
A Systematic Literature Review of Adapter-based Approaches to
Knowledge-enhanced Language Models

Anonymous ACL submission

Abstract

Knowledge-enhanced language models001
(KELMs) have emerged as promising tools to002
bridge the gap between large-scale language003
models and domain-specific knowledge.004
KELMs can achieve higher factual accuracy005
and mitigate hallucinations by leveraging006
knowledge graphs (KGs). They are fre-007
quently combined with adapter modules to008
reduce the computational load and risk of009
catastrophic forgetting. In this paper, we010
conduct a systematic literature review (SLR)011
on adapter-based approaches to KELMs. We012
provide an overview of approaches in the013
field and explore the strengths and potential014
shortcomings of the multitude of discovered015
methods. We show that general knowledge016
and domain-specific approaches have been017
frequently explored along with various018
downstream tasks. Furthermore, we discovered019
that the biomedical domain is the most popular020
domain-specific field and that the Pfeiffer021
adapter is the most commonly used adapter022
type. We outline the main trends and propose023
promising future directions.024

1 Introduction025

The field of natural language processing (NLP) has,026

in recent years, been dominated by the rise of large027

language models (LLMs). These models are pre-028

trained on large amounts of unstructured textual029

data, which enables them to solve complex rea-030

soning tasks and generate new text. Still, LLMs031

can lack awareness of structured knowledge hier-032

archies, such as relations between concepts. This033

drawback can lead to inaccurate predictions for034

downstream tasks relying on structured predictions035

and so-called "hallucinations" within text genera-036

tion. This can make LLMs less reliable in practice,037

which is an especially precarious issue in high-risk038

domains like healthcare or law.039

A potential solution to counteract mispredictions040

and hallucinations and improve the reliability of041

LLMs is knowledge enhancement: By leveraging 042

expert knowledge from manually curated knowl- 043

edge graphs (KGs), structured knowledge can be 044

injected into LLMs. Such knowledge-enhanced lan- 045

guage models (KELMs) are a promising approach 046

for higher structured knowledge awareness, better 047

factual accuracy, and less hallucinations (Colon- 048

Hernandez et al., 2021; Wei et al., 2021). 049

Unfortunately, knowledge enhancement in the 050

form of supervised fine-tuning (SFT) of the whole 051

LLM can be highly computationally expensive, es- 052

pecially for models with billions of parameters. A 053

promising research avenue to overcome this lim- 054

itation is using lightweight and efficient adapter 055

modules to inject structured knowledge into LLMs. 056

Using adapters for knowledge enhancement helps 057

enhance the task performance of LLMs and is, at 058

the same time, a very computationally efficient 059

solution. Despite the rising popularity of this ap- 060

proach, to the best of our knowledge, a compre- 061

hensive overview of adapter-based KELMs is still 062

missing in the NLP research landscape. 063

To bridge this research gap, we conduct a sys- 064

tematic literature review (SLR) on adapter-based 065

knowledge enhancement of LLMs. Our contri- 066

butions are: (1) a novel review of adapter-based 067

knowledge enhancement, (2) a quantitative and 068

qualitative analysis of different methods in the field, 069

and (3) a detailed categorization of literature and 070

identification of the most promising trends. 071

2 Background and Related Work 072

In this section, we give an overview of related work 073

and existing surveys on knowledge enhancement. 074

Knowledge graphs are the most common external 075

knowledge source, so we start with their overview. 076

2.1 Knowledge Graphs 077

Knowledge graphs (KGs) are a structured repre- 078

sentation of the world knowledge and have seen 079

a rising prominence in NLP research over the 080
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past decade (Schneider et al., 2022). Hogan et al.081

(2020) define a KG as "a graph of data intended082

to accumulate and convey knowledge of the real083

world, whose nodes represent entities of interest084

and whose edges represent relations between these085

entities". Similarly, Ji et al. (2020) published a086

comprehensive survey on KGs and, following ex-087

isting literature, defined the concept of a KG as088

"G = {E ,R,F}, where E ,R and F are sets of089

entities, relations and facts, respectively; a fact is090

denoted as a triple (h, r, t) ∈ F". Depending on091

the source and purpose of a KG, entities and rela-092

tions can take on various shapes. For example, in093

the biomedical knowledge graph UMLS (Bodenrei-094

der, 2004), a relation can take the shape of a single095

word like "inhibits", a short phrase like "relates096

to", or a compound term including, for example,097

chemical or medical categories such as "[protein]098

relates to [disease]" or "[substance] induces [phys-099

iology]". A textual connection is vital because it100

serves as a link between the graph structure and101

natural language, simplifying the integration of in-102

formation from KGs into language models and the103

associated learning processes. Other than UMLS,104

other examples of popular KGs are DBpedia (Auer105

et al., 2007) and ConceptNet (Speer et al., 2017).106

2.2 Approaches to Knowledge Enhancement107

At the time of writing, some reviews had al-108

ready been published that gave an overview of109

KELMs and classified different approaches. Colon-110

Hernandez et al. (2021) review the existing liter-111

ature and split the approaches to integrate struc-112

ture knowledge with LMs into three categories: (1)113

input-centered strategies, centering around altering114

the structure of the input or selected data, which115

is fed into the base LLM; (2) architecture-focused116

approaches, which involve either adding additional117

layers that integrate knowledge with the contextual118

representations or modifying existing layers to alter119

parts like attention mechanisms; (3) output-focused120

approaches, which work by changing either the out-121

put structure or the losses used in the base model.122

Our study focuses on the second category (2), by123

examining the adapter-based mechanisms for in-124

jecting information into the model, which were125

shown to be the most promising by the authors.126

The second survey by Wei et al. (2021) reviews127

a large number of studies on KELMs and clas-128

sifies them using three taxonomies: (1) knowl-129

edge sources, (2) knowledge granularity, and (3)130

application areas. Within (1), the knowledge 131

sources include linguistic knowledge, encyclopedic 132

knowledge, and commonsense and domain-specific 133

knowledge. The second taxonomy (2) acknowl- 134

edges the common approach of using KGs as a 135

source of knowledge. Levels of granularity men- 136

tioned are text-based knowledge, entity knowledge, 137

relation triples, and KG sub-graphs. Lastly, with 138

the third taxonomy (3), the authors discuss how 139

knowledge enhancement can improve natural lan- 140

guage generation and understanding. They also 141

review popular benchmarks that can be used for 142

task evaluation of KELMs (Wei et al., 2021). 143

These two field studies by Colon-Hernandez 144

et al. (2021) and Wei et al. (2021) on the classi- 145

fication of KELM approaches were our starting 146

point for exploring KELMs and initially proved to 147

be very valuable. However, although they address 148

some adapter-based studies like K-Adapter (Wang 149

et al., 2020), most other adapter-based KELMs are 150

missing. This lack of coverage led to our decision 151

to conduct a novel systematic literature search fo- 152

cusing specifically on the adapter-based KELMs, 153

considering their rising popularity and importance. 154

3 Adapters 155

In the following, an overview of adapters for LLMs 156

and their individual functionalities and applications 157

will be given to establish a conceptual understand- 158

ing of adapter-based approaches to LLMs. 159

3.1 Overview 160

Broadly speaking, adapters are small bottleneck 161

feed-forward layers inserted within each layer of 162

an LLM (Houlsby et al., 2019). The small amount 163

of additional parameters allows injecting new data 164

or knowledge without fine-tuning the whole model. 165

This feat is usually accomplished by freezing the 166

layers of the base model with its millions or bil- 167

lions of parameters while only updating the adapter 168

weights (e.g., through entity prediction tuning). 169

Due to the lightweight nature of adapters, this ap- 170

proach leads to short training times with relatively 171

low computing resource requirements. Adapters 172

used to be utilized mostly for quick and cheap 173

downstream-task fine-tuning but are now increas- 174

ingly used for knowledge enhancement. Because it 175

is possible to train adapters individually, they can 176

also be used for multi-task training by specializing 177

one adapter for each task or multi-domain knowl- 178

edge injection by specializing adapters to different 179
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Figure 1: Illustration of a standard fine-tuning versus a knowledge enhancement process. In the example, knowledge
from a KG is injected into the model via adapters.

domains (Pfeiffer et al., 2020a).180

Leveraging adapters in LLMs also has positive181

"side effects": Adapters can avoid catastrophic for-182

getting (the issue when an LLM suddenly dete-183

riorates in performance after fine-tuning) by in-184

troducing new task-specific parameters (Houlsby185

et al., 2019; Pfeiffer et al., 2020a) and, in trans-186

fer learning, adapters have even been shown to187

improve stability and adversarial robustness for188

various downstream tasks (Han et al., 2021). The189

specifics of how and where adapters are added to190

an LLM depend on the adapter type.191

3.2 Adapter Types192

Houlsby Adapter The Houlsby Adapter193

(Houlsby et al., 2019) was the first adapter to be194

used for transfer learning in NLP. The idea was195

based on adapter modules initially introduced by196

Rebuffi et al. (2017) in the computer vision domain.197

The two main principles stayed the same: Adapters198

require a relatively small number of parameters199

compared to the base model and a near-identity200

initialization. These principles ensure that the201

total model size grows relatively slowly when202

more transfer tasks are added, while a near-identity203

initialization is required for stable training of204

the adapted model (Houlsby et al., 2019). The205

optimal architecture of the Houlsby Adapter was206

determined by meticulous experimenting and207

tuning; the result can be seen in figure 2. In a208

classical transformer structure (Vaswani et al.,209

2017), the adapter module is added once after210

the multi-headed attention and once after the two211

feed-forward layers. The modules project the212

d-dimensional layer features of the base model into213

a smaller dimension, m, then apply a non-linearity 214

(like ReLU) and project back to d dimensions. 215

The configuration also hosts a skip-connection, 216

and the output of each sub-layer is forwarded to 217

a layer normalization (Ba et al., 2016). Including 218

biases, 2md + d + m parameters are added per 219

layer, accounting for only 0.5 to 8 percent of the 220

parameters of the original BERT model used by 221

the authors when setting m << d. 222

Bapna and Firat Adapter In contrast to the 223

Houlsby Adapter, Bapna and Firat (2019) only in- 224

troduce one adapter module in each transformer 225

layer: they keep the adapters after the multi-headed 226

attention (so-called "top" adapters) while dropping 227

the adapters after the feed-forward layers (so-called 228

"bottom" adapters) of the transformer (refer to Fig- 229

ure 2 for better understanding of the component 230

positions). Moreover, while Houlsby et al. (2019) 231

re-train layer normalization parameters for every 232

domain, Bapna and Firat (2019) "simplify this for- 233

mulation by leaving the parameters frozen, and 234

introducing new layer normalization parameters 235

for every task, essentially mimicking the structure 236

of the transformer feed-forward layer". 237

Pfeiffer Adapter and AdapterFusion. The ap- 238

proaches of Bapna and Firat (2019); Houlsby et al. 239

(2019) did not allow information sharing between 240

tasks. Pfeiffer et al. (2020a) introduce Adapter 241

Fusion, a two-stage algorithm that addresses the 242

sharing of information encapsulated in adapters 243

trained on different tasks. In the first stage, they 244

train the adapters in single-task or multi-task se- 245

tups for a total of N tasks similar to the Houlsby 246

Adapter, but only keeping the top adapters, sim- 247
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Figure 2: Location of the adapter module in a transformer layer (left) and architecture of the Houlsby Adapter (right).
All green layers are trained on fine-tuning data, including the adapter itself, the layer normalization parameters, and
the final classification layer (not shown). Image with permission from Houlsby et al. (2019).

ilar to the Bapna and Firat Adapter. As a sec-248

ond step, they combine the set of N adapters249

with AdapterFusion: They fix the parameters Θ250

and all adapters Φ, and finally introduce parame-251

ters Ψ that learn to combine the N task adapters252

for the given target task (Pfeiffer et al., 2020a):253

Ψm ← argmin
Ψ

Lm (Dm; Θ,Φ1, . . . ,ΦN ,Ψ)254

Here, Ψm are the learned AdapterFusion param-255

eters for task m. In the process, the training dataset256

of m is used twice: once for training the adapters257

Φm and again for training Fusion parameters Ψm,258

which learn to compose the information stored in259

the N task adapters (Pfeiffer et al., 2020a). With260

their approach of separating knowledge extraction261

and knowledge composition, they further improve262

the ability of adapters to avoid catastrophic forget-263

ting and interference between tasks and training264

instabilities. The authors also find that their ap-265

proach of using only a single adapter after the feed-266

forward layer performs on par with the Houlsby267

adapter while requiring only half of the newly in-268

troduced adapters (Pfeiffer et al., 2020a). This269

makes the Pfeiffer adapter an attractive choice for270

many applications, further proven by its popularity271

among the papers in our review.272

K-Adapter Wang et al. (2020) follow a substan-273

tially different approach where the adapters work as274

"outside plug-ins". In their work, an adapter model275

consists of K adapter layers (hence the name) that276

contain N transformer layers and two projection277

layers. Similar to the approaches above, a skip con-278

nection is added but instead applied across the two279

projection layers. The adapter layers are plugged in280

among varying transformer layers of the pre-trained 281

model. The authors explain that they concatenate 282

the output hidden feature of the transformer layer 283

in the pre-trained model and the output feature of 284

the former adapter layer as the input feature of the 285

current adapter layer. 286

Adapter architectures for knowledge enhance- 287

ment exist that differ from the four adapter types 288

mentioned here. For example, the "Parallel 289

Adapter" (He et al., 2021a) or the adapter archi- 290

tecture by Stickland and Murray (2019)). However, 291

as the upcoming comprehensive literature survey 292

will show, these architectures are either unique to 293

specific papers or have not found broader applica- 294

tions in the field of KELMs. 295

Another popular type of efficient adaptation is 296

the low-rank adaptation LoRA (Hu et al., 2022), 297

and its quantized version QLoRA (Dettmers et al., 298

2023). These approaches do not add new adapter 299

layers as the previously described ones, but rather 300

enforce a low-rank constraint on the weight updates 301

of the base model’s layers. This enables efficient 302

fine-tuning of LLMs and also allows for domain 303

adaption or knowledge enhancement. Despite their 304

popularity, our search string did not match any 305

papers using these approaches, which is likely due 306

to our focus on adapters in form of adapter layers. 307

4 Methodology 308

This chapter details the methodology we employed 309

for the systematic literature review. We largely fol- 310

lowed the procedure of Kitchenham et al. (2009) 311

for systematic literature reviews in software engi- 312

neering. The search strategy for the systematic 313
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literature review of this thesis included literature314

that fulfilled the following inclusion criteria:315

• Peer-reviewed articles from ACM1, ACL2,316

and IEEE Xplore3317

• Article abstracts that match the search string318

("adapter" OR "adapter-based") AND ("lan-319

guage model" OR "nlp" OR "natural language320

processing") AND ("injection" OR "knowl-321

edge")322

• Articles published after February 2, 2019323

(publication of the Houlsby Adapter, the first324

LLM adapter)325

• Articles that address the topic of adapter-326

based knowledge-enhanced language models327

We also included a limited number of articles328

not found on the mentioned databases because they329

were fundamental works on the topic of the SLR330

and frequently referenced. The SLR was concluded331

in January 2024 and represents the state of research332

literature up to this point.333

5 Results334

This section will present the results of the system-335

atic literature review on adapter-based knowledge336

enhancement.337

5.1 Overview338

Source Initial Abstract Full Text
IEEE 28 6 6
ACM 10 6 5
ACL 36 16 13
Others 2 2 2
Total 76 30 26

Table 1: Quantitative overview of the literature sources
and the selection process

Table 1 shows the source distribution for all in-339

cluded papers. Fifty-nine papers were found by340

applying the search string as a command on the341

ACL, ACM, and IEEE search engines. Due to their342

importance for the field, we included three addi-343

tional papers from other sources. These papers344

were found through online search and paper ref-345

erences during the general research process. In346

summary, after the abstract screening, 31 articles347

1https://dl.acm.org/
2https://aclanthology.org/
3https://ieeexplore.ieee.org/Xplore/

home.jsp

met all inclusion criteria (and no exclusion criteria). 348

After the full paper screening, 26 papers remained 349

to form the final paper pool of the survey. 350

Table 2 gives an overview of all papers included 351

in the survey. It includes the information on the 352

adapter type used in the paper, the domain and 353

scope of the paper, and for which downstream NLP 354

tasks it was developed. 355

5.2 Data Analysis 356

We will now give a quantitative analysis showcas- 357

ing and interpreting quantitative distributions, fol- 358

lowed by significant qualitative insights from the 359

papers. 360

5.2.1 Quantitative Analysis 361

Yearly Distribution There has been a signifi- 362

cant increase in publications on adapter-based ap- 363

proaches to knowledge-enhanced language mod- 364

els in recent years (Fig. 3). While only 2 papers 365

were published in 2020, eleven new papers were 366

published in 2023. This trend suggests growing 367

interest and research activity in the domain. 368

Figure 3: Yearly distribution of publications

Adapter Type Distribution Next, we evaluate 369

the popularity and variety of adapter types used 370

across the papers (Fig. 4). The “Pfeiffer” and 371

"Houlsby" adapter types stand out as the most com- 372

mon, which suggests that the closely related under- 373

lying architecture is the most popular methodology 374

in the field. This popularity is likely not only an 375

achievement of the adapter’s performance but also 376

due to the well-established Adapter-Hub platform 377

(Pfeiffer et al., 2020b), which, although offering 378

other options, uses adapters with the Pfeiffer config- 379

uration by default. This finding showcases a need 380

and trend to build custom adapters well-suited to 381

individual tasks. In the upcoming years, we will 382

likely see many novel adapter architectures. The 383

“K-Adapter” and “Bapna and Firat” adapters are the 384
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paper & nickname adapter type scope main source task
K-MBAN (Zou et al., 2022) K-Adapter open T-REx (Wiki) RC
/ (Moon et al., 2021) Houlsby open WMT20 MT
CSBERT (Yu and Yang, 2023) Unique open diverse SL
/ (Qian et al., 2022) Unique open AESRC2020 SR
/ (Li et al., 2023) Houlsby closed (multiple) diverse SF
CPK (Liu et al., 2023) K-Adapter closed (biomed) Wikipedia RC, ET, QA
CKGA (Lu et al., 2023) Unique open DBpedia SC
/ (Nguyen-The et al., 2023) Pfeiffer open diverse SA
KEBLM (Lai et al., 2023) Pfeiffer closed (biomed) UMLS QA, NLI, EL
/ (Guo and Guo, 2022) Unique open Ch. Lexicon NER
/ (Tiwari et al., 2023) Unique closed (biomed) Vis-MDD TS
AdapterSoup (Chronopoulou et al., 2023) Bapna and Firat closed (multiple) diverse LM
/ (Wold, 2022) Houlsby open ConceptNet LAMA
/ (Chronopoulou et al., 2022) Unique closed (multiple) diverse LM
DS-TOD (Hung et al., 2022) Pfeiffer closed (multiple) CCNet TOD
/ (Emelin et al., 2022) Houlsby closed (multiple) MultiWOZ TOD
KnowExpert (Xu et al., 2022) Bapna and Firat open WoW KGD
mDAPT (Kær Jørgensen et al., 2021) Pfeiffer closed (multiple) WMT20 NER, STC
DAKI (Lu et al., 2021) K-Adapter closed (biomed) UMLS NLI
/ (Majewska et al., 2021) Pfeiffer open VerbNet EE
/ (Lauscher et al., 2020) Houlsby open ConceptNet GLUE
TADA (Hung et al., 2023) Unique open CCNet TOD, NER, NLI
LeakDistill (Vasylenko et al., 2023) StructAdapt open AMR graph SMATCH
MixDA (Diao et al., 2023) Houlsby, Pfeiffer closed (multiple) diverse GLUE, TXM
MoP (Meng et al., 2021) Pfeiffer closed (biomed) UMLS BLURB
K-Adapter (Wang et al., 2020) K-Adapter open T-REx (Wiki) RCL, ET, QA

Table 2: Overview of the results for the literature survey, including all papers and their references. The task and
source acronyms are explained in the glossary at the end of the thesis. The dotted lines separate the database sources:
First come the IEEE papers, then ACM, ACL, and finally, the papers from other sources. For the definition of all
task acronyms, see Appendix A.4

less frequently mentioned architectures, suggest-385

ing that these approaches are less well-established.386

Overall, various adapter types are present, indi-387

cating a diverse range of methodologies being ex-388

plored.389

Figure 4: Distribution of adapter types being used in the
articles

Domain Analysis Third, we analyze the distribu-390

tion of papers across the domain scope and cover-391

age to understand domain-specific preferences in392

the literature (figures given in the appendix). The393

first plot in Figure 5 shows that the open-domain394

scope is the most popular, with many papers ex-395

ploring adapter-based approaches within the open 396

domain. The popularity is likely caused by the 397

interest in creating LLMs with a common-sense 398

understanding or world knowledge. 399

As illustrated by the second plot in Figure 5, 400

the single- and multi-domain approaches are split 401

evenly within the closed-domain papers. 402

Finally, the third plot addresses the coverage 403

of the biomedical domain. In absolute numbers, 404

only six papers focus on the biomedical domain, 405

but relative to other parts, the biomedical field is 406

by far the most prominent of all domain-specific 407

approaches. The popularity likely comes down 408

to the availability of large biomedical KGs, and 409

medicine historically being one of the most active 410

research fields in general science (Cimini et al., 411

2014). 412

Task and Source Distribution A highly di- 413

verse range of tasks and sources is being explored 414

throughout the papers, which signifies the versa- 415

tility and potential of adapter-based approaches 416

across different NLP tasks and domains. However, 417

combined with the limited number of papers in 418

the survey, the approach versatility prevents fur- 419

ther meaningful quantitative analysis. Still, tasks 420
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such as Reading Comprehension (RC), Named En-421

tity Recognition (NER), and Question Answering422

(QA) appear to be popular areas of focus in the423

literature. This could be because these tasks are the424

most demanding regarding structural knowledge425

requirements. The knowledge source distributions426

show very little overlap.427

5.2.2 Qualitative Analysis428

This section of the analysis highlights recurring429

themes and individual insights from the papers.430

Fully summarizing all articles was outside the431

scope of this survey. However, we still provide432

an overview of the most common patterns.433

General Knowledge The quantitative analysis434

showed that open-domain approaches are more435

popular than their close-domain counterparts. Sub-436

sequently, there is also a large variety in the used437

frameworks, knowledge sources, and overall goals438

of the papers. Two commonly used KGs for gen-439

eral knowledge are ConceptNet (Speer et al., 2017)440

for common-sense knowledge, and DBpedia (Auer441

et al., 2007) for encyclopedic world knowledge.442

Two example works that use these KGs are Wold443

(2022) and the CKGA ("knowledge graph-based444

adapter") by Lu et al. (2023). Wold (2022) train445

adapter modules on sub-graphs of ConceptNet to446

inject factual knowledge into LLMs. They evalu-447

ate their framework on the Concept-Net Split of448

the LAMA Probe (Petroni et al., 2019) and see in-449

creasing performance while only adding 2.1% of450

new parameters to the original models. CKGA (Lu451

et al., 2023), on the other hand, tackle aspect-level452

sentiment classification by leveraging knowledge453

from DBpedia. They link aspects to DBpedia end454

extract an aspect-related sub-graph. Then, a pre-455

trained language model and the knowledge graph456

embedding are utilized to encode the common-457

sense knowledge of entities, where the correspond-458

ing knowledge is extracted with graph convolu-459

tional networks (Lu et al., 2023).460

Linguistic Knowledge Instead of only includ-461

ing factual knowledge, some works also inject lin-462

guistic knowledge into adapters (Majewska et al.,463

2021; Zou et al., 2022; Yu and Yang, 2023; Wang464

et al., 2020). While LLMs already encode a range465

of syntactic and semantic properties of language,466

Majewska et al. (2021) explain that they "are still467

prone to fall back on superficial cues and simple468

heuristics to solve downstream tasks, rather than469

leverage deeper linguistic information". Their pa-470

per explores the interplay between verb meaning 471

and argument structure. They use the gained knowl- 472

edge to enhance LLMs with Pfeiffer Adapters to im- 473

prove English event extraction and machine trans- 474

lation in other languages. Another example is the 475

work of Zou et al. (2022) on machine reading com- 476

prehension (MRC). They proposed the K-MBAN 477

model to integrate linguistic and factual external 478

knowledge into LLMs through K-Adapters. 479

Domain-specific Knowledge Chronopoulou 480

et al. (2022) propose a parameter-efficient ap- 481

proach to domain adaptation using adapters. They 482

represent domains as a hierarchical tree structure 483

where each node in the tree is associated with a 484

set of adapter weights. Their work focused on 485

specializing adapters in website domains like 486

booking.com and yelp.com. In another instance, 487

Chronopoulou et al. (2023) propose "Adapter- 488

Soup". In this framework, they also use adapters 489

for domain-specific tasks but use "an approach 490

that performs weight-space averaging of adapters 491

trained on different domains". AdapterSoup can 492

be helpful in various domain-specific approaches 493

in low-resource settings, especially when only 494

a small amount of data on a specific subdomain 495

is obtainable and closely related adapters are 496

available instead. Earlier, we saw that the 497

biomedical domain is the most prevalent among 498

the closed-domain approaches to adapter-based 499

KELMs. We will briefly examine the relevant 500

works in the following. 501

Biomedical Knowledge We have found the 502

works of DAKI (Lu et al., 2021), MoP (Meng 503

et al., 2021), and KEBLM (Lai et al., 2023) to 504

be the most impactful. According to the results of 505

our literature survey, DAKI ("Diverse Adapters for 506

Knowledge Integration") was the first work to use 507

adapters specifically for knowledge enhancement 508

in the biomedical domain. Lu et al. (2021) leverage 509

data from the UMLS meta-thesaurus and UMLS 510

Semantic Network groups concepts, but also from 511

Wikipedia articles for diseases as proposed by He 512

et al. (2020). Meng et al. (2021) recognize that 513

KGs like UMLS, which can be several gigabytes 514

large, are very expensive to train on in their en- 515

tirety. They propose to use a "Mixture of Parti- 516

tions" (MoP), which splits the KG into sub-graphs 517

and combines later with AdapterFusion (Pfeiffer 518

et al., 2020a). Finally, the KEBLM framework’s 519

trademark is that it allows the inclusion of a vari- 520
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ety of knowledge types from multiple sources into521

biomedical LLMs. In contrast to DAKI, which also522

utilizes more than one source, KEBLM includes523

a knowledge consolidation phase after the knowl-524

edge injection, where they teach the fusion layers525

to effectively combine knowledge from both the526

original PLM and newly acquired external knowl-527

edge by using a large collection of unannotated528

texts (Lai et al., 2023). For completeness, we refer529

to Kær Jørgensen et al. (2021) for information on530

the m-DAPT framework, which addresses multi-531

lingual domain adaptation for biomedical LLMs532

and KeBioSum (Xie et al., 2022), who state their533

work is the first study exploring knowledge injec-534

tion for biomedical extractive summarization.535

Performance Insights Performance of adapter-536

based KELMs on downstream tasks is consistently537

shown in papers from our survey to be better than538

with base LMs. For example, Diao et al. (2023)539

show an increase of +9% on Common-sense QA540

Talmor et al. (2019) with their mixture-of-adapters541

approach, while (Kær Jørgensen et al., 2021) im-542

prove financial text classification on OMP-9 (Sch-543

abus et al., 2017) by +4%. While the task vari-544

ation across domains is too diverse to be shown545

systematically in our survey, we report in detail on546

performance comparison in the biomedical domain547

in Appendix A.2. Table 3 shows the performance548

over five common biomedical tasks, covering text549

classification, QA, NLI, and NER. It shows that550

adapter-based KELMs consistently improved the551

performance in almost all instances. For example,552

MoP (Meng et al., 2021) and KEBLM (Lai et al.,553

2023) improve the performance on PubMedQA554

(Jin et al., 2019) for around +7% and +8%, respec-555

tively. Another interesting insight is found by He556

et al. (2021b), who show that adapter-based tun-557

ing mitigates forgetting issues better than regular558

fine-tuning since it yields representations with less559

deviation from those generated by the initial pre-560

trained language model.561

6 Current and Future Trends562

In this section, we outline the most important find-563

ings and trends of the review and point out the564

promising future directions:565

• Adapter-based KELMs are a recent develop-566

ment in NLP, but interest in them is rising fast,567

with a linear yearly increase of published pa-568

pers. We predict the growth trend to continue.569

• Various adapter architectures exist and are ad- 570

vanced by researchers to be more efficient 571

while preserving task performance. This 572

peaked with the Pfeiffer adapter, which is the 573

most popular type. We expect future work 574

to focus their updates on adapter architecture 575

by overcoming the latency of sequential data 576

processing in adapters and enabling hardware 577

parallelism. 578

• Research focuses on the open domain – in- 579

jecting general world knowledge into models. 580

Within the closed domain, the biomedical do- 581

main is the most popular, owing to the exis- 582

tence of large biomedical KGs. We foresee 583

the potential to apply adapter-based KELMs 584

to other highly structured domains, such as 585

the legal or financial domain (documents with 586

rigid structure). 587

• A wide array of downstream tasks is being 588

explored. The biggest improvement in task 589

performance is seen in knowledge-intensive 590

tasks like question answering and text classi- 591

fication, with a smaller improvement for rea- 592

soning tasks like entailment recognition. Gen- 593

erative tasks, other than dialogue modeling, 594

are rather unexplored. We envision a future 595

popular use case that could use knowledge 596

enhancement to improve the factuality and 597

informativeness of generated text. 598

7 Conclusion 599

In this paper, we conducted a systematic literature 600

review on approaches to enhancing language mod- 601

els with external knowledge using adapter modules. 602

We portrayed which adapter-based approaches ex- 603

ist and how they compare to each other. We showed 604

there is a steady growth of interest in this domain 605

with each new year and highlighted the most popu- 606

lar adapter architectures (with "Pfeiffer" as the pre- 607

dominant one). We discovered there is a balance in 608

popularity between open-domain approaches, fo- 609

cusing on integrating general world knowledge into 610

models, and closed-domain focusing on specialized 611

fields, with biomedical as the most popular domain. 612

With our review, we contribute a novel and exten- 613

sive resource for this nascent yet fast-growing field 614

and we hope it will be a useful entry point for other 615

researchers in the future. 616
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Limitations617

The methodology of a systematic literature review618

follows a strict search string and exclusion criteria.619

Therefore, it is possible that we excluded some rel-620

evant work on adapter-based KELMs. Moreover,621

while we tried to report on our survey as compre-622

hensively as possible, there are several aspects we623

could not include in this work. Also, some of the624

reviewed articles were not given an adequate quali-625

tative analysis in this work due to space constraints,626

leading to potentially missing insights and a non-627

complete representation of the state of research on628

adapter-based knowledge enhancement. Addition-629

ally, due to the variety of applications and domains,630

we were not able to give precise guidelines on what631

methods to use under which circumstances. Still,632

we aimed to report on the most common patterns633

and trends discovered in the literature, which can634

serve as a basis for future research.635
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A Supplementary Survey Data1056

A.1 Domain Distribution1057

See Figure 5.1058

A.2 Performance Comparison (Biomedical)1059

Table 3 gives an overview of the downstream task1060

performance of several papers that are included in1061

this survey. The focus lies on the biomedical do-1062

main so that the task overlap is high enough for an1063

insightful comparison. The scores are reported for1064

five downstream tasks, namely HoC (Baker et al.,1065

2015), PubMedQA (Gu et al., 2020), BioASQ7b1066

(Nentidis et al., 2020), MedNLI (Romanov and1067

Shivade, 2018), and NCBI (Dogan et al., 2014), as1068

well as three common biomedical language models1069

(SciBERT (Beltagy et al., 2019), BioBERT (Lee1070

et al., 2019), and PubMedBERT (Gu et al., 2020)).1071

Performances across the different tasks and models1072

vary strongly1073

A.3 Methodology1074

Articles on the following topics were excluded:1075

• Articles published before February 2, 20191076

• Duplicate versions of the same article (when1077

multiple versions of an article were found in1078

different journals, only the most recent ver-1079

sion was included)1080

• Articles where Adapters were used for NLP,1081

but for use-cases other than knowledge-1082

enhancement (such as few-shot learning or1083

model debiasing)1084

• Articles written in a language other than En-1085

glish1086

The data extracted from each included document1087

were:1088

• Source (journal or publication platform)1089

• Full reference1090

• Main topic area1091

• Facts of interest such as adapter architecture,1092

domain, and downstream tasks within the pa-1093

pers1094

• A short summary of the study, including the1095

main research questions and the answers1096

The collected data was tabulated to show:1097

• Source and publication dates of the studies 1098

• Adapter architectures and knowledge sources 1099

used in the papers 1100

• Distribution of papers across domains (high- 1101

lighting the biomedical domain) 1102

• Distribution of papers across downstream 1103

tasks 1104

• Results on biomedical NLP benchmarks (if 1105

relevant) 1106

A.4 Acronyms 1107

• AESRC2020: Accented English Speech 1108

Recognition Challenge 2020 (Shi et al., 2021) 1109

• BioNLP: Biomedical Natural Language Pro- 1110

cessing 1111

• BLURB: Biomedical Language Understand- 1112

ing and Reasoning Benchmark (Gu et al., 1113

2020) 1114

• CCNet: Common Crawl Net (Wenzek et al., 1115

2020) 1116

• EE: Event Extraction 1117

• EL: Entity Linking 1118

• ES: Extractive Summarization 1119

• ET: Entity Typing 1120

• GLUE: General Language Understanding 1121

Evaluation (Wang et al., 2019) 1122

• IE: Information Extraction 1123

• KELM: Knowledge-Enhanced Language 1124

Model 1125

• KGD: Knowledge-grounded Dialogue 1126

• LAMA: Concept-Net Split of LAMA Probe 1127

(Petroni et al., 2019) 1128

• LM: Language Modeling 1129

• LLM: Large Language Model 1130

• MT: Machine Translation 1131

• MultiWOZ: Multi-Domain Wizard-of-Oz 1132

dataset (Budzianowski et al., 2018) 1133

• NER: Named Entity Recognition 1134
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• NLI: Natural Language Inference1135

• NLP: Natural Language Processing1136

• OOD: Out-of-domain Detection1137

• QA: Question Answering1138

• RC: Reading Comprehension1139

• RE: Relation Extraction1140

• RCL: Relation Classification1141

• SA: Sentiment Analysis1142

• SC: Sentiment Classification1143

• SF: Speech Foundation1144

• SL: Sequence Labelling1145

• SMATCH: Semantic Match Score (Cai and1146

Knight, 2013)1147

• SOTA: State-of-the-art1148

• SR: Speech Recognition1149

• STC: Sentence Classification1150

• TC: Text Classification1151

• TOD: Task-Oriented dialogue1152

• T-REx (wiki): A Large Scale Alignment1153

of Natural Language with Knowledge Base1154

Triples (Elsahar, 2017)1155

• UMLS: Unified Medical Language System1156

• VerbNet: A Broad-Coverage, Comprehensive1157

Verb Lexicon (Schuler, 2006)1158

• Vis-MDD: Visual Medical Disease Diagnosis1159

(Tiwari et al., 2022)1160

• WMT20: Workshop on Machine Translation1161

2020 (Barrault et al., 2020)1162

• WoW: Wizard-of-Wikipedia (Dinan et al.,1163

2018)1164

A.5 Performance Comparison (Biomedical) 1165

Table 3 gives an overview of the downstream task 1166

performance of several papers that are included in 1167

this survey. The focus lies on the biomedical do- 1168

main so that the task overlap is high enough for an 1169

insightful comparison. The scores are reported for 1170

five downstream tasks, namely HoC (Baker et al., 1171

2015) (text classification), PubMedQA (Gu et al., 1172

2020) (QA), BioASQ7b (Nentidis et al., 2020) 1173

(QA), MedNLI (Romanov and Shivade, 2018) 1174

(NLI), and NCBI (Dogan et al., 2014) (disease en- 1175

tity recognition), as well as three common biomed- 1176

ical language models (SciBERT (Beltagy et al., 1177

2019), BioBERT (Lee et al., 2019), and PubMed- 1178

BERT (Gu et al., 2020)). 1179
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Figure 5: Distribution of domain scope, coverage, and the biomedical domain

↓ model|dataset→ HoC PubMedQA BioASQ7b MedNLI NCBI
SciBERT-base 80.52±0.60 57.38±4.22 75.93±4.20 81.19±0.54 88.57

+ MoP 81.79†±0.66 ↑ 54.66±3.10 78.50†±4.06 ↑ 81.20±0.37 ↑ /
+ KEBLM / 59.00↑ / 82.14↑ 93.50↑
+ DAKI / / / / /
+ CPK / / / / /

BioBERT-base 81.41±0.59 60.24±2.32 77.50±2.92 82.42±0.59 88.30
+ MoP 82.53†±1.08 ↑ 61.04±4.81 ↑ 80.79†±4.40 ↑ 82.93±0.55 ↑ /
+ KEBLM / 68.00 ↑ / 84.24 ↑ 93.20↑
+ DAKI / / / 83.41 ↑ 89.01↑
+ CPK / / / 81.65 88.42↑

PubMedBERT-base 82.25±0.46 55.84±1.78 87.71±4.25 84.18±0.19 87.82
+ MoP 83.26†±0.32 ↑ 62.84†±2.71 ↑ 90.64†±2.43 ↑ 84.70±0.19 ↑ /

Table 3: Performance reports for tasks with highest overlap in the biomedical domain. The metric for HoC is Micro
F1; for NCBI, it is F1, while for the other three, it is accuracy. The best results for every task are in bold. "↑"
denotes that improvements are observed compared to the base model. “†" denotes a statistically significant better
result over the base model (T-test, p < 0.05), but not all papers report their scores. The baseline performance of the
models is taken from the original papers if given. Otherwise, the scores are taken from the MoP results.
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