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Abstract

Knowledge-enhanced  language  models
(KELMs) have emerged as promising tools to
bridge the gap between large-scale language
models and domain-specific knowledge.
KELMs can achieve higher factual accuracy
and mitigate hallucinations by leveraging
knowledge graphs (KGs). They are fre-
quently combined with adapter modules to
reduce the computational load and risk of
catastrophic forgetting. In this paper, we
conduct a systematic literature review (SLR)
on adapter-based approaches to KELMs. We
provide an overview of approaches in the
field and explore the strengths and potential
shortcomings of the multitude of discovered
methods. We show that general knowledge
and domain-specific approaches have been
frequently explored along with various
downstream tasks. Furthermore, we discovered
that the biomedical domain is the most popular
domain-specific field and that the Pfeiffer
adapter is the most commonly used adapter
type. We outline the main trends and propose
promising future directions.

1 Introduction

The field of natural language processing (NLP) has,
in recent years, been dominated by the rise of large
language models (LLMs). These models are pre-
trained on large amounts of unstructured textual
data, which enables them to solve complex rea-
soning tasks and generate new text. Still, LLMs
can lack awareness of structured knowledge hier-
archies, such as relations between concepts. This
drawback can lead to inaccurate predictions for
downstream tasks relying on structured predictions
and so-called "hallucinations" within text genera-
tion. This can make LL.Ms less reliable in practice,
which is an especially precarious issue in high-risk
domains like healthcare or law.

A potential solution to counteract mispredictions
and hallucinations and improve the reliability of

LLMs is knowledge enhancement: By leveraging
expert knowledge from manually curated knowl-
edge graphs (KGs), structured knowledge can be
injected into LLMs. Such knowledge-enhanced lan-
guage models (KELMs) are a promising approach
for higher structured knowledge awareness, better
factual accuracy, and less hallucinations (Colon-
Hernandez et al., 2021; Wei et al., 2021).

Unfortunately, knowledge enhancement in the
form of supervised fine-tuning (SFT) of the whole
LLM can be highly computationally expensive, es-
pecially for models with billions of parameters. A
promising research avenue to overcome this lim-
itation is using lightweight and efficient adapter
modules to inject structured knowledge into LLMs.
Using adapters for knowledge enhancement helps
enhance the task performance of LLMs and is, at
the same time, a very computationally efficient
solution. Despite the rising popularity of this ap-
proach, to the best of our knowledge, a compre-
hensive overview of adapter-based KELM:s is still
missing in the NLP research landscape.

To bridge this research gap, we conduct a sys-
tematic literature review (SLR) on adapter-based
knowledge enhancement of LLMs. Our contri-
butions are: (1) a novel review of adapter-based
knowledge enhancement, (2) a quantitative and
qualitative analysis of different methods in the field,
and (3) a detailed categorization of literature and
identification of the most promising trends.

2 Background and Related Work

In this section, we give an overview of related work
and existing surveys on knowledge enhancement.
Knowledge graphs are the most common external
knowledge source, so we start with their overview.

2.1 Knowledge Graphs

Knowledge graphs (KGs) are a structured repre-
sentation of the world knowledge and have seen
a rising prominence in NLP research over the



past decade (Schneider et al., 2022). Hogan et al.
(2020) define a KG as "a graph of data intended
to accumulate and convey knowledge of the real
world, whose nodes represent entities of interest
and whose edges represent relations between these
entities". Similarly, Ji et al. (2020) published a
comprehensive survey on KGs and, following ex-
isting literature, defined the concept of a KG as
"G = {E,R,F}, where £, R and F are sets of
entities, relations and facts, respectively; a fact is
denoted as a triple (h,r,t) € F". Depending on
the source and purpose of a KG, entities and rela-
tions can take on various shapes. For example, in
the biomedical knowledge graph UMLS (Bodenrei-
der, 2004), a relation can take the shape of a single
word like "inhibits", a short phrase like "relates
to", or a compound term including, for example,
chemical or medical categories such as "[protein]
relates to [disease]" or "[substance] induces [phys-
iology]". A textual connection is vital because it
serves as a link between the graph structure and
natural language, simplifying the integration of in-
formation from KGs into language models and the
associated learning processes. Other than UMLS,
other examples of popular KGs are DBpedia (Auer
et al., 2007) and ConceptNet (Speer et al., 2017).

2.2 Approaches to Knowledge Enhancement

At the time of writing, some reviews had al-
ready been published that gave an overview of
KELMs and classified different approaches. Colon-
Hernandez et al. (2021) review the existing liter-
ature and split the approaches to integrate struc-
ture knowledge with LMs into three categories: (1)
input-centered strategies, centering around altering
the structure of the input or selected data, which
is fed into the base LLM; (2) architecture-focused
approaches, which involve either adding additional
layers that integrate knowledge with the contextual
representations or modifying existing layers to alter
parts like attention mechanisms; (3) output-focused
approaches, which work by changing either the out-
put structure or the losses used in the base model.
Our study focuses on the second category (2), by
examining the adapter-based mechanisms for in-
jecting information into the model, which were
shown to be the most promising by the authors.
The second survey by Wei et al. (2021) reviews
a large number of studies on KELMs and clas-
sifies them using three taxonomies: (1) knowl-
edge sources, (2) knowledge granularity, and (3)

application areas. Within (1), the knowledge
sources include linguistic knowledge, encyclopedic
knowledge, and commonsense and domain-specific
knowledge. The second taxonomy (2) acknowl-
edges the common approach of using KGs as a
source of knowledge. Levels of granularity men-
tioned are text-based knowledge, entity knowledge,
relation triples, and KG sub-graphs. Lastly, with
the third taxonomy (3), the authors discuss how
knowledge enhancement can improve natural lan-
guage generation and understanding. They also
review popular benchmarks that can be used for
task evaluation of KELMs (Wei et al., 2021).
These two field studies by Colon-Hernandez
et al. (2021) and Wei et al. (2021) on the classi-
fication of KELM approaches were our starting
point for exploring KELMs and initially proved to
be very valuable. However, although they address
some adapter-based studies like K-Adapter (Wang
et al., 2020), most other adapter-based KELMs are
missing. This lack of coverage led to our decision
to conduct a novel systematic literature search fo-
cusing specifically on the adapter-based KELMs,
considering their rising popularity and importance.

3 Adapters

In the following, an overview of adapters for LLMs
and their individual functionalities and applications
will be given to establish a conceptual understand-
ing of adapter-based approaches to LLMs.

3.1 Overview

Broadly speaking, adapters are small bottleneck
feed-forward layers inserted within each layer of
an LLM (Houlsby et al., 2019). The small amount
of additional parameters allows injecting new data
or knowledge without fine-tuning the whole model.
This feat is usually accomplished by freezing the
layers of the base model with its millions or bil-
lions of parameters while only updating the adapter
weights (e.g., through entity prediction tuning).
Due to the lightweight nature of adapters, this ap-
proach leads to short training times with relatively
low computing resource requirements. Adapters
used to be utilized mostly for quick and cheap
downstream-task fine-tuning but are now increas-
ingly used for knowledge enhancement. Because it
is possible to train adapters individually, they can
also be used for multi-task training by specializing
one adapter for each task or multi-domain knowl-
edge injection by specializing adapters to different
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Figure 1: Illustration of a standard fine-tuning versus a knowledge enhancement process. In the example, knowledge

from a KG is injected into the model via adapters.

domains (Pfeiffer et al., 2020a).

Leveraging adapters in LLMs also has positive
"side effects": Adapters can avoid catastrophic for-
getting (the issue when an LLM suddenly dete-
riorates in performance after fine-tuning) by in-
troducing new task-specific parameters (Houlsby
et al., 2019; Pfeiffer et al., 2020a) and, in trans-
fer learning, adapters have even been shown to
improve stability and adversarial robustness for
various downstream tasks (Han et al., 2021). The
specifics of how and where adapters are added to
an LLM depend on the adapter type.

3.2 Adapter Types

Houlsby Adapter The Houlsby Adapter
(Houlsby et al., 2019) was the first adapter to be
used for transfer learning in NLP. The idea was
based on adapter modules initially introduced by
Rebuffi et al. (2017) in the computer vision domain.
The two main principles stayed the same: Adapters
require a relatively small number of parameters
compared to the base model and a near-identity
initialization. These principles ensure that the
total model size grows relatively slowly when
more transfer tasks are added, while a near-identity
initialization is required for stable training of
the adapted model (Houlsby et al., 2019). The
optimal architecture of the Houlsby Adapter was
determined by meticulous experimenting and
tuning; the result can be seen in figure 2. In a
classical transformer structure (Vaswani et al.,
2017), the adapter module is added once after
the multi-headed attention and once after the two
feed-forward layers. The modules project the
d-dimensional layer features of the base model into

a smaller dimension, m, then apply a non-linearity
(like ReLU) and project back to d dimensions.
The configuration also hosts a skip-connection,
and the output of each sub-layer is forwarded to
a layer normalization (Ba et al., 2016). Including
biases, 2md + d + m parameters are added per
layer, accounting for only 0.5 to 8 percent of the
parameters of the original BERT model used by
the authors when setting m << d.

Bapna and Firat Adapter In contrast to the
Houlsby Adapter, Bapna and Firat (2019) only in-
troduce one adapter module in each transformer
layer: they keep the adapters after the multi-headed
attention (so-called "top" adapters) while dropping
the adapters after the feed-forward layers (so-called
"bottom" adapters) of the transformer (refer to Fig-
ure 2 for better understanding of the component
positions). Moreover, while Houlsby et al. (2019)
re-train layer normalization parameters for every
domain, Bapna and Firat (2019) "simplify this for-
mulation by leaving the parameters frozen, and
introducing new layer normalization parameters
for every task, essentially mimicking the structure
of the transformer feed-forward layer".

Pfeiffer Adapter and AdapterFusion. The ap-
proaches of Bapna and Firat (2019); Houlsby et al.
(2019) did not allow information sharing between
tasks. Pfeiffer et al. (2020a) introduce Adapter
Fusion, a two-stage algorithm that addresses the
sharing of information encapsulated in adapters
trained on different tasks. In the first stage, they
train the adapters in single-task or multi-task se-
tups for a total of N tasks similar to the Houlsby
Adapter, but only keeping the top adapters, sim-
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Figure 2: Location of the adapter module in a transformer layer (left) and architecture of the Houlsby Adapter (right).
All green layers are trained on fine-tuning data, including the adapter itself, the layer normalization parameters, and
the final classification layer (not shown). Image with permission from Houlsby et al. (2019).

ilar to the Bapna and Firat Adapter. As a sec-
ond step, they combine the set of N adapters
with AdapterFusion: They fix the parameters ©
and all adapters ®, and finally introduce parame-
ters U that learn to combine the /V task adapters
for the given target task (Pfeiffer et al., 2020a):
U, < argmin Ly, (Dy,; 0, P, ..., $n, ¥)
v

Here, U, are the learned AdapterFusion param-
eters for task m. In the process, the training dataset
of m is used twice: once for training the adapters
®,,, and again for training Fusion parameters ¥,
which learn to compose the information stored in
the NV task adapters (Pfeiffer et al., 2020a). With
their approach of separating knowledge extraction
and knowledge composition, they further improve
the ability of adapters to avoid catastrophic forget-
ting and interference between tasks and training
instabilities. The authors also find that their ap-
proach of using only a single adapter after the feed-
forward layer performs on par with the Houlsby
adapter while requiring only half of the newly in-
troduced adapters (Pfeiffer et al., 2020a). This
makes the Pfeiffer adapter an attractive choice for
many applications, further proven by its popularity
among the papers in our review.

K-Adapter Wang et al. (2020) follow a substan-
tially different approach where the adapters work as
"outside plug-ins". In their work, an adapter model
consists of K adapter layers (hence the name) that
contain N transformer layers and two projection
layers. Similar to the approaches above, a skip con-
nection is added but instead applied across the two
projection layers. The adapter layers are plugged in

among varying transformer layers of the pre-trained
model. The authors explain that they concatenate
the output hidden feature of the transformer layer
in the pre-trained model and the output feature of
the former adapter layer as the input feature of the
current adapter layer.

Adapter architectures for knowledge enhance-
ment exist that differ from the four adapter types
mentioned here. For example, the "Parallel
Adapter" (He et al., 2021a) or the adapter archi-
tecture by Stickland and Murray (2019)). Howeyver,
as the upcoming comprehensive literature survey
will show, these architectures are either unique to
specific papers or have not found broader applica-
tions in the field of KELMs.

Another popular type of efficient adaptation is
the low-rank adaptation LoRA (Hu et al., 2022),
and its quantized version QLoRA (Dettmers et al.,
2023). These approaches do not add new adapter
layers as the previously described ones, but rather
enforce a low-rank constraint on the weight updates
of the base model’s layers. This enables efficient
fine-tuning of LLMs and also allows for domain
adaption or knowledge enhancement. Despite their
popularity, our search string did not match any
papers using these approaches, which is likely due
to our focus on adapters in form of adapter layers.

4 Methodology

This chapter details the methodology we employed
for the systematic literature review. We largely fol-
lowed the procedure of Kitchenham et al. (2009)
for systematic literature reviews in software engi-
neering. The search strategy for the systematic



literature review of this thesis included literature
that fulfilled the following inclusion criteria:

o Peer-reviewed articles from ACM!, ACL2,
and IEEE Xplore®

¢ Article abstracts that match the search string
("adapter” OR "adapter-based") AND ("lan-
guage model” OR "nlp" OR "natural language
processing”) AND ("injection” OR "knowl-
edge")

* Articles published after February 2, 2019
(publication of the Houlsby Adapter, the first
LLM adapter)

* Articles that address the topic of adapter-
based knowledge-enhanced language models

We also included a limited number of articles
not found on the mentioned databases because they
were fundamental works on the topic of the SLR
and frequently referenced. The SLR was concluded
in January 2024 and represents the state of research
literature up to this point.

5 Results

This section will present the results of the system-
atic literature review on adapter-based knowledge
enhancement.

5.1 Overview

Source Initial Abstract Full Text

IEEE 28 6 6

ACM 10 6 5

ACL 36 16 13

Others 2 2 2
"Total 76 30 26

Table 1: Quantitative overview of the literature sources
and the selection process

Table 1 shows the source distribution for all in-
cluded papers. Fifty-nine papers were found by
applying the search string as a command on the
ACL, ACM, and IEEE search engines. Due to their
importance for the field, we included three addi-
tional papers from other sources. These papers
were found through online search and paper ref-
erences during the general research process. In
summary, after the abstract screening, 31 articles

'https://dl.acm.org/

https://aclanthology.org/

Shttps://ieeexplore.ieee.org/Xplore/
home. jsp

met all inclusion criteria (and no exclusion criteria).
After the full paper screening, 26 papers remained
to form the final paper pool of the survey.

Table 2 gives an overview of all papers included
in the survey. It includes the information on the
adapter type used in the paper, the domain and
scope of the paper, and for which downstream NLP
tasks it was developed.

5.2 Data Analysis

We will now give a quantitative analysis showcas-
ing and interpreting quantitative distributions, fol-
lowed by significant qualitative insights from the
papers.

5.2.1 Quantitative Analysis

Yearly Distribution There has been a signifi-
cant increase in publications on adapter-based ap-
proaches to knowledge-enhanced language mod-
els in recent years (Fig. 3). While only 2 papers
were published in 2020, eleven new papers were
published in 2023. This trend suggests growing
interest and research activity in the domain.

Distribution of Articles by Year

Number of Articles

2, 5
%
kS

g”e\,

Year

Figure 3: Yearly distribution of publications

Adapter Type Distribution Next, we evaluate
the popularity and variety of adapter types used
across the papers (Fig. 4). The “Pfeiffer” and
"Houlsby" adapter types stand out as the most com-
mon, which suggests that the closely related under-
lying architecture is the most popular methodology
in the field. This popularity is likely not only an
achievement of the adapter’s performance but also
due to the well-established Adapter-Hub platform
(Pfeiffer et al., 2020b), which, although offering
other options, uses adapters with the Pfeiffer config-
uration by default. This finding showcases a need
and trend to build custom adapters well-suited to
individual tasks. In the upcoming years, we will
likely see many novel adapter architectures. The
“K-Adapter” and “Bapna and Firat” adapters are the
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paper & nickname adapter type scope main source task
K-MBAN (Zou et al., 2022) K-Adapter open T-REx (Wiki) RC
/ (Moon et al., 2021) Houlsby open WMT20 MT
CSBERT (Yu and Yang, 2023) Unique open diverse SL
/ (Qian et al., 2022) Unique open AESRC2020 SR
/ (Li et al., 2023) Houlsby closed (multiple)  diverse SF
CPK (Liu et al., 2023) K-Adapter closed (biomed) Wikipedia RC, ET, QA
" CKGA (Luetal.,2023) Unique open DBpedia ~ SC
/ (Nguyen-The et al., 2023) Pfeiffer open diverse SA
KEBLM (Lai et al., 2023) Pfeiffer closed (biomed) UMLS QA, NLI, EL
/ (Guo and Guo, 2022) Unique open Ch. Lexicon = NER
/ (Tiwari et al., 2023) Unique closed (biomed) Vis-MDD TS
" AdapterSoup (Chronopoulou et al., 2023) Bapna and Firat  closed (multiple) ~ diverse =~~~ LM
/ (Wold, 2022) Houlsby open ConceptNet LAMA
/ (Chronopoulou et al., 2022) Unique closed (multiple)  diverse LM
DS-TOD (Hung et al., 2022) Pfeiffer closed (multiple) CCNet TOD
/ (Emelin et al., 2022) Houlsby closed (multiple) MultiwOZ TOD
KnowExpert (Xu et al., 2022) Bapna and Firat open WoW KGD
mDAPT (Kar Jorgensen et al., 2021) Pfeiffer closed (multiple) WMT20 NER, STC
DAKI (Lu et al., 2021) K-Adapter closed (biomed) UMLS NLI
/ (Majewska et al., 2021) Pfeiffer open VerbNet EE
/ (Lauscher et al., 2020) Houlsby open ConceptNet ~ GLUE
TADA (Hung et al., 2023) Unique open CCNet TOD, NER, NLI
LeakDistill (Vasylenko et al., 2023) StructAdapt open AMR graph  SMATCH
MixDA (Diao et al., 2023) Houlsby, Pfeiffer closed (multiple)  diverse GLUE, TXM
" MoP (Meng etal., 2021) Pfeiffer ~ closed (biomed) ~UMLS =~ BLURB
K-Adapter (Wang et al., 2020) K-Adapter open T-REx (wikiy ~ RCL, ET, QA

Table 2: Overview of the results for the literature survey, including all papers and their references. The task and
source acronyms are explained in the glossary at the end of the thesis. The dotted lines separate the database sources:
First come the IEEE papers, then ACM, ACL, and finally, the papers from other sources. For the definition of all

task acronyms, see Appendix A.4

less frequently mentioned architectures, suggest-
ing that these approaches are less well-established.
Overall, various adapter types are present, indi-
cating a diverse range of methodologies being ex-
plored.

Distribution of Articles by Adapter Type

Number of Articles
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o
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Figure 4: Distribution of adapter types being used in the
articles

Domain Analysis Third, we analyze the distribu-
tion of papers across the domain scope and cover-
age to understand domain-specific preferences in
the literature (figures given in the appendix). The
first plot in Figure 5 shows that the open-domain
scope is the most popular, with many papers ex-

ploring adapter-based approaches within the open
domain. The popularity is likely caused by the
interest in creating LLMs with a common-sense
understanding or world knowledge.

As illustrated by the second plot in Figure 5,
the single- and multi-domain approaches are split
evenly within the closed-domain papers.

Finally, the third plot addresses the coverage
of the biomedical domain. In absolute numbers,
only six papers focus on the biomedical domain,
but relative to other parts, the biomedical field is
by far the most prominent of all domain-specific
approaches. The popularity likely comes down
to the availability of large biomedical KGs, and
medicine historically being one of the most active
research fields in general science (Cimini et al.,
2014).

Task and Source Distribution A highly di-
verse range of tasks and sources is being explored
throughout the papers, which signifies the versa-
tility and potential of adapter-based approaches
across different NLP tasks and domains. However,
combined with the limited number of papers in
the survey, the approach versatility prevents fur-
ther meaningful quantitative analysis. Still, tasks



such as Reading Comprehension (RC), Named En-
tity Recognition (NER), and Question Answering
(QA) appear to be popular areas of focus in the
literature. This could be because these tasks are the
most demanding regarding structural knowledge
requirements. The knowledge source distributions
show very little overlap.

5.2.2 Qualitative Analysis

This section of the analysis highlights recurring
themes and individual insights from the papers.
Fully summarizing all articles was outside the
scope of this survey. However, we still provide
an overview of the most common patterns.

General Knowledge The quantitative analysis
showed that open-domain approaches are more
popular than their close-domain counterparts. Sub-
sequently, there is also a large variety in the used
frameworks, knowledge sources, and overall goals
of the papers. Two commonly used KGs for gen-
eral knowledge are ConceptNet (Speer et al., 2017)
for common-sense knowledge, and DBpedia (Auer
et al., 2007) for encyclopedic world knowledge.
Two example works that use these KGs are Wold
(2022) and the CKGA ("knowledge graph-based
adapter") by Lu et al. (2023). Wold (2022) train
adapter modules on sub-graphs of ConceptNet to
inject factual knowledge into LLMs. They evalu-
ate their framework on the Concept-Net Split of
the LAMA Probe (Petroni et al., 2019) and see in-
creasing performance while only adding 2.1% of
new parameters to the original models. CKGA (Lu
et al., 2023), on the other hand, tackle aspect-level
sentiment classification by leveraging knowledge
from DBpedia. They link aspects to DBpedia end
extract an aspect-related sub-graph. Then, a pre-
trained language model and the knowledge graph
embedding are utilized to encode the common-
sense knowledge of entities, where the correspond-
ing knowledge is extracted with graph convolu-
tional networks (Lu et al., 2023).

Linguistic Knowledge Instead of only includ-
ing factual knowledge, some works also inject lin-
guistic knowledge into adapters (Majewska et al.,
2021; Zou et al., 2022; Yu and Yang, 2023; Wang
et al., 2020). While LLMs already encode a range
of syntactic and semantic properties of language,
Majewska et al. (2021) explain that they "are still
prone to fall back on superficial cues and simple
heuristics to solve downstream tasks, rather than
leverage deeper linguistic information". Their pa-

per explores the interplay between verb meaning
and argument structure. They use the gained knowl-
edge to enhance LL.Ms with Pfeiffer Adapters to im-
prove English event extraction and machine trans-
lation in other languages. Another example is the
work of Zou et al. (2022) on machine reading com-
prehension (MRC). They proposed the K-MBAN
model to integrate linguistic and factual external
knowledge into LLMs through K-Adapters.

Domain-specific Knowledge Chronopoulou
et al. (2022) propose a parameter-efficient ap-
proach to domain adaptation using adapters. They
represent domains as a hierarchical tree structure
where each node in the tree is associated with a
set of adapter weights. Their work focused on
specializing adapters in website domains like
booking.com and yelp.com. In another instance,
Chronopoulou et al. (2023) propose "Adapter-
Soup". In this framework, they also use adapters
for domain-specific tasks but use "an approach
that performs weight-space averaging of adapters
trained on different domains". AdapterSoup can
be helpful in various domain-specific approaches
in low-resource settings, especially when only
a small amount of data on a specific subdomain
is obtainable and closely related adapters are
available instead. Earlier, we saw that the
biomedical domain is the most prevalent among
the closed-domain approaches to adapter-based
KELMs. We will briefly examine the relevant
works in the following.

Biomedical Knowledge We have found the
works of DAKI (Lu et al., 2021), MoP (Meng
et al., 2021), and KEBLM (Lai et al., 2023) to
be the most impactful. According to the results of
our literature survey, DAKI ("Diverse Adapters for
Knowledge Integration™) was the first work to use
adapters specifically for knowledge enhancement
in the biomedical domain. Lu et al. (2021) leverage
data from the UMLS meta-thesaurus and UMLS
Semantic Network groups concepts, but also from
Wikipedia articles for diseases as proposed by He
et al. (2020). Meng et al. (2021) recognize that
KGs like UMLS, which can be several gigabytes
large, are very expensive to train on in their en-
tirety. They propose to use a "Mixture of Parti-
tions" (MoP), which splits the KG into sub-graphs
and combines later with AdapterFusion (Pfeiffer
et al., 2020a). Finally, the KEBLM framework’s
trademark is that it allows the inclusion of a vari-



ety of knowledge types from multiple sources into
biomedical LLMs. In contrast to DAKI, which also
utilizes more than one source, KEBLM includes
a knowledge consolidation phase after the knowl-
edge injection, where they teach the fusion layers
to effectively combine knowledge from both the
original PLM and newly acquired external knowl-
edge by using a large collection of unannotated
texts (Lai et al., 2023). For completeness, we refer
to Ker Jgrgensen et al. (2021) for information on
the m-DAPT framework, which addresses multi-
lingual domain adaptation for biomedical LLMs
and KeBioSum (Xie et al., 2022), who state their
work is the first study exploring knowledge injec-
tion for biomedical extractive summarization.

Performance Insights Performance of adapter-
based KELMs on downstream tasks is consistently
shown in papers from our survey to be better than
with base LMs. For example, Diao et al. (2023)
show an increase of +9% on Common-sense QA
Talmor et al. (2019) with their mixture-of-adapters
approach, while (Ker Jgrgensen et al., 2021) im-
prove financial text classification on OMP-9 (Sch-
abus et al., 2017) by +4%. While the task vari-
ation across domains is too diverse to be shown
systematically in our survey, we report in detail on
performance comparison in the biomedical domain
in Appendix A.2. Table 3 shows the performance
over five common biomedical tasks, covering text
classification, QA, NLI, and NER. It shows that
adapter-based KELMs consistently improved the
performance in almost all instances. For example,
MoP (Meng et al., 2021) and KEBLM (Lai et al.,
2023) improve the performance on PubMedQA
(Jin et al., 2019) for around +7% and +8%, respec-
tively. Another interesting insight is found by He
et al. (2021b), who show that adapter-based tun-
ing mitigates forgetting issues better than regular
fine-tuning since it yields representations with less
deviation from those generated by the initial pre-
trained language model.

6 Current and Future Trends

In this section, we outline the most important find-
ings and trends of the review and point out the
promising future directions:

* Adapter-based KELMs are a recent develop-
ment in NLP, but interest in them is rising fast,
with a linear yearly increase of published pa-
pers. We predict the growth trend to continue.

* Various adapter architectures exist and are ad-
vanced by researchers to be more efficient
while preserving task performance. This
peaked with the Pfeiffer adapter, which is the
most popular type. We expect future work
to focus their updates on adapter architecture
by overcoming the latency of sequential data
processing in adapters and enabling hardware
parallelism.

Research focuses on the open domain — in-
jecting general world knowledge into models.
Within the closed domain, the biomedical do-
main is the most popular, owing to the exis-
tence of large biomedical KGs. We foresee
the potential to apply adapter-based KELMs
to other highly structured domains, such as
the legal or financial domain (documents with
rigid structure).

* A wide array of downstream tasks is being
explored. The biggest improvement in task
performance is seen in knowledge-intensive
tasks like question answering and text classi-
fication, with a smaller improvement for rea-
soning tasks like entailment recognition. Gen-
erative tasks, other than dialogue modeling,
are rather unexplored. We envision a future
popular use case that could use knowledge
enhancement to improve the factuality and
informativeness of generated text.

7 Conclusion

In this paper, we conducted a systematic literature
review on approaches to enhancing language mod-
els with external knowledge using adapter modules.
We portrayed which adapter-based approaches ex-
ist and how they compare to each other. We showed
there is a steady growth of interest in this domain
with each new year and highlighted the most popu-
lar adapter architectures (with "Pfeiffer” as the pre-
dominant one). We discovered there is a balance in
popularity between open-domain approaches, fo-
cusing on integrating general world knowledge into
models, and closed-domain focusing on specialized
fields, with biomedical as the most popular domain.
With our review, we contribute a novel and exten-
sive resource for this nascent yet fast-growing field
and we hope it will be a useful entry point for other
researchers in the future.



Limitations

The methodology of a systematic literature review
follows a strict search string and exclusion criteria.
Therefore, it is possible that we excluded some rel-
evant work on adapter-based KELMs. Moreover,
while we tried to report on our survey as compre-
hensively as possible, there are several aspects we
could not include in this work. Also, some of the
reviewed articles were not given an adequate quali-
tative analysis in this work due to space constraints,
leading to potentially missing insights and a non-
complete representation of the state of research on
adapter-based knowledge enhancement. Addition-
ally, due to the variety of applications and domains,
we were not able to give precise guidelines on what
methods to use under which circumstances. Still,
we aimed to report on the most common patterns
and trends discovered in the literature, which can
serve as a basis for future research.
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A Supplementary Survey Data

A.1 Domain Distribution

See Figure 5.

A.2 Performance Comparison (Biomedical)

Table 3 gives an overview of the downstream task
performance of several papers that are included in
this survey. The focus lies on the biomedical do-
main so that the task overlap is high enough for an
insightful comparison. The scores are reported for
five downstream tasks, namely HoC (Baker et al.,
2015), PubMedQA (Gu et al., 2020), BioASQ7b
(Nentidis et al., 2020), MedNLI (Romanov and
Shivade, 2018), and NCBI (Dogan et al., 2014), as
well as three common biomedical language models
(SciBERT (Beltagy et al., 2019), BioBERT (Lee
et al., 2019), and PubMedBERT (Gu et al., 2020)).
Performances across the different tasks and models
vary strongly

A.3 Methodology

Articles on the following topics were excluded:
* Articles published before February 2, 2019

* Duplicate versions of the same article (when
multiple versions of an article were found in
different journals, only the most recent ver-
sion was included)

* Articles where Adapters were used for NLP,
but for use-cases other than knowledge-
enhancement (such as few-shot learning or
model debiasing)

* Articles written in a language other than En-
glish

The data extracted from each included document
were:

* Source (journal or publication platform)
e Full reference
* Main topic area

* Facts of interest such as adapter architecture,
domain, and downstream tasks within the pa-
pers

* A short summary of the study, including the
main research questions and the answers

The collected data was tabulated to show:
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* Source and publication dates of the studies

* Adapter architectures and knowledge sources
used in the papers

* Distribution of papers across domains (high-
lighting the biomedical domain)

* Distribution of papers across downstream
tasks

* Results on biomedical NLP benchmarks (if
relevant)

A4 Acronyms

* AESRC2020: Accented English Speech
Recognition Challenge 2020 (Shi et al., 2021)

* BioNLP: Biomedical Natural Language Pro-
cessing

* BLURB: Biomedical Language Understand-
ing and Reasoning Benchmark (Gu et al.,
2020)

¢ CCNet: Common Crawl Net (Wenzek et al.,
2020)

* EE: Event Extraction

* EL: Entity Linking

» ES: Extractive Summarization
* ET: Entity Typing

* GLUE: General Language Understanding
Evaluation (Wang et al., 2019)

e [E: Information Extraction

* KELM: Knowledge-Enhanced Language
Model

* KGD: Knowledge-grounded Dialogue

* LAMA: Concept-Net Split of LAMA Probe
(Petroni et al., 2019)

* LM: Language Modeling
e LLM: Large Language Model
* MT: Machine Translation

e MultiwOZ: Multi-Domain Wizard-of-Oz
dataset (Budzianowski et al., 2018)

* NER: Named Entity Recognition



* WoW: Wizard-of-Wikipedia (Dinan et al.,

NLI: Natural Language Inference
NLP: Natural Language Processing
OOD: Out-of-domain Detection
QA: Question Answering

RC: Reading Comprehension
RE: Relation Extraction

RCL: Relation Classification

SA: Sentiment Analysis

SC: Sentiment Classification

SF: Speech Foundation

SL: Sequence Labelling

SMATCH: Semantic Match Score (Cai and
Knight, 2013)

SOTA: State-of-the-art

SR: Speech Recognition
STC: Sentence Classification
TC: Text Classification

TOD: Task-Oriented dialogue

T-REx (wiki): A Large Scale Alignment
of Natural Language with Knowledge Base
Triples (Elsahar, 2017)

UMLS: Unified Medical Language System

VerbNet: A Broad-Coverage, Comprehensive
Verb Lexicon (Schuler, 2006)

Vis-MDD: Visual Medical Disease Diagnosis
(Tiwari et al., 2022)

WMT20: Workshop on Machine Translation
2020 (Barrault et al., 2020)

2018)
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A.5 Performance Comparison (Biomedical)

Table 3 gives an overview of the downstream task
performance of several papers that are included in
this survey. The focus lies on the biomedical do-
main so that the task overlap is high enough for an
insightful comparison. The scores are reported for
five downstream tasks, namely HoC (Baker et al.,
2015) (text classification), PubMedQA (Gu et al.,
2020) (QA), BioASQ7b (Nentidis et al., 2020)
(QA), MedNLI (Romanov and Shivade, 2018)
(NLI), and NCBI (Dogan et al., 2014) (disease en-
tity recognition), as well as three common biomed-
ical language models (SciBERT (Beltagy et al.,
2019), BioBERT (Lee et al., 2019), and PubMed-
BERT (Gu et al., 2020)).
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Figure 5: Distribution of domain scope, coverage, and the biomedical domain

J modelldataset —  HoC PubMedQA BioASQ7b  MedNLI NCBI
SciBERT-base 80.52:&0,60 57.38:|:4,22 75.93:|:4_20 81.19:‘:0,54 88.57
+ MoP 81.79% 0 ¢6 T 54.664310  78.50%, 0T 812010371 /
+ KEBLM / 59.001 / 82.141 93.501
+ DAKI / / / / /
+CPK / / / / /
"BioBERT-base 8141105 60241935  77.50i000 8242105 8830
+ MoP 82531 ;o7 61.04448 T 80.79L, 01 829310551 /
+ KEBLM / 68.00 1 / 84.24 1 93.201
+ DAKI / / / 83.41 1 89.011
+CPK / / / 81.65 88.421
" PubMedBERT-base  82.25.045 55841175 87711405 84181019  87.82
+ MoP 83.26, 54, T 62.84L,. 1 90.64L,,.1 847010101 /

Table 3: Performance reports for tasks with highest overlap in the biomedical domain. The metric for HoC is Micro
F1; for NCBI, it is F1, while for the other three, it is accuracy. The best results for every task are in bold. "1"
denotes that improvements are observed compared to the base model. “{" denotes a statistically significant better
result over the base model (T-test, p < 0.05), but not all papers report their scores. The baseline performance of the
models is taken from the original papers if given. Otherwise, the scores are taken from the MoP results.
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