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Abstract

Whether embedding spaces use all their dimen-001
sions equally, i.e., whether they are isotropic,002
has been a recent subject of discussion. Evi-003
dence has been accrued both for and against004
enforcing isotropy in embedding spaces. In005
the present paper, we stress that isotropy im-006
poses requirements on the embedding space007
that are not compatible with the presence of008
clusters—which also negatively impacts linear009
classification objectives. We demonstrate this010
fact empirically and use it to shed light on pre-011
vious results from the literature.012

1 Introduction013

Recently, there has been much discussion centered014

around whether vector representations used in NLP015

do and should use all dimensions equally. This016

characteristic is known as isotropy: In an isotropic017

embedding model, every direction is equally prob-018

able, ensuring uniform data representation without019

directional bias. At face value, such a character-020

istic would appear desirable: Naively, one could021

argue that an anisotropic embedding space would022

be overparametrized, since it can afford to use some023

dimensions inefficiently.024

The debate surrounding isotropy was initially025

sparked by Mu and Viswanath (2018), who high-026

lighted that isotropic static representations fared027

better on common lexical semantics benchmarks,028

and Ethayarajh (2019), who stressed that contextual029

embeddings are anisotropic. Since then, evidence030

has been accrued both for and against enforcing031

isotropy on embeddings.032

In the present paper, we demonstrate that this033

conflicting evidence can be accounted for once we034

consider how isotropy relates to embedding space035

geometry. Strict isotropy, as assessed by IsoScore036

(Rudman et al., 2022), requires the absence of clus-037

ters, and thereby also conflicts with linear classifi-038

cation objectives. This echoes previous empirical039

studies connecting isotropy and cluster structures040

(Ait-Saada and Nadif, 2023, a.o.). In the present pa- 041

per, we formalize this connection mathematically 042

in Section 2. We then empirically verify our math- 043

ematical approach in Section 3, discuss how this 044

relation sheds light on earlier works focusing on 045

anisotropy in Section 4, and conclude with direc- 046

tions for future work in Section 5. 047

2 Some conflicting optimization objectives 048

We can show that isotropy—as assessed by 049

IsoScore (Rudman et al., 2022)—impose require- 050

ments that conflict with cluster structures—as as- 051

sessed by silhouette scores (Rousseeuw, 1987)—as 052

well as linear classifier objectives. 053

Notations. In what follows, let D be a multiset 054

of points in a vector space, Ω a set of labels, and 055

ℓ : D → Ω a labeling function that associates a 056

given data-point in D to the relevant label. For 057

simplicity, let us further assume that D is PCA- 058

transformed. Let us also define the following con- 059

structs for clarity of exposition: 060

Dω = {d : ℓ (d) = ω} 061

sign(ω, ω′) =

{
−1 if ω = ω′

+1 otherwise
062

Simply put, Dω is the subset of points in D with 063

label ω, whereas the sign function helps delineate 064

terms that need to be maximized (inter-cluster) vs. 065

terms that need to be minimized (intra-cluster). 066

2.1 Silhouette objective for clustering 067

We can consider whether the groups as defined 068

by ℓ are in fact well delineated by the Euclidean 069

distance, i.e., whether they form natural clusters. 070

This is something that can be assessed through 071

silhouette scores, which involve a separation and a 072

cohesion score for each data-point. The cohesion 073

score consists in computing the average distance 074

between the data-point and other members of its 075
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group, whereas separation consists in computing076

the minimum cohesion score the data-point could077

have received with any other label than the one it078

was assigned to. More formally, let:079

cost(d,S) = 1

|S|
∑
d′∈S

√∑
i

(di − d′
i)
2

080

then we can define the silhouette for one sample as081

coh(d) = cost
(
d,Dℓ(d) \ {d}

)
082

sep(d) = min
ω′∈Ω\{ℓ(d)}

cost (d,Dω′)083

silhouette(d) =
sep(d)− coh(d)

max{sep(d), coh(d)}
084

Or in other words, the silhouette score is maxi-085

mized when separation cost (sep) is maximized and086

cohesion cost (coh) is minimized. Hence, to maxi-087

mize the silhouette score across the whole dataset088

D, one needs to (i) maximize all inter-cluster dis-089

tances, and (ii) minimize all intra-cluster distances.090

We can therefore define a maximization objec-091

tive for the entire set D:092 ∑
d∈D

∑
d′∈D

sign(ℓ(d), ℓ(d′))

√∑
i

(di − d′
i)
2

093

which, due to the monotonicity of the square root094

in R+, will have the same optimal argument D∗ as095

the simpler objective OS096

OS =
∑
d∈D

∑
d′∈D

sign(ℓ(d), ℓ(d′))
∑
i

(
di − d′

i

)2
(1)097

2.2 Incompatibility with IsoScore098

How does the objective in (1) conflict with isotropy099

requirements? Assessments of isotropy such as100

IsoScore generally rely on the variance vector. As101

we assume D to be PCA transformed, the covari-102

ance matrix is diagonalized, and we can obtain103

variance for each individual component through104

pairwise squared distances (Zhang et al., 2012):105

V(D)i =
1

2|D|2
∑
d∈D

∑
d′∈D

(
di − d′

i

)2
106

In IsoScore, this variance vector is then normal-107

ized to the length of the 1⃗ vector of all ones, before108

computing the distance between the two:109 √√√√∑
i

(
∥⃗1∥2

∥V(D)∥2
V(D)i − 1

)2

110

This distance is taken as an indicator of isotropy 111

defect, i.e., isotropic spaces will minimize it. 112

Given the normalization applied to the variance 113

vector, the defect is computed as the distance be- 114

tween two points on a hyper-sphere. Hence it is 115

conceptually simpler to think of this distance as 116

an angle measurement: Remark that as the cosine 117

between V(D) and 1⃗ increases, the isotropy defect 118

decreases. In short, to maximize isotropy, we have 119

to maximize the objective OI 120

OI = cos
(
1⃗,V (D)

)
121

∝
∑
d∈D

∑
d′∈D

∑
i

(
di − d′

i

)2 (2) 122

This intuitively makes sense: Ignoring vector 123

norms, we have to maximize all distances between 124

every pair of data-points to ensure all dimensions 125

are used equally, i.e., spread data-points out evenly 126

on a hyper-sphere. However, in the general case, it 127

is not possible to maximize both the isotropy ob- 128

jective in (2) and the silhouette score objective in 129

(1): Intra-cluster pairwise distances must be min- 130

imized for optimal silhouette scores, but must be 131

maximized for optimal isotropy scores. In fact, the 132

two objectives can only be jointly maximized in 133

the degenerate case where no two data-points in D 134

are assigned the same label.1 135

2.3 Relation to linear classifiers 136

Informally, latent representations need to form clus- 137

ters corresponding to the labels in order to optimize 138

a linear classification objective. Consider that in 139

classification problems (i) any data-point d is to be 140

associated with a particular label ℓ(d) = ωi and 141

dissociated from other labels Ω\{ℓ(d)}, and (ii) as- 142

sociation scores are computed using a dot product 143

between the latent representation to be classified 144

and the output projection matrix, where each col- 145

umn vector cω corresponds to a different class label 146

ω. As such, for any point d to be associated with 147

its label ℓ(d), one has to maximize 148

⟨d, cℓ(d)⟩ = 1
2

(
∥d∥22 + ∥cℓ(d)∥22 − ∥d− cℓ(d)∥22

)
149

In other words, one must either augment the norm 150

of d or cℓ(d), or minimize the distance between d 151

and cℓ(d). Note however that this does not factor 152

in the other classes ω′ ∈ Ω \ {ℓ(d)} from which 153

1Hence some NLP applications and tasks need not be im-
peded by isotropy constrains, e.g., linear analogies that rely
on vector offsets are a prima facie compatible with isotropy.
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d should be dissociated, i.e., where we must mini-154

mize the above quantity. To account for the other155

classes, the global objective OC to maximize can156

be defined as157

OC =
∑
d∈D

∑
ω∈Ω

sign (ω, ℓ (d)) ⟨d, cω⟩

=−
∑
d∈D

|Ω| − 2

2
∥d∥22 −

∑
ω∈Ω

|D| − 2|Dω|
2

∥cω∥22

+
1

2

∑
d∈D

∑
ω∈Ω

sign (ω, ℓ (d))
∑
i

(di − cωi )
2

(3)158

Focusing on the last line, we find that maximiz-159

ing classification objectives entails minimizing the160

distance between a latent representation d and the161

vector for its label cℓ(d), and maximizing its dis-162

tance to all other class vectors. It is reminiscent of163

the silhouette score in Equation (1): In particular164

any optimum for OC is an optimum for OS, since165

it entails D∗ such that166

∀d,d′ ∈ D∗ ℓ(d) = ℓ(d′) ⇐⇒ d = d′167

Informally: The cluster associated with a label168

should collapse to a single point. Therefore the169

isotropic objective OI in Equation (2) is equally170

incompatible with the learning objective OC of a171

linear classifier.172

In summary, (i) point clouds cannot both con-173

tain well-defined clusters and be isotropic; and (ii)174

linear classifiers should yield clustered and thereby175

anisotropic representations.176

3 Empirical confirmation177

To verify the validity of our demonstrations in Sec-178

tion 2, we can optimize a set of data-points for179

a classification task using a linear classifier: We180

should observe an increase in silhouette scores, and181

a decrease in IsoScore.182

3.1 Methodology183

We consider four setups: (i) optimizing SBERT sen-184

tence embeddings (Reimers and Gurevych, 2019)2185

on the binary polarity dataset of Pang and Lee186

(2004); (ii) optimizing paired SBERT embeddings2187

on the validation split of SNLI (Bowman et al.,188

2015); (iii) optimizing word2vec embeddings3 on189

POS-tagging multi-label classification using the En-190

glish CoDWoE dataset (Mickus et al., 2022); and191

2all-MiniLM-L6-v2
3http://vectors.nlpl.eu/repository/,

model 222

(iv) optimizing word2vec embeddings3 for Word- 192

Net supersenses multi-label classification (Fell- 193

baum, 1998; pre-processed by Tikhonov et al., 194

2023). For (i) and (ii), we directly optimize the out- 195

put embeddings of the SBERT model rather than 196

update the parameters of the SBERT model. In all 197

cases, we compute gradients for the entire dataset, 198

and compute silhouette scores with respect to the 199

target labels and IsoScore over 1000 updates. In 200

multi-label cases (iii) and (iv), we consider distinct 201

label vectors as distinct target assignments when 202

computing silhouette scores. Models are trained us- 203

ing the Adam algorithm (Kingma and Ba, 2014);4 204

in case (i) and (ii) we optimize cross-entropy, in 205

case (iii) and (iv), binary cross-entropy per label. 206

Remark that setups (ii), (iii) and (iv) subtly depart 207

from the strict requirements laid out in Section 2. 208
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Figure 1: Evolution of silhouette score and IsoScore
across classification optimization (avg. of 5 runs).
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Figure 2: Relationship between silhouette scores and
IsoScore (avg. of 5 runs).

4Learning rate of 0.001, β of (0.9, 0.999).
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3.2 Results209

Results of this empirical study are displayed in210

Section 3.1. Performances with five different ran-211

dom initialization reveal negligible standard devia-212

tions (maximum at any step < 0.0054, on average213

< 0.0008). Our demonstration is validated: Across214

training to optimize classification tasks, the data-215

points become less isotropic and better clustered.216

We can also see a monotonically decreasing rela-217

tionship between IsoScore and silhouette scores,218

which is better exemplified in Figure 2: We find219

correlations with Pearson’s r of −0.808 for the220

polarity task, −0.898 for SNLI, −0.947 for POS-221

tagging and −0.978 for supersense tagging; Spear-222

man’s ρ are always below −0.998.223

In summary, we empirically confirm that224

isotropy requirements conflict with silhouette225

scores and linear classification objectives.226

4 Related works227

How does the connection between clusterability228

and isotropy that we outlined shed light on the229

growing literature on anisotropy?230

While there is currently more evidence in fa-231

vor of enforcing isotropy in embeddings, the case232

is not so clear cut that we can discard negative233

findings, and a vast majority of the positive evi-234

dence relies on improper techniques for quantify-235

ing isotropy (Rudman et al., 2022). Ethayarajh236

(2019) stressed that contextual embeddings are ef-237

fective yet anisotropic. Ding et al. (2022) provides238

experiments that advise against using isotropy cal-239

ibration on transformers to enhance performance240

in specific tasks. Rudman and Eickhoff (2023)241

finds that anisotropy regularization in fine-tuning242

appears to be beneficial on a large array of tasks.243

Lastly, Rajaee and Pilehvar (2021a) find that the244

contrasts encoded in dominant dimensions can, at245

times, capture linguistic knowledge.246

On the other hand, the original study of Mu and247

Viswanath (2018) found that enforcing isotropy on248

static embeddings improved performances on se-249

mantic similarity, both at the word and sentence250

level, as well as word analogy. Subsequently, a251

large section of the literature has focused on this252

handful of tasks (e.g., Liang et al., 2021; Timkey253

and van Schijndel, 2021). Isotropy was also found254

to be helpful beyond these similarity tasks: Haem-255

merl et al. (2023) report that isotropic spaces per-256

form much better on cross-lingual tasks, and Jung257

et al. (2023) stress its benefits for dense retrieval. 258

These are all applications that require graded 259

ranking judgments, and therefore are generally hin- 260

dered by the presence of clusters—such clusters 261

would for instance introduce large discontinuities 262

in cosine similarity scores. To take Haemmerl 263

et al. (2023) as an example, note that language- 264

specific clusters are antithetical to the success of 265

cross-lingual transfer applications. It stands to rea- 266

son that isotropy can be found beneficial in such 267

cases, although the exact experimental setup will 268

necessarily dictate whether it is boon or bane: For 269

instance Rajaee and Pilehvar (2021b) tested fine- 270

tuning LLMs as Siamese networks to optimize per- 271

formance on sentence-level similarity, and found 272

enforcing isotropy to hurt performances—here, we 273

can conjecture that learning to assign inputs to spe- 274

cific clusters is a viable solution in their case. 275

The literature has previously addressed the topic 276

of isotropy and clustering. Rajaee and Pilehvar 277

(2021a) advocated for enhancing the isotropy on 278

a cluster-level rather than on a global-level. Cai 279

et al. (2021) confirmed the presence of clusters in 280

the embedding space with local isotropy properties. 281

Ait-Saada and Nadif (2023) investigated the cor- 282

relation between isotropy and clustering tasks and 283

found that fostering high anisotropy yields high- 284

quality clustering representations. The study pre- 285

sented here provides a mathematical explanation 286

for these empirical findings. 287

5 Conclusion 288

We argued that isotropy and cluster structures are 289

antithetical (Section 2), verified that this argument 290

holds on real data (Section 3), and used it to shed 291

light on earlier results (Section 4). This result how- 292

ever opens novel and interesting directions of re- 293

search: If anisotropic spaces implicitly entail clus- 294

ter structures, then what is the structure we observe 295

in our modern, highly anisotropic large language 296

models? Prior results suggest that this structure 297

is in part linguistic in nature (Rajaee and Pilehvar, 298

2021a), but further confirmation is required. 299

Another topic we intend to pursue in future work 300

concerns the relation between non-classification 301

tasks and isotropy: Isotropy constraints have been 302

found to be useful in problems that are not well 303

modeled by linear classification, e.g. word analogy 304

or sentence similarity. Our present work does not 305

yet offer a thorough theoretical explanation why. 306
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Limitations307

The present paper leaves a number of important308

problems open.309

• Our claims with respect to classification are310

limited to linear classifiers. However, most311

(if not all) modern deep-learning classifica-312

tion approaches rely on non-linear activation313

functions across multiple layers of computa-314

tions. The present demonstration has yet to be315

expanded to account for such more common316

cases.317

• Our argument focuses on the optima of spe-318

cific objectives, and says nothing of behavior319

across training. In particular, we focus on pa-320

rameters that are optimized for a particular321

task, but NLP practitioners often verify and322

measure anisotropy in generalization condi-323

tions. In fact, enforcing isotropy could be324

argued to be a reasonable regularization strat-325

egy in that it would lead latent representations326

to not be tied to a specific classification struc-327

ture.328

• The mathematical formalism is not thorough.329

For the sake of clarity and given page limi-330

tations, we do not include a formal demon-331

stration that the linear classification optimum332

necessarily satisfies the clustering objective.333

Likewise, we also rely on the reader’s intu-334

ition when discussing isotropy in Equation (2)335

(rather than properly deriving it from the re-336

lation between the chord from 1⃗ to V(D) and337

the sine of the angle between 1⃗ and V(D)),338

and ignore the cosine denominator.339

All of the listed limitations make for good ques-340

tions to be discussed at length in future work.341
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A Responsible NLP Research Checklist 490

Compliance 491

Dataset N. items N. params.

Pang and Lee (2004)
10 662 4 094 976

through nltk (Bird and Loper, 2004)

Bowman et al. (2015)
9 842 4 987 395

from nlp.stanford.edu

Mickus et al. (2022)
11 462 4 341 004

from codwoe.atilf.fr

Fellbaum (1998)
2 275 690 326

from github.com/altsoph

Table 1: Dataset vs. number of datapoints (N. items)
and corresponding number of trainable parameters (N.
params.).

All the datasets and models we used are English 492

and CC-BY or CC-BY-SA, our use is consistent 493

with the intended use of these resources. We trust 494

original creators of these resources that they con- 495

tain no personally identifying data. Relevant infor- 496

mation is available in Table 1; remark we do not 497

split the data as we are interested on optimization 498

behavior. 499

Training per model requires between 10 minutes 500

and 1 hour on an RTX3080 GPU; much of which is 501

in fact devoted to CPU computations for IsoScore 502

values. Hyperparameters listed correspond to de- 503

fault PyTorch values (Paszke et al., 2019), no hy- 504

perparameter search was carried out. IsoScore 505
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is computed with the pip package IsoScore506

(Rudman et al., 2022), silhouette scores with507

scikit-learn (Pedregosa et al., 2011).508
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