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ABSTRACT

This paper presents Omni-View, which extends the unified multimodal under-
standing and generation to 3D scenes based on multiview images, exploring the
principle that “generation facilitates understanding”. Consisting of understanding
model, texture module, and geometry module, Omni-View jointly models scene
understanding, novel view synthesis, and geometry estimation, enabling synergis-
tic interaction between 3D scene understanding and generation tasks. By design, it
leverages the spatiotemporal modeling capabilities of its texture module responsi-
ble for appearance synthesis, alongside the explicit geometric constraints provided
by its dedicated geometry module, thereby enriching the model’s holistic under-
standing of 3D scenes. Trained with a two-stage strategy, Omni-View achieves a
state-of-the-art score of 55.4 on the VSI-Bench benchmark, outperforming exist-
ing specialized 3D understanding models, while simultaneously delivering strong
performance in both novel view synthesis and 3D scene generation.

1 INTRODUCTION

Recently, unified multimodal models (UMMs) (Team, 2024a; Xie et al., 2024; Deng et al., 2025)
have emerged as a pivotal area of research. The primary goal is to empower multimodal large
language models (MLLMs) to both understand and generate visual signals present in our world,
laying the foundation for artificial general intelligence.

Numerous methods (Team, 2024a; Wu et al., 2024a;c; Xie et al., 2024; Chen et al., 2025a; Deng
et al., 2025) have achieved coexistence between 2D image understanding and generation. Among
them, some studies (Wu et al., 2024b; Tong et al., 2024; Yan et al., 2025) aim to improve model per-
formance by exploring the synergies arising from the interaction between understanding and gener-
ation. For example, Metamorph (Tong et al., 2024) has extensively validated the role of understand-
ing in improving generation performance. However, the potential and effectiveness of generation to
improve understanding capabilities within unified models remain underexplored.

Due to the intrinsic geometric and spatiotemporal nature of 3D scenes and their multiview images,
generative tasks such as geometry estimation and novel view synthesis are particularly well-suited
for facilitating understanding in the 3D domain. This is attributable to the fact that 3D under-
standing tasks (Yang et al., 2024; Zhang et al., 2025a) inherently necessitate robust geometric and
spatiotemporal modeling capabilities, which can be effectively acquired through these generative
tasks. Moreover, biomedical evidence (Maus et al., 2013; Nortmann et al., 2015) suggests that hu-
man understanding of 3D environments is governed by the capacity to generate and imagine future
sensory and geometric data (Keller et al., 2012; Leinweber et al., 2017) in the observed scene. These
findings provide us with a guidance: the “generation facilitates understanding” paradigm presents a
promising approach to building a unified model for 3D scene understanding and generation.

Inspired by the above analysis, this paper aims to fully unlock and maximize the benefits of gener-
ation to understanding, thereby constructing a unified model for 3D scene understanding and gen-
eration, called Omni-View. We emphasize that geometry estimation and novel view synthesis can
leverage their inherent geometric measurement and spatiotemporal modeling capabilities to improve
3D scene understanding, localization, and spatial reasoning. Specifically, we achieve this through
two key aspects, architectural design and training strategy.
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The architectural design aims at unifying 3D scene understanding and generation, leveraging ge-
ometry estimation and novel view synthesis to advance 3D scene understanding. Our Omni-View is
built on Bagel (Deng et al., 2025), a strong unified framework in which the interaction between un-
derstanding and generation is facilitated by its shared multimodal self-attention. However, Bagel’s
generative capacity is limited to RGB images, thus only capturing texture information, whereas 3D
scene generation necessitates inclusion of both texture and geometric structure. In accordance with
the dual generative objectives, the generation model in Omni-View is split into two distinct mod-
ules: a texture module and a geometry module. The texture module receives reference images, a
list of targeted camera poses, and prompt tokens encoded by the understanding model to generate
novel views of the scene. Meanwhile, the geometry module employs the hidden features from the
understanding model and the latent output of the texture module to infer geometric information of
novel views, such as depth maps and camera poses. This dual-pathway architecture empowers the
model to develop both geometric and spatiotemporal modeling capabilities, which are essential for
3D scene understanding tasks.

The principal goal of training strategy is to comprehensively improve the performance of the model.
A two-stage training strategy is employed. The first stage aims to augment the benefits of generation
for understanding 3D scenes, as introduced by the proposed architecture. The subsequent stage
is intended to refine the generation performance. In stage 1, the understanding model, geometry
module, and texture module are trained simultaneously. Geometry estimation assists the model
in comprehending the relative positional relationships among objects, thus directly enhancing the
model’s capability to evaluate the relative distances and directions of objects in 3D scenes. The
autoregressive generation forces the understanding model to discern the spatiotemporal relations
between the generated novel views, thus improving its understanding capabilities. As iterations
progress in stage 1, the number of reference images gradually decreases. This progressive shift
from dense to sparse views supports a curriculum-like, easy-to-difficult training approach, ultimately
enhancing the performance of the understanding model. In stage 2, the understanding model is
forzen. The generation model is finetuned via RGB-Depth-Pose joint generation, thereby enhancing
its capabilities in 3D scene generation.

We evaluate Omni-View on scene understanding, spatial reasoning, and novel view synthesis tasks.
The model achieves an impressive score of 55.4 on the VSI-Bench, exceeding current MLLMs
designed for visual reasoning. It manifests particularly notable improvements in subtasks such as
Relative Distance and Appearance Order, which require spatiotemporal modeling and the estimation
of geometry acquired through generation tasks. It also exhibits superior performance compared to
existing 3D understanding MLLMs in the area of 3D question answering (Ma et al., 2023; Azuma
et al., 2022). Furthermore, it effectively narrows the performance gap between unified models and
specialized models focused on 3D visual localization (Chen et al., 2020). Furthermore, we attain
robust results in the domain of novel view synthesis and scene generation, with particular emphasis
on enhanced perceptual quality.

2 RELATED WORK

Scene understanding. Recent advances in understanding 3D scenes have been greatly provided
by incorporating 3D or video input and 3D reconstruction prior. LLaVA-3D (Zhu et al., 2024)
and GPT4Scene (Qi et al., 2025) function within the voxel space and BEV. Video3DLLM (Zheng
et al., 2024) improves localization ability by encoding 3D coordinates as position embeddings,
while Ross3D (Wang et al., 2025a) improves 3D understanding through visual-centric reconstruc-
tion. However, the dependency on 3D input of these methods poses practical application challenges.
To alleviate this issue, VG-LLM (Zheng et al., 2025) and SpatialMLLM (Wu et al., 2025a) use the
features of VGGT (Wang et al., 2025b) as input, embedding the 3D piror in the model.

Scene generation. A vital element of scene generation methods is the presence of an efficient proxy
to represent the 3D scene, with panoramic images (Team et al., 2025), point clouds (Yu et al., 2024c),
and Gaussian Splatting (Yu et al., 2024a) among the viable options. In consideration of the advances
in image and video diffusion models (Rombach et al., 2022; Wan et al., 2025), contemporary 3D
scene generation strategies reconstruct the scene’s geometry from a single view, employing condi-
tioned video diffusion models to render the scene’s texture. ViewCrafter (Yu et al., 2024c) brings
explicit 3D information (point cloud) to generation models through iterative reconstruction. Won-
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derJourney (Yu et al., 2024b) generates a comprehensive set of view sequences. Voyager (Huang
et al., 2025) reconstructs the scene from a single view and uses it as conditions for inpainting.

Unified understanding and generation. In the domain of 3D scenes, a unified model for under-
standing and generation applicable in general scenarios remains absent. Hermes (Zhou et al., 2025)
uses BEVs to design a unified understanding and generation model for autonomous driving. In
contrast, significant progress has been made in 2D vision (Zhang et al., 2025b). These methods
show primarily variations in architectures and training strategies. Chameleon (Team, 2024a) utilizes
VQ-VAE for image tokenization, thereby improving generation competencies. However, its under-
standing capabilities are inferior to those of Janus (Wu et al., 2024a), which employs SigLIP (Zhai
et al., 2023) as visual understanding encoder. VILA-U (Wu et al., 2024c) integrates understanding
and generation within the image encoder, bypassing multitask gradient conflicts during MLLM train-
ing. BAGEL (Deng et al., 2025) implements task-based hard routing for MLLM, which also avoids
gradient conflicts. Harmon (Wu et al., 2025b) takes advantage of MAE’s reconstruction ability and
downstream understanding enhancement. BLIP3o (Chen et al., 2025a) introduces “understand first,
then generation” training paradigm, thus achieving performance gains. Building on the progress in
the 2D domain, this paper investigates a unified model in 3D scenes and explores how generation
aids the understanding scheme within the framework.

3 METHOD

3.1 ARCHTITECTURES

Texture Module

Camera poses’ plucker encoding

Denoised multi-view image tokens

Reference
images for NVS

multi-view images*

Geometry noise

Geometry Module

Captions
(Optional)

Texture noise
Target images in NVS

Q: If I am standing by 
the stove and facing the 
sofa, is the tv to my 
front-left, front-right, 
back-left, or back-right?

A: front-left

Understanding Model

Omni-View
Unified 3d scene understanding 

and generation model

Training Stage 1

Und Und
Training Stage 2

Tex

Geo Geo

Tex

Gradient Flow

Inference Flow Trainable

Frozen

Denoised depth tokens

Pose query

Pose

Element-wise addition

*: images are uniformly sampled

Text token

Image / Depth token

Random noise

Camera pose token

“A bed.”

Image feature

Figure 1: Architecture of Omni-View. Building upon Bagel (Deng et al., 2025), Omni-View con-
sists of an understanding model and a generation model. The generation model is further composed
of two specialized modules: one for texture and one for geometry. Trained via a two-stage process,
Omni-View shows high effectiveness in scene understanding and novel view synthesis. Crucially, it
unlocks the benefits of its generative capabilities to enhance the model’s understanding performance.

The architecture of Omni-View, as illustrated in Figure 1, is divided into two distinct components.
The left component, termed the understanding model, is tasked with understanding the multiview
images of 3D scenes and producing text feedback. The right component is comprised of two integral
parts: the texture module and the geometry module, which facilitate the synthesis of the RGB image
and the associated geometric data.

Understanding Model. The understanding model is required to perform 3D scene or spatial com-
prehension tasks, including question answering, localization, and reasoning. This necessitates the
model to extract semantic information from spatial-temporal data while measuring the geometric
characteristics of the 3D scene. Specifically, given n multiview images and a question Tques, the
understanding model produces the textual answer Tans through the next token prediction. In this
process, the images are encoded by SigLIP (Zhai et al., 2023) and the text is tokenized by a frozen
vocabulary τ(·). Subsequently, tokens of multiview images and question τ(Tques) will be sequen-
tially concatenated and fed into the understanding model. Moreover, the understanding model can
also produce intermediate features, which will be used in the geometry module.
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Texture Module. The texture module in the generation model is tasked with novel view synthesis
using flow matching (Lipman et al., 2022). This module processes a textual description Tdes and
some reference images Iref of the current scene, together with a specified camera pose, to produce
consistent novel views of this scene. Within this module, the reference images Iref are encoded
using the FLUX-VAE encoder (Labs, 2024) ε(·), and the vocabulary used to tokenize Tdes aligns
with that used by the understandimg model. This process incorporates the camera pose control as
delineated in MV-AR (Hu et al., 2025), embedding the Plucker-Ray encoding ri,j = (o × d, d) of
the camera pose as the absolute position encoding in the model, where o and d donate the origin
and direction of the ray, (i, j) represents the pixel coordinate. This camera pose embedding exhibits
adaptability to various image resolutions and demonstrates significant flexibility. The above process
can be described as:

Ftex = TextureModule ([LM -Head(τ(Tdes)); [ε(Iref );Ntex] + r]), (1)

where Ftex is the predicted image noise of the texture module, Ntex is the random input noise, and
LM Head is the text processing module of the understanding model.

Geometry Module. The geometry module in the generation model constructs the geometric aspects
of the generated images in the texture module. It synthesizes depth maps through flow matching
and employs a learnable query strategy to accurately estimate camera poses. It receives the latent of
novel view images Ftex from the texture module as input, which is concatenated with random depth
noise Ndep and a learnable camera pose query qcam along the frame dimension. After processing,
Ndep will be denoised as depth maps’ latent, while qcam will be decoded to reveal the intrinsic and
extrinsics of the camera. The features of novel view images Fund, output from the understanding
model’s block, is also integrated into the geometry module through cross-attention. The process in
the geometry module can be described as follows.

[Fdep; ĝ] = GeometryModule ([Ftex;Ndep; qcam], Fund), (2)

where Fdep is the predicted depth noise of the geometry module. ĝ is the predicted intrinsics and
extrinsics of the camera, which is decoded by VGGT’s camera decoder (Wang et al., 2025b).

The geometry module has independent parameters and maintains architectural connections with
both the texture module and the understanding model. Unlike the connection method in BAGEL,
the geometry module uniformly extracts features from the understanding model at the layer dimen-
sion as conditions. It utilizes cross-attention for fusion and ensures that the gradients of geometry
estimation can be backpropagated to the understanding model. Currently, the geometry module’s
input only relies on the last-layer output latent of the texture module. This approach guarantees that
it acquires information closest to the image modality, thereby providing finely aligned features for
the estimation of depth map and camera pose.

3.2 TRAINING RECIPE

The Omni-View training recipe has two separate stages, as shown in the upper left of Figure 1.

Stage 1: unify 3D understanding and generation. In stage 1, we train the understanding model,
the texture module, and the geometry module simultaneously. It can leverage the fine-grained ge-
ometry estimation capability in the geometry module and combines it with the spatial-temporal
modeling ability within the texture module, thus improving the 3D understanding performance.

Understanding model. For the understanding model, we use the next token prediction to predict
the distribution of the answer text given the distribution of the multiview images and query text. The
loss function of the understanding model can be expressed as follows.

Lund = −
T∑

i=1

logPθ(yi|y<i), (3)

where y is the multimodal sequence that contains tokenized multiview images, query text, and an-
swer text.
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Texture module. The loss function for the texture module is defined as the Mean Squared Error
(MSE) loss between each predicted texture noise Ftex generated by the texture module and the
provided texture noise Ntex.

Ltex = ||Ftex −Ntex||2. (4)

In contrast to the majority of novel view synthesis methods, the texture model employs a autoregres-
sive generation framework. Specifically, during the generation of the n-th frame, the model is ex-
posed to the visual data of the preceding n−1 frames, while excluding any subsequent frames. This
autoregressive methodology enables the model to fully grasp the concept of temporal sequences,
thereby enhancing its spatiotemporal modeling proficiency and effectively improving scene under-
standing. To optimize the 3D consistency of the sampled images, diffusion forcing (Chen et al.,
2024a) is employed when training the texture module.

To acquire this complex spatiotemporal generation capability incrementally, we gradually adjust
the reference images. As iterations progress, the reference images are systematically reduced in a
stepwise manner, transitioning from encompassing all input images, excluding the first image, to
including only the first image. This implies that for the model, the reference confidence transitions
from dense to sparse. We designate this progressive training approach as dense-to-sparse (D2S).
This strategy has been shown to be highly effective in facilitating improved understanding.

Geometry module. In stage 1, the geometry module is tasked with estimating the depth and pose
of the camera from both the provided images and those synthesized by the texture module. The loss
function for the geometry module comprises a sum of the depth estimation loss and the camera pose
estimation loss. In terms of depth estimation, we apply the MSE loss to the comparison between the
depth noise Fdep predicted by the geometry module and the given depth noise Ndep. The estimated
intrinsics and extrinsics of the camera ĝ are optimized directly through the Huber loss.

Lgeo = ||Fdep −Ndep||2 + ||ĝ − ggt||ϵ, (5)

where ggt is the ground truth of the camera pose and || · ||ϵ donates the Huber loss.

Ultimately, a weighted summation of the aforementioned losses is conducted to derive the loss
function in stage 1 Ls1.

Ls1 = λundLund + λtexLtex + λgeoLgeo, (6)

where λund, λtex, and λgeo represent the weighting coefficients and their default values are 1, 1, and
0.1 respectively.

Stage 2: advance generation. In stage 2, the texture module and the geometry modules are trained.
The RGB-Depth-Pose (RGBDP) joint learning methodology is used for training, capitalizing on the
geometry prior obtained from depth-pose estimation to enhance the ability to generate consistent
appearances for novel views.

In the texture module, the reference single-view image is used along with its depth map to recon-
struct the initial point cloud of the scene. The images rendered from different views, projected
through this point cloud, serve as conditions following Voyager (Huang et al., 2025). For the ge-
ometry module, it generates the depth map and camera pose from images synthesized by the texture
module. Concurrently, it no longer relies on the features of the understanding model as conditions
for cross-attention.

4 EXPERIENCE

4.1 EXPERIMENTAL SETUP

In our experiments, the understanding model and the texture module in the generation model are
initialized using the pre-trained BAGEL-7B (Deng et al., 2025). The geometry module in the gen-
eration model is configured to have the same dimensions as the texture module, with a depth of
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four layers. For 3D scene understanding, a filtered dataset comprising 780k valid items, sourced
from SQA3D (Ma et al., 2023), ScanQA (Azuma et al., 2022), 3DOD (Zheng et al., 2025), Scan-
Refer (Chen et al., 2020), VLM-3R (Fan et al., 2025), SPAR (Zhang et al., 2025a) (234k subset)
and llava-hound4 (Zhang et al., 2024c) (64k subset), is meticulously curated for training. Regarding
novel view synthesis, 61k video clips are carefully selected from re10k (Zhou et al., 2018). The
corresponding depth maps are synthesized using the Voyager data pipeline (Huang et al., 2025) and
captions are synthesized using the QwenVLMax (Bai et al., 2025). During training, we do not use
images from the scene understanding task to train the generation model to fully demonstrate that the
understanding performance improvement brought by Omni-View does not come from memorizing
the data in understanding tasks.

Model training was performed using the AdamW optimizer, characterized by β1 = 0.9, β2 = 0.95,
the peak learning rate of 1 × 10−5. The warm-up phase that constitutes 5% of the whole training
iterations. The training process is completed after one epoch of the understanding dataset. For the
understanding model, we do not rely on any 3D scene input to support both 3D scene understanding
and spatial reasoning tasks. In main comparisons, we use the same checkpoint for testing all tasks.

4.2 MAIN COMPARISONS

4.2.1 3D SCENE UNDERSTANDING

Benchmarks. We evaluate the 3D understanding performance of the model on question answer-
ing (Ma et al., 2023; Azuma et al., 2022) and localization (Chen et al., 2020; Zheng et al., 2025).
During inference, we set the frame numbers as 32 following Video3DLLM (Zheng et al., 2024).

Comparison baselines. We compare Omni-View with models specifically designed for 2D or 3D
visual understanding tasks (Team, 2024b; Wang et al., 2024a; Zhang et al., 2024c; Huang et al.,
2023; Zhang et al., 2024a; Chen et al., 2024b; Zhu et al., 2024; Zheng et al., 2024; Qi et al., 2025;
Wang et al., 2025a), as well as with some unified models applicable to video modalities (Deng et al.,
2025). Unified models are evaluated after fine-tuning with the same data. Within the results table,
we differentiate between models that incorporate explicit 3D input and those that do not. Although
the incorporation of explicit 3D input improves model performance, it concurrently restricts appli-
cability (Zheng et al., 2024).

Methods 3D Input SQA3Dtest ScanQAval 3DOD ScanRefer
EM EM-R C B-4 M R EM F1 Acc@0.25 Acc@0.5

Task-specific Models

LEO ✔ 50.0 52.4 80.0 11.5 16.2 39.3 21.5 – – –
ChatScene ✔ 54.6 57.5 87.7 14.3 18.0 41.6 21.6 – 55.5 50.2
Grounded 3D-LLM ✔ – – – – – – – – 47.9 44.1
Video-3D-LLM ✔ 58.6 – 102.1 16.4 20.0 49.3 30.1 – 58.1 51.7
GPT4Scene-HDM ✔ 59.4 62.4 96.3 15.5 18.9 46.5 – – 62.6 57.0
Ross3D ✔ 63.0 65.7 107.0 17.9 20.9 50.7 30.8 – 61.1 54.4
LLaVA-3D ✔ 60.1 – 103.1 16.4 20.8 49.6 30.6 – 50.1 42.7
InternVL2-8B ✘ 33.0 45.3 62.5 3.3 14.5 34.3 – – – –
Qwen2-VL-7B ✘ 48.5 – 53.9 3.0 11.4 29.3 – – – –
LLaVA-Video-7B ✘ 48.5 – 88.7 3.1 17.7 44.6 – – – –
SPAR-7B ✘ 58.1 – 90.7 15.3 – – – – 48.8 (31.9) 43.1 (12.4)
VG-LLM-4B ✘ – – – – – – – 47.0 53.5 (36.4) 47.5(11.8)
SpatialMLLM-4B ✘ 55.9 58.7 91.8 14.8 18.4 45.0 – – – –

Unified Models

BAGEL-7B-FT ✘ 57.2 59.7 95.5 14.7 18.7 46.3 27.0 41.3 46.9 (28.0) 41.6 (7.7)
Omni-View-7B ✘ 59.2 61.9 103.0 16.2 20.1 49.0 29.5 46.4 50.8(32.5) 45.0(9.9)

Table 1: Evaluation of 3D scene understanding. “–” indicates the number is not available for us.
Bold and underline denote the best and second-best models without 3D scene input, respectively. For
ScanRefer, the content in “()” indicates results without proposal refinement (Zhang et al., 2025a).

Metrics. For SQA3D, we use the EM metric to evaluate the accuracy, which stands for top-1 exact
match. EM-R means the refined EM following LEO (Huang et al., 2023). For ScanQA, we use
CIDEr (C), BLEU-4 (B-4), METEOR (M), ROUGE (R), and EM for more complete validation.
For 3DOD, we use the average F1 score (F1) as a metric to assess the correspondence between
the predicted and actual coordinates. For ScanRefer, we calculate the percentage of samples for
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which the Intersection over Union (IoU) exceeds thresholds of 0.25 and 0.5, respectively, between
the predicted and true coordinates. The higher the above metrics, the better.

Results. As shown in Table 1, our analysis leads to four conclusions. (1) Our Omni-View exceeds
all current MLLM methods that do not depend on 3D scene input. Within the SQA3D test set,
Omni-View achieves an enhancement of 3.3 over SpatialMLLM in EM, while in the ScanQA val-
idation set, it surpasses SpatialMLLM by an increment of 11.2 in CIDEr. For the object detection
task, our unified model performs comparably with the 3D understanding model VG-LLM. (2) This
performance improvement is mainly attributed to the architectural design and training scheme that
we proposed. Compared with the fine-tuned BAGEL, our method still demonstrates substantial im-
provements. For example, on the SQA3D test set, Omni-View enhances EM by 2 points compared
to the fine-tuned BAGEL (Deng et al., 2025); on the ScanQA validation set, Omni-View improves
7.5 in CIDEr. (3) The efficacy of our approach in the question-answering task is equivalent to ad-
vanced MLLM methods that require 3D scene input. In particular, in the ScanQA validation set,
Omni-View achieved a performance comparable to Video3DLLM (Zheng et al., 2024) and LLaVA-
3D (Zhu et al., 2024). (4) However, there remains a notable disparity between methodologies that do
not require 3D scene input and those that do, particularly in 3D grounding tasks. The experimental
results of VG-LLM (Zheng et al., 2025) also substantiate this observation.

4.2.2 3D SPATIAL REASONING

Benchmarks. We evaluate the 3D spatial reasoning ability of the model in VSI-Bench (Yang et al.,
2024). During inference, we follow the VSI-Bench to set frame numbers ranging from 8 to 32 and
frame resolution to 640p.

Comparison baselines. We compare our Omni-View with models specifically designed for 2D or
3D visual understanding tasks (Xue et al., 2024; Zhang et al., 2024b; Bai et al., 2025; Ray et al.,
2024; Zhang et al., 2025a; Zheng et al., 2025; Wu et al., 2025a), as well as with some unified models
applicable to video modalities (OpenAI, 2024; Team et al., 2024; Deng et al., 2025; Xie et al., 2025).
Unified models are evaluated after fine-tuning with the same data we used.

Methods Numerical Qusetion Multiple-Choice Question Avg.
Obj. Cnt. Abs. Dist. Obj. Size Room Size Rel. Dist. Rel. Dir. Route Plan Appr. Order

Task-spefic Models

LongVILA-8B 29.1 9.1 16.7 0.0 29.6 30.7 32.5 25.5 21.6
LongVA-7B 38.0 16.6 38.9 22.2 33.1 43.3 25.4 15.7 29.2
LLaVA-OneVision-72B 43.5 23.9 57.6 37.5 42.5 39.9 32.5 44.6 40.2
LLaVA-Video-72B 48.9 22.8 57.4 35.3 42.4 36.7 35.0 48.6 40.9
Qwen2.5VL-7B 40.9 14.8 43.4 10.7 38.6 38.5 33.0 29.8 33.0
Qwen2.5VL-72B 25.1 29.3 54.5 38.8 38.2 37.0 34.0 28.9 37.0
SAT-LLaVA-Video-7B – – – 47.3 41.1 37.1 36.1 40.4 –
SPAR-8B – – – – – - - – 41.1
VG-LLM-4B 66.4 36.6 55.2 56.3 40.8 43.4 30.4 39.5 46.1
Spatial-MLLM-4B 65.3 34.8 63.1 45.1 41.3 46.2 33.5 46.3 48.4

Unified Models

GPT-4o (API) 46.2 5.3 43.8 38.2 37.0 41.3 31.5 28.5 34.0
Gemini-1.5 Pro (API) 56.2 30.9 64.1 43.6 51.3 46.3 36.0 34.6 45.4
BAGEL-7B-FT 62.8 36.3 56.4 49.7 46.1 49.4 26.8 43.1 46.3
Omni-View-7B 70.3 46.4 68.6 54.7 65.9 54.4 33.5 49.0 55.4

Table 2: Evaluation of spatial reasoning on VSI-Bench. “–” indicates the number is not available
for us. Bold and underline denote the best and second-best models, respectively.

Results. The results on spatial reasoning tasks more fully demonstrate Omni-View’s improvement
over previous methods in analyzing the relative or absolute position and orientation of spatial ob-
jects. With an average score of 55.4, our Omni-View ranks first among existing spatial reasoning
MLLMs. Compared to existing Spatial-MLLM (Wu et al., 2025a) and VG-LLM (Zheng et al.,
2025), Omni-View improves Spatial-MLLM by 11.6, 9.6, and 24.6 in Absolute Distance (Abs.
Dist.), Room Size, and Relative Distance (Rel. Dist.), respectively. Omni-View improves VG-LLM
by 9.8, 13.4, 25.1, 11.0, and 9.5 in Abs. Dist., Object Size (Obj. Size), Rel. Dist., Relative Direction
(Rel. Dir.), and Appearance Order (Appr. Order), respectively. These tasks necessitate the model
to thoroughly predict the spatiotemporal state and measure the geometric properties of the scene it
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observes (Yang et al., 2024). This demonstrates that our proposed method substantially enhances
the model’s pertinent capabilities.

4.2.3 3D SCENE GENERATION

Benchmarks. The model’s generation capacity is validated under two tasks: novel view synthesis
(NVS) from a single view and scene generation. NVS from a single view necessitates that the model
generate the subsequent 25 frames from the first image. 3D scene generation evaluates scenes that
are reconstructed from the videos generated to 3DGS. The test scenes are randomly selected from
the Re10k test set following Chen et al. (2025b).

Comparison baselines. We compare with scene generation methods (Chung et al., 2023; Wang
et al., 2024b; Ma et al., 2025; Yu et al., 2024c; Chen et al., 2025b; Huang et al., 2025) and a unified
model (Deng et al., 2025). To evaluate the performance of scene generation, we use Dust3R to recon-
struct the generated videos, ensuring fairness in the comparison, according to Chen et al. (2025b).
The evaluation is only conducted on the first 25 frames generated by the model following Yu et al.
(2024c); Zhai et al. (2025).

NVS from single view and scene generation. Omni-View achieved the highest PSNR and SSIM,
and lowest LPIPS score, indicating that its image quality could surpass that of other methods. How-
ever, in terms of pixel-level fidelity, Omni-View shows only slight improvements over popular scene
generation models. This discrepancy may be attributed to Omni-View’s challenges in being pre-
cisely controlled via the camera pose. Visualization results are presented in the Appendix due to
page limit.

Methods NVS from Single View Scene Generation
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Task-specific Models

LucidDreamer 22.27 0.766 0.204 21.98 0.698 0.290
MotionCtrl 15.86 0.520 0.431 15.33 0.479 0.590
See3D 22.37 0.781 0.199 21.60 0.744 0.238
ViewCrafter 22.60 0.754 0.195 22.25 0.709 0.204
FlexWorld-5B 23.05 0.788 0.182 22.86 0.756 0.198
Voyager-13B 23.12 0.793 0.175 22.93 0.768 0.194

Unified Models

BAGEL-7B-FT 21.76 0.703 0.288 21.04 0.599 0.403
Omni-View-7B 23.22 0.817 0.114 23.12 0.801 0.146

Table 3: Evaluation of novel view synthesis from single view and scene generation on Re10k.

4.3 ABLATION STUDIES

We perform ablation studies on the proposed architecture and training strategy to ascertain their ef-
ficacy. The data used and the hyperparameters applied during the ablation studies remain consistent.

Effect of two modules in the generation model. Both the texture module and the geometry module
can improve understanding performance, but they focus on different aspects. The results presented
in Table 4 demonstrate that the integration of the texture module facilitates notable advancements in
tasks dependent on spatiotemporal modeling, exemplified by an increase of 4.1 points in Appr. Or-
der. Conversely, the introduction of the geometry module markedly enhances performance in tasks
contingent upon relative position information, notably in Rel. Dist. However, because of the lacking
absolute metric in the synthesized depth maps, improvements in tasks pertaining to absolute metric
comprehension, such as Abs. Dist., are constrained. Incorporating the task of accurately predicting
camera pose can mitigate the reduction resulting from the imprecise depth prediction. Furthermore,
our results corroborate that the segregation of the texture and geometry modules results in superior
understanding performance compared to employing a unified architecture that concurrently learns
both texture and geometry.

Effect of the autoregressive generation. Autoregressive generation significantly improves tasks
requiring spatiotemporal modeling, like Appr. Order. Table 5 compares the understanding perfor-
mance with and without autoregressive generation. Although bidirectional generation offers some
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Texture Geometry SQA3D ScanQA ScanRefer VSI-Bench (subset)
depth camera EM C B-4 Acc@0.25 Obj. Cnt. Abs. Dist. Obj. Size Rel. Dist. Appr. Order

✘ ✘ ✘ 57.2 95.5 14.7 46.9 (28.0) 62.8 36.3 56.4 46.1 43.1
✔ ✘ ✘ 58.3 97.4 14.7 48.8 (31.5) 67.7 44.6 59.0 53.2 47.2
✔ ✔ ✘ 58.9 100.5 16.0 48.2 (31.2) 69.0 44.9 69.7 63.0 47.9
✔ ✔ ✔ 58.7 99.2 15.0 49.0 (31.6) 69.5 45.9 67.8 63.8 48.2
✔ ✔ ✔ 59.2 103.0 16.2 50.8 (32.5) 70.3 46.4 68.6 65.9 49.0

Table 4: Ablation on modules in the generation model. The gray row denotes that, in this experi-
ment, both the texture module and the geometry module use the same architecture and parameters.

enhancement, autoregressive generation provides greater improvements. Specifically, it boosts per-
formance by 5.8 and 4.4 points in Abs. Dist. and Appr. Order tasks, respectively, compared to when
not used. This demonstrates that autoregressive generation strengthens spatiotemporal modeling and
enhances related scene understanding tasks.

Autoregressive SQA3D ScanQA ScanRefer VSI-Bench (subset)
EM B-4 EM Acc@0.25 Obj. Cnt. Abs. Dist. Obj. Size Rel. Dist. Appr. Order

None 57.2 95.5 14.7 46.9 (28.0) 62.8 36.3 56.4 46.1 43.1
✘ 57.2 98.8 15.0 47.0 (28.0) 68.3 40.6 69.0 60.6 44.6
✔ 59.2 103.0 16.2 50.8 (32.5) 70.3 46.4 68.6 65.9 49.0

Table 5: Ablation on the autoregressive generation in stage 1. “None” means we only train under-
standing model in this experiment.

Effect of the D2S (dense-to-sparse). The efficacy of D2S training is substantiated during stage 1.
The results show that D2S significantly improves the model understanding performance, exceeding
the visual reconstruction method advanced in Ross3D (Wang et al., 2025a) for scene understanding
tasks necessitating spatiotemporal ordering. In this ablation, the geometry module is kept trainable.

Condition in S1 SQA3D ScanQA ScanRefer VSI-Bench (subset)
EM B-4 EM Acc@0.25 Obj. Cnt. Abs. Dist. Obj. Size Rel. Dist. Appr. Order

None 57.2 95.5 14.7 46.9 (28.0) 62.8 36.3 56.4 46.1 43.1
randon mask 58.9 98.9 15.5 49.4 (31.7) 65.7 38.9 55.5 51.6 46.5

dense 57.3 94.7 15.0 47.2 (28.3) 67.7 42.3 60.1 65.6 46.6
sparse 57.9 97.3 15.7 50.1 (32.0) 69.0 44.9 65.5 63.1 48.3

dense → sparse (Ours) 59.2 103.0 16.2 50.8 (32.5) 70.3 46.4 68.6 65.9 49.0

Table 6: Ablation on the D2S mechanism in stage 1 (S1). “None” means we don’t train gener-
ation model in this experiment. The “random mask” denotes the visual reconstruction method in
Ross3D (Wang et al., 2025a).

Effect of training stage 2. The results in Table 7 show that stage 2 can significantly improve the
scene generation performance of the model.

Stage 2 NVS from single view Scene Generation
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

✘ 21.90 0.705 0.265 21.44 0.683 0.307
✔ 23.22 0.817 0.114 22.93 0.768 0.194

Table 7: Ablation of the stage 2.

5 CONCLUSION

We introduce Omni-View, a unified 3D scene understanding and generation model. By decompos-
ing the generation model into distinct texture and geometry components, we establish the feasibility
and efficacy of employing generation processes to enhance 3D scene understanding and spatial rea-
soning. Our method illustrates that a unified understanding and generation model is capable of
achieving performance on par with leading specialized understanding models. We posit that Omni-
View can serve as a foundational model across 3D and multiview domains, thereby advancing the
development of downstream applications such as spatial and intelligence.
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Ethics Statement. This paper aims to develop unified models to understand and generate 3D scenes.
In light of the ongoing advancements in scene generation technology, we emphasize the importance
of preventing its misapplication, such as the fabrication of deceptive scenes or the creation of scenes
with nefarious intents.

Reproducibility Statement. We state that Omni-View is highly reproducible. Implementation
details on our main experiences are provided in Section 4.1. It is anticipated that these descriptions
can sufficiently demonstrate the reproducibility of Omni-View. We plan to open-source the code and
weight files after the paper passes peer review.
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Limitations and future work. Although Omni-View has demonstrated a unified advance in the
domains of question answering, spatial reasoning, and novel view synthesis, its grounding capabili-
ties remain to be substantiated. Additionally, its generation model currently lacks the capability for
long-range world generation. Future efforts will be concentrated on using reinforcement learning
to augment Omni-View’s performance in 3D visual grounding and long-range generation. At the
same time, since the training data used by its geometry module is a synthetic depth map, its actual
geometry prediction ability may not be accurate enough.

A QUALITATIVE RESULTS

We show some qualitative results for 3D scene understanding and generation tasks in the appendix.

A.1 3D SCENE UNDERSTANDING

Multiview images

Question: I am standing by the ottoman on my right facing a couple of toolboxes. 
                        What instrume in fro of me is ebony and ivory?
Answer: piano

……

……

Answer: {"label": "door", "bbox_3d": [-0.29, 0.21, 0.63, 0.07, 0.6, 1.69, 2.0, 1.14, -3.09]},
   {"label": "vanity", "bbox_3d": [0.6, 0.47, 0.53, 0.59, 1.36, 0.7, 0.43, 1.14, -3.09]},
   {"label": "towel", "bbox_3d": [0.31, 0.07, 0.79, 0.25, 0.35, 0.09, 2.0, 1.14, -3.09]},
   {"label": "sink", "bbox_3d": [0.57, 0.21, 0.53, 0.42, 0.63, 0.15, 0.43, 1.14, -3.09]},
   {"label": "doorframe", "bbox_3d": [-0.28, 0.19, 0.59, 0.2, 0.85, 1.63, 2.0, 1.14, -3.09]},
   {"label": "switch", "bbox_3d": [0.16, -0.23, 0.66, 0.02, 0.08, 0.11, 2.0, 1.14, -3.09]},
   {"label": "mirror", "bbox_3d": [0.86, -0.14, 0.44, 0.08, 1.06, 0.13, 0.43, 1.14, -3.09]}

Question: Detect the 3D bounding boxes in the camera coordinate system of the first frame.

Multiview images
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A.2 SPATIAL REASONING

Multiview images

Question: What is the size of this room (in square meters)?
                        If multiple rooms are shown, estimate the size of the combined space. 
Answer: 10.3 

……

……

Ground Truth: 10.5 

Multiview images

Question: What will be the first-time appearance order of the following categories in the video:
         heater, tv, ceiling light, printer?
                        A. ceiling light, heater, tv, printer
                        B. ceiling light, tv, heater, printer
                        C. heater, tv, ceiling light, printer
                        D. ceiling light, heater, printer, tv
Answer: B 

……

……

(a) Results on room size estimation.

(b) Results on appearance order.

Multiview images

Question: Measuring from the closest point of each object,
                        which of these objects (stove, tv, table, sofa) is the closest to the stool?
                        Options:
                        A. stove
                        B. tv
                        C. table
                        D. sofa
                        Answer with the option's letter from the given choices directly. 
Answer: D.

(c) Object relative distance.

GT: D. 
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Multiview images

Question: How many chair(s) are in this room?
                        Please answer the question using a single word or phrase. 

Answer: 4.
(d) Object counting.

GT: 4. 

Multiview images

Question: What is the length of the longest dimension (length, width, or height) of the sofa,
                        measured in centimeters?
                        Please answer the question using a single word or phrase. 
Answer: 184.

(e) Object size estimation.

GT: 173. 

Multiview images

Question: Measuring from the closest point of each object,
                        what is the distance between the tv and the bed (in meters)?
                        Please answer the question using a single word or phrase. 
Answer: 1.0.

(f) Object absolute distance.

GT: 1.1. 
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Multiview images

Question: If I am standing by the bathtub and facing the toilet,
                        is the table to my front-left, front-right, back-left, or back-right?
                        The directions refer to the quadrants of a Cartesian plane
                       (if I am standing at the origin and facing along the positive y-axis).
                       Options:
                       A. back-left
                       B. front-right
                       C. front-left
                       D. back-right
                       Answer with the option's letter from the given choices directly. 

Answer: B.

(g) Object relative direction.

GT: B. 

Multiview images

Question: You are a robot beginning at the tv facing the bed.
                        You want to navigate to the trash bin.
                        You will perform the following actions
                        (Note: for each [please fill in], choose either 'turn back,' 'turn left,' or 'turn right.’):
                        1. [please fill in]
                        2. Go forward until the cabinet
                        3. [please fill in]
                        4. Go forward until the trash bin is on your right.
                        You have reached the final destination.
                        Options:
                        A. Turn Left, Turn Left
                        B. Turn Right, Turn Left
                        C. Turn Back, Turn Left
                        D. Turn Right, Turn Right
                        Answer with the option's letter from the given choices directly. 
Answer: B.

(h) Route planning.

GT: B. 
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A.3 SCALE CONSISTENCY ACROSS SCENES

We analyze the scale consistency across different scenes. To this end, we selected some test samples
from the SPAR-7M dataset and used Omni-View to perform absolute distance prediction based on
multi-view images. This SPAR-7M consists of scenes from three datasets: ScanNet and ScanNet++,
where the average scene depth ranges from 3 to 5 meters with a maximum depth of 12 meters;
and Structured3D, which features larger-scale environments with average depths between 4 and 6
meters and maximum depths reaching up to 20 meters. Qualitative visualizations demonstrate that
Omni-View can predict absolute depth in scenes with different metric scale.

Multiview images

Question: The Object63 (red point at Frame-0, [0.14, 0.67]) is positioned at 3.4 meters depth.
                         Predict the depth of the Object22 (blue point at Frame-0, [0.23, 0.65]).
                        Calculate or judge based on the 3D center points of these objects. 
Answer: Object22's central depth is estimated to be about 2.0 meters. 

(a) Absolute depth estimation in structured3d, scene_03201_80.

GT: With a central depth of 2.2 meters, Object22 is referenced here. 

Multiview images

Question: The Object26 (at Frame-1, [0.10, 0.39]) lies at 2.7 meters depth.
                        Predict the depth of the Object30 (at Frame-1, [0.10, 0.70]).
                        Calculate or judge based on the 3D center points of these objects. 
Answer: Object30 is centered at about 4.0 meters depth. 

(b) Absolute depth estimation in structured3d, scene_02053_25.

GT: At its center, object Object30 has a depth of 4.3 meters. 

Multiview images

Question: If the plant (Frame-1, [0.30, 0.41]) is positioned at 2.7 meters,
                        estimate the depth of the laptop (at Frame-1, [0.16, 0.63]).
                        Calculate or judge based on the 3D center points of these objects.
                        The answer should be a single number, nothing more. . 
Answer: 2.4 

(c) Absolute depth estimation in scannetpp, 9d7e20fbec_6022.

GT: 2.3 
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A.4 NVS FROM SINGLE VIEW

Indoor scenes. We present the two visual results of NVS in indoor scenes. Omni-View can reason-
ably imagine unseen areas while maintaining the texture and structure of observed objects, like the
followers on the table in the first row.

Reference View-12 View-24 View-36 View-48

Outdoor scenes. We present the two visual results of NVS in outdoor scenes. When the camera
movement is small, Omni-View can consistently generate new views.

Reference View-8 View-16 View-24 View-32

Depth estimation. We present the depth prediction results of Omni-View in indoor and outdoor
scenes. In indoor scenes, the output of Omni-View’s geometry module is more accurate.

Reference View-10 View-20 View-30 View-40

Failure case. We claim that the existing Omni-View is inadequate for effectively processing outdoor
scenes with substantial camera movement. As illustrated in the figure below, the result images
from Omni-View exhibit significant artifacts, highlighted within the red dashed boxes. Future work
will focus on resolving the following challenges to enhance the handling of outdoor scenes with
extensive camera motion: (1) the development of more precise camera control mechanisms, and (2)
the improvement of inter-frame texture consistency stability.

Reference View-2 View-4 View-6 View-8
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Texture Module

Camera poses’ plucker encoding in grid

Denoised grid image tokens

Reference
images for NVS

Captions
(Optional)

Texture latent noise

“A bed.”

Text 
Tokenizer VAE 

Encoder

VAE 
Decoder

Figure 2: Generation in grid.

A.5 EFFECT OF GENERATION IN GRID

Generation in grid. We explored small improvements to enhance inter-frame consistency and sup-
port long-sequence scene generation: “generation in grid”. Specifically, we arrange 4 consecutive
views into a single frame by organizing them in a grid layout, and perform autoregressive generation
over the resulting sequence of grid-organized frames.

Results. As shown in the figures on the next page, we demonstrate that after using “generation in
grid”, Omni-View can generate more consistent novel view images.
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Reference “Generation in grid”

View-4 View-8 View-12

View-16 View-20 View-24

Reference “Generation in frame-by-frame”

View-4 View-8 View-12

View-16 View-20 View-24

Figure 3: Different inference strategy in NVS (RealEstate10k, e7020d449f50c737). The first three
rows use the generation in grid strategy, achieving significant improvements in inter-frame consis-
tency. The last three rows still use the frame-by-frame generation strategy, which has poor inter-
frame consistency.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B TECHNICAL DETAILS

B.1 DATASET

3D scene understanding and spatial reasoning. We curate a filtered training dataset contain-
ing 780k valid samples by consolidating data from multiple sources, including SQA3D, ScanQA,
3DOD, ScanRefer, VLM-3R, a 234k subset of SPAR from VG-LLM, and a 64k subset of llava-
hound4 from VG-LLM. To ensure data quality, we perform two main filtering steps: (i) deduplica-
tion across the combined dataset, and (ii) removal of samples with invalid bounding box annotations.
Specifically, we convert all bounding boxes to the [x1, y1, x2, y2] format and exclude any instance
where x1 < 0, y1 < 0, x2 > width, or y2 > height.

Novel view synthesis. We select 61k video clips from RealE10K train set, excluding those with
fewer than 32 frames or significant motion blur that could degrade training stability. Depth maps are
synthesized using the Voyager data pipeline, while captions are generated via QwenVLMax.

B.2 ARCHITECTURE.

Understanding model. The detailed architecture is shown in Figure 4. The text tokenizer inher-
its from the vocabulary used by Qwen2. The image tokenizer for understanding is SigLIP. The
backbone has layers as 28, attention head as 28, and hidden size as 3584, totaling 7B parameters.
Key architectural choices include SwiGLU as the activation function, RMSNorm for normalization,
FlexAttention (via PyTorch) for efficient self-attention computation, and position encoding adapted
from Qwen2.

multi-view images

Q: If I am standing by 
the stove and facing the 
sofa, is the tv to my 
front-left, front-right, 
back-left, or back-right?

Understanding Model

A: front-left

SigLIP Text 
Tokenizer

Texture Module

Camera poses’ plucker encoding

Denoised multi-view image tokens

Reference
images for NVS

Captions
(Optional)

Texture latent noise“A bed.”

Text 
Detokenizer FFN with SwiGLU

RMSNorm

Self Attention

RMSNorm

Text 
Tokenizer VAE 

Encoder

VAE 
Decoder

Figure 4: Architecture of understanding model and texture module.

Texture module. This module uses FLUX-VAE as the image tokenizer, sharing the same backbone
architecture as the understanding model.

Denoised multi-view image tokens Geometry latent noise

Geometry Module

Denoised depth tokens

Pose query

Pose

(1) Stage 1
from texture module

VAE 
Decoder

Image feature

from understanding model

Denoised multi-view image tokens Geometry latent noise

Geometry Module

Denoised depth tokens

Pose query

Pose

(2) Stage 2
from texture module

VAE 
Decoder

Figure 5: Architecture of geometry module in two stages.
Geometry module. The detailed architecture is shown in Figure 5. Depth maps are also encoded
by FLUX-VAE. Its backbone is basically the same as the block architecture, but reduced to 4 layers,
containing about 1B parameters. Unlike the others, the architecture of the geometry module changes
across different training stages. In stage 1, it receives features from the understanding model for
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cross-attention. In stage 2, it no longer receives outputs from the understanding model. The reason
for this design can be found in the discussion of stage 2 in Section 3.2.

B.3 TRAINING AND COMPUTATIONAL COST.

All training phases use the AdamW optimizer with β1 = 0.9, β2 = 0.95, a peak learning rate of
1× 10−5, and a linear warm-up schedule covering the first 5% of iterations.

Stage 1. We train on the 3D scene understanding dataset for 10,000 iterations with a packed se-
quence length of 50k, using 32 H100 GPUs, which takes approximately 160 hours.

Stage 2. For the generation task, we perform 20,000 iterations on the novel view synthesis dataset
with a packed sequence length of 32k, using 32 H100 GPUs, requiring approximately 40 hours in
total.

Understanding inference. The model takes approximately 2.5 seconds on average to process a
32-frame multi-view scene understanding query using a single H100 GPU.

Generation inference. Generating a single image at resolution 640 × 352 takes about 2.2 seconds
on average with one H100 GPU.

B.4 CONVERGENCE BEHAVIOR.

Stage 1. Overall, most losses exhibit smooth and stable convergence. However, we observe spikes in
the camera pose loss during training, particularly in later epochs. We hypothesize that this behavior
may stem from instable optimizion by learnable queries in the camera pose estimation task. How-
ever, these fluctuations do not prevent the model from converging to effective solutions, as evidenced
by strong performance in 3D scene understanding, spatial reasoning, and novel view generation.
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Stage 2. Since we used a grid generation format in stage 2, the per-image prediction method in stage
1 cannot be directly transferred to the “generation in grid” paradigm in stage 2. However, due to
the generative prior learned in stage 1, Omni-View can quickly converge to a lower loss in stage 2.
However, it was observed that the geometry loss showed a slight increase at around 8000 iterations,
followed by a decrease, suggesting that it might be possible to further reduce λgeo to improve the
training stability.
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B.5 ACTIVATION VISUALIZATION

We visualize the activation maps of Bagel and Omni-View when they perform spatial reasoning
tasks, as shown in the figure below. In this example, we want the model to locate how many cab-
inets are in the current scene, using the prompt: “How many cabinet(s) are in this
room?”. It can be seen that Bagel mainly focuses on the first two images that are irrelevant to
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the question, whereas Omni-View is able to attend to each image as much as possible. The wider
attention may be the reason why Omni-View performs better on 3D scene understanding tasks.

Bagel-FT

Omni-View (Ours)

Figure 6: Activation map. Bagel-FT vs. Omni-View.
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C THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are used to correct potential grammatical inaccuracies in the manuscript. LLMs do not par-
ticipate in research ideation.
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