

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OMNI-VIEW: UNLOCKING HOW GENERATION FA- CILITATES UNDERSTANDING IN UNIFIED 3D MODEL BASED ON MULTIVIEW IMAGES

006
007 **Anonymous authors**
008 Paper under double-blind review

010 011 ABSTRACT

013 This paper presents Omni-View, which extends the unified multimodal under-
014 standing and generation to 3D scenes based on multiview images, exploring the
015 principle that “generation facilitates understanding”. Consisting of understanding
016 model, texture module, and geometry module, Omni-View jointly models scene
017 understanding, novel view synthesis, and geometry estimation, enabling synergistic
018 interaction between 3D scene understanding and generation tasks. By design, it
019 leverages the spatiotemporal modeling capabilities of its texture module responsi-
020 ble for appearance synthesis, alongside the explicit geometric constraints provided
021 by its dedicated geometry module, thereby enriching the model’s holistic under-
022 standing of 3D scenes. Trained with a two-stage strategy, Omni-View achieves a
023 state-of-the-art score of 55.4 on the VSI-Bench benchmark, outperforming existing
024 specialized 3D understanding models, while simultaneously delivering strong
025 performance in both novel view synthesis and 3D scene generation.

026 1 INTRODUCTION

028 Recently, unified multimodal models (UMMs) (Team, 2024a; Xie et al., 2024; Deng et al., 2025)
029 have emerged as a pivotal area of research. The primary goal is to empower multimodal large
030 language models (MLLMs) to both understand and generate visual signals present in our world,
031 laying the foundation for artificial general intelligence.

032 Numerous methods (Team, 2024a; Wu et al., 2024a;c; Xie et al., 2024; Chen et al., 2025a; Deng
033 et al., 2025) have achieved coexistence between 2D image understanding and generation. Among
034 them, some studies (Wu et al., 2024b; Tong et al., 2024; Yan et al., 2025) aim to improve model per-
035 formance by exploring the synergies arising from the interaction between understanding and genera-
036 tion. For example, Metamorph (Tong et al., 2024) has extensively validated the role of understand-
037 ing in improving generation performance. However, the potential and effectiveness of generation to
038 improve understanding capabilities within unified models remain underexplored.

039 Due to the intrinsic geometric and spatiotemporal nature of 3D scenes and their multiview images,
040 generative tasks such as geometry estimation and novel view synthesis are particularly well-suited
041 for facilitating understanding in the 3D domain. This is attributable to the fact that 3D under-
042 standing tasks (Yang et al., 2024; Zhang et al., 2025a) inherently necessitate robust geometric and
043 spatiotemporal modeling capabilities, which can be effectively acquired through these generative
044 tasks. Moreover, biomedical evidence (Maus et al., 2013; Nortmann et al., 2015) suggests that hu-
045 man understanding of 3D environments is governed by the capacity to generate and imagine future
046 sensory and geometric data (Keller et al., 2012; Leinweber et al., 2017) in the observed scene. These
047 findings provide us with a guidance: the “generation facilitates understanding” paradigm presents a
048 promising approach to building a unified model for 3D scene understanding and generation.

049 Inspired by the above analysis, this paper aims to fully unlock and maximize the benefits of genera-
050 tion to understanding, thereby constructing a unified model for 3D scene understanding and genera-
051 tion, called **Omni-View**. We emphasize that geometry estimation and novel view synthesis can
052 leverage their inherent geometric measurement and spatiotemporal modeling capabilities to improve
053 3D scene understanding, localization, and spatial reasoning. Specifically, we achieve this through
 two key aspects, *architectural design* and *training strategy*.

054 The *architectural design* aims at unifying 3D scene understanding and generation, leveraging geometry estimation and novel view synthesis to advance 3D scene understanding. Our Omni-View is
 055 built on Bagel (Deng et al., 2025), a strong unified framework in which the interaction between
 056 understanding and generation is facilitated by its shared multimodal self-attention. However, Bagel’s
 057 generative capacity is limited to RGB images, thus only capturing texture information, whereas 3D
 058 scene generation necessitates inclusion of both texture and geometric structure. In accordance with
 059 the dual generative objectives, the generation model in Omni-View is split into two distinct mod-
 060 ules: a texture module and a geometry module. The texture module receives reference images, a
 061 list of targeted camera poses, and prompt tokens encoded by the understanding model to generate
 062 novel views of the scene. Meanwhile, the geometry module employs the hidden features from the
 063 understanding model and the latent output of the texture module to infer geometric information of
 064 novel views, such as depth maps and camera poses. This dual-pathway architecture empowers the
 065 model to develop both geometric and spatiotemporal modeling capabilities, which are essential for
 066 3D scene understanding tasks.
 067

068 The principal goal of *training strategy* is to comprehensively improve the performance of the model.
 069 A two-stage training strategy is employed. The first stage aims to augment the benefits of generation
 070 for understanding 3D scenes, as introduced by the proposed architecture. The subsequent stage
 071 is intended to refine the generation performance. In stage 1, the understanding model, geometry
 072 module, and texture module are trained simultaneously. Geometry estimation assists the model
 073 in comprehending the relative positional relationships among objects, thus directly enhancing the
 074 model’s capability to evaluate the relative distances and directions of objects in 3D scenes. The
 075 autoregressive generation forces the understanding model to discern the spatiotemporal relations
 076 between the generated novel views, thus improving its understanding capabilities. As iterations
 077 progress in stage 1, the number of reference images gradually decreases. This progressive shift
 078 from dense to sparse views supports a curriculum-like, easy-to-difficult training approach, ultimately
 079 enhancing the performance of the understanding model. In stage 2, the understanding model is
 080 forzen. The generation model is finetuned via RGB-Depth-Pose joint generation, thereby enhancing
 081 its capabilities in 3D scene generation.
 082

083 We evaluate Omni-View on scene understanding, spatial reasoning, and novel view synthesis tasks.
 084 The model achieves an impressive score of 55.4 on the VSI-Bench, exceeding current MLLMs
 085 designed for visual reasoning. It manifests particularly notable improvements in subtasks such as
 086 Relative Distance and Appearance Order, which require spatiotemporal modeling and the estimation
 087 of geometry acquired through generation tasks. It also exhibits superior performance compared to
 088 existing 3D understanding MLLMs in the area of 3D question answering (Ma et al., 2023; Azuma
 089 et al., 2022). Furthermore, it effectively narrows the performance gap between unified models and
 090 specialized models focused on 3D visual localization (Chen et al., 2020). Furthermore, we attain
 091 robust results in the domain of novel view synthesis and scene generation, with particular emphasis
 092 on enhanced perceptual quality.
 093

2 RELATED WORK

094 **Scene understanding.** Recent advances in understanding 3D scenes have been greatly provided
 095 by incorporating 3D or video input and 3D reconstruction prior. LLaVA-3D (Zhu et al., 2024)
 096 and GPT4Scene (Qi et al., 2025) function within the voxel space and BEV. Video3DLM (Zheng
 097 et al., 2024) improves localization ability by encoding 3D coordinates as position embeddings,
 098 while Ross3D (Wang et al., 2025a) improves 3D understanding through visual-centric reconstruc-
 099 tion. However, the dependency on 3D input of these methods poses practical application challenges.
 100 To alleviate this issue, VG-LLM (Zheng et al., 2025) and SpatialMLM (Wu et al., 2025a) use the
 101 features of VGGT (Wang et al., 2025b) as input, embedding the 3D piror in the model.
 102

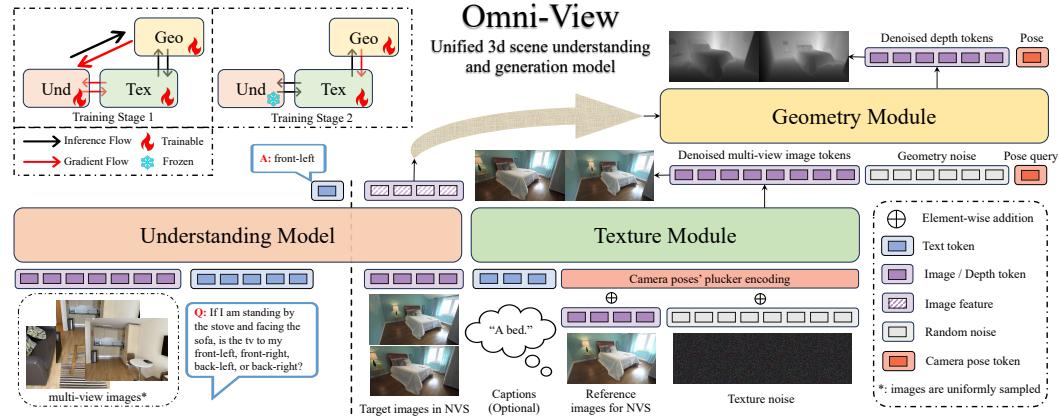
103 **Scene generation.** A vital element of scene generation methods is the presence of an efficient proxy
 104 to represent the 3D scene, with panoramic images (Team et al., 2025), point clouds (Yu et al., 2024c),
 105 and Gaussian Splatting (Yu et al., 2024a) among the viable options. In consideration of the advances
 106 in image and video diffusion models (Rombach et al., 2022; Wan et al., 2025), contemporary 3D
 107 scene generation strategies reconstruct the scene’s geometry from a single view, employing condi-
 108 tioned video diffusion models to render the scene’s texture. ViewCrafter (Yu et al., 2024c) brings
 109 explicit 3D information (point cloud) to generation models through iterative reconstruction. Won-
 110

108 derJourney (Yu et al., 2024b) generates a comprehensive set of view sequences. Voyager (Huang
109 et al., 2025) reconstructs the scene from a single view and uses it as conditions for inpainting.
110

111 **Unified understanding and generation.** In the domain of 3D scenes, a unified model for under-
112 standing and generation applicable in general scenarios remains absent. Hermes (Zhou et al., 2025)
113 uses BEVs to design a unified understanding and generation model for autonomous driving. In
114 contrast, significant progress has been made in 2D vision (Zhang et al., 2025b). These methods
115 show primarily variations in architectures and training strategies. Chameleon (Team, 2024a) utilizes
116 VQ-VAE for image tokenization, thereby improving generation competencies. However, its under-
117 standing capabilities are inferior to those of Janus (Wu et al., 2024a), which employs SigLIP (Zhai
118 et al., 2023) as visual understanding encoder. VILA-U (Wu et al., 2024c) integrates understanding
119 and generation within the image encoder, bypassing multitask gradient conflicts during MLLM train-
120 ing. BAGEL (Deng et al., 2025) implements task-based hard routing for MLLM, which also avoids
121 gradient conflicts. Harmon (Wu et al., 2025b) takes advantage of MAE’s reconstruction ability and
122 downstream understanding enhancement. BLIP3o (Chen et al., 2025a) introduces “understand first,
123 then generation” training paradigm, thus achieving performance gains. Building on the progress in
124 the 2D domain, this paper investigates a unified model in 3D scenes and explores how generation
125 aids the understanding scheme within the framework.

126 3 METHOD

127 3.1 ARCHTITECTURES



130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1908
1909
1910
1911
1912
1913
1914
1915
191

162 **Texture Module.** The texture module in the generation model is tasked with novel view synthesis
 163 using flow matching (Lipman et al., 2022). This module processes a textual description T_{des} and
 164 some reference images I_{ref} of the current scene, together with a specified camera pose, to produce
 165 consistent novel views of this scene. Within this module, the reference images I_{ref} are encoded
 166 using the FLUX-VAE encoder (Labs, 2024) $\varepsilon(\cdot)$, and the vocabulary used to tokenize T_{des} aligns
 167 with that used by the understanding model. This process incorporates the camera pose control as
 168 delineated in MV-AR (Hu et al., 2025), embedding the Plucker-Ray encoding $r_{i,j} = (o \times d, d)$ of
 169 the camera pose as the absolute position encoding in the model, where o and d denote the origin
 170 and direction of the ray, (i, j) represents the pixel coordinate. This camera pose embedding exhibits
 171 adaptability to various image resolutions and demonstrates significant flexibility. The above process
 172 can be described as:

$$F_{tex} = \text{TextureModule} ([LM\text{-}Head}(\tau(T_{des})); [\varepsilon(I_{ref}); N_{tex}] + r]), \quad (1)$$

173 where F_{tex} is the predicted image noise of the texture module, N_{tex} is the random input noise, and
 174 LM Head is the text processing module of the understanding model.

175 **Geometry Module.** The geometry module in the generation model constructs the geometric aspects
 176 of the generated images in the texture module. It synthesizes depth maps through flow matching
 177 and employs a learnable query strategy to accurately estimate camera poses. It receives the latent of
 178 novel view images F_{tex} from the texture module as input, which is concatenated with random depth
 179 noise N_{dep} and a learnable camera pose query q_{cam} along the frame dimension. After processing,
 180 N_{dep} will be denoised as depth maps' latent, while q_{cam} will be decoded to reveal the intrinsic and
 181 extrinsics of the camera. The features of novel view images F_{und} , output from the understanding
 182 model's block, is also integrated into the geometry module through cross-attention. The process in
 183 the geometry module can be described as follows.

$$[F_{dep}; \hat{g}] = \text{GeometryModule} ([F_{tex}; N_{dep}; q_{cam}], F_{und}), \quad (2)$$

187 where F_{dep} is the predicted depth noise of the geometry module. \hat{g} is the predicted intrinsics and
 188 extrinsics of the camera, which is decoded by VGGT's camera decoder (Wang et al., 2025b).

189 The geometry module has independent parameters and maintains architectural connections with
 190 both the texture module and the understanding model. Unlike the connection method in BAGEL,
 191 the geometry module uniformly extracts features from the understanding model at the layer dimen-
 192 sion as conditions. It utilizes cross-attention for fusion and ensures that the gradients of geometry
 193 estimation can be backpropagated to the understanding model. Currently, the geometry module's
 194 input only relies on the last-layer output latent of the texture module. This approach guarantees that
 195 it acquires information closest to the image modality, thereby providing finely aligned features for
 196 the estimation of depth map and camera pose.

200 3.2 TRAINING RECIPE

201 The Omni-View training recipe has two separate stages, as shown in the upper left of Figure 1.

202 **Stage 1: unify 3D understanding and generation.** In stage 1, we train the understanding model,
 203 the texture module, and the geometry module simultaneously. It can leverage the fine-grained ge-
 204 ometry estimation capability in the geometry module and combines it with the spatial-temporal
 205 modeling ability within the texture module, thus improving the 3D understanding performance.

206 **Understanding model.** For the understanding model, we use the next token prediction to predict
 207 the distribution of the answer text given the distribution of the multiview images and query text. The
 208 loss function of the understanding model can be expressed as follows.

$$L_{und} = - \sum_{i=1}^T \log P_{\theta}(y_i | y_{<i}), \quad (3)$$

209 where y is the multimodal sequence that contains tokenized multiview images, query text, and an-
 210 swer text.

216 **Texture module.** The loss function for the texture module is defined as the Mean Squared Error
 217 (MSE) loss between each predicted texture noise F_{tex} generated by the texture module and the
 218 provided texture noise N_{tex} .
 219

$$220 \quad L_{tex} = \|F_{tex} - N_{tex}\|_2. \quad (4)$$

$$221$$

222 In contrast to the majority of novel view synthesis methods, the texture model employs a autoregres-
 223 sive generation framework. Specifically, during the generation of the n -th frame, the model is ex-
 224 posed to the visual data of the preceding $n - 1$ frames, while excluding any subsequent frames. This
 225 autoregressive methodology enables the model to fully grasp the concept of temporal sequences,
 226 thereby enhancing its spatiotemporal modeling proficiency and effectively improving scene under-
 227 standing. To optimize the 3D consistency of the sampled images, diffusion forcing (Chen et al.,
 228 2024a) is employed when training the texture module.
 229

230 To acquire this complex spatiotemporal generation capability incrementally, we gradually adjust
 231 the reference images. As iterations progress, the reference images are systematically reduced in a
 232 stepwise manner, transitioning from encompassing all input images, excluding the first image, to
 233 including only the first image. This implies that for the model, the reference confidence transitions
 234 from dense to sparse. We designate this progressive training approach as dense-to-sparse (D2S).
 235 This strategy has been shown to be highly effective in facilitating improved understanding.
 236

237 **Geometry module.** In stage 1, the geometry module is tasked with estimating the depth and pose
 238 of the camera from both the provided images and those synthesized by the texture module. The loss
 239 function for the geometry module comprises a sum of the depth estimation loss and the camera pose
 240 estimation loss. In terms of depth estimation, we apply the MSE loss to the comparison between the
 241 depth noise F_{dep} predicted by the geometry module and the given depth noise N_{dep} . The estimated
 242 intrinsics and extrinsics of the camera \hat{g} are optimized directly through the Huber loss.
 243

$$244 \quad L_{geo} = \|F_{dep} - N_{dep}\|_2 + \|\hat{g} - g_{gt}\|_\epsilon, \quad (5)$$

$$245$$

246 where g_{gt} is the ground truth of the camera pose and $\|\cdot\|_\epsilon$ denotes the Huber loss.
 247

248 Ultimately, a weighted summation of the aforementioned losses is conducted to derive the loss
 249 function in stage 1 L_{s1} .
 250

$$251 \quad L_{s1} = \lambda_{und}L_{und} + \lambda_{tex}L_{tex} + \lambda_{geo}L_{geo}, \quad (6)$$

$$252$$

253 where λ_{und} , λ_{tex} , and λ_{geo} represent the weighting coefficients and their default values are 1, 1, and
 254 0.1 respectively.
 255

256 **Stage 2: advance generation.** In stage 2, the texture module and the geometry modules are trained.
 257 The RGB-Depth-Pose (RGBDP) joint learning methodology is used for training, capitalizing on the
 258 geometry prior obtained from depth-pose estimation to enhance the ability to generate consistent
 259 appearances for novel views.
 260

261 In the texture module, the reference single-view image is used along with its depth map to recon-
 262 struct the initial point cloud of the scene. The images rendered from different views, projected
 263 through this point cloud, serve as conditions following Voyager (Huang et al., 2025). For the ge-
 264 ometry module, it generates the depth map and camera pose from images synthesized by the texture
 265 module. Concurrently, it no longer relies on the features of the understanding model as conditions
 266 for cross-attention.
 267

268 4 EXPERIENCE

$$269$$

270 4.1 EXPERIMENTAL SETUP

$$271$$

272 In our experiments, the understanding model and the texture module in the generation model are
 273 initialized using the pre-trained BAGEL-7B (Deng et al., 2025). The geometry module in the gen-
 274 eration model is configured to have the same dimensions as the texture module, with a depth of
 275

270 four layers. For 3D scene understanding, a filtered dataset comprising 780k valid items, sourced
 271 from SQA3D (Ma et al., 2023), ScanQA (Azuma et al., 2022), 3DOD (Zheng et al., 2025), Scan-
 272 Refer (Chen et al., 2020), VLM-3R (Fan et al., 2025), SPAR (Zhang et al., 2025a) (234k subset)
 273 and llava-hound4 (Zhang et al., 2024c) (64k subset), is meticulously curated for training. Regarding
 274 novel view synthesis, 61k video clips are carefully selected from re10k (Zhou et al., 2018). The
 275 corresponding depth maps are synthesized using the Voyager data pipeline (Huang et al., 2025) and
 276 captions are synthesized using the QwenVLMax (Bai et al., 2025). During training, we do not use
 277 images from the scene understanding task to train the generation model to fully demonstrate that the
 278 understanding performance improvement brought by Omni-View does not come from memorizing
 279 the data in understanding tasks.

280 Model training was performed using the AdamW optimizer, characterized by $\beta_1 = 0.9$, $\beta_2 = 0.95$,
 281 the peak learning rate of 1×10^{-5} . The warm-up phase that constitutes 5% of the whole training
 282 iterations. The training process is completed after one epoch of the understanding dataset. For the
 283 understanding model, we do not rely on any 3D scene input to support both 3D scene understanding
 284 and spatial reasoning tasks. In main comparisons, we use the same checkpoint for testing all tasks.

285

286 4.2 MAIN COMPARISONS

287

288 4.2.1 3D SCENE UNDERSTANDING

289

290 **Benchmarks.** We evaluate the 3D understanding performance of the model on question answering
 291 (Ma et al., 2023; Azuma et al., 2022) and localization (Chen et al., 2020; Zheng et al., 2025).
 292 During inference, we set the frame numbers as 32 following Video3DLM (Zheng et al., 2024).

293

294 **Comparison baselines.** We compare Omni-View with models specifically designed for 2D or 3D
 295 visual understanding tasks (Team, 2024b; Wang et al., 2024a; Zhang et al., 2024c; Huang et al.,
 296 2023; Zhang et al., 2024a; Chen et al., 2024b; Zhu et al., 2024; Zheng et al., 2024; Qi et al., 2025;
 297 Wang et al., 2025a), as well as with some unified models applicable to video modalities (Deng et al.,
 298 2025). Unified models are evaluated after fine-tuning with the same data. Within the results table,
 299 we differentiate between models that incorporate explicit 3D input and those that do not. Although
 300 the incorporation of explicit 3D input improves model performance, it concurrently restricts applicability
 (Zheng et al., 2024).

301 Methods	3D Input	SQA3D _{test}		ScanQA _{val}				3DOD		ScanRefer	
		EM	EM-R	C	B-4	M	R	EM	F1	Acc@0.25	Acc@0.5
<i>Task-specific Models</i>											
LEO	✓	50.0	52.4	80.0	11.5	16.2	39.3	21.5	—	—	—
ChatScene	✓	54.6	57.5	87.7	14.3	18.0	41.6	21.6	—	55.5	50.2
Grounded 3D-LLM	✓	—	—	—	—	—	—	—	—	47.9	44.1
Video-3D-LLM	✓	58.6	—	102.1	16.4	20.0	49.3	30.1	—	58.1	51.7
GPT4Scene-HDM	✓	59.4	62.4	96.3	15.5	18.9	46.5	—	—	62.6	57.0
Ross3D	✓	63.0	65.7	107.0	17.9	20.9	50.7	30.8	—	61.1	54.4
LLaVA-3D	✓	60.1	—	103.1	16.4	20.8	49.6	30.6	—	50.1	42.7
InternVL2-8B	✗	33.0	45.3	62.5	3.3	14.5	34.3	—	—	—	—
Qwen2-VL-7B	✗	48.5	—	53.9	3.0	11.4	29.3	—	—	—	—
LLaVA-Video-7B	✗	48.5	—	88.7	3.1	17.7	44.6	—	—	—	—
SPAR-7B	✗	58.1	—	90.7	15.3	—	—	—	—	48.8 (31.9)	43.1 (12.4)
VG-LLM-4B	✗	—	—	—	—	—	—	—	47.0	53.5 (36.4)	47.5 (11.8)
SpatialMLLM-4B	✗	55.9	58.7	91.8	14.8	18.4	45.0	—	—	—	—
<i>Unified Models</i>											
BAGEL-7B-FT	✗	57.2	59.7	95.5	14.7	18.7	46.3	27.0	41.3	46.9 (28.0)	41.6 (7.7)
Omni-View-7B	✗	59.2	61.9	103.0	16.2	20.1	49.0	29.5	46.4	50.8 (32.5)	45.0 (9.9)

316 Table 1: **Evaluation of 3D scene understanding.** “—” indicates the number is not available for us.
 317 **Bold** and underline denote the best and second-best models without 3D scene input, respectively. For
 318 ScanRefer, the content in “()” indicates results without proposal refinement (Zhang et al., 2025a).

319

320 **Metrics.** For SQA3D, we use the EM metric to evaluate the accuracy, which stands for top-1 exact
 321 match. EM-R means the refined EM following LEO (Huang et al., 2023). For ScanQA, we use
 322 CIDEr (C), BLEU-4 (B-4), METEOR (M), ROUGE (R), and EM for more complete validation.
 323 For 3DOD, we use the average F1 score (F1) as a metric to assess the correspondence between
 the predicted and actual coordinates. For ScanRefer, we calculate the percentage of samples for

324 which the Intersection over Union (IoU) exceeds thresholds of 0.25 and 0.5, respectively, between
 325 the predicted and true coordinates. The higher the above metrics, the better.

326 **Results.** As shown in Table 1, our analysis leads to four conclusions. (1) Our Omni-View exceeds
 327 all current MLLM methods that do not depend on 3D scene input. Within the SQA3D test set,
 328 Omni-View achieves an enhancement of 3.3 over SpatialMLLM in EM, while in the ScanQA val-
 329 idation set, it surpasses SpatialMLLM by an increment of 11.2 in CIDEr. For the object detection
 330 task, our unified model performs comparably with the 3D understanding model VG-LLM. (2) This
 331 performance improvement is mainly attributed to the architectural design and training scheme that
 332 we proposed. Compared with the fine-tuned BAGEL, our method still demonstrates substantial im-
 333 provements. For example, on the SQA3D test set, Omni-View enhances EM by 2 points compared
 334 to the fine-tuned BAGEL (Deng et al., 2025); on the ScanQA validation set, Omni-View improves
 335 7.5 in CIDEr. (3) The efficacy of our approach in the question-answering task is equivalent to ad-
 336 vanced MLLM methods that require 3D scene input. In particular, in the ScanQA validation set,
 337 Omni-View achieved a performance comparable to Video3DLM (Zheng et al., 2024) and LLaVA-
 338 3D (Zhu et al., 2024). (4) However, there remains a notable disparity between methodologies that do
 339 not require 3D scene input and those that do, particularly in 3D grounding tasks. The experimental
 340 results of VG-LLM (Zheng et al., 2025) also substantiate this observation.

341 4.2.2 3D SPATIAL REASONING

343 **Benchmarks.** We evaluate the 3D spatial reasoning ability of the model in VSI-Bench (Yang et al.,
 344 2024). During inference, we follow the VSI-Bench to set frame numbers ranging from 8 to 32 and
 345 frame resolution to 640p.

346 **Comparison baselines.** We compare our Omni-View with models specifically designed for 2D or
 347 3D visual understanding tasks (Xue et al., 2024; Zhang et al., 2024b; Bai et al., 2025; Ray et al.,
 348 2024; Zhang et al., 2025a; Zheng et al., 2025; Wu et al., 2025a), as well as with some unified models
 349 applicable to video modalities (OpenAI, 2024; Team et al., 2024; Deng et al., 2025; Xie et al., 2025).
 350 Unified models are evaluated after fine-tuning with the same data we used.

352 Methods	Numerical Quesiton				Multiple-Choice Question				Avg.
	Obj. Cnt.	Abs. Dist.	Obj. Size	Room Size	Rel. Dist.	Rel. Dir.	Route Plan	Appr. Order	
<i>Task-specific Models</i>									
LongVILA-8B	29.1	9.1	16.7	0.0	29.6	30.7	32.5	25.5	21.6
LongVA-7B	38.0	16.6	38.9	22.2	33.1	43.3	25.4	15.7	29.2
LLaVA-OneVision-72B	43.5	23.9	57.6	37.5	42.5	39.9	32.5	44.6	40.2
LLaVA-Video-72B	48.9	22.8	57.4	35.3	42.4	36.7	35.0	48.6	40.9
Qwen2.5VL-7B	40.9	14.8	43.4	10.7	38.6	38.5	33.0	29.8	33.0
Qwen2.5VL-72B	25.1	29.3	54.5	38.8	38.2	37.0	34.0	28.9	37.0
SAT-LLaVA-Video-7B	–	–	–	47.3	41.1	37.1	36.1	40.4	–
SPAR-8B	–	–	–	–	–	–	–	–	41.1
VG-LLM-4B	<u>66.4</u>	<u>36.6</u>	55.2	56.3	40.8	43.4	30.4	39.5	46.1
Spatial-MLLM-4B	65.3	34.8	<u>63.1</u>	45.1	41.3	46.2	33.5	<u>46.3</u>	<u>48.4</u>
<i>Unified Models</i>									
GPT-4o (API)	46.2	5.3	43.8	38.2	37.0	41.3	31.5	28.5	34.0
Gemini-1.5 Pro (API)	56.2	30.9	64.1	43.6	<u>51.3</u>	46.3	<u>36.0</u>	34.6	45.4
BAGEL-7B-FT	62.8	36.3	56.4	49.7	46.1	<u>49.4</u>	26.8	43.1	46.3
Omni-View-7B	70.3	46.4	68.6	<u>54.7</u>	65.9	54.4	33.5	49.0	55.4

363 Table 2: **Evaluation of spatial reasoning on VSI-Bench.** “–” indicates the number is not available
 364 for us. **Bold** and underline denote the best and second-best models, respectively.

370 **Results.** The results on spatial reasoning tasks more fully demonstrate Omni-View’s improvement
 371 over previous methods in analyzing the relative or absolute position and orientation of spatial
 372 objects. With an average score of 55.4, our Omni-View ranks first among existing spatial reasoning
 373 MLLMs. Compared to existing Spatial-MLLM (Wu et al., 2025a) and VG-LLM (Zheng et al.,
 374 2025), Omni-View improves Spatial-MLLM by 11.6, 9.6, and 24.6 in Absolute Distance (Abs.
 375 Dist.), Room Size, and Relative Distance (Rel. Dist.), respectively. Omni-View improves VG-LLM
 376 by 9.8, 13.4, 25.1, 11.0, and 9.5 in Abs. Dist., Object Size (Obj. Size), Rel. Dist., Relative Direction
 377 (Rel. Dir.), and Appearance Order (Appr. Order), respectively. These tasks necessitate the model
 378 to thoroughly predict the spatiotemporal state and measure the geometric properties of the scene it

378 observes (Yang et al., 2024). This demonstrates that our proposed method substantially enhances
 379 the model’s pertinent capabilities.
 380

381 4.2.3 3D SCENE GENERATION 382

383 **Benchmarks.** The model’s generation capacity is validated under two tasks: novel view synthesis
 384 (NVS) from a single view and scene generation. NVS from a single view necessitates that the model
 385 generate the subsequent 25 frames from the first image. 3D scene generation evaluates scenes that
 386 are reconstructed from the videos generated to 3DGS. The test scenes are randomly selected from
 387 the Re10k test set following Chen et al. (2025b).
 388

389 **Comparison baselines.** We compare with scene generation methods (Chung et al., 2023; Wang
 390 et al., 2024b; Ma et al., 2025; Yu et al., 2024c; Chen et al., 2025b; Huang et al., 2025) and a unified
 391 model (Deng et al., 2025). To evaluate the performance of scene generation, we use Dust3R to recon-
 392 struct the generated videos, ensuring fairness in the comparison, according to Chen et al. (2025b).
 393 The evaluation is only conducted on the first 25 frames generated by the model following Yu et al.
 394 (2024c); Zhai et al. (2025).
 395

396 **NVS from single view and scene generation.** Omni-View achieved the highest PSNR and SSIM,
 397 and lowest LPIPS score, indicating that its image quality could surpass that of other methods. How-
 398 ever, in terms of pixel-level fidelity, Omni-View shows only slight improvements over popular scene
 399 generation models. This discrepancy may be attributed to Omni-View’s challenges in being pre-
 400 cisely controlled via the camera pose. Visualization results are presented in the Appendix due to
 401 page limit.
 402

403 Methods	404 NVS from Single View			405 Scene Generation		
	406 PSNR ↑	407 SSIM ↑	408 LPIPS ↓	409 PSNR ↑	410 SSIM ↑	411 LPIPS ↓
<i>412 Task-specific Models</i>						
413 LucidDreamer	414 22.27	415 0.766	416 0.204	417 21.98	418 0.698	419 0.290
420 MotionCtrl	421 15.86	422 0.520	423 0.431	424 15.33	425 0.479	426 0.590
427 See3D	428 22.37	429 0.781	430 0.199	431 21.60	432 0.744	433 0.238
434 ViewCrafter	435 22.60	436 0.754	437 0.195	438 22.25	439 0.709	440 0.204
441 FlexWorld-5B	442 23.05	443 0.788	444 0.182	445 22.86	446 0.756	447 0.198
448 Voyager-13B	449 23.12	450 0.793	451 0.175	452 22.93	453 0.768	454 0.194
<i>455 Unified Models</i>						
456 BAGEL-7B-FT	457 21.76	458 0.703	459 0.288	460 21.04	461 0.599	462 0.403
463 Omni-View-7B	464 23.22	465 0.817	466 0.114	467 23.12	468 0.801	469 0.146

470 Table 3: **Evaluation of novel view synthesis from single view and scene generation on Re10k.**
 471

472 4.3 ABLATION STUDIES 473

474 We perform ablation studies on the proposed architecture and training strategy to ascertain their ef-
 475 ficacy. The data used and the hyperparameters applied during the ablation studies remain consistent.
 476

477 **Effect of two modules in the generation model.** Both the texture module and the geometry module
 478 can improve understanding performance, but they focus on different aspects. The results presented
 479 in Table 4 demonstrate that the integration of the texture module facilitates notable advancements in
 480 tasks dependent on spatiotemporal modeling, exemplified by an increase of 4.1 points in Appr. Order.
 481 Conversely, the introduction of the geometry module markedly enhances performance in tasks
 482 contingent upon relative position information, notably in Rel. Dist. However, because of the lacking
 483 absolute metric in the synthesized depth maps, improvements in tasks pertaining to absolute metric
 484 comprehension, such as Abs. Dist., are constrained. Incorporating the task of accurately predicting
 485 camera pose can mitigate the reduction resulting from the imprecise depth prediction. Furthermore,
 486 our results corroborate that the segregation of the texture and geometry modules results in superior
 487 understanding performance compared to employing a unified architecture that concurrently learns
 488 both texture and geometry.
 489

490 **Effect of the autoregressive generation.** Autoregressive generation significantly improves tasks
 491 requiring spatiotemporal modeling, like Appr. Order. Table 5 compares the understanding perfor-
 492 mance with and without autoregressive generation. Although bidirectional generation offers some
 493

Texture	Geometry		SQA3D		ScanQA		ScanRefer		VSI-Bench (subset)				
	depth	camera	EM	C	B-4	Acc@0.25	Obj. Cnt.	Abs. Dist.	Obj. Size	Rel. Dist.	Appr. Order		
✗	✗	✗	57.2	95.5	14.7	46.9 (28.0)	62.8	36.3	56.4	46.1	43.1		
✓	✗	✗	58.3	97.4	14.7	48.8 (31.5)	67.7	44.6	59.0	53.2	47.2		
✓	✓	✗	58.9	100.5	16.0	48.2 (31.2)	69.0	44.9	69.7	63.0	47.9		
✓	✓	✓	58.7	99.2	15.0	49.0 (31.6)	69.5	45.9	67.8	63.8	48.2		
✓	✓	✓	59.2	103.0	16.2	50.8 (32.5)	70.3	46.4	68.6	65.9	49.0		

Table 4: **Ablation on modules in the generation model.** The gray row denotes that, in this experiment, both the texture module and the geometry module use the same architecture and parameters.

enhancement, autoregressive generation provides greater improvements. Specifically, it boosts performance by 5.8 and 4.4 points in Abs. Dist. and Appr. Order tasks, respectively, compared to when not used. This demonstrates that autoregressive generation strengthens spatiotemporal modeling and enhances related scene understanding tasks.

Autoregressive	SQA3D		ScanQA		ScanRefer		VSI-Bench (subset)				
	EM	B-4	EM	Acc@0.25	Obj. Cnt.	Abs. Dist.	Obj. Size	Rel. Dist.	Appr. Order		
None	57.2	95.5	14.7	46.9 (28.0)	62.8	36.3	56.4	46.1	43.1		
✗	57.2	98.8	15.0	47.0 (28.0)	68.3	40.6	69.0	60.6	44.6		
✓	59.2	103.0	16.2	50.8 (32.5)	70.3	46.4	68.6	65.9	49.0		

Table 5: Ablation on the autoregressive generation in stage 1. “None” means we only train understanding model in this experiment.

Effect of the D2S (dense-to-sparse). The efficacy of D2S training is substantiated during stage 1. The results show that D2S significantly improves the model understanding performance, exceeding the visual reconstruction method advanced in Ross3D (Wang et al., 2025a) for scene understanding tasks necessitating spatiotemporal ordering. In this ablation, the geometry module is kept trainable.

Condition in S1	SQA3D		ScanQA		ScanRefer		VSI-Bench (subset)				
	EM	B-4	EM	Acc@0.25	Obj. Cnt.	Abs. Dist.	Obj. Size	Rel. Dist.	Appr. Order		
None	57.2	95.5	14.7	46.9 (28.0)	62.8	36.3	56.4	46.1	43.1		
random mask	58.9	98.9	15.5	49.4 (31.7)	65.7	38.9	55.5	51.6	46.5		
dense	57.3	94.7	15.0	47.2 (28.3)	67.7	42.3	60.1	65.6	46.6		
sparse	57.9	97.3	15.7	50.1 (32.0)	69.0	44.9	65.5	63.1	48.3		
dense → sparse (Ours)	59.2	103.0	16.2	50.8 (32.5)	70.3	46.4	68.6	65.9	49.0		

Table 6: **Ablation on the D2S mechanism in stage 1 (S1).** “None” means we don’t train generation model in this experiment. The “random mask” denotes the visual reconstruction method in Ross3D (Wang et al., 2025a).

Effect of training stage 2. The results in Table 7 show that stage 2 can significantly improve the scene generation performance of the model.

Stage 2	NVS from single view			Scene Generation		
	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓
✗	21.90	0.705	0.265	21.44	0.683	0.307
✓	23.22	0.817	0.114	22.93	0.768	0.194

Table 7: **Ablation of the stage 2.**

5 CONCLUSION

We introduce Omni-View, a unified 3D scene understanding and generation model. By decomposing the generation model into distinct texture and geometry components, we establish the feasibility and efficacy of employing generation processes to enhance 3D scene understanding and spatial reasoning. Our method illustrates that a unified understanding and generation model is capable of achieving performance on par with leading specialized understanding models. We posit that Omni-View can serve as a foundational model across 3D and multiview domains, thereby advancing the development of downstream applications such as spatial and intelligence.

486 **Ethics Statement.** This paper aims to develop unified models to understand and generate 3D scenes.
 487 In light of the ongoing advancements in scene generation technology, we emphasize the importance
 488 of preventing its misapplication, such as the fabrication of deceptive scenes or the creation of scenes
 489 with nefarious intents.

490 **Reproducibility Statement.** We state that Omni-View is highly reproducible. Implementation
 491 details on our main experiences are provided in Section 4.1. It is anticipated that these descriptions
 492 can sufficiently demonstrate the reproducibility of Omni-View. We plan to open-source the code and
 493 weight files after the paper passes peer review.
 494

495 **REFERENCES**

496 Daichi Azuma, Taiki Miyanishi, Shuhei Kurita, and Motoaki Kawanabe. Scanqa: 3d question an-
 497 swering for spatial scene understanding. In *Proceedings of the IEEE/CVF Conference on Com-*
 498 *puter Vision and Pattern Recognition (CVPR)*, pp. 19129–19139, 2022.

499 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 500 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang
 501 Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie,
 502 Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl tech-
 503 nical report. *ArXiv*, abs/2502.13923, 2025. URL <https://api.semanticscholar.org/CorpusID:276449796>.
 504

505 Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitz-
 506 mann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. *Advances in*
 507 *Neural Information Processing Systems*, 37:24081–24125, 2024a.

508 Dave Zhenyu Chen, Angel X Chang, and Matthias Nießner. Scanrefer: 3d object localization in
 509 rgb-d scans using natural language. In *European Conference on Computer Vision (ECCV)*, pp.
 202–221. Springer, 2020.

510 Juhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
 511 Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal
 512 models-architecture, training and dataset. *arXiv preprint arXiv:2505.09568*, 2025a.

513 Luxi Chen, Zihan Zhou, Min Zhao, Yikai Wang, Ge Zhang, Wenhao Huang, Hao Sun, Ji-Rong Wen,
 514 and Chongxuan Li. Flexworld: Progressively expanding 3d scenes for flexible-view synthesis.
 515 *arXiv preprint arXiv:2503.13265*, 2025b.

516 Yilun Chen, Shuai Yang, Haifeng Huang, Tai Wang, Runsen Xu, Ruiyuan Lyu, Dahua Lin, and
 517 Jiangmiao Pang. Grounded 3d-llm with referent tokens. *arXiv preprint arXiv:2405.10370*, 2024b.

518 Jaeyoung Chung, Suyoung Lee, Hyeongjin Nam, Jaerin Lee, and Kyoung Mu Lee. Luciddreamer:
 519 Domain-free generation of 3d gaussian splatting scenes. *arXiv preprint arXiv:2311.13384*, 2023.

520 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Wei-
 521 hao Yu, Xiaonan Nie, Ziang Song, Guang Shi, and Haoqi Fan. Emerging properties in unified
 522 multimodal pretraining. *arXiv preprint arXiv:2505.14683*, 2025.

523 Zhiwen Fan, Jian Zhang, Renjie Li, Junge Zhang, Runjin Chen, Hezhen Hu, Kevin Wang, Huaizhi
 524 Qu, Dilin Wang, Zhicheng Yan, et al. Vlm-3r: Vision-language models augmented with
 525 instruction-aligned 3d reconstruction. *arXiv preprint arXiv:2505.20279*, 2025.

526 JiaKui Hu, Yuxiao Yang, Jialun Liu, Jinbo Wu, Chen Zhao, and Yanye Lu. Auto-regressively gen-
 527 erating multi-view consistent images. *arXiv preprint arXiv:2506.18527*, 2025.

528 Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puahao Li, Yan Wang, Qing Li,
 529 Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world.
 530 *arXiv preprint arXiv:2311.12871*, 2023.

531 Tianyu Huang, Wangguandong Zheng, Tengfei Wang, Yuhao Liu, Zhenwei Wang, Junta Wu, Jie
 532 Jiang, Hui Li, Rynson WH Lau, Wangmeng Zuo, et al. Voyager: Long-range and world-consistent
 533 video diffusion for explorable 3d scene generation. *arXiv preprint arXiv:2506.04225*, 2025.

540 Georg B Keller, Tobias Bonhoeffer, and Mark Hübener. Sensorimotor mismatch signals in primary
 541 visual cortex of the behaving mouse. *Neuron*, 74(5):809–815, 2012.

542

543 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

544

545 Marcus Leinweber, Daniel R Ward, Jan M Sobczak, Alexander Attinger, and Georg B Keller. A
 546 sensorimotor circuit in mouse cortex for visual flow predictions. *Neuron*, 95(6):1420–1432, 2017.

547

548 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 549 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

550

551 Baorui Ma, Huachen Gao, Haoge Deng, Zhengxiong Luo, Tiejun Huang, Lulu Tang, and Xinlong
 552 Wang. You see it, you got it: Learning 3d creation on pose-free videos at scale. In *Proceedings
 553 of the Computer Vision and Pattern Recognition Conference*, pp. 2016–2029, 2025.

554

555 Xiaojian Ma, Silong Yong, Zilong Zheng, Qing Li, Yitao Liang, Song-Chun Zhu, and Siyuan Huang.
 556 Sq3d: Situated question answering in 3d scenes. In *International Conference on Learning Rep-
 557 resentations (ICLR)*, 2023.

558

559 Gerrit W Maus, Jason Fischer, and David Whitney. Motion-dependent representation of space in
 560 area mt+. *Neuron*, 78(3):554–562, 2013.

561

562 Nora Nortmann, Sascha Rekauzke, Selim Onat, Peter König, and Dirk Jancke. Primary visual cortex
 563 represents the difference between past and present. *Cerebral Cortex*, 25(6):1427–1440, 2015.

564

565 OpenAI. Hello GPT-4o, 2024. URL <https://openai.com/index/hello-gpt-4o>.

566

567 Zhangyang Qi, Zhixiong Zhang, Ye Fang, Jiaqi Wang, and Hengshuang Zhao. Gpt4scene: Un-
 568 derstand 3d scenes from videos with vision-language models. *arXiv preprint arXiv:2501.01428*,
 569 2025.

570

571 Arijit Ray, Jiafei Duan, Ellis Brown, Reuben Tan, Dina Bashkirova, Rose Hendrix, Kiana Ehsani,
 572 Aniruddha Kembhavi, Bryan A Plummer, Ranjay Krishna, et al. Sat: Dynamic spatial aptitude
 573 training for multimodal language models. *arXiv preprint arXiv:2412.07755*, 2024.

574

575 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 576 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 577 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

578

579 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint
 580 arXiv:2405.09818*, 2024a.

581

582 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 583 Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
 584 standing across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

585

586 HunyuanWorld Team, Zhenwei Wang, Yuhao Liu, Junta Wu, Zixiao Gu, Haoyuan Wang, Xuhui
 587 Zuo, Tianyu Huang, Wenhuan Li, Sheng Zhang, et al. Hunyuanworld 1.0: Generating immersive,
 588 exploratory, and interactive 3d worlds from words or pixels. *arXiv preprint arXiv:2507.21809*,
 589 2025.

590

591 OpenGVLab Team. InternVL2: Better than the Best—Expanding Performance Boundaries of
 592 Open-Source Multimodal Models with the Progressive Scaling Strategy, 2024b. URL <https:////internvl.github.io/blog/2024-07-02-InternVL-2.0/>.

593

594 Shengbang Tong, David Fan, Jiachen Zhu, Yunyang Xiong, Xinlei Chen, Koustuv Sinha, Michael
 595 Rabbat, Yann LeCun, Saining Xie, and Zhuang Liu. Metamorph: Multimodal understanding and
 596 generation via instruction tuning. *arXiv preprint arXiv:2412.14164*, 2024.

597

598 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 599 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
 600 models. *arXiv preprint arXiv:2503.20314*, 2025.

594 Haochen Wang, Yucheng Zhao, Tiancai Wang, Haoqiang Fan, Xiangyu Zhang, and Zhaoxiang
 595 Zhang. Ross3d: Reconstructive visual instruction tuning with 3d-awareness. *arXiv preprint*
 596 *arXiv:2504.01901*, 2025a.

597 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 598 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the IEEE/CVF Con-*
 599 *ference on Computer Vision and Pattern Recognition*, 2025b.

600 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 601 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the
 602 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

603 Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo,
 604 and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In
 605 *ACM SIGGRAPH 2024 Conference Papers*, pp. 1–11, 2024b.

606 Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu,
 607 Zhenda Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified
 608 multimodal understanding and generation. *arXiv preprint arXiv:2410.13848*, 2024a.

609 Diankun Wu, Fangfu Liu, Yi-Hsin Hung, and Yueqi Duan. Spatial-mllm: Boosting mllm capabilities
 610 in visual-based spatial intelligence. *arXiv preprint arXiv:2505.23747*, 2025a.

611 Junfeng Wu, Yi Jiang, Chuofan Ma, Yuliang Liu, Hengshuang Zhao, Zehuan Yuan, Song Bai, and
 612 Xiang Bai. Liquid: Language models are scalable and unified multi-modal generators. *arXiv*
 613 *preprint arXiv:2412.04332*, 2024b.

614 Size Wu, Wenwei Zhang, Lumin Xu, Sheng Jin, Zhonghua Wu, Qingyi Tao, Wentao Liu, Wei Li,
 615 and Chen Change Loy. Harmonizing visual representations for unified multimodal understanding
 616 and generation. *arXiv preprint arXiv:2503.21979*, 2025b.

617 Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
 618 Zhu, Enze Xie, Hongxu Yin, Li Yi, et al. Vila-u: a unified foundation model integrating visual
 619 understanding and generation. *arXiv preprint arXiv:2409.04429*, 2024c.

620 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 621 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 622 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

623 Jinheng Xie, Zhenheng Yang, and Mike Zheng Shou. Show-o2: Improved native unified multimodal
 624 models. *arXiv preprint arXiv:2506.15564*, 2025.

625 Fuzhao Xue, Yukang Chen, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian
 626 Tang, Shang Yang, Zhijian Liu, Ethan He, Hongxu Yin, Pavlo Molchanov, Jan Kautz, Linxi Fan,
 627 Yuke Zhu, Yao Lu, and Song Han. Longvila: Scaling long-context visual language models for
 628 long videos. *ArXiv*, abs/2408.10188, 2024. URL <https://api.semanticscholar.org/CorpusID:271903601>.

629 Zhiyuan Yan, Kaiqing Lin, Zongjian Li, Junyan Ye, Hui Han, Zhendong Wang, Hao Liu, Bin Lin,
 630 Hao Li, Xue Xu, et al. Can understanding and generation truly benefit together—or just coexist?
 631 *arXiv preprint arXiv:2509.09666*, 2025.

632 Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
 633 space: How multimodal large language models see, remember, and recall spaces. *arXiv preprint*
 634 *arXiv:2412.14171*, 2024.

635 Hong-Xing Yu, Haoyi Duan, Charles Herrmann, William T Freeman, and Jiajun Wu. Wonderworld:
 636 Interactive 3d scene generation from a single image. *arXiv preprint arXiv:2406.09394*, 2024a.

637 Hong-Xing Yu, Haoyi Duan, Junhwa Hur, Kyle Sargent, Michael Rubinstein, William T Freeman,
 638 Forrester Cole, Deqing Sun, Noah Snavely, Jiajun Wu, et al. Wonderjourney: Going from any-
 639 where to everywhere. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 640 *Pattern Recognition*, pp. 6658–6667, 2024b.

648 Wangbo Yu, Jinbo Xing, Li Yuan, Wenbo Hu, Xiaoyu Li, Zhipeng Huang, Xiangjun Gao, Tien-
 649 Tsin Wong, Ying Shan, and Yonghong Tian. Viewcrafter: Taming video diffusion models for
 650 high-fidelity novel view synthesis. *arXiv preprint arXiv:2409.02048*, 2024c.
 651

652 Shangjin Zhai, Zhichao Ye, Jialin Liu, Weijian Xie, Jiaqi Hu, Zhen Peng, Hua Xue, Danpeng Chen,
 653 Xiaomeng Wang, Lei Yang, et al. Stargen: A spatiotemporal autoregression framework with video
 654 diffusion model for scalable and controllable scene generation. In *Proceedings of the Computer
 Vision and Pattern Recognition Conference*, pp. 26822–26833, 2025.
 655

656 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 657 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 658 pp. 11975–11986, 2023.
 659

660 Jiahui Zhang, Yurui Chen, Yanpeng Zhou, Yueming Xu, Ze Huang, Jilin Mei, Junhui Chen, Yu-
 661 Jie Yuan, Xinyue Cai, Guowei Huang, et al. From flatland to space: Teaching vision-language
 662 models to perceive and reason in 3d. *arXiv preprint arXiv:2503.22976*, 2025a.
 663

664 Jiawei Zhang, Chejian Xu, and Bo Li. Chatscene: Knowledge-enabled safety-critical scenario gener-
 665 ation for autonomous vehicles. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 and Pattern Recognition (CVPR)*, pp. 15459–15469, 2024a.
 666

667 Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan Zhang, Ziyue
 668 Wang, Haoran Tan, Chunyuan Li, and Ziwei Liu. Long context transfer from language to
 669 vision. *ArXiv*, abs/2406.16852, 2024b. URL <https://api.semanticscholar.org/CorpusID:270703489>.
 670

671 Xinjie Zhang, Jintao Guo, Shanshan Zhao, Minghao Fu, Lunhao Duan, Jiakui Hu, Yong Xien Chng,
 672 Guo-Hua Wang, Qing-Guo Chen, Zhao Xu, et al. Unified multimodal understanding and genera-
 673 tion models: Advances, challenges, and opportunities. *arXiv preprint arXiv:2505.02567*, 2025b.
 674

675 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
 676 instruction tuning with synthetic data. *arXiv preprint arXiv:2410.02713*, 2024c.
 677

678 Duo Zheng, Shijia Huang, and Liwei Wang. Video-3d llm: Learning position-aware video repre-
 679 sentation for 3d scene understanding. *arXiv preprint arXiv:2412.00493*, 2024.
 680

681 Duo Zheng, Shijia Huang, Yanyang Li, and Liwei Wang. Learning from videos for 3d world:
 682 Enhancing mllms with 3d vision geometry priors. *arXiv preprint arXiv:2505.24625*, 2025.
 683

684 Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
 685 Learning view synthesis using multiplane images. *arXiv preprint arXiv:1805.09817*, 2018.
 686

687 Xin Zhou, Dingkang Liang, Sifan Tu, Xiwu Chen, Yikang Ding, Dingyuan Zhang, Feiyang Tan,
 688 Hengshuang Zhao, and Xiang Bai. Hermes: A unified self-driving world model for simultaneous
 689 3d scene understanding and generation. *arXiv preprint arXiv:2501.14729*, 2025.
 690

691 Chenming Zhu, Tai Wang, Wenwei Zhang, Jiangmiao Pang, and Xihui Liu. Llava-3d: A simple
 692 yet effective pathway to empowering lmms with 3d-awareness. *arXiv preprint arXiv:2409.18125*,
 693 2024.
 694

695

696

697

698

699

700

701

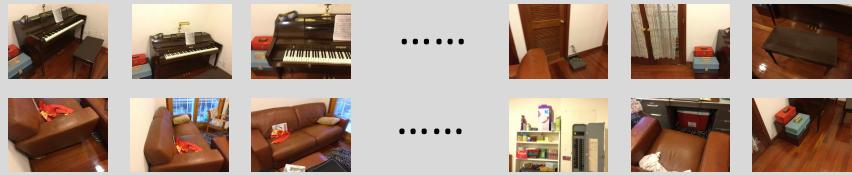
702 **Limitations and future work.** Although Omni-View has demonstrated a unified advance in the
 703 domains of question answering, spatial reasoning, and novel view synthesis, its grounding capabilities
 704 remain to be substantiated. Additionally, its generation model currently lacks the capability for
 705 long-range world generation. Future efforts will be concentrated on using reinforcement learning
 706 to augment Omni-View’s performance in 3D visual grounding and long-range generation. At the
 707 same time, since the training data used by its geometry module is a synthetic depth map, its actual
 708 geometry prediction ability may not be accurate enough.

710 A QUALITATIVE RESULTS

712 We show some qualitative results for 3D scene understanding and generation tasks in the appendix.

714 A.1 3D SCENE UNDERSTANDING

718 Multiview images

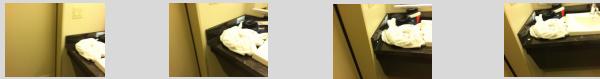


725 Question: I am standing by the ottoman on my right facing a couple of toolboxes.

726 What instrume in fro of me is ebony and ivory?

727 Answer: **piano**

730 Multiview images

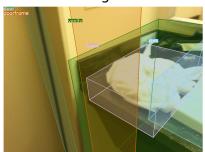


734 Question: Detect the 3D bounding boxes in the camera coordinate system of the first frame.

735 Answer: `{"label": "door", "bbox_3d": [-0.29, 0.21, 0.63, 0.07, 0.6, 1.69, 2.0, 1.14, -3.09]},`
 736 `{"label": "vanity", "bbox_3d": [0.6, 0.47, 0.53, 0.59, 1.36, 0.7, 0.43, 1.14, -3.09]},`
 737 `{"label": "towel", "bbox_3d": [0.31, 0.07, 0.79, 0.25, 0.35, 0.09, 2.0, 1.14, -3.09]},`
 738 `{"label": "sink", "bbox_3d": [0.57, 0.21, 0.53, 0.42, 0.63, 0.15, 0.43, 1.14, -3.09]},`
 739 `{"label": "doorframe", "bbox_3d": [-0.28, 0.19, 0.59, 0.2, 0.85, 1.63, 2.0, 1.14, -3.09]},`
 740 `{"label": "switch", "bbox_3d": [0.16, -0.23, 0.66, 0.02, 0.08, 0.11, 2.0, 1.14, -3.09]},`
 741 `{"label": "mirror", "bbox_3d": [0.86, -0.14, 0.44, 0.08, 1.06, 0.13, 0.43, 1.14, -3.09]}`

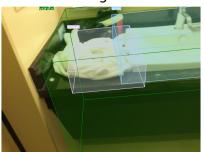
741 Image 0

742 Image 1



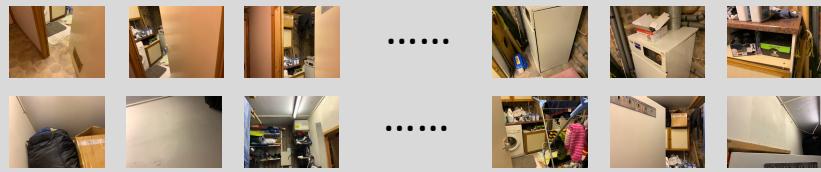
743 Image 2

744 Image 3

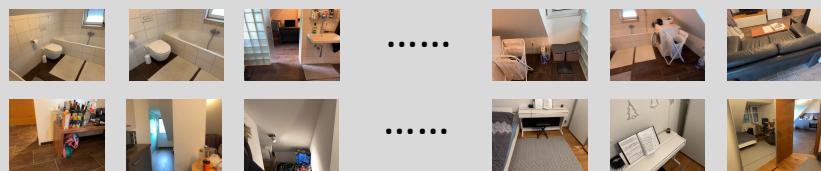


756 A.2 SPATIAL REASONING
757
758
759

760 Multiview images

761 Question: What is the size of this room (in square meters)?
762
763
764
765
766767 If multiple rooms are shown, estimate the size of the combined space.
768
769770 Answer: **10.3**771 Ground Truth: **10.5**772 (a) Results on room size estimation.
773
774
775
776
777
778

779 Multiview images

780 Question: What will be the first-time appearance order of the following categories in the video:
781
782
783
784785 A. ceiling light, heater, tv, printer
786 B. ceiling light, tv, heater, printer
787 C. heater, tv, ceiling light, printer
788 D. ceiling light, heater, printer, tv789 Answer: **B**790 (b) Results on appearance order.
791
792
793
794
795
796
797
798

799 Multiview images

800 Question: Measuring from the closest point of each object,
801 which of these objects (stove, tv, table, sofa) is the closest to the stool?
802 Options:803 A. stove
804 B. tv
805 C. table
806 D. sofa807 Answer with the option's letter from the given choices directly.
808
809810 Answer: **D.**

811 GT: D.

812 (c) Object relative distance.
813
814
815
816
817
818
819

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

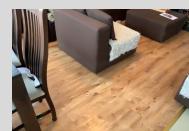
860

861

862

863

Multiview images



Question: How many chair(s) are in this room?

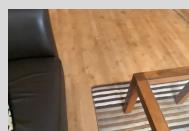
Please answer the question using a single word or phrase.

Answer: **4.**

GT: 4.

(d) Object counting.

Multiview images



Question: What is the length of the longest dimension (length, width, or height) of the sofa, measured in centimeters?

Please answer the question using a single word or phrase.

Answer: **184.**

GT: 173.

(e) Object size estimation.

Multiview images

Question: Measuring from the closest point of each object,

what is the distance between the tv and the bed (in meters)?

Please answer the question using a single word or phrase.

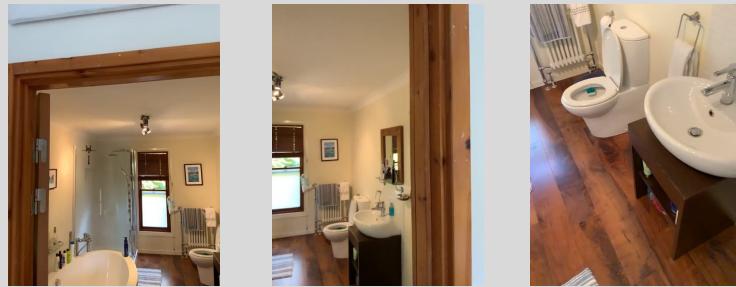
Answer: **1.0.**

GT: 1.1.

(f) Object absolute distance.

864
865
866
867
868
869
870
871
872
873
874
875
876

Multiview images



877 **Question:** If I am standing by the bathtub and facing the toilet,
878 is the table to my front-left, front-right, back-left, or back-right?
879 The directions refer to the quadrants of a Cartesian plane
880 (if I am standing at the origin and facing along the positive y-axis).
881 Options:
882 A. back-left
883 B. front-right
884 C. front-left
885 D. back-right
886 Answer with the option's letter from the given choices directly.

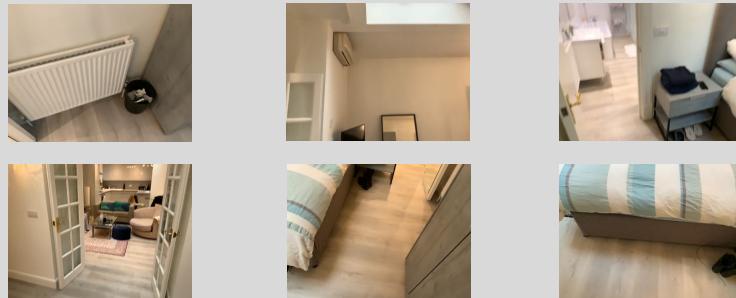
Answer: **B.**

GT: B.

887 (g) Object relative direction.

888
889
890
891
892
893
894
895
896
897
898
899

Multiview images



900 **Question:** You are a robot beginning at the tv facing the bed.
901 You want to navigate to the trash bin.
902 You will perform the following actions
903 (Note: for each [please fill in], choose either 'turn back,' 'turn left,' or 'turn right.'):
904 1. [please fill in]
905 2. Go forward until the cabinet
906 3. [please fill in]
907 4. Go forward until the trash bin is on your right.
908 You have reached the final destination.
909 Options:
910 A. Turn Left, Turn Left
911 B. Turn Right, Turn Left
912 C. Turn Back, Turn Left
913 D. Turn Right, Turn Right
914 Answer with the option's letter from the given choices directly.

Answer: **B.**

GT: B.

(h) Route planning.

915
916
917

918 A.3 SCALE CONSISTENCY ACROSS SCENES
919

920 We analyze the scale consistency across different scenes. To this end, we selected some test samples
921 from the SPAR-7M dataset and used Omni-View to perform absolute distance prediction based on
922 multi-view images. This SPAR-7M consists of scenes from three datasets: ScanNet and ScanNet++,
923 where the average scene depth ranges from 3 to 5 meters with a maximum depth of 12 meters;
924 and Structured3D, which features larger-scale environments with average depths between 4 and 6
925 meters and maximum depths reaching up to 20 meters. Qualitative visualizations demonstrate that
926 Omni-View can predict absolute depth in scenes with different metric scale.

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Multiview images

Question: The Object63 (red point at Frame-0, [0.14, 0.67]) is positioned at 3.4 meters depth.

Predict the depth of the Object22 (blue point at Frame-0, [0.23, 0.65]).

Calculate or judge based on the 3D center points of these objects.

Answer: **Object22's central depth is estimated to be about 2.0 meters.**

GT: With a central depth of 2.2 meters, Object22 is referenced here.

(a) Absolute depth estimation in structured3d, scene_03201_80.

Multiview images

Question: The Object26 (at Frame-1, [0.10, 0.39]) lies at 2.7 meters depth.

Predict the depth of the Object30 (at Frame-1, [0.10, 0.70]).

Calculate or judge based on the 3D center points of these objects.

Answer: **Object30 is centered at about 4.0 meters depth.**

GT: At its center, object Object30 has a depth of 4.3 meters.

(b) Absolute depth estimation in structured3d, scene_02053_25.

Multiview images

Question: If the plant (Frame-1, [0.30, 0.41]) is positioned at 2.7 meters,

estimate the depth of the laptop (at Frame-1, [0.16, 0.63]).

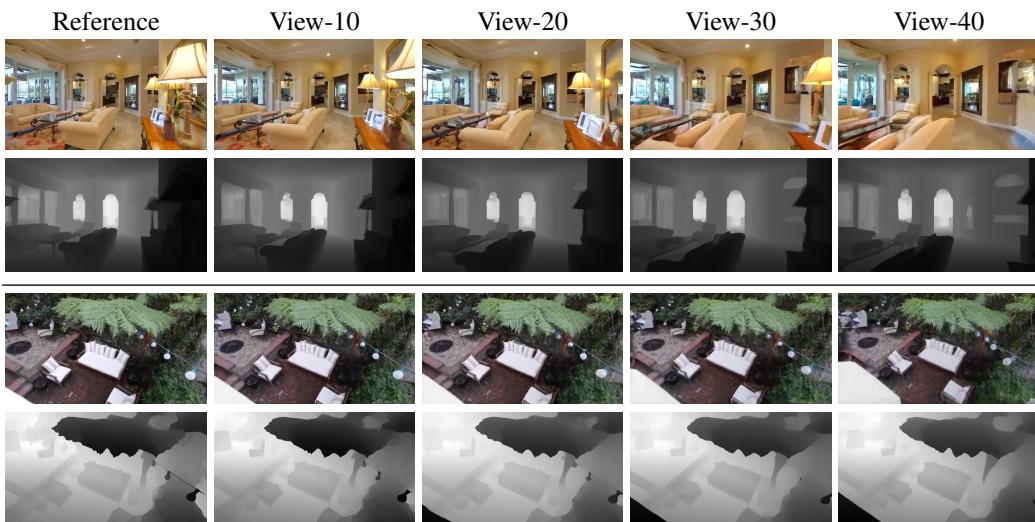
Calculate or judge based on the 3D center points of these objects.

The answer should be a single number, nothing more. .

Answer: **2.4**

GT: 2.3

(c) Absolute depth estimation in scannetpp, 9d7e20fbec_6022.

972 A.4 NVS FROM SINGLE VIEW
973974 **Indoor scenes.** We present the two visual results of NVS in indoor scenes. Omni-View can reasonably
975 imagine unseen areas while maintaining the texture and structure of observed objects, like the
976 followers on the table in the first row.
977986 **Outdoor scenes.** We present the two visual results of NVS in outdoor scenes. When the camera
987 movement is small, Omni-View can consistently generate new views.
988997 **Depth estimation.** We present the depth prediction results of Omni-View in indoor and outdoor
998 scenes. In indoor scenes, the output of Omni-View's geometry module is more accurate.
9991016 **Failure case.** We claim that the existing Omni-View is inadequate for effectively processing outdoor
1017 scenes with substantial camera movement. As illustrated in the figure below, the result images
1018 from Omni-View exhibit significant artifacts, highlighted within the red dashed boxes. Future work
1019 will focus on resolving the following challenges to enhance the handling of outdoor scenes with
1020 extensive camera motion: (1) the development of more precise camera control mechanisms, and (2)
1021 the improvement of inter-frame texture consistency stability.
1022

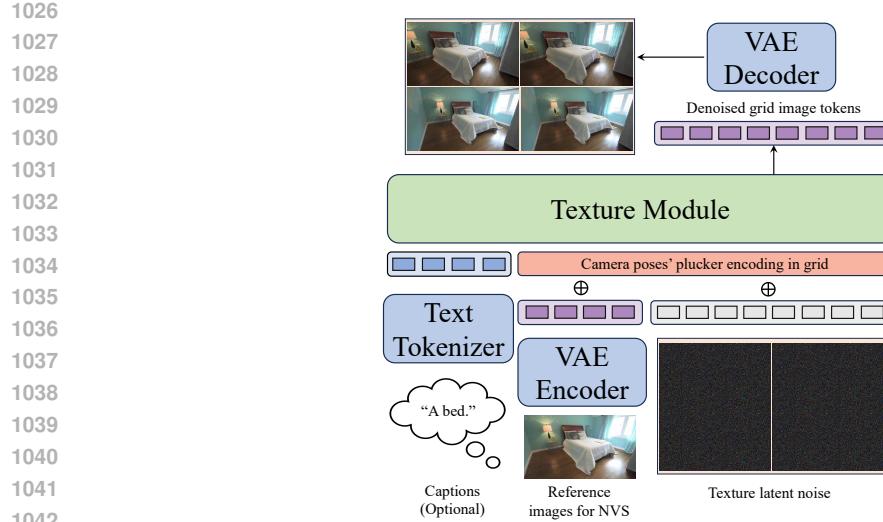
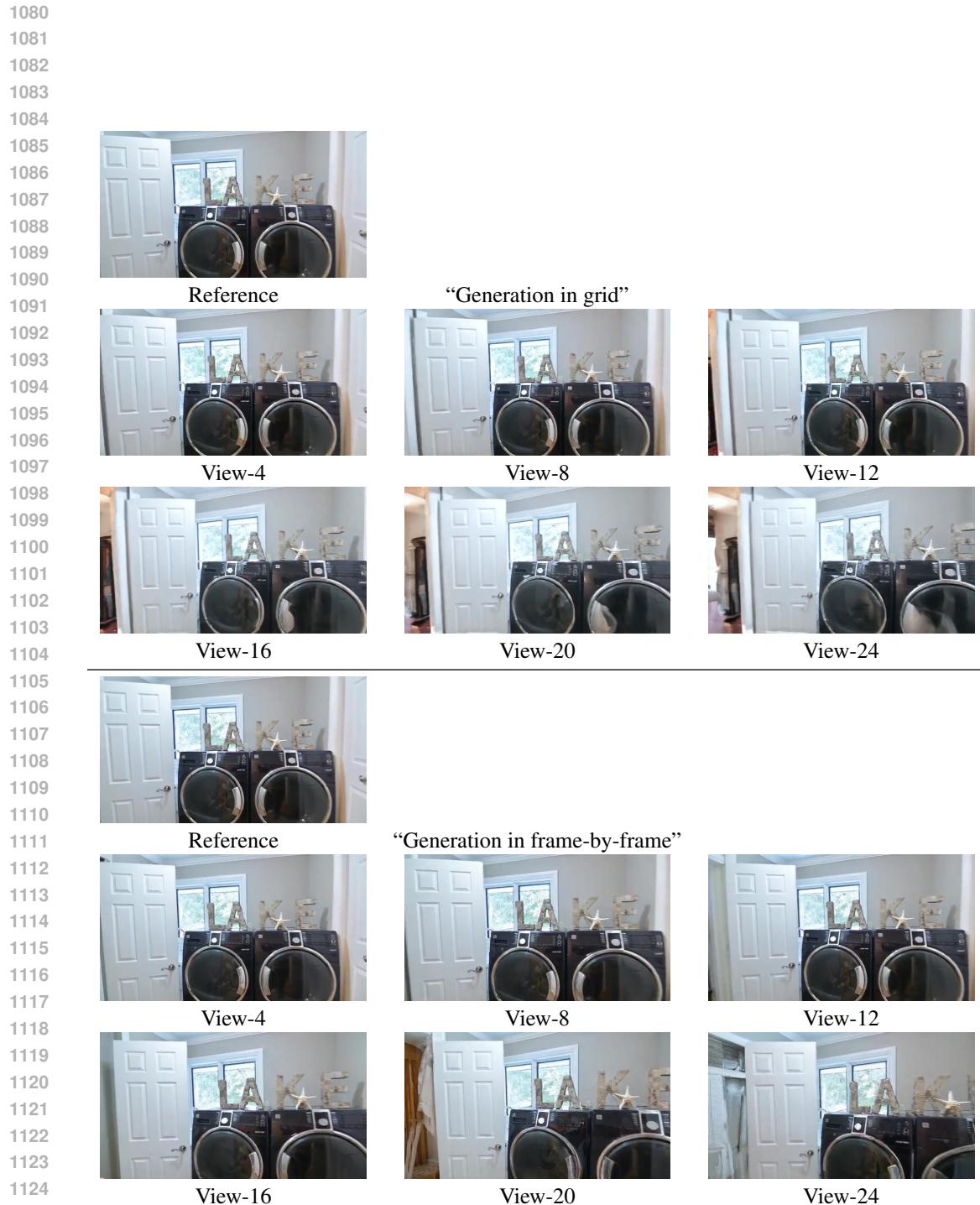


Figure 2: Generation in grid.

A.5 EFFECT OF GENERATION IN GRID

Generation in grid. We explored small improvements to enhance inter-frame consistency and support long-sequence scene generation: “generation in grid”. Specifically, we arrange 4 consecutive views into a single frame by organizing them in a grid layout, and perform autoregressive generation over the resulting sequence of grid-organized frames.

Results. As shown in the figures on the next page, we demonstrate that after using “generation in grid”, Omni-View can generate more consistent novel view images.



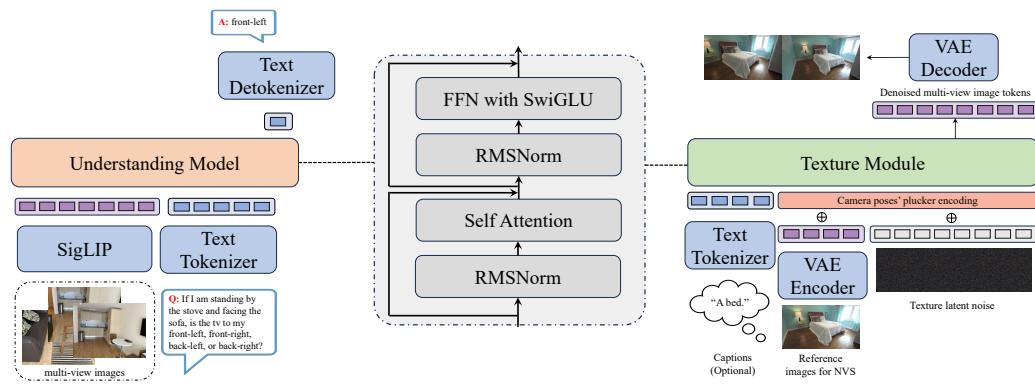
1134 **B TECHNICAL DETAILS**
11351136 **B.1 DATASET**
1137

1138 **3D scene understanding and spatial reasoning.** We curate a filtered training dataset containing 1139 780k valid samples by consolidating data from multiple sources, including SQA3D, ScanQA, 1140 3DOD, ScanRefer, VLM-3R, a 234k subset of SPAR from VG-LLM, and a 64k subset of 1141 llava-hound4 from VG-LLM. To ensure data quality, we perform two main filtering steps: (i) deduplication 1142 across the combined dataset, and (ii) removal of samples with invalid bounding box annotations. 1143 Specifically, we convert all bounding boxes to the $[x_1, y_1, x_2, y_2]$ format and exclude any instance 1144 where $x_1 < 0, y_1 < 0, x_2 > \text{width}$, or $y_2 > \text{height}$.
1145

1146 **Novel view synthesis.** We select 61k video clips from RealE10K train set, excluding those with 1147 fewer than 32 frames or significant motion blur that could degrade training stability. Depth maps are 1148 synthesized using the Voyager data pipeline, while captions are generated via QwenVLMMax.
1149

1150 **B.2 ARCHITECTURE.**
1151

1152 **Understanding model.** The detailed architecture is shown in Figure 4. The text tokenizer inherits 1153 from the vocabulary used by Qwen2. The image tokenizer for understanding is SigLIP. The backbone 1154 has layers as 28, attention head as 28, and hidden size as 3584, totaling 7B parameters. 1155 Key architectural choices include SwiGLU as the activation function, RMSNorm for normalization, 1156 FlexAttention (via PyTorch) for efficient self-attention computation, and position encoding adapted 1157 from Qwen2.
1158

1160 Figure 4: Architecture of understanding model and texture module.
1161

1162 **Texture module.** This module uses FLUX-VAE as the image tokenizer, sharing the same backbone 1163 architecture as the understanding model.
1164

1165 Figure 5: Architecture of geometry module in two stages.
1166

1167 **Geometry module.** The detailed architecture is shown in Figure 5. Depth maps are also encoded 1168 by FLUX-VAE. Its backbone is basically the same as the block architecture, but reduced to 4 layers, 1169 containing about 1B parameters. Unlike the others, the architecture of the geometry module changes 1170 across different training stages. In stage 1, it receives features from the understanding model for 1171

1188 cross-attention. In stage 2, it no longer receives outputs from the understanding model. The reason
 1189 for this design can be found in the discussion of stage 2 in Section 3.2.
 1190

1191 **B.3 TRAINING AND COMPUTATIONAL COST.**
 1192

1193 All training phases use the AdamW optimizer with $\beta_1 = 0.9, \beta_2 = 0.95$, a peak learning rate of
 1194 1×10^{-5} , and a linear warm-up schedule covering the first 5% of iterations.
 1195

1196 **Stage 1.** We train on the 3D scene understanding dataset for 10,000 iterations with a packed se-
 1197 quence length of 50k, using 32 H100 GPUs, which takes approximately 160 hours.
 1198

1199 **Stage 2.** For the generation task, we perform 20,000 iterations on the novel view synthesis dataset
 1200 with a packed sequence length of 32k, using 32 H100 GPUs, requiring approximately 40 hours in
 1201 total.
 1202

1203 **Understanding inference.** The model takes approximately 2.5 seconds on average to process a
 1204 32-frame multi-view scene understanding query using a single H100 GPU.
 1205

1206 **Generation inference.** Generating a single image at resolution 640×352 takes about 2.2 seconds
 1207 on average with one H100 GPU.
 1208

1209 **B.4 CONVERGENCE BEHAVIOR.**
 1210

1211 **Stage 1.** Overall, most losses exhibit smooth and stable convergence. However, we observe spikes in
 1212 the camera pose loss during training, particularly in later epochs. We hypothesize that this behavior
 1213 may stem from instable optimizion by learnable queries in the camera pose estimation task. How-
 1214 ever, these fluctuations do not prevent the model from converging to effective solutions, as evidenced
 1215 by strong performance in 3D scene understanding, spatial reasoning, and novel view generation.
 1216

1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

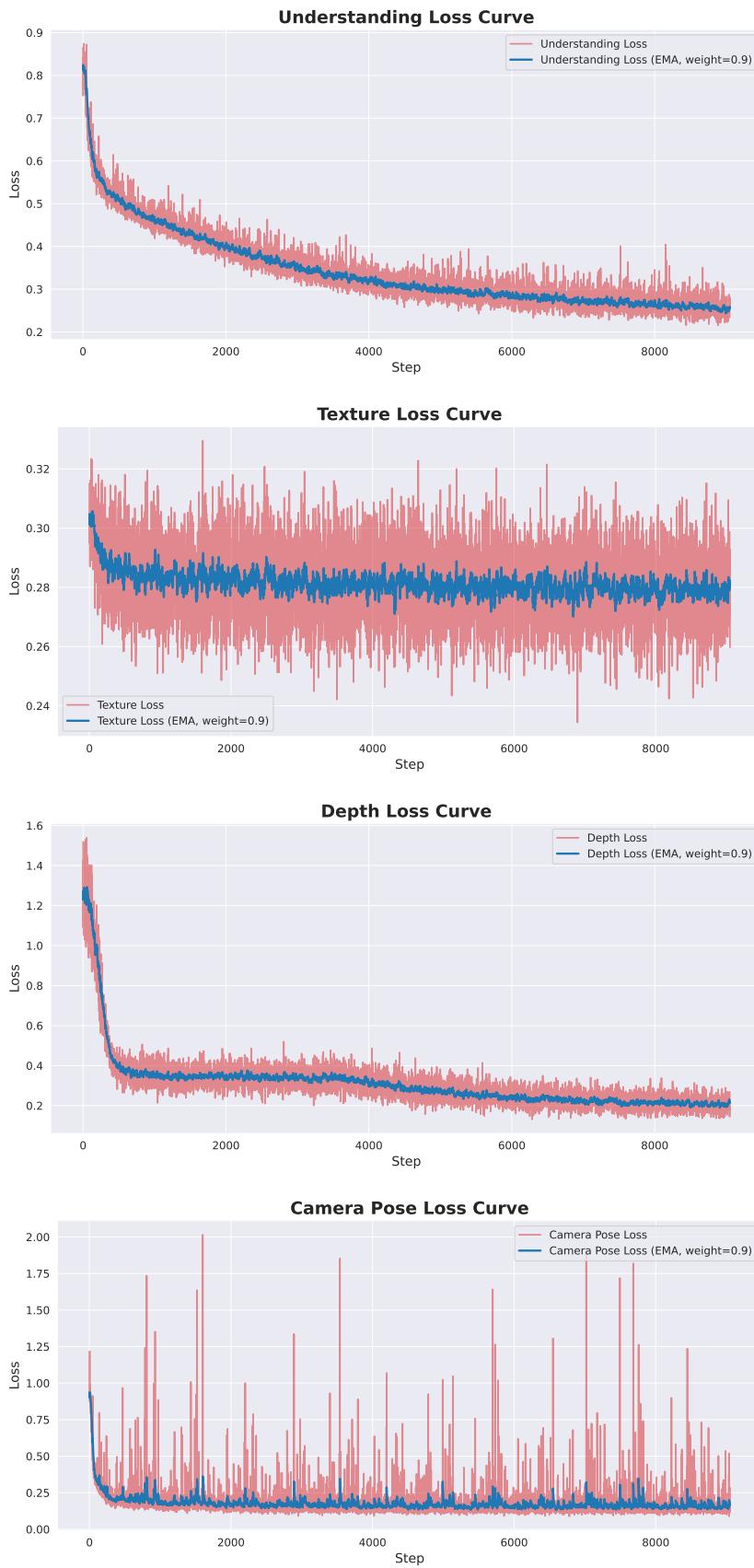
1291

1292

1293

1294

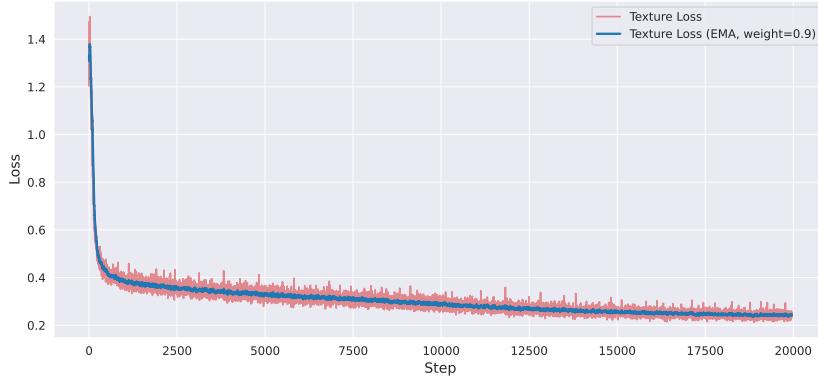
1295



1296 **Stage 2.** Since we used a grid generation format in stage 2, the per-image prediction method in stage
 1297 1 cannot be directly transferred to the “generation in grid” paradigm in stage 2. However, due to
 1298 the generative prior learned in stage 1, Omni-View can quickly converge to a lower loss in stage 2.
 1299 However, it was observed that the geometry loss showed a slight increase at around 8000 iterations,
 1300 followed by a decrease, suggesting that it might be possible to further reduce λ_{geo} to improve the
 1301 training stability.

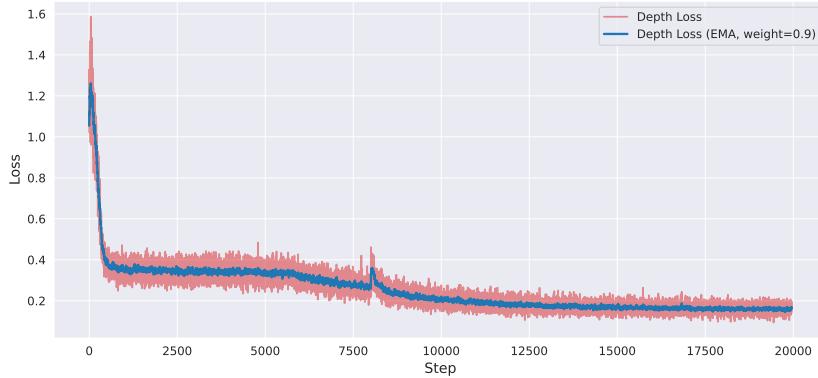
1302

1303

Texture Loss Curve

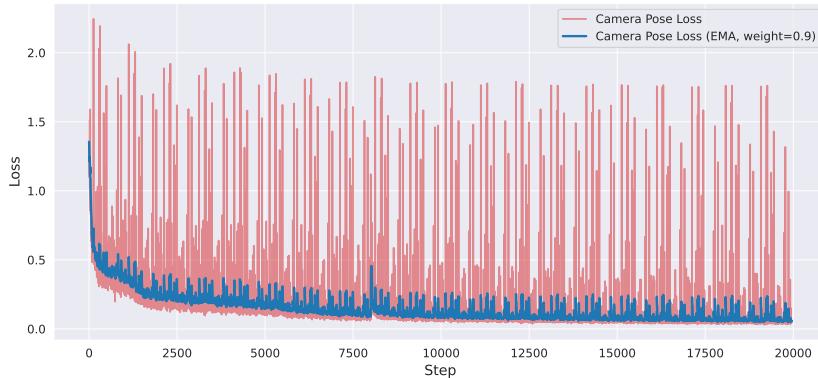
1316

1317

Depth Loss Curve

1329

1330

Camera Pose Loss Curve

1343

1344

B.5 ACTIVATION VISUALIZATION

1346

We visualize the activation maps of Bagel and Omni-View when they perform spatial reasoning tasks, as shown in the figure below. In this example, we want the model to locate how many cabinets are in the current scene, using the prompt: “How many cabinet(s) are in this room?”. It can be seen that Bagel mainly focuses on the first two images that are irrelevant to

1350 the question, whereas Omni-View is able to attend to each image as much as possible. The wider
 1351 attention may be the reason why Omni-View performs better on 3D scene understanding tasks.
 1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Figure 6: Activation map. Bagel-FT vs. Omni-View.

1404 **C THE USE OF LARGE LANGUAGE MODELS (LLMs)**
1405

1406 LLMs are used to correct potential grammatical inaccuracies in the manuscript. LLMs do not par-
1407 ticipate in research ideation.
1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457