and 273

Schmidhuber, 1997), simple recurrent neural net- 274

work (SRN) (Elman, 1990), and N-gram LMs.5 275

See App. C.2 for the model details. 276

4.2 Cognitively motivated LMs 277

We further test cognitively motivated LMs em- 278

ployed in cognitive modeling and incremental pars- 279

ing. We target three properties: (i) syntactic in- 280

ductive/processing bias, (ii) parsing strategy, and 281

(iii) working memory limitations, following recent 282

works in cognitive modeling research (Dyer et al., 283

2016; Hale et al., 2018; Resnik, 1992; Oh et al., 284

2021; Yoshida et al., 2021; Futrell et al., 2020a; 285

Kuribayashi et al., 2022). 286

Syntactic LMs and parsing strategy: We be- 287

gin with syntactic LMs to explore the cognitively- 288

motivated LMs. They jointly model tokens x and 289

their syntactic structures y by incrementally pre- 290

dicting parsing actions a, such as “NT(S) NT(NP) 291

GEN(I) REDUCE(NP)...”: 292

p(x,y) =
∏
t

p(at|a<t) . (4) 293

Here, we examine two commonly-adopted strate- 294

gies to convert the (x,y) into the actions a: top- 295

down (TD) and left-corner (LC) strategies. The LC 296

strategy is theoretically expected to estimate more 297

human-like cognitive loads than the TD (Abney 298

and Johnson, 1991; Resnik, 1992).6 299

5Neural LMs are trained with the fairseq toolkit (Ott
et al., 2019). N-gram LMs are trained with the KenLM
toolkit (Heafield, 2011) with Kneser-Ney smoothing.

6Note that we adopted the arc-standard LC strategy, fol-
lowing Kuncoro et al. (2018) and Yoshida et al. (2021). Strictly
speaking, a cognitively plausible strategy is an arc-eager one,
and an arc-standard one has somewhat similar characteristics
with bottom-up traversal (Resnik, 1992). That is, our LC
models may be overly biased to the L assignments.
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w/o syntax Top-down (TD) syntactic LM Left-corner (LC) syntactic LM

Memory limit. Memory limit. Memory limit.

Memory limit. Memory limit. Memory limit.

w/o syntax Top-down (TD) syntactic LM Left-corner (LC) syntactic LM

Figure 3: The results of global/local correlations. Each point corresponds to each run. Their colors and shapes
denote the syntactic bias of the models. The TD and LC variants in the Transformer, LSTM, SRN, and N-gram
settings correspond to the respective PLMs. The box presents the lower/upper quartiles.

Memory limitation: In addition to syntactic bi-300

ases, we focus on memory limitations as human-301

like biases. Humans generally have limited work-302

ing memory (Miller, 1956) and struggle with pro-303

cessing long-distance dependencies during sen-304

tence processing (Hawkins, 1994; Gibson et al.,305

2019; Hahn et al., 2021). We thus expect that model306

architectures with more severe memory access, e.g.,307

in the order of SRN≻LSTM≻Transformer, have308

such human-like biases and exhibit higher correla-309

tions with the word-order universals.310

Implementations: We use the Parsing-as-311

Language-Model (PLM) (Choe and Charniak,312

2016) and recurrent neural network grammar313

(RNNG) (Dyer et al., 2016; Kuncoro et al., 2017).314

PLMs have the same architectures as standard315

LMs but are trained on the action sequences a. We316

examine four PLMs with different architectures317

(Transformer, LSTM, SRN, and N-gram). RNNGs318

also predict the action sequences, but they have an319

explicit composition function to compute phrase320

representations. We use the stack-only RNNG321

implementation by Noji and Oseki (2021) and its322

memory-limited version (simple recurrent neural323

network grammar; SRNNG), where (Bi)LSTMs324

are replaced by SRNs. Henceforth, syntactic LMs325

refer to the PLMs and (S)RNNGs.326

PPL: We measure the PPL over action se-327

quences in each word order o when quantifying328

the word-order preference of syntactic LMs (§3.3):329

PPLo(x,y) :=
∏

t p(at|a<t)
1
|a| . We also exam- 330

ine a token-level predictability PPLo(x) in §7.1 331

and App. D.1, but such variations did not alter the 332

conclusions. 333

4.3 Baselines 334

We set two baselines: (i) a chance rate with ran- 335

dom assignments of perplexities (gray lines), and 336

(ii) perplexities estimated by pre-trained LLaMA- 337

2 (7B) (Touvron et al., 2023), a representative of 338

the large language models (LLMs), prompted with 339

several example sentences (blue lines) (App. C.3) 340

as a naive baseline. 341

5 Experiment 342

We compare the LM’s word-order preferences with 343

attested word-order distributions (§5). Then, we 344

further analyze what kind of word-order combi- 345

nations LMs prefer (§6) and discuss connections 346

between our observations and existing studies (§7). 347

5.1 Settings 348

For each LM, we report the mean and standard 349

deviation across five runs with different random 350

seeds. In each run, 20K sentences are generated 351

and split into train/dev/test sets with an 8:1:1 ratio. 352

5.2 Results 353

Figure 3 shows global and local correlations (see 354

App. D for the full results). The TD (blue) and LC 355

(green) variations of the Transformer, LSTM, SRN, 356
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and N-gram LMs correspond to the PLMs with357

their respective architecture. We expect syntactic358

LMs with the LC strategy (green) to exhibit higher359

correlations than the LMs without syntactic biases360

(orange) or those with cognitively unmotivated TD361

syntactic bias (blue).362

Most LMs beat the chance rate: Overall, most363

global and local correlations were higher than the364

random baseline, reproducing the general trend365

that common word orders induce lower PPL (Hahn366

et al., 2020).7 As a sanity check, we also observed367

that the LLaMA-2 exhibited weaker correlations368

than cognitively motivated LMs; the current suc-369

cess of LLMs is orthogonal to our results.370

Syntactic biases and parsing strategies: First,371

the LC syntactic LMs (green points) generally out-372

performed the standard LMs (orange points) in373

each setting except for SRNs. This indicates the ad-374

vantage of cognitively-motivated syntactic biases375

in simulating the word-order universals. Second,376

LMs with the LC strategy (green points) tend to377

exhibit higher correlations than TD syntactic LMs378

(blue points), especially in terms of local correla-379

tion. That is, the cognitively motivated LC parsing380

strategy better simulates the word-order implica-381

tional universals. Note that RNNGs, on average,382

exhibited low correlations, although they are often383

claimed to be cognitively plausible LMs.384

Memory limitation: The results show that385

memory-limited models tend to exhibit better cor-386

relations, with the exception of PLMs. In particu-387

lar, while RNNGs typically benefited from mem-388

ory limitations (SRNNG≻RNNG), PLMs did not389

(SRN≺Transformer). This implies a superiority390

of RNNGs’ memory decay over hierarchical tree391

encoding to PLMs’ simple linear memory decay.392

5.3 Regression analysis393

We test the statistical significance of the contri-394

bution of cognitively-motivated factors to higher395

correlations. Specifically, we train the following396

regression model to predict the global or local cor-397

7With a one-sample, one-sided t-test, models except for
LSTM LM, TD SRN PLM, TD RNNG, LC RNNG, TD
SRNNG yielded global correlations significantly larger than
zero, and models except for TD RNNG yielded local correla-
tions significantly larger than zero.

relation scores obtained in the experiment (§5.2):8 398

Correlθ ∼ ModelClass(θ) +MemLim(θ)

+ Syntax(θ) + LC(θ) .
(5) 399

Here, ModelClass denotes the coarse type (e.g., 400

neural model or not) of the model θ yielding the 401

respective correlation score, MemLim denotes its 402

strength of context limitation (higher is severer, 403

e.g., SRN≻LSTM≻Transformer), Syntax denotes 404

whether the model is syntactic LMs (1 for syntac- 405

tic LMs; otherwise 0), and LC denotes whether 406

the model uses the LC strategy (1 for LC syntactic 407

LMs; otherwise 0). Positive coefficients for these 408

features indicate their contribution to higher corre- 409

lations. See App. E for the details of the regression. 410

We observe that the coefficients for the Syntax 411

and LC features were significantly larger than zero 412

with one-sample, two-sided t-test in both cases 413

of predicting global and local correlations.9 The 414

coefficient for the MemLim feature was not sig- 415

nificantly larger than zero when targeting all the 416

models (p > 0.1); however, when PLMs were ex- 417

cluded, the coefficient of the MemLim feature was 418

also significantly larger than zero with one-sample, 419

two-sided t-test (p < 0.001 in both global and lo- 420

cal correlations) as suggested in §5.2. To sum up, 421

these corroborate the findings in §5.2. 422

6 Analyses 423

6.1 Branching directionality preferences 424

Human languages, on average, do not favor either 425

left- or right-branching (Dryer and Haspelmath, 426

2013). Given this, we measure how strongly a 427

model prefers a specific branching directionality 428

(L-pref.). We calculate the Pearson correlation be- 429

tween negative PPL and the number of L assign- 430

ments #L(·)10 of the respective word order: 431

Corr(−p, b) , (6) 432

b := [#L(l) for l in L] . (7) 433

As a sanity check, the word-order frequency distri- 434

bution of attested languages, indeed, is weakly cor- 435

related (0.11) with the left-branching directionality. 436

Thus, LMs are not expected to have an extremely 437

high or low L-pref. score. Notably, the branching 438

bias of LMs/parsers has been of interest in the NLP 439

research (Li et al., 2020a,b; Ishii and Miyao, 2023). 440

8We used the statsmodels (Seabold and Perktold, 2010).
9p = 0.07 for the Syntax and p < 0.05 for the LC in

the case of global correlation. p < 0.01 for the Syntax and
p < 0.01 for the LC in the case of local correlation.

10For example, #L(LLLRLL) = 5.
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Memory limit. Memory limit. Memory limit.

w/o syntax Top-down (TD) syntactic LM Left-corner (LC) syntactic LM

Figure 4: The results of branching directionality scores. Each point corresponds to each run. The colors and shapes
denote the syntactic bias of the models. The TD and LC variants in the Transformer, LSTM, SRN, and N-gram
settings correspond to the respective PLMs. The box presents the lower/upper quartiles.

Results: Figure 4 shows the results of branching441

preferences. LMs with the TD strategy are theoreti-442

cally expected to have a lower L-pref. score (favor-443

ing right-branching) than the LC models (Resnik,444

1992). While the PLMs faithfully reflect such char-445

acteristics, RNNGs, surprisingly, exhibited oppo-446

site trends, suggesting the challenge in control-447

ling the inductive bias of neural syntactic LMs.448

We also observed architecture-dependent branch-449

ing preference; Transformers prefer left-branching,450

while LSTMs prefer right-branching as suggested451

by Hopkins (2022). Such architecture-dependent452

biases seem to have more impact on the branching453

preferences than the parsing strategies in PLMs.454

6.2 Linking functions455

The experiments so far have assumed the linearity456

between PPL and word-order frequency (Eq. 1)—457

did this choice bias our results? We investigated458

various linking functions between PPL and word459

order frequency: the perplexity of order k and log-460

arithmic PPL, which has a connection to entropy.461

Figure 5 illustrates LMs’ local correlations under462

differently converted perplexities; full results are463

in Appendix D.2. Such a variation of linking func-464

tions did not substantially affect our results (§5),465

enhancing the generality of our obtained findings.466

7 Discussion467

7.1 Predictability and parsability468

We revisit the view that both predictability and469

parsability are keys to explaining word-order uni-470

versals. Concretely, Hahn et al. (2020) showed471

that both PPL of an LM and parsability for a (not-472

cognitively-motivated) parser (Kiperwasser and473

Goldberg, 2016) explain word-order universals.474

Building on this, we demonstrate that predictability475

0.0 0.2 0.4 0.6 0.8
Local correlation

SRNNG LC
LC 3-gram PLM
TD 3-gram PLM

SRN
LSTM

LC Trans. PLM
TD Trans. PLM

Trans. PPL^0.5
PPL
PPL^2
PPL^3
log(PPL)

Figure 5: Mean and standard deviation of local correla-
tions with different linking functions: PPL of order k
and logarithmic PPL

(PPL)11 of syntactic LMs entails parsability. That 476

is, they can provide a more concise information- 477

theoretic measurement of word-order universals 478

(syntactically-biased predictability). 479

Specifically, we decompose the performance 480

of syntactic LMs into two parts: token-level per- 481

plexity PPL(x) (predictability) and parsing per- 482

formance Parse(x,y) (parsability), using word- 483

synchronous beam-search (Stern et al., 2017). 484

When computing the token-level predictability 485

PPL(x), next-word probability is computed while 486

predicting the upcoming partial syntactic trees.12 487

We measure Parse(x,y) as the F1-score of the top- 488

1 parse found with the beam search.13 Then, we 489

test whether the parsability factor contributes to 490

explaining the frequency of word order o in addi- 491

tion to PPL, using the following nested regression 492

11Predictability is typically measured as entropy, but again,
the choice of entropy or PPL did not substantially change the
correlation scores (See §6.2 and App. D.2).

12PPL(x) :=
∏

t pstx(xt|x<t)
1

|x| . pstx(xt|x<t) :=∑
y′∈Y(x<t)

p(xt, y
′|x<t) Here, given a context x<t, a set

of its upcoming compatible partial syntactic trees Y(x<t) is
predicted. Next word xt is predicted by each candidate parse
y′ ∈ Y(x<t), then such predictions are merged over Y(x<t).

13Evalb (https://nlp.cs.nyu.edu/evalb/) was used.
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Figure 6: Predictability and parsability of each word
order. These measurements are converted through the
min-max normalization to be [0, 1] scale (higher is
better). Each circle corresponds to each word order;
larger ones are frequent word orders.

models:493

Base: Freq(o) ∼ PPLo(x) ,494

+Parse: Freq(o) ∼ PPLo(x) + Parseo(x,y) .495

The increase in log-likelihood scores of the496

+Parse model over the Base model is not sig-497

nificant with the likelihood-ratio test (p > 0.1)498

in all the RNNG settings ({TD, LC}×{SRNNG,499

RNNG}×{seeds}).14 That is, at least in our set-500

ting, we cannot find an advantag of parsability over501

predictability in explaining word-order universals.502

This may be because the next-word prediction for503

the syntactic LMs is explicitly conditioned by the504

parsing states, which might sufficiently bias the505

predictability measurements to reflect parsability.506

Figure 6 also illustrates the predictability and507

parsability estimated by the LC SRNNG. Here, the508

predictability identifies more types of word orders509

as typologically marked (left small circles) than510

the parsability does (bottom small circles). This is511

contrary to the picture of both predictability and512

parsability as complementary factors explaining513

word-order universals (Hahn et al., 2020).514

7.2 {S,O,V} word-order biases515

White and Cotterell (2021) reported that LMs516

could not show the subject, object, verb517

word-order biases attested in natural language518

(SOV≻SVO≻VOS≻OVS). Even our cognitively-519

motivated LMs did not overcome this limitation,520

based on the global correlations being consistently521

lower than the local ones (§5.2; Figure 3). This ten-522

dency is visualized in Figure 7; within each base523

14We only tested RNNGs given the limited availability of
batched beam-search implmentations (Noji and Oseki, 2021).

SOV SVO OVS VOS
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Figure 7: Illustration of the relationship between pre-
dictability (y-axis) and word order frequency in each of
the four base-order groups (SOV, SVO, OVS, and VOS).
Each circle corresponds to each word order; larger ones
are frequent word orders. Predictability is the negative
PPLs converted through the min-max normalization;
thus higher predictability indicates lower PPL. The re-
sults are from the 3-gram PLM with the LC strategy.

group (SOV, SVO, OVS, VOS), common word or- 524

ders tend to obtain high predictability (i.e., lower 525

PPL; bigger circles are at the top) except OVS- 526

order’s high predictability and SVO-order’s low 527

predictability. This made it clear that predictability 528

generally explains word-order universals, but the 529

markedness of word orders among subject, object, 530

and verb must stem from additional factors. 531

Humans arguably have an actor-first bias in event 532

cognition, and this could be the source of the 533

subject-initial word order (Wilson et al., 2022). Our 534

findings imply that cognitively motivated LMs still 535

lack such a human-like bias. Orthogonally, the 536

artificial language ignores some important linguis- 537

tic aspects, such as information structure (Gundel, 538

1988; Verhoeven, 2015; Ranjan et al., 2022), which 539

may explain subject-object order; refining the arti- 540

ficial data would also be one direction to explore 541

in future work. 542

8 Conclusions 543

We have investigated the advantages of cognitively- 544

motivated LMs in the computational simulation of 545

emergent word-order universals. From a linguistic 546

typology perspective, we provide computational 547

evidence of the universals emerging from cognitive 548

biases, which has been challenging to demonstrate 549

in previous work (Lian et al., 2021; Galke et al., 550

2022). From the cognitive modeling perspective, 551

our results demonstrate that cognitively motivated 552

LMs have human-like biases that are sufficient to 553

replicate some human word-order universals. From 554

the natural language processing perspective, we 555

clarify the inductive bias of various classes of LMs. 556
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Limitations557

Artificial data: We used artificial data to quan-558

tify the LMs’ inductive/processing biases for word-559

order configurations. While the use of artificial560

languages has typically been adopted to conduct561

controlled experiments (§2.2), such artificial data562

lack some properties of natural languages, such as563

the semantic relationships between the linguistic564

constituents and discourse-level factors (§7.2). In565

future work, we hope to devise further artificially566

controlled languages that exhibit some of these567

properties. Furthermore, our used data (White and568

Cotterell, 2021) is relatively small scale, which569

might incur unintended bias in LM performance,570

although there is a perspective to analyze inductive571

bias via measuring training efficiency (Kharitonov572

and Chaabouni, 2021; Warstadt et al., 2023).573

Estimating word-order distribution: The word574

order frequency estimates derived from WALS575

might also be biased; for example, Indo-European576

languages tend to have richer meta-linguistic in-577

formation in WALS, although our study takes the578

statistics from as many as 1,616 languages into579

account. A richer estimation of missing parame-580

ter information is desirable. As a more general581

concern, the frequency of a word-order configu-582

ration can be estimated in various ways, such as583

the number of native speakers and the number of584

language families adopting a particular word order.585

Furthermore, word order variation can be inher-586

ently non-binary (Levshina et al., 2023). Our study,587

as an initial foray, relied on the number of unique588

languages, a commonly used metric in linguistic589

typology research (Dryer and Haspelmath, 2013;590

Hammarström, 2016), considering that other ap-591

proaches raise additional complications, such as592

an estimation of the speaker numbers or language593

family variability.594

Ethics Statement595

We only used artificial language, which does not596

have information with potential risks, e.g., human597

privacy data. One concern is the bias in our word598

order frequency estimates; this might have brought599

biased conclusions, e.g., diminishing the impact of600

minority languages, although we used the largest601

publicly available data (WALS) to date. We used602

AI assistance tools within the scope of “Assistance603

purely with the language of the paper” described in604

the ACL 2023 Policy on AI Writing Assistance.605
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A Details of artificial languages984

Table 1215 shows the default grammar to create985

artificial language data, which adopts the configu-986

ration of White and Cotterell (2021). The “relevant987

parameter” column indicates that the listed param-988

eter controls the order of right-hand items in the989

respective production rule (the order is swapped990

when the parameter assignment is R). Note that the991

subcategory of non-terminal symbols (e.g., VP_S)992

was only used for generating the data; in the final993

data for training/evaluating syntactic LMs, these994

subcategories are omitted (e.g., VP_S should be995

VP), and the resulting uninformative edge in the996

syntactic structure (e.g., VP → VP) was removed.997

Table 2 shows the example of a sentence with dif-998

ferent word-order configurations. Different word999

order parameters yield a syntactic structure with1000

different branching directionalities; for example,1001

the constituency tree of LLLLLL is extending to the1002

bottom left (left-branching). The average sentence1003

length was 11.8 tokens, and the average tree depth1004

was 9.1. The vocabulary size of pseudowords is1005

1,314 same as White and Cotterell (2021).1006

B WALS data statistics1007

Table 3 shows the statistics of the WALS data and1008

the details about word order parameters. Out of the1009

2,679 languages listed in the WALS, 1,616 lan-1010

guages are involved, and approximately 2/3 of1011

their word order parameters were annotated in the1012

WALS; the missing values are completed as ex-1013

plained in §3.2 (footnote 1). As a sanity check,1014

we observe the ratio of the assignments of the first1015

two parameters (sS and sVP), which controls the1016

order of subject, object, and verb; these approxi-1017

mately replicate the ratio reported in Dryer (2013f)1018

(e.g., SOV and SVO orders occupy over 80% of1019

languages).1020

C Model details1021

The license of the used models/data is listed in Ta-1022

ble 4; all of them are used under their intended use.1023

All the models were trained/tested with a single1024

NVIDIA A100 GPU (40GB). All of the experi-1025

ments were done within approximately 600 GPU1026

hours. The LLaMA-2 (7B) model was used via the1027

hugging face toolkit (Wolf et al., 2020).1028

15The corresponding Table is positioned in the later part
of the Appendix for readability.

C.1 Parsing strategies 1029

Figure 8 shows the parsing actions converted with 1030

different strategies (TD and LC). PLMs are trained 1031

to predict such a sequence of parsing actions in a 1032

left-to-right manner. 1033

C.2 Hyperparamteres 1034

Tables 13 and 14 show the hyperparameters of 1035

LMs,15 which basically follow their default set- 1036

tings. Standard LMs and PLMs use the same hy- 1037

perparameters. Their vocabulary size is set to 512. 1038

C.3 Word order preference of LLaMA-2 1039

We employed few-shot settings instead of full- 1040

finetning with the limits in computational cost. 1041

Specifically, we create a prompt consisting of the 1042

instruction “The below sentences are written in an 1043

artificially created new language:” and ten exam- 1044

ple sentences extracted from the respective train- 1045

ing set. The probability of each test sentence is 1046

computed conditioned with this prompt, and aggre- 1047

gating these probabilities results in the PPL of an 1048

entire corpus. 1049

D Results 1050

The full results of the experiment (§5) and analysis 1051

(§6) are shown in Table 6. This also shows the 1052

top-3 preferred word orders by each LM, which 1053

demonstrates the model-dependent differences in 1054

their word-order preferences. We also include the 1055

baseline of average stack depth required to process 1056

sentences for each parsing algorithm in each word 1057

order as a standard measurement of memory cost. 1058

D.1 Beam-search in RNNG/SRNNGs 1059

Table 7 shows the results of RNNG/SRNNGs with 1060

and without word-synchronous beam search (Stern 1061

et al., 2017). The settings without beam-search 1062

are adopted in §5, and the advantages of memory 1063

limitation (SRRNG) and the LC strategies were 1064

replicated even with beam-search, where the token- 1065

level perplexity PPL(x) is used (§7.1). 1066

D.2 Results with different linking functions 1067

Tables 8, 9, 10, and 11 show the detailed results 1068

with different linking functions (PPL1/2, PPL2, 1069

PPL3, log PPL) between model-computed com- 1070

plexity measurements and word order frequencies. 1071

Experiments with different linking hypotheses did 1072

not alter the conclusions. This supports the gener- 1073

ality of our findings. 1074
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Right-branching Mixed-branching Left-branching

Parameteres RRRRRR LRRRLR LLLLLL

S

VP

Verb
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NP
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Rel

rel

VP

Verb

povify

NP

Pronoun

me

S

NP

NP

fusbenders

Rel

rel

VP

Verb

povify

NP

Pronoun

me

VP

Verb

strovokicizeda

S

NP

VP

NP

Pronoun

me

Verb

povify

Rel

rel

NP

fusbenders

VP

Verb

strovokicizeda

Table 2: Example sentences and their structures generated with different word-order configurations.

All languages in WALS 2,679
Targeted languages 1,616
Targeted parameters 9,696 (=1,616×6)
Missing parameters 3,343

LLXXXX (SOV) 46.7%
LRXXXX (SVO) 34.3%
RLXXXX (VOS) 3.6%
RRXXXX (OVS) 15.5%

sS (S → NPsubj VP) 82A Order of Subject and
Verb (Dryer, 2013e)

sVP (VP → NPobj Verb) 83A Order of Object and
Verb (Dryer, 2013c)

sPP (PP → Prep NP) 85A Order of Adposition and Noun
Phrase (Dryer, 2013b)

sNP (NP → Adj NP) 87A Order of Adjective and
Noun (Dryer, 2013a)

sRel (NP → VP Rel NP) 90A Order of Relative Clause and
Noun (Dryer, 2013d)

sCase (NP → NP Case) 51A Position of Case Affixes (Dryer,
2013g)

Table 3: Statistics of the WALS data and the source of
word-order configuration information

E Details of regression analysis1075

We explored which factor impacts the global/local1076

correlation scores obtained by various LMs θ. As1077

explained in §5.3, we train a regression model to1078

predict the correlation score obtained by a partic-1079

ular LM θ, given the features characterizing the1080

LMs:1081

Correlθ ∼ModelClass(θ) +MemLim(θ)

+ Syntax(θ) + LC(θ) .
(8)1082

Table 5 shows the features used for the regres-1083

sion analysis in §5.3. The regression model is1084

trained with the ordinary least squares setting, us-1085

ing statsmodel package in Python (Seabold and1086

Perktold, 2010).1087

Data/model Licence

Artificial data (White and Cotterell, 2021) MIT
WALS (Dryer and Haspelmath, 2013) Creative Com-

mons CC-BY 4.0
Fairseq (Ott et al., 2019) MIT
RNNG (Noji and Oseki, 2021) MIT
KenLM (Heafield, 2011) LGPL
LLaMA-2 (Touvron et al., 2023) LLAMA 2 Com-

munity License
Sentencepiece (Kudo and Richardson, 2018) Apache 2.0

Table 4: Licence of the data and models

Model ModelClass
(categorical)

MemLim
(int)

Syntax
(binary)

LC
(binary)

Transformer NLM 0 False False
LSTM NLM 1 False False
SRN NLM 2 False False

Trans. PLM TD NLM 0 True False
Trans. PLM LC NLM 0 True True
LSTM PLM TD NLM 1 True False
LSTM PLM LC NLM 1 True True
SRN PLM TD NLM 2 True False
SRN PLM LC NLM 2 True True

Word 5-gram CLM 0 False False
Word 4-gram CLM 1 False False
Word 3-gram CLM 2 False False

5-gram PLM TD CLM 0 True False
5-gram PLM LC CLM 0 True True
4-gram PLM TD CLM 1 True False
4-gram PLM LC CLM 1 True True
3-gram PLM TD CLM 2 True False
3-gram PLM LC CLM 2 True True

RNNG RNNG 0 True False
RNNG LC RNNG 0 True True
SRNNG RNNG 1 True False
SRNNG LC RNNG 1 True True

Table 5: Features used for the regression analysis
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S

NP VP

VPNP

NP

rel

fudbenders povify

me

stovokicizeda
NT(S) NT(NP) NT(NP) GEN(fudbenders) REDUCE(NP) GEN(rel)  NT(VP) 
GEN(povify) NT(NP) GEN(me) REDUCE(NP) REDUCE(VP) REDUCE(NP)…

GEN(fudbenders) NT_SWAP(NP) REDUCE(NP) NT_SWAP(NP) GEN(rel) 
GEN(povify) NT_SWAP(VP) GEN(me) NT(NP) REDUCE(NP) REDUCE(VP) 
REDUCE(NP)…

GEN(fudbenders) GEN(rel) GEN(povify) GEN(me) GEN(stovokicizeda)…
Standard LM

TD syntactic LM

LC syntactic LM

predict

predict

predict

Figure 8: Different parsing strategy converts a syntactic structure into a different parsing action sequence. PLMs
and RNNGs predict such action sequences with different model architectures.

Model Lim. Stx. Global r ↑ Local r ↑ L-pref. → Top3 langs.

Natural Lang. 100.0 100.0 10.5 LRRRRL, LRRRRR, LLLRRL

Transformer 12.1 ± 4.3 16.7 ± 6.4 23.8 ± 6.1 LLLLLL, LLRLLL, RLRLLL
LSTM ✓ 10.7 ± 14.7 26.9 ± 7.4 -1.2 ± 11.3 RLRLLL, RLLLLL, RRRRRR
SRN ✓ 16.3 ± 9.4 38.3 ± 3.0 -3.6 ± 10.4 RLLLLL, RLRLLL, RLRRLL

Word 5-gram ✓ 5.4 ± 1.0 17.0 ± 1.7 -5.8 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 4-gram ✓ 6.5 ± 1.0 16.5 ± 1.6 -6.4 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 3-gram ✓ 8.8 ± 0.7 17.5 ± 1.0 -6.1 ± 1.0 RRRRRR, RRLRRR, LRLRRR

Trans. PLM TD 30.4 ± 5.7 29.5 ± 9.1 35.9 ± 4.7 LLRRLL, LLRRRL, LLRLLL
Trans. PLM LC 30.3 ± 2.1 42.3 ± 1.1 35.2 ± 2.3 LLLLLL, LLRLLL, LLRRLL
LSTM PLM ✓ TD 11.9 ± 12.2 37.0 ± 7.3 -27.1 ± 10.5 LRRRRL, LRLRRL, LRRRRR
LSTM PLM ✓ LC 23.6 ± 3.6 40.4 ± 2.5 0.5 ± 5.5 RLLRRR, LLLLLL, LLLRLL
SRN PLM ✓ TD -5.4 ± 8.3 8.7 ± 7.8 -53.7 ± 7.4 RLRRRR, LRLRRR, RLLRRR
SRN PLM ✓ LC 9.5 ± 4.9 27.5 ± 10.5 2.8 ± 5.2 RLRRLL, RLRRRR, RLLRLL

5-gram PLM ✓ TD 11.8 ± 2.4 50.4 ± 2.8 10.2 ± 7.8 RLLRRL, RLRRRL, RLLLLL
5-gram PLM ✓ LC 18.6 ± 0.9 47.0 ± 1.3 28.8 ± 1.4 LLLRLL, RLLRLL, RLRRLL
4-gram PLM ✓ TD 29.2 ± 0.6 40.0 ± 1.6 4.4 ± 5.4 LLRRRL, RLRRRL, LLRRRR
4-gram PLM ✓ LC 21.7 ± 0.6 50.6 ± 0.6 22.2 ± 0.9 RLLRLL, RLRRLL, LLLRLL
3-gram PLM ✓ TD 19.9 ± 0.7 29.0 ± 1.8 17.3 ± 2.0 RLLRRL, LLLRRL, RLLRRR
3-gram PLM ✓ LC 18.0 ± 0.2 55.7 ± 0.3 27.0 ± 0.5 RLLRRR, RLLRRL, RLRRRR

RNNG TD -22.6 ± 4.7 6.0 ± 14.5 14.5 ± 10.8 RLLRLL, RRRRLL, RRRLLL
RNNG LC -17.6 ± 6.4 25.1 ± 13.4 -21.2 ± 2.0 RRRRRL, RRLLRL, RRLRRL
SRNNG ✓ TD 2.0 ± 9.3 10.7 ± 7.8 10.2 ± 7.0 RLLRRR, RLRRRR, RLLRRL
SRNNG ✓ LC 19.0 ± 9.6 23.7 ± 13.0 -40.6 ± 8.5 LRRRRR, LRLRRR, LLLRRR

LLaMA2 (7B) 6.9 ± 31.0 15.4 ± 2.5 -4.6 ± 31.0 LRLLLL, LRRLLL, LRLRLL

Stack depth TD -47.5 ± 0.2 -12.0 ± 0.6 -56.2 ± 1.3 RRLRRR, RRLLRR, RRRRRR
Stack depth LC -13.3 ± 0.3 -4.8 ± 0.2 57.6 ± 0.5 RLLLLL, RLLRLL, RLRLLL

Chance rate 0.0 0.0 0.0 -

Table 6: Word-order preferences of LMs. “Lim.” and “Stx.” indicate the working memory limitation and syntactic
biases in the respective model architecture, respectively.

Model Syntax Lim. Beam Global r ↑ Local r ↑ L-pref. → Top3 langs.

RNNG TD -22.6 ± 4.7 6.0 ± 14.5 14.5 ± 10.8 RLLRLL, RRRRLL, RRRLLL
SRNNG TD ✓ 2.0 ± 9.3 10.7 ± 7.8 10.2 ± 7.0 RLLRRR, RLRRRR, RLLRRL
RNNG LC -17.6 ± 6.4 25.1 ± 13.4 -21.2 ± 2.0 RRRRRL, RRLLRL, RRLRRL

SRNNG LC ✓ 19.0 ± 9.6 23.7 ± 13.0 -40.6 ± 8.5 LRRRRR, LRLRRR, LLLRRR
RNNG TD ✓ 9.4 ± 3.5 -31.5 ± 11.6 -30.1 ± 5.7 RRRRLL, RRRLLL, RRLLLL
SRNNG TD ✓ ✓ 14.6 ± 8.7 -2.8 ± 5.9 -21.5 ± 8.9 LLLRRR, LLRRRR, RLRRRR
RNNG LC ✓ -23.4 ± 7.0 26.5 ± 13.9 -26.2 ± 7.2 RLRLRL, RLRRLL, RRRRRL
SRNNG LC ✓ ✓ 17.2 ± 8.5 18.3 ± 12.4 -36.7 ± 9.7 LRRRRR, LRLRRR, RLLRRR

Table 7: Comparson of the RNNG/SRNNG results with and without word-synchronous beam search
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Model Syntax Lim. Global r ↑ Local r ↑ L-pref. → Top3 langs.

Transformer 12.4 ± 4.3 16.7 ± 6.4 24.1 ± 6.1 LLLLLL, LLRLLL, RLRLLL
LSTM ✓ 11.2 ± 14.7 27.0 ± 7.4 -0.8 ± 11.3 RLRLLL, RLLLLL, RRRRRR
SRN ✓ 16.5 ± 9.4 38.4 ± 3.0 -3.5 ± 10.4 RLLLLL, RLRLLL, RLRRLL

Word 5-gram ✓ 5.5 ± 1.0 17.1 ± 1.7 -6.0 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 4-gram ✓ 6.6 ± 1.0 16.7 ± 1.6 -6.7 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 3-gram ✓ 8.9 ± 0.7 17.7 ± 1.0 -6.3 ± 1.0 RRRRRR, RRLRRR, LRLRRR

Trans. PLM TD 30.5 ± 5.7 29.4 ± 9.1 36.2 ± 4.7 LLRRLL, LLRRRL, LLRLLL
Trans. PLM LC 30.2 ± 2.1 42.3 ± 1.1 35.7 ± 2.3 LLLLLL, LLRLLL, LLRRLL
LSTM PLM ✓ TD 11.9 ± 12.2 37.0 ± 7.3 -27.2 ± 10.5 LRRRRL, LRLRRL, LRRRRR
LSTM PLM ✓ LC 23.6 ± 3.6 40.4 ± 2.5 0.6 ± 5.5 RLLRRR, LLLLLL, LLLRLL
SRN PLM ✓ TD -5.4 ± 8.3 8.8 ± 7.8 -53.8 ± 7.4 RLRRRR, LRLRRR, RLLRRR
SRN PLM ✓ LC 9.3 ± 4.9 27.6 ± 10.5 2.8 ± 5.2 RLRRLL, RLRRRR, RLLRLL

5-gram PLM ✓ TD 11.8 ± 2.4 50.5 ± 2.8 10.2 ± 7.8 RLLRRL, RLRRRL, RLLLLL
5-gram PLM ✓ LC 18.5 ± 0.9 47.0 ± 1.3 29.0 ± 1.4 LLLRLL, RLLRLL, RLRRLL
4-gram PLM ✓ TD 29.2 ± 0.6 40.0 ± 1.6 4.3 ± 5.4 LLRRRL, RLRRRL, LLRRRR
4-gram PLM ✓ LC 21.6 ± 0.6 50.5 ± 0.6 22.4 ± 0.9 RLLRLL, RLRRLL, LLLRLL
3-gram PLM ✓ TD 19.9 ± 0.7 29.0 ± 1.8 17.3 ± 2.0 RLLRRL, LLLRRL, RLLRRR
3-gram PLM ✓ LC 17.9 ± 0.2 55.7 ± 0.3 27.0 ± 0.5 RLLRRR, RLLRRL, RLRRRR

RNNG TD -22.6 ± 4.7 6.0 ± 14.5 14.5 ± 10.8 RLLRLL, RRRRLL, RRRLLL
RNNG LC -17.6 ± 6.4 25.1 ± 13.4 -21.1 ± 2.0 RRRRRL, RRLLRL, RRLRRL
SRNNG ✓ TD 1.9 ± 9.3 10.7 ± 7.8 10.1 ± 7.0 RLLRRR, RLRRRR, RLLRRL
SRNNG ✓ LC 19.1 ± 9.6 23.7 ± 13.0 -40.7 ± 8.5 LRRRRR, LRLRRR, LLLRRR

LLaMA2 (7B) 6.9 ± 31.0 15.4 ± 2.5 -4.6 ± 31.0 LRLLLL, LRRLLL, LRLRLL

Table 8: The results of PPL1/2

Model Syntax Lim. Global r ↑ Local r ↑ L-pref. → Top3 langs.

Transformer 11.6 ± 4.3 16.5 ± 6.4 23.1 ± 6.1 LLLLLL, LLRLLL, RLRLLL
LSTM ✓ 9.8 ± 14.7 26.6 ± 7.4 -1.8 ± 11.3 RLRLLL, RLLLLL, RRRRRR
SRN ✓ 16.1 ± 9.4 38.3 ± 3.0 -3.6 ± 10.4 RLLLLL, RLRLLL, RLRRLL

Word 5-gram ✓ 5.4 ± 1.0 16.7 ± 1.7 -5.3 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 4-gram ✓ 6.4 ± 1.0 16.1 ± 1.6 -5.8 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 3-gram ✓ 8.5 ± 0.7 17.1 ± 1.0 -5.6 ± 1.0 RRRRRR, RRLRRR, LRLRRR

Trans. PLM TD 30.3 ± 5.7 29.7 ± 9.1 35.3 ± 4.7 LLRRLL, LLRRRL, LLRLLL
Trans. PLM LC 30.3 ± 2.1 42.5 ± 1.1 34.1 ± 2.3 LLLLLL, LLRLLL, LLRRLL

LSTM PLM ✓ TD 11.8 ± 12.2 37.0 ± 7.3 -27.1 ± 10.5 LRRRRL, LRLRRL, LRRRRR
LSTM PLM ✓ LC 23.6 ± 3.6 40.4 ± 2.5 0.4 ± 5.5 RLLRRR, LLLLLL, LLLRLL
SRN PLM ✓ TD -5.5 ± 8.3 8.7 ± 7.8 -53.7 ± 7.4 RLRRRR, LRLRRR, RLLRRR
SRN PLM ✓ LC 9.9 ± 4.9 27.4 ± 10.5 2.8 ± 5.2 RLRRLL, RLRRRR, RLLRLL

5-gram PLM ✓ TD 11.9 ± 2.4 50.4 ± 2.8 10.2 ± 7.8 RLLRRL, RLRRRL, RLLLLL
5-gram PLM ✓ LC 18.7 ± 0.9 47.1 ± 1.3 28.5 ± 1.4 LLLRLL, RLLRLL, RLRRLL
4-gram PLM ✓ TD 29.2 ± 0.6 40.0 ± 1.6 4.4 ± 5.4 LLRRRL, RLRRRL, LLRRRR
4-gram PLM ✓ LC 21.9 ± 0.6 50.6 ± 0.6 22.0 ± 0.9 RLLRLL, RLRRLL, LLLRLL
3-gram PLM ✓ TD 19.9 ± 0.7 29.0 ± 1.8 17.3 ± 2.0 RLLRRL, LLLRRL, RLLRRR
3-gram PLM ✓ LC 18.2 ± 0.2 55.6 ± 0.3 26.9 ± 0.5 RLLRRR, RLLRRL, RLRRRR

RNNG TD -22.6 ± 4.7 6.0 ± 14.5 14.5 ± 10.8 RLLRLL, RRRRLL, RRRLLL
RNNG LC -17.6 ± 6.4 25.1 ± 13.4 -21.2 ± 2.0 RRRRRL, RRLLRL, RRLRRL
SRNNG ✓ TD 2.1 ± 9.3 10.7 ± 7.8 10.2 ± 7.0 RLLRRR, RLRRRR, RLLRRL
SRNNG ✓ LC 19.0 ± 9.6 23.6 ± 13.0 -40.4 ± 8.5 LRRRRR, LRLRRR, LLLRRR
LLaMA2 (7B) 6.9 ± 31.0 15.5 ± 2.5 -4.8 ± 31.0 LRLLLL, LRRLLL, LRLRLL

Table 9: The results of PPL2
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Model Syntax Lim. Global r ↑ Local r ↑ L-pref. → Top3 langs.

Transformer 11.1 ± 4.3 16.3 ± 6.4 22.5 ± 6.1 LLLLLL, LLRLLL, RLRLLL
LSTM ✓ 9.2 ± 14.7 26.4 ± 7.4 -2.3 ± 11.3 RLRLLL, RLLLLL, RRRRRR
SRN ✓ 16.1 ± 9.4 38.3 ± 3.0 -3.5 ± 10.4 RLLLLL, RLRLLL, RLRRLL
Word 5-gram ✓ 5.3 ± 1.0 16.3 ± 1.7 -4.8 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 4-gram ✓ 6.3 ± 1.0 15.7 ± 1.6 -5.3 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 3-gram ✓ 8.3 ± 0.7 16.8 ± 1.0 -5.1 ± 1.0 RRRRRR, RRLRRR, LRLRRR

Trans. PLM TD 30.2 ± 5.7 29.9 ± 9.1 34.7 ± 4.7 LLRRLL, LLRRRL, LLRLLL
Trans. PLM LC 30.3 ± 2.1 42.6 ± 1.1 33.0 ± 2.3 LLLLLL, LLRLLL, LLRRLL
LSTM PLM ✓ TD 11.8 ± 12.2 36.9 ± 7.3 -27.0 ± 10.5 LRRRRL, LRLRRL, LRRRRR
LSTM PLM ✓ LC 23.6 ± 3.6 40.3 ± 2.5 0.2 ± 5.5 RLLRRR, LLLLLL, LLLRLL
SRN PLM ✓ TD -5.7 ± 8.3 8.6 ± 7.8 -53.6 ± 7.4 RLRRRR, LRLRRR, RLLRRR
SRN PLM ✓ LC 10.2 ± 4.9 27.3 ± 10.5 2.7 ± 5.2 RLRRLL, RLRRRR, RLLRLL

5-gram PLM ✓ TD 11.9 ± 2.4 50.3 ± 2.8 10.1 ± 7.8 RLLRRL, RLRRRL, RLLLLL
5-gram PLM ✓ LC 18.8 ± 0.9 47.2 ± 1.3 28.2 ± 1.4 LLLRLL, RLLRLL, RLRRLL
4-gram PLM ✓ TD 29.2 ± 0.6 40.0 ± 1.6 4.5 ± 5.4 LLRRRL, RLRRRL, LLRRRR
4-gram PLM ✓ LC 22.1 ± 0.6 50.6 ± 0.6 21.7 ± 0.9 RLLRLL, RLRRLL, LLLRLL
3-gram PLM ✓ TD 19.9 ± 0.7 29.0 ± 1.8 17.4 ± 2.0 RLLRRL, LLLRRL, RLLRRR
3-gram PLM ✓ LC 18.4 ± 0.2 55.6 ± 0.3 26.8 ± 0.5 RLLRRR, RLLRRL, RLRRRR

RNNG TD -22.5 ± 4.7 6.0 ± 14.5 14.5 ± 10.8 RLLRLL, RRRRLL, RRRLLL
RNNG LC -17.6 ± 6.4 25.1 ± 13.4 -21.2 ± 2.0 RRRRRL, RRLLRL, RRLRRL
SRNNG ✓ TD 2.2 ± 9.3 10.7 ± 7.8 10.2 ± 7.0 RLLRRR, RLRRRR, RLLRRL
SRNNG ✓ LC 18.9 ± 9.6 23.6 ± 13.0 -40.2 ± 8.5 LRRRRR, LRLRRR, LLLRRR

LLaMA2 (7B) 6.9 ± 31.0 15.5 ± 2.5 -4.9 ± 31.0 LRLLLL, LRRLLL, LRLRLL

Table 10: The results of PPL3

Model Syntax Lim. Global r ↑ Local r ↑ L-pref. → Top3 langs.

Transformer 12.6 ± 4.3 16.8 ± 6.4 24.4 ± 6.1 LLLLLL, LLRLLL, RLRLLL
LSTM ✓ 11.8 ± 14.7 27.2 ± 7.4 -0.4 ± 11.3 RLRLLL, RLLLLL, RRRRRR
SRN ✓ 16.7 ± 9.4 38.4 ± 3.0 -3.5 ± 10.4 RLLLLL, RLRLLL, RLRRLL

Word 5-gram ✓ 5.5 ± 1.0 17.3 ± 1.7 -6.3 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 4-gram ✓ 6.7 ± 1.0 16.8 ± 1.6 -7.0 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 3-gram ✓ 9.0 ± 0.7 17.9 ± 1.0 -6.6 ± 1.0 RRRRRR, RRLRRR, LRLRRR

Trans. PLM TD 30.5 ± 5.7 29.4 ± 9.1 36.5 ± 4.7 LLRRLL, LLRRRL, LLRLLL
Trans. PLM LC 30.2 ± 2.1 42.2 ± 1.1 36.2 ± 2.3 LLLLLL, LLRLLL, LLRRLL
LSTM PLM ✓ TD 12.0 ± 12.2 37.1 ± 7.3 -27.2 ± 10.5 LRRRRL, LRLRRL, LRRRRR
LSTM PLM ✓ LC 23.6 ± 3.6 40.4 ± 2.5 0.7 ± 5.5 RLLRRR, LLLLLL, LLLRLL
SRN PLM ✓ TD -5.3 ± 8.3 8.8 ± 7.8 -53.8 ± 7.4 RLRRRR, LRLRRR, RLLRRR
SRN PLM ✓ LC 9.1 ± 4.9 27.6 ± 10.5 2.8 ± 5.2 RLRRLL, RLRRRR, RLLRLL

5-gram PLM ✓ TD 11.8 ± 2.4 50.5 ± 2.8 10.2 ± 7.8 RLLRRL, RLRRRL, RLLLLL
5-gram PLM ✓ LC 18.4 ± 0.9 46.9 ± 1.3 29.1 ± 1.4 LLLRLL, RLLRLL, RLRRLL
4-gram PLM ✓ TD 29.2 ± 0.6 40.0 ± 1.6 4.3 ± 5.4 LLRRRL, RLRRRL, LLRRRR
4-gram PLM ✓ LC 21.5 ± 0.6 50.5 ± 0.6 22.5 ± 0.9 RLLRLL, RLRRLL, LLLRLL
3-gram PLM ✓ TD 19.9 ± 0.7 29.0 ± 1.8 17.2 ± 2.0 RLLRRL, LLLRRL, RLLRRR
3-gram PLM ✓ LC 17.8 ± 0.2 55.7 ± 0.3 27.0 ± 0.5 RLLRRR, RLLRRL, RLRRRR

RNNG TD -22.7 ± 4.7 6.0 ± 14.5 14.5 ± 10.8 RLLRLL, RRRRLL, RRRLLL
RNNG LC -17.6 ± 6.4 25.1 ± 13.4 -21.1 ± 2.0 RRRRRL, RRLLRL, RRLRRL
SRNNG ✓ TD 1.8 ± 9.3 10.7 ± 7.8 10.1 ± 7.0 RLLRRR, RLRRRR, RLLRRL
SRNNG ✓ LC 19.1 ± 9.6 23.8 ± 13.0 -40.7 ± 8.5 LRRRRR, LRLRRR, LLLRRR

LLaMA2 (7B) 6.8 ± 31.0 15.4 ± 2.5 -4.5 ± 31.0 LRLLLL, LRRLLL, LRLRLL

Table 11: The results of log PPL
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Probability Production rule Relevant parameter

1 ROOT → S
1/2 S → NP_Subj_S VP_S sS

1/2 S → NP_Subj_P VP_P sS

1/3 VP_S → VP_Past_S
1/3 VP_S → VP_Pres_S
1/3 VP_S → VP_Comp_S
1/3 VP_P → VP_Past_P
1/3 VP_P → VP_Pres_P
1/3 VP_P → VP_Comp_P
1/2 VP_Comp_S → VP_Comp_Pres_S
1/2 VP_Comp_S → VP_Comp_Past_S
1/2 VP_Comp_P → VP_Comp_Pres_P
1/2 VP_Comp_P → VP_Comp_Past_P
1/2 VP_Past_S → IVerb_Past_S
1/2 VP_Past_S → NP_Obj TVerb_Past_S sVP

1/2 VP_Pres_S → IVerb_Pres_S
1/2 VP_Pres_S → NP_Obj TVerb_Pres_S sVP

1/2 VP_Past_P → IVerb_Past_P
1/2 VP_Past_P → NP_Obj TVerb_Past_P sVP

1/2 VP_Pres_P → IVerb_Pres_P
1/2 VP_Pres_P → NP_Obj TVerb_Pres_P sVP

1 VP_Comp_Pres_S → S_Comp Verb_Comp_Pres_S sVP

1 VP_Comp_Past_S → S_Comp Verb_Comp_Past_S sVP

1 VP_Comp_Pres_P → S_Comp Verb_Comp_Pres_P sVP

1 VP_Comp_Past_P → S_Comp Verb_Comp_Past_P sVP

1 S_Comp → S Comp sComp

1 NP_Subj_S → NP_S Subj sCase

1 NP_Subj_P → NP_P Subj sCase

1/2 NP_Obj → NP_S Obj sCase

1/2 NP_Obj → NP_P Obj sCase

5/21 NP_S → Noun_S
5/21 NP_S → Adj Noun_S sNP

5/21 NP_S → VP_S Rel Noun_S sRel

5/21 NP_S → Pronoun_S
1/21 NP_S → PP NP_S sPP

10/43 NP_P → Noun_P
10/43 NP_P → Adj Noun_P sNP

10/43 NP_P → VP_P Rel Noun_P sRel

10/43 NP_P → Pronoun_P
2/43 NP_P → PP NP_P sPP

1/172 NP_P → NP_S CC NP_S
1/172 NP_P → NP_P CC NP_P
1/172 NP_P → NP_P CC NP_S
1/172 NP_P → NP_S CC NP_P

1/2 PP → NP_S Prep sPP

1/2 PP → NP_P Prep sPP

1/43 Adj → Adj CC Adj
1/566 TVerb_Past_S → TVerb_Past_S CC TVerb_Past_S
1/566 TVerb_Pres_S → TVerb_Pres_S CC TVerb_Pres_S
1/566 IVerb_Past_S → IVerb_Past_S CC IVerb_Past_S
1/566 IVerb_Pres_S → IVerb_Pres_S CC IVerb_Pres_S
1/566 TVerb_Past_P → TVerb_Past_P CC TVerb_Past_P
1/566 TVerb_Pres_P → TVerb_Pres_P CC TVerb_Pres_P
1/566 IVerb_Past_P → IVerb_Past_P CC IVerb_Past_P
1/566 IVerb_Pres_P → IVerb_Pres_P CC IVerb_Pres_P

1 Verb_Comp_Past_S → word ∼ Dict[Verb_Comp_Past_S] # 22 types
1 Verb_Comp_Past_P → word ∼ Dict[Verb_Comp_Past_P] # 22 types

565/566 IVerb_Past_S → word ∼ Dict[IVerb_Past_S] # 113 types
565/566 IVerb_Past_P → word ∼ Dict[IVerb_Past_P] # 113 types
565/566 TVerb_Past_S → word ∼ Dict[TVerb_Past_S] # 113 types
565/566 TVerb_Past_P → word ∼ Dict[TVerb_Past_P] # 113 types

1 Verb_Comp_Pres_S → word ∼ Dict[Verb_Comp_Pres_S] # 22 types
1 Verb_Comp_Pres_P → word ∼ Dict[Verb_Comp_Pres_P] # 22 types

565/566 IVerb_Pres_S → word ∼ Dict[IVerb_Pres_S] # 113 types
565/566 IVerb_Pres_P → word ∼ Dict[IVerb_Pres_P] # 113 types
565/566 TVerb_Pres_S → word ∼ Dict[TVerb_Pres_S] # 113 types
565/566 TVerb_Pres_P → word ∼ Dict[TVerb_Pres_P] # 113 types

1 Noun_S → word ∼ Dict[Noun_S] # 162 types
1 Noun_P → word ∼ Dict[Noun_P] # 162 types
1 Pronoun_S → word ∼ Dict[Pronoun_S] # 5 types
1 Pronoun_P → word ∼ Dict[Pronoun_P] # 2 types

42/43 Adj → word ∼ Dict[Adj] # 42 types
1 Prep → word ∼ Dict[Prep] # 4 types
1 CC → da
1 Comp → sa
1 Rel → rel
1 Subj → sub
1 Obj → ob

Table 12: The base grammar we used to create artificial language data. The relevant switch in the third column
overwrites the linearization order in the corresponding rule. The lexical items are randomly sampled from the
pseudoword dictionary.
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Fairseq
model

share-decoder-input-output-embed True
embed_dim 128
ffn_embed_dim 512
layers 2
heads 2
dropout 0.3
attention_dropout 0.1
#params. 462K

Optimizer
algorithm AdamW
learning rates 5e-4
betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0

Learning rate scheduler type inverse_sqrt
warmup updates 400
warmup init learning rate 1e-7

Training batch size 512 tokens
sample-break-mode none
epochs 10

(a) Transformer.

Fairseq
model

share-decoder-input-output-embed True
embed_dim 128
hiden_size 512
layers 2
dropout 0.1
#params. 3,547K

Optimizer
algorithm AdamW
learning rates 5e-4
betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0

Learning rate scheduler type inverse_sqrt
warmup updates 400
warmup init learning rate 1e-7

Training batch size 512 tokens
sample-break-mode none
epochs 10

(b) LSTM.

Fairseq
model

share-decoder-input-output-embed True
embed_dim 64
hiden_size 64
layers 2
dropout 0.1
#params. 49K

Optimizer
algorithm AdamW
learning rates 5e-4
betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0

Learning rate scheduler type inverse_sqrt
warmup updates 400
warmup init learning rate 1e-7

Training batch size 512 tokens
sample-break-mode none
epochs 10

(c) SRN.

Table 13: Hyperparameters of standard LMs and PLMs
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model

composition BiLSTM
recurrence LSTM
embed_dim 256
hiden_size 256
layers 2
dropout 0.3
#params. 2,440K

Optimizer
algorithm Adam
learning rates 1e-3
betas (0.9, 0.98)
max grad norm 5.0

Training
batch size 2,048 tokens
sample-break-mode none
epochs 10

Inference
beam size 100
word beam size 10
shift size 1

(a) RNNG.

model

composition Simple RNN
recurrence Simple RNN
embed_dim 64
hiden_size 64
layers 2
dropout 0.3
#params. 68K

Optimizer
algorithm Adam
learning rates 1e-3
betas (0.9, 0.98)
max grad norm 5.0

Training
batch size 2,048 tokens
sample-break-mode none
epochs 10

Inference
beam size 100
word beam size 10
shift size 1

(b) SRNNG.

Table 14: Hyperparameters of RNNGs
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