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Abstract

Whether embedding spaces use all their dimen-
sions equally, i.e., whether they are isotropic,
has been a recent subject of discussion. Evi-
dence has been accrued both for and against
enforcing isotropy in embedding spaces. In
the present paper, we stress that isotropy im-
poses requirements on the embedding space
that are not compatible with the presence of
clusters—which also negatively impacts linear
classification objectives. We demonstrate this
fact empirically and use it to shed light on pre-
vious results from the literature.

1 Introduction

Recently, there has been much discussion centered
around whether vector representations used in NLP
do and should use all dimensions equally. This
characteristic is known as isotropy: In an isotropic
embedding model, every direction is equally prob-
able, ensuring uniform data representation without
directional bias. At face value, such a character-
istic would appear desirable: Naively, one could
argue that an anisotropic embedding space would
be overparametrized, since it can afford to use some
dimensions inefficiently.

The debate surrounding isotropy was initially
sparked by Mu and Viswanath (2018), who high-
lighted that isotropic static representations fared
better on common lexical semantics benchmarks,
and Ethayarajh (2019), who stressed that contextual
embeddings are anisotropic. Since then, evidence
has been accrued both for and against enforcing
isotropy on embeddings.

In the present paper, we demonstrate that this
conflicting evidence can be accounted for once we
consider how isotropy relates to embedding space
geometry. Strict isotropy, as assessed by IsoScore
(Rudman et al., 2022), requires the absence of clus-
ters, and thereby also conflicts with linear classifi-
cation objectives. This echoes previous empirical
studies connecting isotropy and cluster structures

(Ait-Saada and Nadif, 2023, a.o0.). In the present pa-
per, we formalize this connection mathematically
in Section 2. We then empirically verify our math-
ematical approach in Section 3, discuss how this
relation sheds light on earlier works focusing on
anisotropy in Section 4, and conclude with direc-
tions for future work in Section 5.

2 Some conflicting optimization objectives

We can show that isotropy—as assessed by
IsoScore (Rudman et al., 2022)—impose require-
ments that conflict with cluster structures—as as-
sessed by silhouette scores (Rousseeuw, 1987)—as
well as linear classifier objectives.

Notations. In what follows, let D be a multiset
of points in a vector space, € a set of labels, and
¢ : D — € a labeling function that associates a
given data-point in D to the relevant label. For
simplicity, let us further assume that D is PCA-
transformed. Let us also define the following con-
structs for clarity of exposition:

D,=1{d : ¢(d) =w}

sign(w,w’) = {

-1 ifw=0w

+1 otherwise

Simply put, D, is the subset of points in D with
label w, whereas the sign function helps delineate
terms that need to be maximized (inter-cluster) vs.
terms that need to be minimized (intra-cluster).

2.1 Silhouette objective for clustering

We can consider whether the groups as defined
by ¢ are in fact well delineated by the Euclidean
distance, i.e., whether they form natural clusters.
This is something that can be assessed through
silhouette scores, which involve a separation and a
cohesion score for each data-point. The cohesion
score consists in computing the average distance
between the data-point and other members of its



group, whereas separation consists in computing
the minimum cohesion score the data-point could
have received with any other label than the one it
was assigned to. More formally, let:

%,/Z

then we can define the silhouette for one sample as

cost(d, S)

coh(d) = cost (d, Dyq) \ {d})

sep(d) = min  cost(d, D,
silhouette(d) = sep(d) — coh(d)

max{sep(d), coh(d)}

Or in other words, the silhouette score is maxi-
mized when separation cost (sep) is maximized and
cohesion cost (coh) is minimized. Hence, to maxi-
mize the silhouette score across the whole dataset
D, one needs to (i) maximize all inter-cluster dis-
tances, and (i) minimize all intra-cluster distances.

We can therefore define a maximization objec-
tive for the entire set D:

>N sign(e(d), o(d), > (di - d'i)?

deDd’eD %

which, due to the monotonicity of the square root
in R, will have the same optimal argument D* as
the simpler objective Og

Os =3 3 sien(i(d), ¢(d) Y (d; — d%)”
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2.2 Incompatibility with IsoScore

How does the objective in (1) conflict with isotropy
requirements? Assessments of isotropy such as
IsoScore generally rely on the variance vector. As
we assume D to be PCA transformed, the covari-
ance matrix is diagonalized, and we can obtain
variance for each individual component through
pairwise squared distances (Zhang et al., 2012):
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In IsoScore, this variance vector is then normal-
ized to the length of the 1 vector of all ones, before
computing the distance between the two:
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This distance is taken as an indicator of isotropy
defect, i.e., isotropic spaces will minimize it.

Given the normalization applied to the variance
vector, the defect is computed as the distance be-
tween two points on a hyper-sphere. Hence it is
conceptually simpler to think of this distance as
an angle measurement: Remark that as the cosine
between V(D) and 1 increases, the isotropy defect
decreases. In short, to maximize isotropy, we have
to maximize the objective O

Or = cos (f,V(D))
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This intuitively makes sense: Ignoring vector
norms, we have to maximize all distances between
every pair of data-points to ensure all dimensions
are used equally, i.e., spread data-points out evenly
on a hyper-sphere. However, in the general case, it
is not possible to maximize both the isotropy ob-
jective in (2) and the silhouette score objective in
(1): Intra-cluster pairwise distances must be min-
imized for optimal silhouette scores, but must be
maximized for optimal isotropy scores. In fact, the
two objectives can only be jointly maximized in
the degenerate case where no two data-points in D
are assigned the same label.!

2.3 Relation to linear classifiers

Informally, latent representations need to form clus-
ters corresponding to the labels in order to optimize
a linear classification objective. Consider that in
classification problems (i) any data-point d is to be
associated with a particular label {(d) = w; and
dissociated from other labels 2\ {£(d)}, and (ii) as-
sociation scores are computed using a dot product
between the latent representation to be classified
and the output projection matrix, where each col-
umn vector ¢ corresponds to a different class label
w. As such, for any point d to be associated with
its label /(d), one has to maximize

(d, @) = & (Jld]3 + "D [3 - |d - " D3)

In other words, one must either augment the norm
of d or ¢/, or minimize the distance between d
and c/9). Note however that this does not factor
in the other classes w’ € Q \ {¢(d)} from which

"Hence some NLP applications and tasks need not be im-
peded by isotropy constrains, e.g., linear analogies that rely
on vector offsets are a prima facie compatible with isotropy.



d should be dissociated, i.e., where we must mini-
mize the above quantity. To account for the other
classes, the global objective O¢ to maximize can
be defined as

Oc =) sign(w,((d))(d,c)

deD wel

Q 'D 2'D

deD weN
+ - Z ngn w, £ (d)) 2:(d¢—c‘;’)2
dEDWGQ

3)
Focusing on the last line, we find that maximiz-
ing classification objectives entails minimizing the
distance between a latent representation d and the
vector for its label ¢/(4), and maximizing its dis-
tance to all other class vectors. It is reminiscent of
the silhouette score in Equation (1): In particular
any optimum for O¢ is an optimum for Og, since
it entails D* such that

vd,d € D* ((d)=/(d) — d=4d
Informally: The cluster associated with a label
should collapse to a single point. Therefore the
isotropic objective Or in Equation (2) is equally
incompatible with the learning objective O¢ of a
linear classifier.

In summary, (i) point clouds cannot both con-
tain well-defined clusters and be isotropic; and (ii)
linear classifiers should yield clustered and thereby
anisotropic representations.

3 Empirical confirmation

To verify the validity of our demonstrations in Sec-
tion 2, we can optimize a set of data-points for
a classification task using a linear classifier: We
should observe an increase in silhouette scores, and
a decrease in IsoScore.

3.1 Methodology

We consider four setups: (i) optimizing SBERT sen-
tence embeddings (Reimers and Gurevych, 2019)?
on the binary polarity dataset of Pang and Lee
(2004); (ii) optimizing paired SBERT embeddings®
on the validation split of SNLI (Bowman et al.,
2015); (iii) optimizing word2vec embeddings® on
POS-tagging multi-label classification using the En-
glish CoODWOoE dataset (Mickus et al., 2022); and
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(iv) optimizing word2vec embeddings® for Word-
Net supersenses multi-label classification (Fell-
baum, 1998; pre-processed by Tikhonov et al.,
2023). For (i) and (ii), we directly optimize the out-
put embeddings of the SBERT model rather than
update the parameters of the SBERT model. In all
cases, we compute gradients for the entire dataset,
and compute silhouette scores with respect to the
target labels and IsoScore over 1000 updates. In
multi-label cases (iii) and (iv), we consider distinct
label vectors as distinct target assignments when
computing silhouette scores. Models are trained us-
ing the Adam algorithm (Kingma and Ba, 2014);*
in case (i) and (ii) we optimize cross-entropy, in
case (iii) and (iv), binary cross-entropy per label.
Remark that setups (ii), (iii) and (iv) subtly depart
from the strict requirements laid out in Section 2.
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Figure 1: Evolution of silhouette score and IsoScore
across classification optimization (avg. of 5 runs).
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Figure 2: Relationship between silhouette scores and
IsoScore (avg. of 5 runs).

*Learning rate of 0.001, § of (0.9, 0.999).
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3.2 Results

Results of this empirical study are displayed in
Section 3.1. Performances with five different ran-
dom initialization reveal negligible standard devia-
tions (maximum at any step < 0.0054, on average
< 0.0008). Our demonstration is validated: Across
training to optimize classification tasks, the data-
points become less isotropic and better clustered.
We can also see a monotonically decreasing rela-
tionship between IsoScore and silhouette scores,
which is better exemplified in Figure 2: We find
correlations with Pearson’s r of —0.808 for the
polarity task, —0.898 for SNLI, —0.947 for POS-
tagging and —0.978 for supersense tagging; Spear-
man’s p are always below —0.998.

In summary, we empirically confirm that
isotropy requirements conflict with silhouette
scores and linear classification objectives.

4 Related works

How does the connection between clusterability
and isotropy that we outlined shed light on the
growing literature on anisotropy?

While there is currently more evidence in fa-
vor of enforcing isotropy in embeddings, the case
is not so clear cut that we can discard negative
findings, and a vast majority of the positive evi-
dence relies on improper techniques for quantify-
ing isotropy (Rudman et al., 2022). Ethayarajh
(2019) stressed that contextual embeddings are ef-
fective yet anisotropic. Ding et al. (2022) provides
experiments that advise against using isotropy cal-
ibration on transformers to enhance performance
in specific tasks. Rudman and Eickhoff (2023)
finds that anisotropy regularization in fine-tuning
appears to be beneficial on a large array of tasks.
Lastly, Rajaee and Pilehvar (2021a) find that the
contrasts encoded in dominant dimensions can, at
times, capture linguistic knowledge.

On the other hand, the original study of Mu and
Viswanath (2018) found that enforcing isotropy on
static embeddings improved performances on se-
mantic similarity, both at the word and sentence
level, as well as word analogy. Subsequently, a
large section of the literature has focused on this
handful of tasks (e.g., Liang et al., 2021; Timkey
and van Schijndel, 2021). Isotropy was also found
to be helpful beyond these similarity tasks: Haem-
merl et al. (2023) report that isotropic spaces per-
form much better on cross-lingual tasks, and Jung

et al. (2023) stress its benefits for dense retrieval.

These are all applications that require graded
ranking judgments, and therefore are generally hin-
dered by the presence of clusters—such clusters
would for instance introduce large discontinuities
in cosine similarity scores. To take Haemmerl
et al. (2023) as an example, note that language-
specific clusters are antithetical to the success of
cross-lingual transfer applications. It stands to rea-
son that isotropy can be found beneficial in such
cases, although the exact experimental setup will
necessarily dictate whether it is boon or bane: For
instance Rajaee and Pilehvar (2021b) tested fine-
tuning LLMs as Siamese networks to optimize per-
formance on sentence-level similarity, and found
enforcing isotropy to hurt performances—here, we
can conjecture that learning to assign inputs to spe-
cific clusters is a viable solution in their case.

The literature has previously addressed the topic
of isotropy and clustering. Rajaee and Pilehvar
(2021a) advocated for enhancing the isotropy on
a cluster-level rather than on a global-level. Cai
et al. (2021) confirmed the presence of clusters in
the embedding space with local isotropy properties.
Ait-Saada and Nadif (2023) investigated the cor-
relation between isotropy and clustering tasks and
found that fostering high anisotropy yields high-
quality clustering representations. The study pre-
sented here provides a mathematical explanation
for these empirical findings.

5 Conclusion

We argued that isotropy and cluster structures are
antithetical (Section 2), verified that this argument
holds on real data (Section 3), and used it to shed
light on earlier results (Section 4). This result how-
ever opens novel and interesting directions of re-
search: If anisotropic spaces implicitly entail clus-
ter structures, then what is the structure we observe
in our modern, highly anisotropic large language
models? Prior results suggest that this structure
is in part linguistic in nature (Rajaee and Pilehvar,
2021a), but further confirmation is required.

Another topic we intend to pursue in future work
concerns the relation between non-classification
tasks and isotropy: Isotropy constraints have been
found to be useful in problems that are not well
modeled by linear classification, e.g. word analogy
or sentence similarity. Our present work does not
yet offer a thorough theoretical explanation why.



Limitations

The present paper leaves a number of important
problems open.

* Our claims with respect to classification are
limited to linear classifiers. However, most
(if not all) modern deep-learning classifica-
tion approaches rely on non-linear activation
functions across multiple layers of computa-
tions. The present demonstration has yet to be
expanded to account for such more common
cases.

* Our argument focuses on the optima of spe-
cific objectives, and says nothing of behavior
across training. In particular, we focus on pa-
rameters that are optimized for a particular
task, but NLP practitioners often verify and
measure anisotropy in generalization condi-
tions. In fact, enforcing isotropy could be
argued to be a reasonable regularization strat-
egy in that it would lead latent representations
to not be tied to a specific classification struc-
ture.

* The mathematical formalism is not thorough.
For the sake of clarity and given page limi-
tations, we do not include a formal demon-
stration that the linear classification optimum
necessarily satisfies the clustering objective.
Likewise, we also rely on the reader’s intu-
ition when discussing isotropy in Equation (2)
(rather than properly deriving it from the re-
lation between the chord from T to V(D) and
the sine of the angle between 1 and V(D)),
and ignore the cosine denominator.

All of the listed limitations make for good ques-
tions to be discussed at length in future work.
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A Responsible NLP Research Checklist
Compliance

Dataset N.items N. params.

Pang and Lee (2004)
through n1tk (Bird and Loper, 2004)

Bowman et al. (2015)
fromnlp.stanford.edu

Mickus et al. (2022)
from codwoe.atilf.fr

Fellbaum (1998)
from github.com/altsoph

10662 4094 976

9842 4987395

11462 4341004

2275 690 326

Table 1: Dataset vs. number of datapoints (N. items)
and corresponding number of trainable parameters (N.
params.).

All the datasets and models we used are English
and CC-BY or CC-BY-SA, our use is consistent
with the intended use of these resources. We trust
original creators of these resources that they con-
tain no personally identifying data. Relevant infor-
mation is available in Table 1; remark we do not
split the data as we are interested on optimization
behavior.

Training per model requires between 10 minutes
and 1 hour on an RTX3080 GPU; much of which is
in fact devoted to CPU computations for IsoScore
values. Hyperparameters listed correspond to de-
fault PyTorch values (Paszke et al., 2019), no hy-
perparameter search was carried out. IsoScore
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is computed with the pip package IsoScore
(Rudman et al., 2022), silhouette scores with
scikit—learn (Pedregosa et al., 2011).



