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Abstract

Many tools exist to detect dependence between random variables, a core question across a wide
range of machine learning, statistical, and scientific endeavors. Although several statistical
tests guarantee eventual detection of any dependence with enough samples, standard tests
may require an exorbitant amount of samples for detecting subtle dependencies between
high-dimensional random variables with complex distributions. In this work, we study
two related ways to learn powerful independence tests. First, we show how to construct
powerful statistical tests with finite-sample validity by using variational estimators of mutual
information, such as the InfoNCE or NWJ estimators. Second, we establish a close connection
between these variational mutual information-based tests and tests based on the Hilbert-
Schmidt Independence Criterion (HSIC); in particular, learning a variational bound (typically
parameterized by a deep network) for mutual information is closely related to learning a
kernel for HSIC. Finally, we show how to, rather than selecting a representation to maximize
the statistic itself, select a representation which can maximize the power of a test, in either
setting; we term the former case a Neural Dependency Statistic (NDS). While HSIC power
optimization has been recently considered in the literature, we correct some important
misconceptions and expand to considering deep kernels. In our experiments, while all
approaches can yield powerful tests with exact level control, optimized HSIC tests generally
outperform the other approaches on difficult problems of detecting structured dependence.

1 Introduction

Independence testing, the question of using paired samples to determine whether a random variable X and
another Y are associated with one another or if they are statistically independent, is one of the most common
tasks across scientific and data-based fields. Traditional methods make strong parametric assumptions, for
instance assuming that X and Y are jointly normal so that dependence is characterized by covariance, and/or
operate only in limited settings, for instance the tabular setting of the celebrated χ2 test or Fisher’s exact
test. Applying these approaches to high-dimensional continuous data is difficult at best.

One characterization of independence is the Shannon mutual information (MI): this quantity is zero if two
random variables are independent, and positive if they are dependent. Substantial effort has been made in
estimating this quantity with a variety of estimators; see e.g. the broad list based on binning, nearest-neighbors,
kernel density estimation, and so on implemented by Szabó (2014). In high-dimensional cases, however, recent
work has focused on estimating variational bounds defined by deep networks (see e.g. Poole et al., 2019),
which can ideally learn problem-specific structure. To our knowledge, this class of estimators has not yet
been used to construct statistical tests of independence: in particular, if we run the estimation algorithm and
estimate a lower bound on the MI of 0.12, does that mean that the variables are (perhaps weakly) dependent,
or might that be due to random noise on the samples we saw? The first contribution of this paper is to
construct and evaluate tests of this form.

Mutual information, though, is notoriously difficult to estimate (Paninski, 2003). If the question we want to
ask is “are X and Y dependent,” we can also consider turning to a different characterization of dependence
which may be statistically easier to estimate. The Hilbert-Schmidt Independence Criterion (HSIC), introduced
by Gretton et al. (2005), measures the total cross-covariance between feature representations of X and Y ,
and can be estimated from samples efficiently. The construction supports even infinite-dimensional features

1



Under review as submission to TMLR

in a reproducing kernel Hilbert space (RKHS), equivalent to choosing a kernel function. With appropriate
choices of kernel (see Szabó & Sriperumbudur, 2018), the HSIC is also zero if and only if X ⊥⊥ Y . Székely
et al. (2007) and Lyons (2013) separately proposed distance covariance tests, which measure the covariance
of pairwise distances between X values with distances between Y values; this can be viewed as HSIC with a
particular kernel (Sejdinovic et al., 2013). Our second contribution describes how HSIC, in fact, is also a
lower bound on mutual information, and that tests based on either are very closely related.

Alternatively, we can characterize an independence problem as a two-sample one. Two-sample problems
are concerned with the question: given samples from P and Q, is P = Q? Under this framework, when we
consider samples from the joint distribution Pxy and the product of the marginals Px × Py (where X ⊥⊥ Y by
construction), the two-sample problem characterizes an equivalent independence problem between variables
X and Y . One way we can measure the discrepancy between Pxy and Px × Py is with the kernel-based
Maximum-Mean Discrepancy (MMD) (Gretton et al., 2012a); doing so recovers HSIC.

Any reasonable choice of kernel, such as the Gaussian kernel with unit bandwidth or the distance kernel that
yields distance covariance, will eventually (with enough samples) be able to detect any fixed dependence.
In practice, however, this scheme can perform extremely poorly; if, for instance, the data varies on a very
different scale than the bandwidth of the Gaussian kernel, it may take exorbitant quantities of data to achieve
any reasonable test power. Thus, tests using Gaussian kernels often rely on the median heuristic to choose a
kernel relevant to the data at hand: choosing a bandwidth based on the median pairwise distance among
data points (Gretton et al., 2012a). While this is a reasonable first guess for many data types, there exist
many two-sample testing problems where it can be dramatically better to instead select a bandwidth that
optimizes a measure of test power (Sutherland et al., 2017). Beyond that, there are many problems where no
Gaussian kernel performs well – for instance, many problems on natural image data or involving sparsity
– but Gaussian kernels applied to latent representations of such data do. As an extreme example in the
dependence case, consider the construction X ∼ N (0, 1), Y0 ∼ N (0, 1), but then Y is obtained by replacing
the fifteenth decimal place of Y0 with that of X. Representations based on Euclidean distance would require
an absurd number of samples to detect the dependence between X and Y , but a representation that extracts
only the fifteenth decimal place will make the dependence obvious.

These considerations apply similarly to tests based on mutual information. In fact, we can view estimation of
a variational MI bound as learning a representation of the data that maximizes its measure of dependency.
Thus, learning representations of the data that make any dependency more explicit is central to developing
more powerful independence tests. Our main algorithmic contribution involves developing a scheme to learn
these optimal representations, both for HSIC tests and for a class of tests closely related to the variational
MI-based tests. In both settings, this is based on maximizing an estimate of the asymptotic power of the test,
the primary term of which is an estimate of the signal-to-noise ratio of the statistic: the estimator divided by
its standard deviation. In both cases, we can efficiently, and differentiably, estimate this quantity; we also
show via a uniform convergence argument that optimizing the power estimate leads to a representation which
generalizes well. Using data splitting and permutation testing (as in e.g. Rindt et al., 2021), we obtain a test
which is exactly valid and achieves high power. In experiments, we find that while both methods often work
well, there are settings where the HSIC optimization scheme far outperforms the other categories of tests.

In both cases, the overall approach builds on prior work in kernel two-sample testing (Gretton et al., 2012b;
Jitkrittum et al., 2016; Sutherland et al., 2017; Liu et al., 2020). We show, however, that performing the
direct reduction to two-sample testing and applying these techniques, in addition to breaking the assumptions
of their theoretical results, yields a notably less powerful test than our direct HSIC power optimization, due
to statistical properties of the estimators. We also note that Ren et al. (2024) recently proposed a closely
related scheme for the HSIC power optimization setting; unfortunately, however, we show that several of
their main algorithmic suggestions are misguided and the proof of their main theorem is incorrect.

2 Tests Based On Variational Mutual Information Bounds

Problem 2.1 (Independence testing). Let Z = (X,Y ) ∼ Pxy on a domain X × Y, and Px, Py be the
corresponding marginal distributions of X and Y. We observe m paired samples X = (x1, ..., xm) and
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(b) Power vs. m; d = 4
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(c) Power vs. m; d = 10
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(d) Power vs. m; d = 15

Figure 1: Vanilla kernel-based HSIC tests struggle on high-dimensional data. (a) A bimodal Gaussian mixture,
with visible dependence between X and Y . (b)-(d) Test power as we add an increasing number of independent
noise dimensions. When d = 4 the median heuristic (HSIC-M) confidently detects dependence between X
and Y with a reasonably large sample size, but struggles when d = 10 or d = 15. Our method (HSIC-D)
detects dependence in high dimensions with many fewer samples.

Y = (y1, ..., ym) jointly drawn from Pxy. We wish to conduct a null hypothesis significance test, with null
hypothesis H0 : Pxy = Px × Py and alternative H1 : Pxy ̸= Px × Py.

We wish to solve this problem without making strong (parametric) assumptions about the form of Pxy, Px,
or Py. Most independence tests are based on estimating the “amount” of dependence between X and Y , or
equivalently the discrepancy between between Pxy and Px × Py. Given a nonnegative quantity which is zero
if X ⊥⊥ Y , we can reject H0 if our estimate is large enough that we are confident the true value is positive.

The most famous such quantity is the Shannon mutual information I(X;Y ). It can be defined as the
Kullback-Liebler divergence of Pxy from Px × Py, and is zero if and only if X ⊥⊥ Y ; equivalently, it is the
amount by which knowledge of Y decreases the entropy of X. While many estimators exist based roughly
on various forms of density estimation (see e.g. Szabó, 2014), as discussed above these can fail to detect
subtle or structured forms of dependence with reasonable numbers of samples. Variational estimators of
mutual information give an opportunity for problem-specific representations. As an example, consider the
following lower bound (van den Oord et al., 2018; Poole et al., 2019), called InfoNCE for its connection to
noise-contrastive estimation (Gutmann & Hyvärinen, 2012):

If ,K
NCE(X;Y ) = E

(xi,yi)∼PK
xy

[
Îf ,K
NCE

]
≤ I(X;Y ) where Îf ,K

NCE = 1
K

K∑
i=1

log ef(xi,yi)

1
K

∑K
j=1 e

f(xi,yj)
.

Here K is a batch size, which in our setting will typically be the total number of available points. Each
f : X × Y → R (and each K) leads to a different lower bound; the largest If ,K

NCE is the tightest bound. In
practice, users typically parameterize f as a deep network and maximize Îf ,K

NCE on minibatches from a training
set, providing an opportunity for f to learn useful feature adapted to the problem at hand. There are a
variety of bounds of this general type; Poole et al. (2019) give a unified accounting of many. Different bounds
yield different bias-variance tradeoffs, but run up against various limitations on the possibility of estimation
(Song & Ermon, 2020; McAllester & Stratos, 2020).

For independence testing, the key question is whether the true value I(X;Y ) > 0. This is guaranteed if a
lower bound, such as If ,K

NCE for some particular f and K, is positive at the population level, i.e. with the true
expectation. To estimate this, by far the easiest approach is data splitting: choose f to maximize Îf ,K

NCE on
(minibatches from) a training set, then evaluate Îf ,K

NCE on the heldout test set.

How large should Îf ,K
NCE be in order to be confident that If ,K

NCE > 0? That is, what does the distribution of
Îf ,K
NCE look like when I(X;Y ) = 0, and hence If ,K

NCE ≤ 0? For a given f , we can answer this question with
permutation testing, which estimates values under the null hypothesis (Pxy = Px × Py) by randomly shuffling
the test data, breaking dependence. To construct a test with probability of false rejection at most α, we can
compute the empirical 1 − α quantile from this permuted set, as long as we include the original paired data
in this shuffling (Hemerik & Goeman, 2018, Theorem 2). We reject the null hypothesis if this quantile is
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smaller than the test statistic

Îf ,K
NCE = 1

K

K∑
i=1

f(xi, yi) − 1
K

K∑
i=1

log

 1
K

K∑
j=1

ef(xi,yj)

 . (1)

Written in this form, notice that the second term of ÎNCE is permutation-invariant: changing each yj with yσj

for some permutation σ changes the value of the first term, but does not change the value of the second. Put
another way, the test statistic and each of its permuted versions are 1

K

∑K
i=1 f(xi, yi) shifted by the same

constant. Thus, although this second term plays a vital role in selecting the critic function f , at test time the
only thing that matters is whether the mean value of f(x, y) is higher for the true pairings than for random
pairs. We call this term the neural dependency statistic (NDS) and denote it for a batch of K paired samples
X = (x1, ..., xK) and Y = (y1, ..., yK) by

T̂ (X,Y) = 1
K

K∑
i=1

f(xi, yi). (2)

The same is true for the NWJ (Nguyen et al., 2010), DV (Donsker & Varadhan, 1983), IJS, and Iα lower
bounds discussed by Poole et al. (2019), as well as the MINE estimator (Belghazi et al., 2018); that is, at test
time only the NDS statistic (2) matters.

2.1 Asymptotic test power

Typically, a mutual information lower bound is considered better if the population value of the bound is larger:
that makes it a tighter bound. This viewpoint, however, neglects the issue of statistical estimation of that
bound, e.g. the difference between If ,K

NCE and Îf ,K
NCE. The best statistical test, among tests with appropriate

Type I (false rejection) control, is the one with highest test power : the probability of correctly rejecting the
null hypothesis H0 when X ⊥̸⊥ Y . Taking this into account, we examine the behavior of a permutation test
based on (1) or the many other mutual information bounds based only on the NDS (2). Each bound will
choose a different f during training, but at test time only the NDS matters.

Let TH0 = EPx×Py
f(x, y) and TH1 = EPxy

f(x, y) be the population level statistics under the null and
alternative distributions. Assuming a fixed critic f is chosen independently from test samples X and Y (e.g.
because of sample splitting), and that 0 < τ2

H1
= VarPxy f(x, y) < ∞, the central limit theorem implies that

1
τH1

√
m(T̂ − TH1) d→ N (0, 1). Then, using Φ for the standard normal cdf, the rejection threshold rm satisfies

α = Pr
H0

(√
mT̂ > rm

)
= Pr

H0

(
√
m
T̂ − TH0

τH0

>
rm −

√
mTH0

τH0

)
= 1 − Φ

(
rm −

√
mTH0

τH0

)
+ o(1).

As Φ is Lipschitz, this implies rm =
√
mTH0 + τH0

(
Φ−1(1 − α) + o(1)

)
. Using the asymptotic normality of T̂

under H1, we then have that

Pr
H1

(√
mT̂ > rm

)
= Pr

H1

(
√
m
T̂ − TH1

τH1

>
rm −

√
mTH1

τH1

)

= 1 − Φ
(√

mTH0 + τH0

(
Φ−1(1 − α) + o(1)

)
−

√
mTH1

τH1

)
+ o(1)

= Φ
(√

m
TH1 − TH0

τH1

− τH1

τH0

(
Φ−1(1 − α) + o(1)

))
+ o(1). (3)

To confirm that these asymptotics give a reasonable approximation in finite sample sizes, we can check that
the asymptotic test power (3) for a given critic function f roughly agrees with the empirical test power using
a non-asymptotic rejection threshold estimated by obtaining fresh samples from the null distribution, i.e.
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Figure 2: Power of NDS tests with a particular critic f (learned by the approach of Section 5) on three
datasets described in Section 6. For each problem, the blue line (asymp) is power described by the asymptotic
formula (3) with the o(1) error terms set to zero, where we use 20 000 samples to estimate the population-level
statistics TH1 , TH0 and their standard deviations τH1 , τH0 . The orange line (empirical) computes the power
based on the simulated null distribution, i.e. the threshold estimated via the empirical CDF of T̂0 with test
size m. The green line (perm) is the permutation test power. All three lines roughly agree with each other.

the empirical quantile of T̂ under the null. (This would not be available in practical situations, but is in
synthetic problems where we can obtain arbitrary numbers of fresh samples.) Figure 2 indeed confirms that
(3) gives a good estimate of the empirical power even at moderate sample sizes. (Intriguingly, the power of a
permutation test is consistently slightly higher than the test based on the correct non-asymptotic threshold;
we will discuss this issue in Section 7.)

This argument shows that, as long as TH1 > TH0 and T̂ has finite positive variance under both Pxy and
Px × Py, a test based on T̂ will almost surely eventually reject any fixed alternative: the test is consistent.
How quickly in m it reaches high power, however, depends on the expression (3), which in particular for large
m is dominated by the signal-to-noise ratio (SNR) given by (TH1 −TH0)/τH1 . When we choose a test based on
maximizing the value of a mutual information lower bound, we maximize a criterion, e.g., (1), which does not
directly correspond to the test power. We will discuss instead maximizing the asymptotic power in Section 5.

3 Tests with the Hilbert-Schmidt Independence Criterion (HSIC)

The Hilbert-Schmidt Independence Criterion (HSIC, Gretton et al., 2005) is also zero if and only if X and Y
are independent when an appropriate kernel is chosen (Szabó & Sriperumbudur (2018) give precise conditions).
Unlike the mutual information, HSIC is easy to estimate from samples; for a fixed bounded kernel, the typical
estimators concentrate to the population value with deviation Op(1/

√
m).

To define HSIC, we first briefly review positive-definite kernels. A (real-valued) kernel is a function k : X ×X →
R that can be expressed as the inner product between feature maps ϕ : X → F , k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩F ,
where F is any Hilbert space. An important special case is F = Rp and k(x, x′) = ϕ(x) · ϕ(x′), where ϕ(x)
extracts p-dimensional features of x. For every kernel function, there exists a unique reproducing kernel
Hilbert space (RKHS), which consists of functions f : X → R. The key reproducing property of an RKHS F
states that for any function f ∈ F and any point x ∈ X , we have ⟨f, ϕ(x)⟩F = f(x).

Suppose we have a kernel k on X with RKHS F and feature map ϕ, as well as another kernel l on Y with
RKHS G and feature map ψ. Let ⊗ denote the outer product.1 The cross-covariance operator is

Cxy = E
xy

[(
ϕ(x) − E

x
ϕ(x)

)
⊗
(
ψ(y) − E

y
ψ(y)

)]
;

for kernels with finite-dimensional feature maps, this is exactly the standard (cross-)covariance matrix between
the features of X and those of Y . Under mild integrability conditions on the kernel and the distributions,2

1The Euclidean outer product abT is a matrix with [abT]b′ = a[bTb′]; in Hilbert spaces, f⊗g : G → F has [f⊗g]g′ = f⟨g, g′⟩G .
2It suffices that E[

√
k(x, x)l(y, y)] <∞; this is guaranteed regardless of the distribution when k, l are bounded.
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the reproducing property shows that ⟨f, Cxyg⟩ = Cov(f(X), g(Y )) for all f ∈ F , g ∈ G. One definition of
independence is whether there exist any correlated “test functions” f and g. Thus, for rich enough choices
of kernel – using universal k and l suffices, but is not necessary (Szabó & Sriperumbudur, 2018) – we have
that X ⊥⊥ Y if and only if the operator Cxy = 0. We can thus check whether the operator is zero, and hence
whether X ⊥⊥ Y , by checking the squared Hilbert-Schmidt norm of Cxy, HSIC(X,Y ) = ∥Cxy∥2

HS. With
finite-dimensional features, this is the squared Frobenius norm of the feature cross-covariance matrix.

Another way to interpret HSIC is as a distance between Pxy and Px × Py, similarly to how the mutual
information is the KL divergence between those same distributions.
Proposition 3.1 (Gretton et al., 2012a, Theorem 25). Let k and l be kernels on X and Y, and define a
kernel on X × Y by h

(
(x, y), (x′, y′)

)
= k(x, x′)l(y, y′) with RKHS H. Then

√
HSICk,l(X,Y ) = MMDh(Pxy,Px × Py) = sup

f∈H
∥f∥H≤1

E
(X,Y )∼Pxy

[f(X,Y )] − E
X∼Px

Y ′∼Py

[f(X,Y ′)]

=

√√√√ E
(X,Y ),(X′,Y ′)∼Pxy

Y ′′,Y ′′′∼Py

[
k(X,X ′)l(Y, Y ′) − 2k(X,X ′)l(Y, Y ′′) + k(X,X ′)l(Y ′′, Y ′′′)

]
.

Taking the last form and rearranging to save repeated computation yields two similar, popular estimators of
HSIC. “The biased estimator” is HSIC(P̂xy, P̂x × P̂y) for empirical distributions P̂ :

ĤSICb(X,Y) = 1
m2 ⟨K,HLH⟩F for ⟨A,B⟩F =

∑
ij

AijBij , (4)

where here K is the m × m matrix with entries kij = k(xi, xj), L similarly has entries lij = l(yi, yj), and
H is the “centering matrix” Im − 1

m1m1⊤
m (so the estimator can be easily implemented without matrix

multiplication). This estimator has O(1/m) bias, but is consistent.

The other common estimator, “the unbiased estimator,” is a U -statistic (Song et al., 2012):

ĤSICu(X,Y) = 1
m(m− 3)

[
⟨K̃, L̃⟩F + 1⊤

mK̃1m1⊤
mL̃1m

(m− 1)(m− 2) − 21⊤
mK̃L̃1m

m− 2

]
, (5)

where K̃ and L̃ are m × m matrices whose diagonal entries are zero but whose off-diagonal entries agree
with those of K or L. It is unbiased, E ĤSICu(X,Y) = HSIC(X,Y ); it is also consistent, and can be
computed in the same O(m2) time as ĤSICb, without matrix multiplication. Either statistic can be used
with a permutation test to construct an independence test with finite-sample validity, in the same way as
described for mutual information bounds. The following subsection describes the behavior of such tests in
the large-sample limit.

3.1 Asymptotic test power

The unbiased HSIC estimator is asymptotically normal with
√
m(ĤSICu − HSIC) d→ N (0, σ2

H1
) (Proposi-

tion A.1, in Appendix A). It is possible, however, to have σ2
H1

= 0, which makes that result less useful;
this occurs in particular whenever HSIC = 0, and hence is always true under H0. In that case, it is more
informative to say instead that m ĤSICu converges in distribution (which is not the case when σ2

H1
> 0).

The distribution to which it converges is a mixture of shifted chi-squareds with complex dependence on Px,
Py, k, and l (Proposition A.2). Thus, if we consider a test statistic m ĤSICu, when HSIC = 0 this statistic
has mean zero and standard deviation Θ(1). When HSIC > 0, though, the statistic has mean and standard
deviation Θ(

√
m) → ∞. Thus, as m → ∞, eventually the test will reject if HSIC > 0 (Rindt et al., 2021).

Recall that the optimal test is one with highest test power among those with appropriate level control. As
for NDS-based tests, we can describe this power asymptotically. Let Ψ be the cdf of the null distribution of
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Figure 3: Power of HSIC tests based on kernels k and l learned with the method of Section 5, evaluated
on problems described in Section 6. For each problem, the blue line (asymp) is power described by the
asymptotic formula (6), where we use 10 000 samples to estimate the population level statistics HSIC, its
deviation σH1 , and the threshold Ψ−1(1 − α) via simulation. The orange line (empirical) computes the power
based on the simulated null distribution, i.e. the threshold estimated via the empirical CDF of ĤSICu with
test size m. The green line (perm) is the permutation test power. All three lines roughly agree.

m ĤSICu, which depends on k, l, Px, and Py. It follows that the rejection threshold rm satisfies

α = Pr
H0

(ĤSICu > rm) = 1 − Ψ(mrm) + o(1) so rm = 1
m

(
Ψ−1(1 − α) + o(1)

)
.

Using Proposition A.1, when σH1 > 0 the asymptotic test power then satisfies

Pr
H1

(
ĤSICu > rm

)
= Pr

H1

(
√
m

ĤSICu − HSIC
σH1

>
√
m
rm − HSIC

σH1

)

= 1 − Φ
(

√
m

1
m

(
Ψ−1(1 − α) + o(1)

)
− HSIC

σH1

)
+ o(1)

= Φ
(√

mHSIC
σH1

− Ψ−1(1 − α) + o(1)√
mσH1

)
+ o(1). (6)

Figure 3 verifies that this expression lines up well with the empirical test power even at moderate test sizes.
Additionally, (6) also tells us that, as long as HSIC > 0 and ĤSICu has finite positive variance, an HSIC-based
test will eventually reject with probability of one. The rate at which it increases in power is described by
the gap between the signal-to-noise ratio HSIC /σH1 and a threshold-dependent term Ψ−1(1 − α)/σH1 , with
the former dominating the latter. This gap increases at a faster rate than the one described for NDS-based
tests (3); the ratio of the two terms is Θ(m) for HSIC, while it is only Θ(

√
m) for NDS. (Appendix B gives

another motivation for the power being dominated by this signal-to-noise ratio, without using the central
limit theorem.)

3.2 MMD-based independence test

Given that more attention has been recently paid to learning two-sample tests than dependence tests, we
can consider reformulating the independence problem into a two-sample one: are Pxy and Px × Py the same
distribution? A natural measure of difference between distributions Pxy and Px × Py is MMD2(Pxy,Px × Py)
with some kernel h, which becomes HSIC(X,Y ) if h is a product kernel. For sufficiently powerful h, as
characterized by Szabó & Sriperumbudur 2018, MMD(Pxy,Px ×Py) = 0 if and only if X ⊥⊥ Y . Thus it makes
sense to use any consistent MMD estimator as the test statistic; we use the biased U-statistic estimator
described in Gretton et al. (2012a) for simplicity.

Next we consider a testing procedure. The standard independence problem observes paired samples Z =(
(x1, y1), . . . , (xm, ym)

)
drawn i.i.d. from the joint distribution Pxy, and so to simulate samples from Px × Py

we first shuffle the Y samples by some permutation σ on {1, ...,m}. We define this action of permuting Z
with σ as σZ =

(
(x1, yσ(1)), . . . , (xm, yσ(m))

)
. These samples are then used to compute M̂MD

2
b(Z, σZ). The

7
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following proposition shows that, with enough samples, this statistic is a consistent estimator of the true
MMD value.
Proposition 3.2. Suppose h satisfies supx∈X ,y∈Y h((x, y), (x, y)) ≤ ν2. The estimator M̂MD

2
b(Z, σZ), where

Z is independent of a uniformly random σ, satisfies with probability at least 1 − δ that

|M̂MD
2
b(Z, σZ) − MMD2(Pxy,Px × Py)| ≤ 17ν2

√
m

[√
2 log 8

δ
+ 1√

m

]
.

This result is proved in Appendix F.4.

Viewing this permuted MMD estimator as a function of the original paired samples, i.e. f(Z) := M̂MD
2
b(Z, σZ),

we then perform an independence permutation test by shuffling only the Y samples in Z. Under the null
hypothesis the distribution of Z is unchanged by shuffling the Y samples, and so an independence permutation
test on f(Z) is guaranteed by Theorem 2 of Hemerik & Goeman (2018) to have correct level control, provided
the original sample order is included in the permutations.3

It’s also worth noting that, since the MMD estimator is a two-sample statistic, the number of samples of Pxy

and Px × Py can be different. As such, we can also consider using multiple permutations σ = {σ1, ..., σp}
rather than just one, and then simulate the null samples as σZ =

⋃
σiZ. It turns out that if we consider all

rotation permutations, M̂MD
2
b(Z,σZ) is exactly the biased HSIC estimator ĤSICb(X,Y). We elaborate on

this connection in Appendix F.4 and show that using more permutations improves estimation quality. The
HSIC estimator, which effectively uses all permutations, is the minimum variance estimator for this permuted
MMD statistic (Proposition F.2).

4 Connecting HSIC and Mutual Information Tests

4.1 HSIC as a lower bound on MI

Suppose the kernel h on (x, y) pairs of Proposition 3.1 is bounded: supx∈X ,y∈Y h((x, y), (x, y)) ≤ ν2 for ν ≥ 0.
Then

|f(x, y)| = |⟨f, ϕh(x, y)⟩H| ≤ ∥f∥H ∥ϕh(x, y)∥H ≤ ν∥f∥H

by the reproducing property and Cauchy-Schwarz, so ∥f∥H ≥ 1
ν supx,y|f(x, y)| = 1

ν ∥f∥∞. This implies that
{f : ∥f∥H ≤ 1} ⊆ {f : ∥f∥∞ ≤ ν}, and so by Proposition 3.1,√

HSIC(X,Y ) ≤ sup
f :∥f∥∞≤ν

E
(X,Y )∼Pxy

[f(X,Y )] − E
X∼Px

Y ′∼Py

[f(X,Y ′)] = 2ν TV(Pxy,Px × Py), (7)

where TV is the total variation distance between distributions (Sriperumbudur et al., 2012).4 Applying
standard bounds relating the total variation to the KL divergence, we obtain the following.
Proposition 4.1. In the setting of Proposition 3.1, suppose supx∈X ,y∈Y h((x, y), (x, y)) ≤ ν2. Then

1
2ν2 HSIC(X,Y ) ≤ I(X;Y ) and − log

(
1 − 1

4ν2 HSIC(X,Y )
)

≤ I(X;Y ).

Proof. The first bound applies Pinsker’s inequality, which relates total variation to KL, to (7). The second
instead applies the bound of Bretagnolle & Huber (1978) (also see Canonne, 2022).

3One might wonder whether we can instead perform a two-sample permutation test. Consider the test statistic as a function
of the pooled samples f([Z, σZ]) = M̂MD

2
b(Z, σZ). The two-sample permutation test involves shuffling the order of Z ∪ σZ,

however, exchangeability of Z ∪ σZ under the null is not guaranteed as variables in the first split are deterministically tied to
variables in the second; thus a two-sample permutation test may not be valid. A workaround would be to independently split
the data into Z1 and Z2 and then construct the pooled sample as Z1 ∪ σZ2, but this process is more involved and potentially
lower-power.

4Sriperumbudur et al. (2012) define the TV as twice the more common definition, which we use here.
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The second bound is tighter for large values of I(X;Y ), but both are monotonic in HSIC(X,Y )/ν2. We could
thus consider, as in Section 2, choosing kernels k, l to maximize a lower bound on I(X;Y ), by maximizing
HSIC(X,Y )/ν2. Indeed, maximizing HSIC has been used by previous applications in many areas (e.g.
Blaschko & Gretton, 2009; Song et al., 2012; Li et al., 2021; Dong et al., 2023).

4.2 Kernel-based tests and variational MI tests

Now consider a test based on MMDf (Pxy,Px×Py) using a kernel of the form h((x, y), (x′, y′)) = f(x, y)f(x′, y′)
for some real-valued function f . If f(x, y) = f1(x)f2(y), this is an HSIC test with kernels k(x, x′) = f1(x)f1(x′)
and l(y, y′) = f2(y)f2(y′). Because ϕh(x, y) = f(x, y) ∈ R is a valid feature map, every function in H is of
the form αf = [(x, y) 7→ αf(x, y)] with ∥αf∥H = |α|. By Proposition 3.1,

MMDf (Pxy,Px × Py)2 =
(

sup
|α|≤1

α

(
E
Pxy

f(X,Y ) − E
Px×Py

f(X,Y ′)
))2

=
(
E
Pxy

f(X,Y ) − E
Px×Py

f(X,Y ′)
)2
.

The plug-in estimator would yield the test statistic

M̂MD
2
b(X,Y) =

 1
m

m∑
i=1

f(xi, yi) − 1
m2

m∑
i=1

m∑
j=1

f(xi, yj)

2

, (8)

which when f(x, y) = f1(x)f2(y), corresponds exactly to ĤSICb.

Comparing (8) to (1) with K = m, we can see that the main term T̂ = 1
m

∑
i f(xi, yi) is identical, which

we called the NDS (2). The other term is permutation-invariant; it is the mean of T̂ over all possible
permutations, T̄ . Thus, a permutation test based on (8) asks how far the value of T̂ for the true data is from
T̄ , while a test based on any variational MI estimator based on (2) is equivalent to asking how much the
value of T̂ exceeds T̄ . The only difference is that (8) gives a two-sided test, while (1) is a one-sided test.5

Our usual test uses ĤSICu of (5) instead of ĤSICb, but the difference in estimators is typically small. Thus,
if we use deep kernels of the form k(x, x′) = f(x)f(x′) and l(y, y′) = g(y)g(y′), obtaining a test quite closely
related to a witness two-sample test (Kübler et al., 2022) used for independence, the HSIC test is nearly
equivalent to the NCE test with a separable critic function (x, y) 7→ f(x)g(y). This relationship is roughly
analogous to the relationship between classifier two-sample tests and MMD tests observed by Liu et al. (2020):
while each test chooses a critic/kernel in a different way, at test time they are essentially equivalent.

5 Learning Representations for Independence Testing

Choosing a test based on maximizing the value of its statistic does not directly correspond to the test power.
Instead, we would perhaps be better served by maximizing the power directly. Recall the asymptotic power
expressions for NDS and HSIC-based tests given by (3) and (6), respectively:

Pr
H1

(T̂ > rm) ≈ Φ
(√

m(T − TH0)
τH1

− τH0

τH1

Φ−1(1 − α)
)

and Pr
H1

(ĤSICu > rm) ≈ Φ
(√

mHSIC
σH1

− Ψ−1(1 − α)√
mσH1

)
.

In both cases, as the sample size m grows, the power is dominated by the signal-to-noise ratio

SNR[T ] = (T − TH0)/τH1 and SNR[HSIC] = HSIC /σH1 . (9)

Maximizing the SNR maximizes the limiting power of the test as m → ∞. (Also see Appendix B.) Thus,
maximizing estimates of the SNR (based on a finite number of samples n) will roughly maximize the power
of a test at an arbitrarily large sample size (m → ∞); also see discussion by Sutherland & Deka (2019); Deka
& Sutherland (2023).

5Li et al. (2021, Section 3.1) also found a relationship between HSIC and INCE for categorical Y .
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Alternatively, we can also choose to include the threshold-dependent term. This may be helpful, particularly
in estimating the power at points where the number of samples is not overwhelming: for tests with a 50%
probability of rejection, the two terms in the power expression are necessarily the same size. For NDS,
the gap between the two terms only grows with

√
m, and additionally estimating τH1 is no problem when

already estimating TH1 , thus we propose to include the threshold term in choosing an NDS critic. For HSIC,
however, the threshold-dependent term is both relatively less important as m grows and much more difficult
to estimate.6 Therefore, we propose to optimize the SNR with the threshold term for NDS, and without it
for HSIC. Our population level objectives, as functions of random variables X and Y , are then

JNDS(X,Y ; f) = T (X,Y ; f) − TH0(X,Y ; f)
τH1(X,Y ; f) − τH0(X,Y ; f)√

mτH1(X,Y ; f)Φ−1(1 − α) (10)

and
JHSIC(X,Y ; k, l) = HSIC(X,Y ; k, l)

σH1(X,Y ; k, l) . (11)

Then, if we have a batch of paired observations X = (X1, ..., Xm) and Y = (Y1, ..., Ym) sampled jointly from
PXY , we can approximate JNDS and JHSIC by the estimators Ĵλ

NDS and Ĵλ
HSIC, which we define below.

NDS objective. We define Ĵλ
NDS as the plug-in estimator of JNDS with variance regularization λ > 0. We

estimate TH1 = EPXY
[f(X,Y )] by its sample mean T̂ (X,Y) = 1

m

∑m
i=1 f(Xi, Yi), and TH0 = EPX ×PY

f(X,Y )
by the V-statistic T̂H0(X,Y) = 1

m2

∑m
i=1
∑m

j=1 f(Xi, Yj). The variance terms τ2
H0

and τ2
H1

are estimated with
a regularized version of the sample variance,

τ̂2
H0,λ(X,Y; f) = 1

m2

m∑
i=1

m∑
j=1

f(Xi, Yj) − 1
m2

m∑
i′=1

m∑
j′=1

f(Xj′ , Yj′)

2

+ λ

τ̂2
H1,λ(X,Y; f) = 1

m

m∑
i=1

f(Xi, Yi) − 1
m

m∑
j=1

f(Xj , Yj)

2

+ λ,

where λ > 0. Putting it all together, our complete NDS objective is

Ĵλ
NDS(X,Y; f) = T̂ (X,Y; f) − T̂0(X,Y; f)

τ̂H1,λ(X,Y; f) − τ̂H0(X,Y; f)√
m τ̂H1(X,Y; f)Φ−1(1 − α). (12)

HSIC objective. Ĵλ
HSIC is defined in a similar manner. We estimate HSIC by the unbiased estimator

ĤSICu(X,Y) given in (5), and we approximate the variance term σ2
H1,λ according to

σ̂2
H1,λ(X,Y; k, l) = 16(R− ĤSIC

2
u) + λ

which is just a regularized version of the variance estimate stated in Proposition A.1. Following Song et al.
(2012), this can be computed more efficiently with R = ((n−4)!)2

4n((n−1)!)2 ∥h∥2, where the vector h is

h = (n− 2)2 (K̃ ◦ L̃
)

1 − n(K̃1) ◦ (L̃1) + (1⊤L̃1)K̃1 + (1⊤K̃1)L̃1 − (1⊤K̃L̃1)1
+ (n− 2)

(
(1⊤(K̃ ◦ L̃)1)1 − K̃L̃1 − L̃K̃1

)
,

6Ren et al. (2024) proposed using a moment-matched gamma approximation to the threshold, and claimed that not including
this threshold can lead to catastrophically wrong kernel choice. We argue in Appendix F.5, however, that their argument is
unjustified. We also find experimentally in Section 6 that including it can choose worse kernels in practice. More common
contemporary approaches to estimating the threshold use permutation testing or eigendecomposition; both involve substantial
computational overhead, and the latter is particularly expensive to differentiate while the former can be quite difficult to usefully
estimate on the same data as the HSIC estimate, as observed for MMD by Deka & Sutherland (2023) and discussed further in
Section 7.
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Algorithm 1 Independence testing with learned representations
Input: paired samples SZ = (SX , SY ); split the data into Str

Z ∪ Ste
Z with (Str

X , Str
Y )← Str

Z ; (Ste
X , Ste

Y )← Ste
Z ;

model parameters θ ← θ0 and test statistic T (X, Y ; θ); various hyperparameters like λ← 10−8, etc.
# Phase 1: train the parameters θ on Str

Z
for T = 1, 2, . . . , Tmax do

(X,Y)← minibatch from Str
Z = (Str

X , Str
Y );

Ĵλ(X,Y; θ)← compute SNR estimate; # as in Equation (12) or Equation (13)
θ ← θ + η∇θĴλ(X,Y; θ) # gradient ascent step

# Phase 2: permutation test on Ste
Z with learned representations

perm1 ← T (Ste
X , Ste

Y ; θ) # evaluate test statistic
for i = 2, . . . , nperm do

permi ← T (Ste
X , shuffle(Ste

Y ); θ) # no need to shuffle both sets
Output: kω , lγ , perm1, p-value 1

nperm

∑nperm
i=1 1(permi ≥ perm1)

with ◦ denoting elementwise multiplication on matrices, and 1 = (1, . . . , 1) ∈ Rn. Thus, the complete HSIC
objective is

Ĵλ
HSIC(X,Y; k, l) = ĤSICu(X,Y; k, l)

σ̂H1,λ(X,Y; k, l) . (13)

Maximizing (12) or (13) then gives us a structured approach to select the critic or kernel yielding the strongest
asymptotic test. Typically, we run some variant of a gradient-based optimization algorithm with respect to
the parameters of the critic or kernel class, and do hyperparameter selection and early stopping based on the
same objective on a validation set.

Critic & kernel architecture. We consider function families parameterized by deep networks, as this
allows us to learn representations of the data that more efficiently capture dependency. For critics, this
parameterization is straightforward and is typically some problem-specific architecture like multilayer percep-
trons or convolutional networks. For kernels, we first incorporate a featurizer that acts on individual inputs x
and y, and is then fed to some standard kernel function. When our feature mapping is parameterized by
deep networks, we get the class of deep kernels (Wilson et al., 2016), which have been successfully used in
two-sample testing (Sutherland et al., 2017; Liu et al., 2020; 2021) and many other settings (e.g. Li et al.,
2017; Arbel et al., 2018; Jean et al., 2018; Li et al., 2021; Gao et al., 2021). We use the following deep kernels
for X and Y :

kω(x, x′) = (1 − ϵX)κX(fω(x), fω(x′)) + ϵX qX(x, x′)
lγ(y, y′) = (1 − ϵY )κY (gγ(y), gγ(y′)) + ϵY qY (y, y′).

Here fω and gγ are deep networks with parameters in ω, γ, which extract relevant features from X or Y to a
feature space RD. These features are then used inside a Gaussian kernel κ on the space RD, to compute the
baseline similarity between data points. We then take a convex combination of that kernel with a Gaussian
kernel q on the input space; the weight of this component is determined by a parameter ϵ ∈ (0, 1).7 The
lengthscale of κ and q as well as the mixture parameter ϵ are included in the overall parameters, ω or γ, and
learned during the optimization process.

Overall representation learning algorithm. The overall procedure, written based on minibatch gradient
ascent for simplicity, is shown in Algorithm 1. In practice, we use AdamW (Loshchilov & Hutter, 2019), and
draw minibatches in epochs; experimental details are given in Appendix E.1. The randomized p-value is
potentially conservative in the case of ties; breaking ties randomly can give a slight improvement when ties
are present (Hemerik & Goeman, 2018).

Time complexity. Each training iteration is dominated by computing the objectives Ĵλ
NDS and Ĵλ

HSIC.
Suppose K is the minibatch size. For NDS tests, if EZ is the cost of evaluating critic fθ(x, y), then one

7Using ϵ > 0 provides a “backup” to the deep kernel, perhaps giving some signal early in optimization when the deep kernel
features are not yet useful, and guaranteeing that the overall kernel is characteristic.
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training step costs O(K2EZ). For HSIC tests, if EX and EY are the costs of computing embeddings fω(x)
and fγ(y), and L the cost of computing kω(x, x′) and lγ(y, y′) given the embeddings, then each training
iteration costs O

(
KEX +KEY +K2L

)
. Typically, for practical values of K, EX + EY ≫ KL, so this cost

is “almost” linear in practice.8

Theoretical analysis. While neither Ĵλ
NDS nor Ĵλ

HSIC are biased estimates of the relevant population
quantities,9 the following Theorems 5.1 and 5.2 show that they are both uniformly bounded in probability.
Theorem 5.1 (Uniform convergence of Ĵλ

NDS). Let {fθ : θ ∈ Θ} be a critic family with parameter space
Θ satisfying Assumptions (A) to (C) in Appendix C.2 which define a critic bound B, dimension D, and
smoothness L. Suppose τ2

θ ≥ s2 for some positive s under both H0 and H1, and λ = Θ(n−1/3). Then

sup
θ∈Θ

∣∣∣Ĵλ
NDS(θ) − JNDS(θ)

∣∣∣ = ÕP

(
1

s2n1/3

[
B

s
+B2L+B3

√
D

])
.

Theorem 5.2 (Uniform convergence of Ĵλ
HSIC). Let {kω : ω ∈ Ω} and {lγ : γ ∈ Γ} be kernel families with

parameter spaces Ω and Γ satisfying Assumptions (A’) to (C’) in Appendix D.2 which define kernel dimensions
DΩ, DΓ and smoothnesses Lk, Ll. Suppose σ2

ω,γ ≥ s2 > 0 under H1 and λ = Θ(n−1/3). Then

sup
ω∈Ω,γ∈Γ

∣∣∣Ĵλ
HSIC(ω, γ) − JHSIC(ω, γ)

∣∣∣ = Õp

(
1

s2n1/3

[
1
s

+ Lk + Ll +
√
DΩ +

√
DΓ

])
.

Appendices C and D state and prove non-asymptotic versions of the above results based on covering numbers;
the assumptions and proof techniques are similar to those of Liu et al. (2020)10, but is slightly more involved
for a few reasons: 1) Uniform convergence of HSIC and its variance estimators now include two kernels, k and
l, instead of one, and a somewhat different estimator form. 2) For NDS we also need to show convergence of
a null-to-alternative variance ratio, a term which is not present in the MMD or HSIC objectives.

Following Theorem C.13 (a standard result from van der Vaart, 1998), successfully maximizing these estimates
will thus also maximize the population quantity, and consequently the asymptotic test power, for sufficiently
large training set sizes n.

6 Experiments

Baselines. We compare our HSIC-based (HSIC-D/Dx/O) and MI-based (NDS/InfoNCE/NWJ) tests with
various alternative methods. All tests are performed using permutation testing.

• HSIC-D: HSIC using deep kernels on each space X and Y; simultaneously trained via Section 5.
• HSIC-Dx: HSIC using a tied deep kernel, i.e. kω = lγ , and trained via Section 5.
• HSIC-O: HSIC using Gaussian kernels, with each bandwidth parameter optimized via Section 5.
• NDS: The neural dependency statistic (2) trained via Section 5.
• InfoNCE (van den Oord et al., 2018; Poole et al., 2019): the statistic ÎNCE as in (1).
• NWJ (Nguyen et al., 2010; Poole et al., 2019): another mutual information bound statistic ÎNWJ.
• HSIC-M: HSIC using a Gaussian kernel, with bandwidth selected via the median heuristic.
• HSIC-Agg (Albert et al., 2021; Schrab et al., 2023): aggregating Gaussian kernels of various bandwidths.

We use the complete U-statistic with default settings: B1 = 500, B2 = 500, B3 = 50, and uniform weights.
• MMD-D: The method of Liu et al. (2020) applied to Pxy vs Px × Py,11 with a Gaussian kernel on X × Y.

8Equation (13) could use block estimators (Zaremba et al., 2014) or incomplete U -statistics (Blom, 1976) to reduce O(K2L)
to O(KβL) for any β ≤ 2, at the cost of increased variance (see Ramdas et al., 2015).

9Indeed, no unbiased estimator is likely to exist; see Appendix A of Deka & Sutherland 2023.
10Ren et al. (2024) stated a similar result to Theorem 5.2, but with an incorrect proof; although they claim uniform convergence

over their threshold estimate, their proof makes no attempt at showing uniformity, instead showing pointwise convergence.
11Specifically, we compare Z ∼ Pxy against a single shuffle of the samples σZ, as detailed in Section 3.2. We use this approach

over the data-splitting approach since it both minimizes memory (compared to using a large number of permutations) and
performs slightly better in practice, as seen in Figure 13.
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• C2ST-S (Lopez-Paz & Oquab, 2017) / C2ST-L (Cheng & Cloninger, 2022): Sign/logit-based classifier
two-sample test for Pxy vs Px × Py, with samples set up the same way as for MMD-D.

Datasets. We consider four informative datasets, where the true answers are known.

• High-dimensional Gaussian mixture. The distribution HDGM-d has d total dimensions (divided
between X and Y ), but has dependence between only two of them:

[X1, Y⌊d/2⌋, . . . , X⌈d/2⌉, Y1] ∼
2∑

i=1

1
2N

0d,

 1 0.5(−1)i 0T
d−2

0.5(−1)i 1 0T
d−2

0d−2 0d−2 Id−2

 ,

where the odd dimensions are taken to be from Px and even dimensions to be from Py. Moreover, for d ≥ 4 the
dependent variables X1 and Y⌊d/2⌋ are at different dimensions. We perform independence tests at dimensions
4, 8, 10, 20, 30, 40, and 50. This distribution is similar to one used by Liu et al. (2020).

• Sinusoid (Sejdinovic et al., 2012). We sample from sinusoidally dependent data with distribution
Pxy ∝ 1 + sin(ℓx) sin(ℓy) on support X × Y = [−π, π]2. Higher frequencies ℓ produce subtler departures from
the uniform distribution, resulting in a harder independence problem; we use ℓ = 4. A visualization of this
density is given in Figure 8.

• RatInABox (George et al., 2024). RatInABox simulates hippocampal cells of a rat in motion. In particular,
we test for dependence between firing rates of grid cells and the rat’s head direction. Grid cells respond near
points in a grid covering the environment surface, and should be subtly connected to head direction because
of the geometry of the “box” (Figure 7). We consider 8 grid cells, and simulate motion for 100 000 seconds,
taking a measurement every 5 seconds as our dataset.

• Wine Quality (Paulo et al., 2009). Details physicochemical properties (e.g., sugar, pH, chlorides) of
different types of red and white wines and their perceived quality as an integer value from 1 to 10. We test
for dependency between residual sugar levels and quality.

Power vs. test size. We first compare how well methods identify dependency with a large-size training
set, by comparing the rate at which the learned tests achieve perfect power (1.0) as the test size m increases.
Training and validation sizes for each dataset are given in Appendix E.1, and results are visualized in Figure 4
(with comprehensive results in Figure 9). Overall, HSIC-D outperforms baselines, and is able to reach perfect
power at smaller test sizes m. We note that HSIC-O performs reasonably well for simpler problems like
Sinusoid, but struggles on harder problems like RatInABox. This suggests that no Gaussian kernel on the
input space is well-suited for the task. On the other hand, kernels applied to optimal representations of the
data (HSIC-D) are the most powerful. Surprisingly, optimizing the power of NDS tests is significantly weaker
than directly maximizing InfoNCE or NWJ; we elaborate on this in the following section.
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(d) Wine

Figure 4: Empirical power vs sample size m for different datasets, when trained with a large training set.
The average test power is computed over 5 training runs, where the empirical power is determined over 100
permutation tests. The shaded region covers one standard error from the mean.

Power vs. dataset size. A drawback to kernel selection via optimization is that we must hold out a split
of the data for training. In contrast, HSIC-M and HSIC-Agg are able to utilize the entirety of the dataset for
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their test. To examine this trade-off, we consider consistent data splitting at datasets of varying sizes. For
the HDGM and Sinusoid problems we use a 7:2:1 train-val-test split, and for RatInABox and Wine we use a
3:2 train-test split. Conversely, HSIC-M and HSIC-Agg use the entire dataset for testing. Results are shown
in Figure 5. Non-splitting methods are able to take advantage of the additional test samples and outperform
some data-splitting methods at smaller dataset sizes; for large dataset sizes the reverse is true. The validation
set in this experiment is used only for early stopping of the training process, and not for hyperparameter
selection.
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Figure 5: Empirical power vs dataset size. HDGM and Sinusoid uses a consistent 7:2:1 train-val-test split
across all dataset sizes, while RatInABox and Wine maintain a 3:2 train-test split. HISC-Agg and HSIC-M
do not split the data. The shaded region covers one standard deviation over 5 training runs.

SNR with vs. without threshold. Our HSIC objective Ĵλ
HSIC disregards the threshold-dependent term,

whereas the NDS objective Ĵλ
NDS does not. The impact this term has during training, however, is still unclear.

We compare the strength of tests maximized with and without this term in Figure 15. It is important to
note that the threshold estimate for HSIC is challenging (see also Footnote 6); we use a method based on
the moment-matched Gamma approximation, but with improved gradient estimation rather than the finite
differences estimate they used (Appendix F.6). This estimate, in either form, introduces substantial additional
code complexity and its own bias and variance that could each hurt overall performance. In general, we
find that including the threshold for HSIC has no strong effect on simpler problems, but degrades the test
power for harder problems. On the other hand, NDS with the threshold yields stronger tests. This is not too
surprising as, unlike for HSIC, the null distribution here follows the CLT and is easily approximated given
enough samples.

7 Discussion

Independence tests with MMD. We find that MMD-D underperforms HSIC-D in almost all settings,
despite the equivalence between MMD and HSIC specified in Proposition 3.1. This equivalence, while true
at the population level, is not the case when considering finite sample estimates. These estimators exhibit
different statistical properties, with some being more conducive to learning than others. In particular, we
notice that MMD estimators based on a single permutation of the samples (as described in Section 3.2)
exhibit larger variance compared to HSIC ones. We prove this for the biased estimators in Appendix F.4,
and observe the same phenomenon when training MMD-D and HSIC-D.

Permutation tests sometimes disagree with asymptotics. We hypothesized that maximizing an
estimate of the asymptotic power would produce stronger tests than maximizing the test statistic directly.
Although this seems to be true for HSIC (Appendix F.3), it is surprisingly not the case for MI-based statistics;
The previous power versus test size experiments show that directly maximizing InfoNCE or NWJ outperforms
maximizing the NDS asymptotic power, at least when using a permutation test. Why is this?

Figure 6 examines several power estimates for an NDS test based on an InfoNCE-learned critic. Notice
that the asymptotic formula (blue) agrees well with the simulated test power (orange), indicating that the
asymptotics describe the test well. However, the permutation power (green) is significantly greater than what
the asymptotics suggest. Recalling that the simulated test power is in fact using a near-exact threshold based
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Figure 6: Power of NDS tests derived from a learned InfoNCE critic f . For each problem, the blue line
(asymp) is power described by the asymptotic formula (3), where we use a very large sample size (n = 20 000)
to estimate the population level statistics T, T0 and their deviations σH1 , σH0 . The orange line (empirical)
computes the power based on the simulated null distribution, i.e. the threshold estimated via the empirical
CDF of T̂0 with test size m. The green line (perm) is the permutation test power.

on the empirical quantile of the test statistic under the null, this should be roughly the most powerful valid
test with a sample-independent threshold. Permutation tests, however, use a sample-dependent threshold,
which in this case apparently can yield a much more powerful test than the best sample-independent threshold.
We explore this discrepancy further in Appendix F.7.

Thus, while maximizing the power of the NDS test maximizes the asymptotic power of a test with a data-
independent threshold, it does not necessarily maximize the power of a permutation test. InfoNCE, and
other variational MI estimators, seem to frequently choose critics whose sample-independent threshold tests
are worse than those obtained by NDS maximization, but whose permutation tests are actually much more
powerful. Exploring this connection more deeply is a very intriguing area for future work.

We did not observe this discrepancy for HSIC; maximizing the sample-independent asymptotics for HSIC
seems to yield permutation tests (roughly matching their asymptotics) which still outperform InfoNCE or
similar NDS permutation tests. Overall, HSIC-D seems to be the most reliable method of those considered
here.

8 Conclusion and Future Work

Independence testing aims to see if two paired random variables are statistically independent. We explored
two families of tests to address this problem. The first are tests based on variational mutual information
estimators, which, to the best of our knowledge, we are the first to construct. The second are tests based on
maximizing the asymptotic power, which was explored for the two-sample problem but not for independence
testing. Our findings show that learning representations of the data via our proposed methods lead to powerful
tests, with HSIC-based tests generally outperforming MI-based ones. Future work may look to extend this
learning scheme to conditional independence testing and apply this to causal discovery. Meanwhile, it will also
be valuable to investigate approaches for mitigating, or even removing, the data-splitting procedure – as done
by Biggs et al. (2023); Kübler et al. (2020) – while maintaining the ability to learn rich data representations.
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A Asymptotics of HSIC Estimators

Proposition A.1 (Song et al., 2012, Theorem 5). Under the alternative hypothesis H1 : Pxy ≠ Px × Py, the
unbiased estimator of HSIC is asymptotically normal: with m samples,

√
m(ĤSICu − HSIC) d→ N (0, σ2

H1
). (14)

The asymptotic variance of
√
m ĤSICu, σ2

H1
, can be consistently estimated from n samples12 as 16

(
R− HSIC2),

where R = 1
n

∑n
i=1

(
(n−4)!
(n−1)!

∑
(j,q,r)∈in

3 / {i} h(i, j, q, r)
)2

. Here iℓ
n \ {i} denotes the set of all ℓ-tuples drawn

without replacement from the set {1, . . . , n} \ {i}, and h(i, j, q, r) = 1
24
∑(i,j,q,r)

(s,t,u,v) kst(lst + luv − 2lsu), where
the sum ranges over all 4! = 24 ways to assign the distinct indices {i, j, q, r} to the four variables (s, t, u, v)
without replacement.

The behavior of the estimator is different under the null hypothesis (X ⊥⊥ Y ); in this regime m ĤSICu (rather
than

√
mĤSICu) converges in distribution to something with complex dependence on Px, Py, k, and l.

Proposition A.2 (Gretton et al., 2007, Theorem 2). Under the null hypothesis H0 : Pxy = Px × Py, the
U-statistic estimator of HSIC is degenerate. In this case mĤSICu converges in distribution as

mĤSICu
d→

∞∑
ℓ=1

λℓ(z2
ℓ − 1),

where zℓ
iid∼ N (0, 1), and λℓ are the solutions to the eigenvalue problem

λℓψℓ(zj) =
∫
hijqrψℓ(zi) dFi,q,r,

where hijqr := h(i, j, q, r) is defined in Proposition A.1, and Fi,q,r denotes the probability measure with respect
to variables zi, zq, and zr.

B Bernstein-based Justification for the SNR

For both the NDS and HSIC tests, our justifications of the SNR criterion for test power, (3) and (6), relied
on the asymptotic central limit theorem. A Berry-Esseen theorem would provide uniform bounds on the o(1)
terms that appear in these derivations, but one might expect for HSIC in particular that these might not be
especially tight in some cases: since the null distribution is asymptotically a mixture of chi-squared variables
(Proposition A.2), when the dependence under the current kernel is weak, the distribution may be further
from normal.

We can also justify the same criterion, although less precisely, with a non-asymptotic argument. While we
present it here for HSIC, it also applies in the same way to NDS. The Bernstein-type bound of Maurer (2017,
Theorem 6) gives that, for kernels bounded as in Assumption (C’),

Pr
(

|ĤSIC − HSIC| > ε
)

≤ 2 exp
(

−nε2

2σ2
H1

+ 2304νkνl

n−4 + 256
3 ε

)
≤ δ.

Solving for ε, we obtain
−mε2

2σ2
H1

+ 2304νkνl

m−4 + 256
3 ε

≤ log δ2

ε2 ≥ 1
m

log 2
δ

(
2σ2

H1
+ 2304νkνl

m− 4 + 256
3 ε

)
ε2 − 256

3m log 2
δ
ε−

(
2
m
σ2
H1

log 2
δ

+ 2304νkνl

m− 4

)
≥ 0.

12Typically m = n, but we might want to use a few (n) samples to roughly estimate the power of an m-sample test with
m≫ n, as done in a different context by Sutherland & Deka (2019); Deka & Sutherland (2023).
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This can be written ε2 − Bε − C2 ≥ 0 for positive B,C; restricting to positive ε, this occurs when
ε ≥ 1

2B + 1
2
√
B2 + 4C2, and hence also occurs when ε is larger than the (slightly larger but simpler) bound

B + C. That is, with probability at least 1 − δ, it holds that

|ĤSIC − HSIC| ≤ 256
3m log 2

δ
+
√

2
m
σ2
H1

log 2
δ

+ 2304νkνl

m− 4

≤ 256
3m log 2

δ
+ σH1

√
2
m

log 2
δ

+
√

2304νkνl

m− 4 .

Recall from the discussion preceding (6) that the rejection threshold rm is 1
m

(
Ψ−1(1 − α) + o(1)

)
(where Ψ

will vary with the kernel choice). Now, a sufficient condition for the test rejecting is that both ĤSIC ≥ HSIC −ε
and HSIC −ε > rm. Plugging in the deviation from above, we obtain power at least 1 − δ as long as

HSIC > rm + 256
3m log 2

δ
+ σH1

√
2
m

log 2
δ

+
√

2304νkνl

m− 4

= σH1

√
2
m

log 2
δ

+ 1
m

(
Ψ−1(1 − α) + O(1)

)
+ 48

√
νkνl

m− 4 ,

absorbing 256
3m log 2

δ = O(1/m). Equivalently, the power condition holds if

HSIC
σH1

− 48√
m− 4

√
νkνl

σH1

>

√
2
m

log 2
δ

+ 1
m

Ψ−1(1 − α)
σH1

+ O
(

1
mσH1

)
.

Now, we know that scaling k or l should not change the difficulty of the problem: indeed, it will scale HSIC,
σH1 , Ψ−1(1 − α), and √

νkνl all equally. Thus, the only term in this inequality which is potentially sensitive
to scaling is the final O term. From this point, then, while other changes in the kernel could potentially
affect Ψ−1(1 − α)/σH1 in meaningful ways, for reasonably large m and σH1 not too drastically small, the
right-hand side is only weakly dependent on the kernel choice. It is thus reasonable to think that we can
maximize the left-hand side of the inequality, and ignore the right-hand side, to roughly maximize power. It
seems highly unlikely, however, for the coefficient 48/

√
m− 4 to be exactly the right trade-off between HSIC

and the kernel bound; this comes out of the details of the (conservative and somewhat loose) concentration
inequalities to reach this point. To maximize our chance at having high power, then, it is very reasonable to
maximize the SNR.

C Uniform Convergence: NDS

C.1 Preliminaries

We start by defining the notation used in the following proofs. Let fθ be the critic function with parameters
θ, and {Xi, Yi}i=1..n be samples drawn from the joint distribution, with X = {Xi}i=1..n and Y = {Yi}i=1..n.

We define the population level statistics based on critic fθ as

T1,θ := E
PXY

[fθ(X,Y )] and T0,θ := E
PX ×PY

[fθ(X,Y )],

with their corresponding finite sample estimates

T̂1,θ := 1
n

n∑
i=1

fθ(Xi, Yi) and T̂0,θ = 1
n2

n∑
i=1

n∑
j=1

fθ(Xi, Yj).

We note that T̂1 is just the NDS (2), and that T̂0 is the permutation invariant term in the numerator of
Equation (12). For brevity, we often omit the subscripts 0, 1 and/or the parameters θ when it is uninformative
or clear from the context.
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We respectively denote the alternative and null variances by

σ2
θ := Var

PXY

[fθ(X,Y )] and ξ2
θ := Var

PX ×PY

[fθ(X,Y )],

with corresponding finite sample estimates

σ̂2
θ := 1

n

n∑
i=1

fθ(Xi, Yi) − 1
n2

n∑
j=1

fθ(Xj , Yj)

2

.

and

ξ̂2
θ := 1

n2

n∑
i=1

n∑
j=1

fθ(Xi, Yj) − 1
n2

n∑
i′=1

n∑
j′=1

fθ(Xi′ , Yj′)

2

We choose this notation, rather than τ2
H1

and τ2
H0

used in the main body, for distinguishability. As before, we
often omit the subscripts when it is clear from the context.

C.2 Assumptions

Our main results assume the following

(A) The set of critic parameters Θ lies in a Banach space of dimension D, where each parameter in the
space is bounded by R:

Θ ⊆ {θ : ∥θ∥ ≤ R}.

(B) The critic f is uniformly Lipschitz on X × Y with respect to the parameter space Θ:

|fθ(x, y) − fθ′(x, y)| ≤ L∥θ − θ′∥ ∀x ∈ X , y ∈ Y, θ ∈ Θ.

(C) The critic is uniformly bounded:

sup
θ∈Θ

sup
x∈X
y∈Y

|fθ(x, y)| ≤ B;

that such a B exists is implied by the previous two assumptions.

C.3 Lemmas

Lemma C.1 (Concentration of T̂1). For any critic f satisfying Assumption (C), with probability at least
1 − δ we have

|T̂1 − T1| ≤ B

√
2
n

log 2
δ
.

Proof. The result follows from McDiarmid’s inequality. First, we show that T̂1 satisfies bounded differences.
Let T̂ (k)

1 denote the T̂1 statistic but with sample Xk, Yk replaced by x′, y′. For any k ∈ [n], we have

sup
x′,y′

X,Y

|T̂ (k)
1 − T̂1| = sup

x′,y′

Xk,Yk

∣∣∣∣ 1n (f(x′, y′) − f(Xk, Yk))
∣∣∣∣ ≤ 2B

n
,

so that with probability 1 − δ,

|T̂1 − E T̂1| ≤

√√√√1
2

n∑
i=1

(
2B
n

)2
· log 2

δ
= B

√
2
n

log 2
δ
.
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Lemma C.2 (Concentration of T̂0). For any critic f satisfying Assumption (C), with probability at least
1 − δ we have

|T̂0 − E T̂0| < 2B
√

2
n

log 2
δ
.

Proof. The result follows from McDiarmid’s inequality. First, we show that T̂0 satisfies bounded differences.
Let T̂ (k)

0 denote the T̂0 statistic but with sample Xk, Yk replaced by x′, y′. For any k ∈ [n], we have

sup
x′,y′

X,Y

|T̂ (k)
0 − T̂0| = sup

x′,y′

X,Y

1
n2

∣∣∣∣∣∑
i=k
j ̸=k

(
f(x′, Yj) − f(Xk, Yj)

)

+
∑
i ̸=k
j=k

(
f(Xi, y

′) − f(Xi, Yk)
)

+
∑

i=j=k

(
f(x′, y′) − f(Xk, Yk)

)∣∣∣∣∣
≤ 1
n2

(
2B(n− 1) + 2B(n− 1) + 2B

)
= 2B(2n− 1)

n2 ,

so that with probability 1 − δ,

|T̂0 − E T̂0| ≤ 2B

√(
2
n

− 2
n2 + 1

2n3

)
log 2

δ
< 2B

√
2
n

log 2
δ

for all integers n > 0.

Lemma C.3 (Bias of T̂0). For any critic f satisfying Assumption (C), the bias of T̂0 is bounded by

|E T̂0 − T0| ≤ 2B
n
.

Proof. Notice that

E T̂0 = E

 1
n2

∑
i ̸=j

f(Xi, Yj) + 1
n2

∑
i=j

f(Xi, Yi)

 = n− 1
n

T0 + 1
n
T1,

so that
|E T̂0 − T0| = 1

n
|T1 − T0| ≤ 2B

n
.

Lemma C.4 (Concentration of σ̂2). For any critic f satisfying Assumption (C), with probability at least
1 − δ we have

|σ̂2 − E σ̂2| ≤ 5B2
√

1
2n log 2

δ
.

Proof. The result follows from McDiarmid’s inequality. First, we show that σ̂2 satisfies bounded differences.
Let µ̂2 := 1

n

∑n
i=1 f(Xi, Yi)2 be the 2nd moment estimate so that σ̂2 = µ̂2 − T̂ 2

1 . Let σ̂2
(k), µ̂2,(k), T̂1,(k) denote

the corresponding statistics σ̂2, µ̂2, T̂1 but with sample Xk, Yk replaced by x′, y′. For any k ∈ [n], we have

sup
x′,y′

X,Y

|σ̂2
(k) − σ̂2| ≤ sup

x′,y′

X,Y

|µ̂2,(k) − µ̂2| + sup
x′,y′

X,Y

|T̂ 2
1,(k) − T̂ 2

1 |

= sup
x′,y′

Xk,Yk

1
n

|f(x′, y′)2 − f(Xk, Yk)2| + sup
x′,y′

X,Y

|T̂1,(k) − T̂1||T̂1,(k) + T̂1|

≤ B2

n
+ 4B2

n
= 5B2

n
,

22



Under review as submission to TMLR

where we use the finite differences computed in the proof of Lemma C.1 to bound |T̂1,(k) − T̂1|. Thus, with
probability at least 1 − δ,

|σ̂2 − E σ̂2| ≤ 5B2
√

1
2n log 2

δ
.

Lemma C.5 (Bias of σ̂2). For any critic f satisfying Assumption (C), the bias of σ̂2 is bounded by

|E σ̂2 − σ2| ≤ B2

n

Proof. Let µ̂2 = 1
n

∑n
i=1 f(Xi, Yi)2 and µ2 = E[µ̂2] = EPXY

f(X,Y )2. It follows that

E σ̂2 = E[µ̂2 − T̂ 2
1 ] = µ2 − E

( 1
n

n∑
i=1

f(Xi, Yi)
)2
 = µ2 − 1

n2 E

∑
i

∑
j

f(Xi, Yi)f(Xj , Yj)


= µ2 − 1

n2 E

∑
i=j

f(Xi, Yi)2 +
∑
i ̸=j

f(Xi, Yi)f(Xj , Yj)


= µ2 − 1

n2

(
nµ2 + n(n− 1)T 2

1
)

= n− 1
n

σ2,

which yields

|E σ̂2 − σ2| = 1
n
σ2 ≤ B2

n
.

Lemma C.6 (Concentration of ξ̂2). For any critic f satisfying Assumption (C), with probability at least
1 − δ we have ∣∣∣ξ̂2 − E ξ̂2

∣∣∣ < 10B2
√

1
2n log 2

δ
.

Proof. The result follows from McDiarmid’s inequality. We first show that ξ̂2 satisfies bounded differences.
Let ν̂2 := 1

n2

∑
i,j∈[n] f(Xi, Yj)2 be the 2nd moment estimate so that ξ̂2 = ν̂2 − T̂ 2

0 . Let ξ̂2
(ℓ), ν̂2,(ℓ), T̂0,(ℓ)

denote the corresponding statistics ξ̂2, ν̂2, T̂0 but with sample Xℓ, Yℓ replaced by x′, y′. For any ℓ ∈ [n] we
have

sup
x′,y′

X,Y

|ξ̂2
(ℓ) − ξ̂| ≤ sup

x′,y′

X,Y

|ν̂2,(ℓ) − ν̂2| + sup
x′,y′

X,Y

|T̂ 2
0,(ℓ) − T̂ 2

0 |

= sup
x′,y′

X,Y

1
n2 |

∑
i=ℓ
or

j=ℓ

f(Xi, Yj)2| + sup
x′,y′

X,Y

|T̂0,(ℓ) − T̂0||T̂0,(ℓ) + T̂0|

≤ B2(2n− 1)
n2 + 2B(2n− 1)

n2 2B ≤ 10B2

n
− 5B2

n2 .

It follows that with probability at least 1 − δ,∣∣∣ξ̂2 − E ξ̂2
∣∣∣ ≤

(
10B2 − 5B2

n

)√
1

2n log 2
δ
.

Lemma C.7 (Bias of ξ̂2). For any critic f satisfying Assumption (C), the bias of ξ̂2 is bounded by∣∣∣E[ξ̂2] − ξ2
∣∣∣ < 7B2

n

23



Under review as submission to TMLR

Proof. Let ν2 = EPX ×PY
[f(X,Y )2] and µ2 = EPXY

[f(X,Y )2] be the second moment under the null and
alternative distributions, and let ν̂2 = 1

n2

∑
i,j f(Xi, Yj)2 and µ̂2 = 1

n

∑
i f(Xi, Yi)2 be their estimates. First,

we can write the bias as∣∣∣E[ξ̂2] − ξ2
∣∣∣ =

∣∣∣E[ν̂2 − T̂ 2
0 ] − (ν2 − T 2

0 )
∣∣∣ ≤ |E ν̂2 − ν2| +

∣∣∣E[T̂ 2
0 ] − T 2

0

∣∣∣ .
Now since

E ν̂2 = 1
n2 E

∑
i=j

f(Xi, Yi)2 +
∑
i ̸=j

f(Xi, Yj)2

 = 1
n2 (nµ2 + n(n− 1)ν2) = µ2

n
+ n− 1

n
ν2,

we have that |E ν̂2 − ν2| = 1
n |µ2 − ν2| ≤ B2/n. For the remaining term, note that

E[T̂ 2
0 ] = E


 1
n2

∑
i,j

f(Xi, Yj)

2
 = 1

n4 E

 ∑
i,j,q,r

f(Xi, Yj)f(Xq, Yr)


= 1
n4 E

 ∑
(i,j,q,r)∈in

4

f(Xi, Yj)f(Xq, Yr) +
∑

(i,j,q,r)/∈in
4

f(Xi, Yj)f(Xq, Yr)


≤ 1
n4

[
(n)4T

2
0 +

(
n4 − (n)4

)
B2] =

(
1 − 6

n
+ 11
n2 − 6

n3

)
T 2

0 +
(

6
n

− 11
n2 + 6

n3

)
B2,

so that |E[T̂ 2
0 ] −T 2

0 | = |( 6
n − 11

n2 + 6
n3 )(B2 −T 2

0 )| ≤ ( 6
n − 11

n2 + 6
n3 )B2. Therefore, putting it all together we get∣∣∣E[ξ̂2] − ξ2

∣∣∣ ≤ 7B2

n
− 11B2

n2 + 6B2

n3 <
7B2

n
.

C.4 Propositions

Proposition C.8 (Uniform convergence of T̂1). For any critic family {fθ : θ ∈ Θ} and parameter space Θ
satisfying Assumptions (A) to (C), we have with probability at least 1 − δ that

sup
θ∈Θ

|T̂1,θ − T1,θ| ≤ 2L√
n

+ B√
n

√
2 log 2

δ
+ 2D log(4R

√
n) = Õ(n−1/2).

Proof. We employ a covering-number argument on the parameter space. Let U = {θi}i=1..N ⊆ Θ be a ρ-cover
of Θ; i.e., any point in Θ is in the closed ρ-neighborhood of some point in U . Assumption (A) ensures the
minimal cover exists with at most N = (4R/ρ)D points (Cucker & Smale, 2002, Proposition 5). Now, for any
θ ∈ Θ, let θ′ be the center in U closest to θ, and then decompose the bound into

sup
θ∈Θ

|T̂θ − Tθ| ≤ sup
θ∈Θ

|T̂θ − T̂θ′ |︸ ︷︷ ︸
(a)

+ max
θ′∈U

|T̂θ′ − Tθ′ |︸ ︷︷ ︸
(b)

+ sup
θ∈Θ

|Tθ′ − Tθ|︸ ︷︷ ︸
(c)

.

We first handle terms (a) and (c). From Assumption (B), we have

sup
θ∈Θ

|Tθ′ − Tθ| ≤ sup
θ∈Θ

E |fθ′(X,Y ) − fθ(X,Y )| ≤ sup
θ∈Θ

L∥θ′ − θ∥ ≤ Lρ.

This same bound applies for (a) by replacing E with its empirical expectation Ê.

Next, we find a high probability bound on (b). Recalling the result of Lemma C.1, and then taking the union
bound over all N points in U , we get that with probability at least 1 − δ

max
θ∈U

|T̂θ − Tθ| ≤ B

√
2
n

(
log 2

δ
+D log 4R

ρ

)
.
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Finally, putting it all together, we get with probability at least 1 − δ that

sup
θ∈Θ

|T̂θ − Tθ| ≤ 2Lρ+B

√
2
n

(
log 2

δ
+D log 4R

ρ

)
,

which, for ρ = 1/
√
n, gives the desired result.

Proposition C.9 (Uniform convergence of T̂0). For any critic family {fθ : θ ∈ Θ} and parameter space Θ
satisfying Assumptions (A) to (C), we have with probability at least 1 − δ that

sup
θ∈Θ

|T̂0,θ − T0,θ| ≤ 2L√
n

+ 2B
n

+ 2B√
n

√
2 log 2

δ
+ 2D log(4R

√
n) = Õ(n−1/2).

Proof. We employ a covering-number argument on the parameter space. Let U = {θi}i=1..N ⊆ Θ be a ρ-cover
of Θ; i.e., any point in Θ is in the closed ρ-neighborhood of some point in U . Assumption (A) ensures the
minimal cover exists with at most N = (4R/ρ)D points (Cucker & Smale, 2002, Proposition 5). Now, for any
θ ∈ Θ, let θ′ be the center in U closest to θ, and then decompose the bound into

sup
θ∈Θ

|T̂θ − Tθ| ≤ sup
θ∈Θ

|T̂θ − T̂θ′ |︸ ︷︷ ︸
(a)

+ max
θ′∈U

|T̂θ′ − E T̂θ′ |︸ ︷︷ ︸
(b)

+ max
θ′∈U

|E T̂θ′ − Tθ′ |︸ ︷︷ ︸
(c)

+ sup
θ∈Θ

|Tθ′ − Tθ|︸ ︷︷ ︸
(d)

.

We first handle terms (a) and (d). From Assumption (B), we have

sup
θ∈Θ

|Tθ′ − Tθ| ≤ sup
θ∈Θ

E |fθ′(X, Ỹ ) − fθ(X, Ỹ )| ≤ sup
θ∈Θ

L∥θ′ − θ∥ ≤ Lρ,

which is the same bound when considering T̂0,θ instead of T0,θ.

Next, we find a high probability bound on (b). Recalling the result of Lemma C.2, and then taking the union
bound over all N points in U , we get that with probability at least 1 − δ

max
θ∈U

|T̂θ − E T̂θ| ≤ 2B

√
2
n

(
log 2

δ
+D log 4R

ρ

)
.

Finally, combining everything and using Lemma C.3 to bound (c), we get that with probability at least 1 − δ

sup
θ∈Θ

|T̂θ − Tθ| ≤ 2Lρ+ 2B
n

+ 2B

√
2
n

(
log 2

δ
+D log 4R

ρ

)
,

which, for ρ = 1/
√
n, gives the desired result.

Proposition C.10 (Uniform convergence of σ̂2). For any critic family {fθ : θ ∈ Θ} and parameter space Θ
satisfying Assumptions (A) to (C), we have with probability at least 1 − δ that

sup
θ∈Θ

|σ̂2
θ − σ2

θ | ≤ 8BL√
n

+ B2

n
+ 5B2

2
√
n

√
2 log 2

δ
+ 2D log(4R

√
n) = Õ(n−1/2).

Proof. We employ a covering-number argument on the parameter space. Let U = {θi}i=1..N ⊆ Θ be a ρ-cover
of Θ; i.e., any point in Θ is in the closed ρ-neighborhood of some point in U . Assumption (A) ensures the
minimal cover exists with at most N = (4R/ρ)D points (Cucker & Smale, 2002, Proposition 5). Now, for any
θ ∈ Θ, let θ′ be the center in U closest to θ, and then decompose the bound into

sup
θ∈Θ

|σ̂2
θ − σ2

θ | ≤ sup
θ∈Θ

|σ̂2
θ − σ̂2

θ′ |︸ ︷︷ ︸
(a)

+ max
θ′∈U

|σ̂2
θ′ − E σ̂2

θ′ |︸ ︷︷ ︸
(b)

+ max
θ′∈U

|E σ̂2
θ′ − σ2

θ′ |︸ ︷︷ ︸
(c)

+ sup
θ∈Θ

|σ2
θ′ − σ2

θ |︸ ︷︷ ︸
(d)

.
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We first handle terms (a) and (d). From Assumption (B), we have

sup
θ∈Θ

|σ2
θ′ − σ2

θ | ≤ sup
θ∈Θ

∣∣∣E[fθ′(X,Y )2 − fθ(X,Y )2]
∣∣∣+ sup

θ∈Θ

∣∣∣(E fθ′(X,Y ))2 − (E fθ(X,Y ))2
∣∣∣

≤ sup
θ∈Θ

E
∣∣∣fθ′(X,Y ) − fθ(X,Y )

∣∣∣∣∣∣fθ′(X,Y ) + fθ(X,Y )
∣∣∣

+ sup
θ∈Θ

E
∣∣∣fθ′(X,Y ) − fθ(X,Y )

∣∣∣E ∣∣∣fθ′(X̃, Ỹ ) + fθ(X̃, Ỹ )
∣∣∣

≤ sup
θ∈Θ

L∥θ′ − θ∥ · 2B + sup
θ∈Θ

L∥θ′ − θ∥ · 2B = 4BLρ,

which yields the same bound for (a) when replacing E with its empirical expectation Ê.

Next, we find a high probability bound on (b). Recalling the result of Lemma C.4, and then taking the union
bound over all N points in U , we get that with probability at least 1 − δ

max
θ∈U

|σ̂2
θ − E σ̂2

θ | ≤ 5B2

√
1

2n

(
log 2

δ
+D log 4R

ρ

)
.

Finally, combining (a), (b), (d), and using Lemma C.5 to bound (c), we get that with probability at least
1 − δ

sup
θ∈Θ

|σ̂2
θ − σ2

θ | ≤ 8BLρ+ B2

n
+ 5B2

√
1

2n

(
log 2

δ
+D log 4R

ρ

)
,

which, for ρ = 1/
√
n, yields the desired result.

Proposition C.11 (Uniform convergence of ξ̂2). For any critic family {fθ : θ ∈ Θ} and parameter space Θ
satisfying Assumptions (A) to (C), we have with probability at least 1 − δ that

sup
θ∈Θ

|ξ̂2
θ − ξ2

θ | < 8BL√
n

+ 7B2

n
+ 10B2

2
√
n

√
2 log 2

δ
+ 2D log(4R

√
n) = Õ(n−1/2).

Proof. We employ a covering-number argument on the parameter space. Let U = {θi}i=1..N ⊆ Θ be a ρ-cover
of Θ; i.e., any point in Θ is in the closed ρ-neighborhood of some point in U . Assumption (A) ensures the
minimal cover exists with at most N = (4R/ρ)D points (Cucker & Smale, 2002, Proposition 5). Now, for any
θ ∈ Θ, let θ′ be the center in U closest to θ, and then decompose the bound into

sup
θ∈Θ

|ξ̂2
θ − ξ2

θ | ≤ sup
θ∈Θ

|ξ̂2
θ − ξ̂2

θ′ |︸ ︷︷ ︸
(a)

+ max
θ′∈U

|ξ̂2
θ′ − E ξ̂2

θ′ |︸ ︷︷ ︸
(b)

+ max
θ′∈U

|E ξ̂2
θ′ − ξ2

θ′ |︸ ︷︷ ︸
(c)

+ sup
θ∈Θ

|ξ2
θ′ − ξ2

θ |︸ ︷︷ ︸
(d)

.

First, we bound terms (a) and (d) using Assumption (B) and the covering-number argument. Let Tθ =
E[fθ(X,Y )] and νθ = E[fθ(X,Y )2] be the first and second moments under the null distribution, so that
ξ2

θ = νθ − T 2
θ . It follows that

sup
θ∈Θ

|ξ2
θ′ − ξ2

θ | ≤ sup
θ∈Θ

|νθ′ − νθ| + sup
θ∈Θ

|T 2
θ′ − T 2

θ |

≤ sup
θ∈Θ

E |fθ′(X,Y ) − fθ(X,Y )||fθ′(X,Y ) + fθ(X,Y )| + sup
θ∈Θ

|Tθ′ − Tθ||Tθ′ + Tθ|

= 4BL sup
θ∈Θ

∥θ′ − θ∥ = 4BLρ.

We obtain the same bound for (a) by replacing E with its V-statistic estimator.

Next, we bound (b) using Lemma C.6 and a uniform bound over all N points in the ρ-cover. We get that
with probability at least 1 − δ

max
θ∈U

|ξ̂2
θ − E ξ̂2

θ | < 10B2

√
1

2n

(
log 2

δ
+D log 4R

ρ

)
.
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Finally, combining (a), (b), (d), and using Lemma C.7 to bound (c), we get that with probability at least
1 − δ

sup
θ∈Θ

|ξ̂2
θ − ξ2

θ | < 8BLρ+ 7B2

n
+ 10B2

√
1

2n

(
log 2

δ
+D log 4R

ρ

)
,

which, for ρ = 1/
√
n, yields the desired result.

C.5 Main Results

Theorem C.12 (Uniform convergence of Ĵλ
NDS). Let {fθ : θ ∈ Θ} be a critic family with parameter space Θ

satisfying Assumptions (A) to (C). Suppose σ2
θ ≥ s2 and ξ2

θ ≥ s2 for some positive s, and λ = n−1/3. Then,
with probability at least 1 − δ,

sup
θ∈Θ

|Ĵλ
NDS − JNDS| < 2B

s3n1/3 + 16B2L

s2n1/3 + 5B3

s2n1/3

√
2 log 12

δ
+ 2D log(4R

√
n) + o(n−1/3),

and thus

sup
θ∈Θ

|Ĵλ
NDS − JNDS| = ÕP

(
1

s2n1/3

[
B

s
+B2L+B3

√
D

])
.

Proof. Let zα denote the standard normal α-quantile. We start by making the following decomposition:

sup
θ∈Θ

|Ĵλ
NDS − JNDS| = sup

θ∈Θ

∣∣∣∣∣ T̂1,θ − T̂0,θ

σ̂θ,λ
− T1,θ − T0,θ

σθ
+ ξθ√

nσθ
z1−α − ξ̂θ,λ√

n σ̂θ,λ
z1−α

∣∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣∣ T̂1,θ

σ̂θ,λ
− T1,θ

σθ

∣∣∣∣∣︸ ︷︷ ︸
(a)

+ sup
θ∈Θ

∣∣∣∣∣ T̂0,θ

σ̂θ
− T0,θ

σθ

∣∣∣∣∣︸ ︷︷ ︸
(b)

+z1−α√
n

sup
θ∈Θ

∣∣∣∣∣ ξ̂θ,λ

σ̂θ,λ
− ξθ

σθ

∣∣∣∣∣︸ ︷︷ ︸
(c)

.

Define σ2
θ,λ = σ2

θ + λ and notice that σ̂2
θ ≥ 0 since it is the biased variance estimator; this implies that

σ2
θ,λ = σ2

θ + λ ≥ s2 + λ and σ̂2
θ,λ = σ̂2

θ + λ ≥ λ.

Now, we rewrite (a) (with subscripts θ omitted) as

sup
θ∈Θ

∣∣∣∣∣ T̂1

σ̂λ
− T1

σ

∣∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣∣ T̂1

σ̂λ
− T̂1

σλ

∣∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∣ T̂1

σλ
− T̂1

σ

∣∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∣ T̂1

σ
− T1

σ

∣∣∣∣∣
= sup

θ∈Θ
|T̂1|

∣∣∣∣ σ̂2
λ − σ2

λ

σ̂λσλ(σ̂λ + σλ)

∣∣∣∣+ sup
θ∈Θ

|T̂1|
∣∣∣∣ σ2

λ − σ2

σλσ(σλ + σ)

∣∣∣∣+ sup
θ∈Θ

1
σ

|T̂1 − T1|

≤ B

λ
√
s2 + λ+

√
λ(s2 + λ)

sup
θ∈Θ

|σ̂2 − σ2| + Bλ

s(s2 + λ) + s2
√
s2 + λ

+ 1
s

sup
θ∈Θ

|T̂1 − T1|

<
B√
λs2

sup
θ∈Θ

|σ̂2 − σ2| + Bλ

s3 + 1
s

sup
θ∈Θ

|T̂1 − T1|,

where the first term in the last line uses the slowest growing upper bound as λ → 0.
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Employ Propositions C.8 and C.10 as uniform bounds on |T̂1 − T1| and |σ̂2 − σ2| respectively, then take the
union bound to give us, with probability at least 1 − δ,

sup
θ∈Θ

∣∣∣∣∣ T̂1

σ̂λ
− T1

σ

∣∣∣∣∣ < 8B2L

s2
√
nλ

+ B3

s2n
√
λ

+ 5B3

2s2
√
nλ

√
2 log 4

δ
+ 2D log(4R

√
n)

+ Bλ

s3

+ 2L
s
√
n

+ B

s
√
n

√
2 log 4

δ
+ 2D log(4R

√
n)

= Bλ

s3 + 8B2L

s2
√
nλ

+ 2L
s
√
n

+ B3

s2n
√
λ

+
(

5B3

2s2
√
nλ

+ B

s
√
n

)√
2 log 4

δ
+ 2D log(4R

√
n).

The best-case (fastest to decay) asymptotic bound follows when λ = n−1/3, which yields with probability at
least 1 − δ,

sup
θ∈Θ

∣∣∣∣∣ T̂1

σ̂λ
− T1

σ

∣∣∣∣∣ < B

s3n1/3 + 8B2L

s2n1/3 + 5B3

2s2n1/3

√
2 log 4

δ
+ 2D log(4R

√
n) + o(n−1/3).

Term (b) can be handled in a similar manner, except we use Proposition C.9 as a uniform bound on |T̂0 − T0|.
It turns out this gives us the same asymptotic bound as (a).

For term (c), we first define ξθ,λ = ξ2
θ + λ. Since ξ̂2

θ is the biased estimator we have ξ̂2
θ ≥ 0. Also,

ξ2
θ,λ = ξ2

θ + λ ≥ s2 + λ and ξ̂θ,λ = ξ̂2
θ + λ ≥ λ so that

sup
θ∈Θ

∣∣∣∣∣ ξ̂λ

σ̂λ
− ξ

σ

∣∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣∣ ξ̂λ

σ̂λ
− ξ̂

σ̂λ

∣∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∣ ξ̂σ̂λ
− ξ̂

σλ

∣∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∣ ξ̂σλ
− ξ̂

σ

∣∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∣ ξ̂σ − ξ

σ

∣∣∣∣∣
= sup

θ∈Θ

∣∣∣∣∣ ξ̂2
λ − ξ̂2

σ̂λ(ξ̂λ + ξ̂)

∣∣∣∣∣+ sup
θ∈Θ

|ξ̂|
∣∣∣∣ σ̂2

λ − σ2
λ

σ̂λσλ(σ̂λ + σλ)

∣∣∣∣+ sup
θ∈Θ

|ξ̂|
∣∣∣∣ σ2

λ − σ2

σλσ(σλ + σ)

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∣ ξ̂2 − ξ2

σ(ξ̂ + ξ)

∣∣∣∣∣
≤ 1 + B

λ
√
s2 + λ+

√
λ(s2 + λ)

sup
θ∈Θ

∣∣σ̂2 − σ2∣∣+ Bλ

s(s2 + λ) + 1
s2 sup

θ∈Θ

∣∣∣ξ̂2 − ξ2
∣∣∣

< 1 + B√
λs2

sup
θ∈Θ

∣∣σ̂2 − σ2∣∣+ Bλ

s3 + 1
s2 sup

θ∈Θ

∣∣∣ξ̂2 − ξ2
∣∣∣ .

Propositions C.10 and C.11 are uniform bounds on |σ̂2 − σ2| and |ξ̂2 − ξ2|. Then, taking the union bound
gives us, with probability at least 1 − δ,

sup
θ∈Θ

∣∣∣∣∣ ξ̂λ

σ̂λ
− ξ

σ

∣∣∣∣∣ < 1 + Bλ

s3 +
[

B

s2
√
λ

+ 1
s2

]
8BL√
n

+
[

B

s2
√
λ

+ 7
s2

]
B2

n

+
[

B

s2
√
λ

+ 2
s2

]
5B2

2
√
n

√
2 log 4

δ
+ 2D log(4R

√
n).

When λ = n−1/3, we have 1/
√
nλ = n−1/3 and 1/(n

√
λ) = n−5/6 so that the overall order of this bound is

O(1). Then, multiplying by the factor z1−α/
√
n in front of (c) gives us order O(n−1/2).

Finally, taking the union bound of (a), (b), and (c) gives us, with probability at least 1 − δ,

sup
θ∈Θ

∣∣∣Ĵλ
NDS − JNDS

∣∣∣ < 2B
s3n1/3 + 16B2L

s2n1/3 + 5B3

s2n1/3

√
2 log 12

δ
+ 2D log(4R

√
n) + o(n−1/3).
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Theorem C.13 (Consistency [van der Vaart, 1998, Theorem 5.7]). Let Ĵn be the finite sample estimate of J
with n samples, as a function of the parameters θ, and suppose that Jn satisfies uniform convergence

sup
θ∈Θ

|Ĵn(θ) − J(θ)| P−→ 0.

If θ∗ is a well-separated maximum of J , then any sequence of estimators θ̂n approximately maximizing Ĵn, i.e.
Ĵn(θ∗) − Ĵn(θ̂n) ≤ oP (1),

is a consistent estimator, i.e. θ̂n
p−→ θ∗.

D Uniform Convergence: HSIC

D.1 Preliminaries

We start by defining the notation used in the proofs. Let kernels kω and lγ be parameterized by some ω ∈ Ω
and γ ∈ Γ, with Θ ⊆ Ω × Γ as the joint parameter space. The samples (Xi, Yi) ∼ Pxy are drawn i.i.d. from
the joint distribution. We denote the n× n gram matrices of kω and lγ by K(ω) and L(γ) respectively. We
will often omit the kernel parameters ω and γ when it is clear from the context.

Let η be the HSIC test statistic and η̂ to be its U-statistic estimator given by

η̂ = 1
(n)4

∑
(i,j,q,r)∈in

4

Hijqr,

where (n)k = n!/(n−k)! is the Pochhammer symbol and in4 is all possible 4-tuples drawn without replacement
from 1 to n. H is the kernel gram matrix of the U-statistic defined by

Hijqr = 1
4!

(i,j,q,r)∑
(a,b,c,d)

Kab (Lab + Lcd − 2Lac) ,

where sum represents all 4! combinations of tuples (a, b, c, d) that can be selected without replacement from
(i, j, q, r).

D.2 Assumptions

Our main uniform convergence results require the following assumptions.

(A’) The set of kernel parameters Ω lies in a Banach space of dimension DΩ, and the set of kernel
parameters Γ lies in a Banach space of dimension DΓ. Furthermore, each parameter space is bounded
by RΩ and RΓ respectively, i.e.,

Ω ⊆ {ω | ∥ω∥ ≤ RΩ},
Γ ⊆ {γ | ∥γ∥ ≤ RΓ}.

(B’) Both kernels k and l are Lipschitz with respect to the parameter space: for all x, x′ ∈ X and ω, ω′ ∈ Ω
|kω(x, x′) − kω′(x, x′)| ≤ Lk∥ω − ω′∥,

and for all y, y′ ∈ Y and γ, γ′ ∈ Γ
|lγ(y, y′) − lγ′(y, y′)| ≤ Ll∥γ − γ′∥.

(C’) The kernels kω and lv are uniformly bounded:
sup
ω∈Ω

sup
x∈X

kω(x, x) ≤ νk,

sup
γ∈Γ

sup
x∈Y

lγ(y, y) ≤ νl.

For the kernels we use in practice, νk = νl = 1.
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D.3 Lemmas

Lemma D.1 (Concentration of σ̂2
ω,γ). For any kernels k and l satisfying Assumption (A’), with probability

at least 1 − δ we have

|σ̂2 − E σ̂2| ≤ 6144ν2
kν

2
l

√
2
n

log 2
δ
.

Proof. We apply McDiarmid’s inequality to σ̂2. First, we show that the variance estimator satisfies bounded
differences. For convenience, we denote (i, j, q, r) ∈ in

4 simply as (i, j, q, r), and (i, j, q)\k to be the set of
3-tuples drawn without replacement from in

3 that exclude the number k. Recall that

σ̂2 = 16

 1
(n)4(n− 1)3

∑
(i,j,q,r)
(b,c,d)\i

HijqrHibcd − η̂2

 .

Let F denote the kernel tensor H but with sample (Xℓ, Yℓ) replaced by (X ′
ℓ, Y

′
ℓ ) so that F agrees with H

except at indices ℓ, and let η̂′ and σ̂′2 denote the HSIC and its variance estimators according to this updated
sample set. The deviation is then

|σ̂2 − σ̂′2| ≤ 16
(n)4(n− 1)3

∑
(i,j,q,r)
(b,c,d)\i

|HijqrHibcd − FijqrFibcd| + 16|η̂2 − η̂′2|.

We bound the first term by noticing that ∆ := HijqrHibcd − FijqrFibcd is zero when none of the indices
{i, j, q, r, b, c, d} is ℓ. Let S := {(i, j, q, r, b, c, d) : (i, j, q, r) ∈ in

4 , (b, c, d) ∈ in
3 \{i}, ℓ ∈ {i, j, q, r, b, c, d}} be the

set of indices where ∆ may be non-zero. By Assumption (A’) we know that |∆| ≤ 32ν2
kν

2
l . Thus, we can

bound the first term by

16
(n)4(n− 1)3

∑
S

|∆| = 512ν2
kν

2
l

(n)4(n− 1)3
|S|

= 512ν2
kν

2
l

(n)4(n− 1)3

4(n− 1)2
3︸ ︷︷ ︸

ℓ∈{i,j,q,r}

+ 3(n− 1)(n− 2)2(n− 1)3︸ ︷︷ ︸
ℓ∈{b,c,d}

− 9(n− 1)3(n− 2)2︸ ︷︷ ︸
ℓ∈{j,q,r} and ℓ∈{b,c,d}


= 512ν2

kν
2
l

(
16
n

− 9
n− 1

)
≤ 8192ν2

kν
2
l

n
(∀n > 1).

We can bound the second term using |η̂| ≤ 4νkνl and the bounded difference result (15) from Proposition D.3:

16|η̂2 − η̂′2| = 16|η̂ + η̂′||η̂ − η̂′| ≤ 16 · 8νkνl · 32νkνl

n
= 4096ν2

kν
2
l

n
.

Combining these two terms, the maximal bounded difference for σ̂2 is

|σ̂2 − σ̂′2| ≤ 12288ν2
kν

2
l

n
.

Finally, applying McDiarmid’s inequality gives us, with probability at least 1 − δ,

|σ̂2 − E σ̂2| ≤ 6144ν2
kν

2
l

√
2
n

log 2
δ
.

Lemma D.2 (Bias of σ̂2
ω,γ). For any kernels k and l satisfying Assumption (A’), the bias is bounded by

|E σ̂2 − σ2| ≤ 4608ν2
kν

2
l

n
.
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Proof. The expectation of the variance estimator is

E σ̂2 = 16

 1
(n)4(n− 1)3

∑
(i,j,q,r)
(b,c,d)\i

E[HijqrHibcd] − 1
(n)2

4

∑
(i,j,q,r)
(a,b,c,d)

E[HijqrHabcd]

 .

First, we can break down the left-hand sum into only terms of E[H1234H1567] by considering the cases where
{i, j, q, r, b, c, d} are unique. Let S = {(i, j, q, r, b, c, d) : (i, j, q, r) ∈ in

4 , (b, c, d) ∈ in
3 \{i}} be the set of all

possible indices of our left-hand sum. It follows that∑
S

E[HijqrHibcd] =
∑

(i,j,q,r,b,c,d)∈in
7

E[HijqrHibcd] +
∑
S\in

7

E[HijqrHibcd].

If all indices are unique, then the expectation E[HijqrHibcd] is equivalent to E[H1234H1567]; otherwise, we
can bound the expectation by 16ν2

kν
2
l via Assumption (A’). Thus, the bound on the left-hand sum is∑

(i,j,q,r)
(b,c,d)\i

E[HijqrHibcd] ≤ (n)7 E[H1234H1567] +
(

(n)4(n− 1)3 − (n)7

)
16ν2

kν
2
l .

Similarly, we can break down the right-hand sum into only terms of E[H1234H5678]. Let R =
{(i, j, q, r, a, b, c, d) : (i, j, q, r) ∈ in

4 , (a, b, c, d) ∈ in
4 } be the possible indices of our right-hand sum. We

have that ∑
(i,j,q,r)
(a,b,c,d)

E[HijqrHabcd] =
∑

(i,j,q,r,a,b,c,d)∈in
8

E[HijqrHabcd] +
∑
R\in

8

E[HijqrHabcd]

≤ (n)8 E[H1234H5678] +
(

(n)2
4 − (n)8

)
16ν2

kν
2
l .

Now, using these two results and Assumption (A’), we can compute a bound on the desired bias of σ̂2:

|E σ̂2 − σ2| = 16

∣∣∣∣∣∣∣∣
1

(n)4(n− 1)3

∑
(i,j,q,r)
(b,c,d)\i

E[HijqrHibcd] − E[H1234H1567] − 1
(n)2

4

∑
(i,j,q,r)
(a,b,c,d)

E[HijqrHabcd] + E[H1234H5678]

∣∣∣∣∣∣∣∣
≤ 16

∣∣∣∣∣∣∣
(

1 − (n)7

(n)4(n− 1)3

)16ν2
kν

2
l − E[H1234H1567]︸ ︷︷ ︸

−16ν2
k

ν2
l

≤·≤16ν2
k

ν2
l

+
(

1 − (n)8

(n)2
4

)E[H1234H5678]︸ ︷︷ ︸
0≤·≤16ν2

k
ν2

l

−16ν2
kν

2
l


∣∣∣∣∣∣∣ .

≤ 16
(

1 − (n)7

(n)4(n− 1)3

)
32ν2

kν
2
l < 512ν2

kν
2
l · 9

n
(∀n ≥ 4)

= 4608ν2
kν

2
l

n
.

D.4 Propositions

Proposition D.3 (Uniform convergence of ĤSICu). Under Assumptions (A’) to (C’), we have that with
probability at least 1 − δ,

sup
θ∈Θ

|η̂θ − ηθ| ≤ 8νkνl√
n

(
Lk

νk
+ Ll

νl
+ 2
√

2 log 2
δ

+ 2DΩ log(4RΩ
√
n) + 2DΓ log(4RΓ

√
n)
)
.

Proof. We use ϵ-net arguments on both spaces Ω and Γ. Let {ωi}TΩ
i=1 be arbitrarily placed centers with

radius ρΩ such that any point ω ∈ Ω satisfies min ∥ω − ωi∥ ≤ ρΩ. Similarly, let {γi}TΓ
i=1 be centers with
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radius ρΓ satisfying min ∥γ − γi∥ ≤ ρΓ for any γ ∈ Γ. Assumption (A’) ensures this is possible with at most
TΩ = (4RΩ/ρΩ)DΩ and TΓ = (4RΓ/ρΓ)DΓ points respectively (Cucker & Smale, 2002, Proposition 5).

We can decompose the convergence bound into simpler components and tackle each component individually

sup
θ∈Θ

|η̂θ − ηθ| ≤ sup
θ

|η̂θ − η̂θ′ | + max
ω′∈{ω1,...,ωTΩ }
γ′∈{γ1,...,γTΓ }

|η̂θ′ − ηθ′ | + sup
θ

|ηθ′ − ηθ|.

First, let us analyze |ηθ −ηθ′ | for any θ, θ′ ∈ Θ. Recall that η = E[H1234] where H1234 = 1
4!
∑(1,2,3,4)

(a,b,c,d) Kab(Lab +
Lcd − 2Lac). We have that

|H(θ)
1234 −H

(θ′)
1234| ≤ 1

4!

(1234)∑
(abcd)

∣∣∣K(ω)
ab (L(γ)

ab + L
(γ)
cd − 2L(γ)

ac ) −K
(ω′)
ab (L(γ′)

ab + L
(γ′)
cd − 2L(γ′)

ac )
∣∣∣

≤ 1
4!

(1234)∑
(abcd)

(∣∣∣K(ω)
ab L

(γ)
ab −K

(ω′)
ab L

(γ′)
ab

∣∣∣+
∣∣∣K(ω)

ab L
(γ)
cd −K

(ω′)
ab L

(γ′)
cd

∣∣∣+ 2
∣∣∣K(ω′)

ab L(γ′)
ac −K

(ω)
ab L

(γ)
ac

∣∣∣) .
From Assumption (A’) we know that |Kab| ≤ νk and |Lab| ≤ νl, and via Assumption (B’) we notice that∣∣∣K(ω)

ab L
(γ)
ab −K

(ω′)
ab L

(γ′)
ab

∣∣∣ =
∣∣∣K(ω)

ab L
(γ)
ab −K

(ω)
ab L

(γ′)
ab +K

(ω)
ab L

(γ′)
ab −K

(ω′)
ab L

(γ′)
ab

∣∣∣
≤
∣∣∣K(ω)

ab

∣∣∣ ∣∣∣L(γ)
ab − L

(γ′)
ab

∣∣∣+
∣∣∣L(γ′)

ab

∣∣∣ ∣∣∣K(ω)
ab −K

(ω′)
ab

∣∣∣
≤ νkLl∥v − v′∥ + νlLk∥ω − ω′∥
≤ νkLlρΓ + νlLkρΩ.

This expression is true for all three components of |H(θ)
1234 −H

(θ′)
1234| and so it follows that

|ηθ − ηθ′ | =
∣∣∣E[H(θ)

1234] − E[H(θ′)
1234]

∣∣∣ ≤ E
∣∣∣H(θ)

1234 −H
(θ′)
1234

∣∣∣ ≤ 4νkLlρΓ + 4νlLkρΩ,

|η̂θ − η̂θ′ | =

∣∣∣∣∣∣ 1
(n)4

∑
(i,j,q,r)∈in

4

H
(θ)
ijqr −H

(θ′)
ijqr

∣∣∣∣∣∣ ≤ 1
(n)4

∑
(i,j,q,r)∈in

4

∣∣∣H(θ)
1234 −H

(θ′)
1234

∣∣∣ ≤ 4νkLlρΓ + 4νlLkρΩ.

Now, we study the random error function ∆ := η̂ − η. Note that E∆ = 0 since η̂ is unbiased, and
|Hijqr| ≤ 4νkνl via Assumption (A’). This η̂, and hence ∆, satisfies bounded differences. Let F denote the
kernel tensor H but with sample (Xℓ, Yℓ) replaced by (X ′

ℓ, Y
′

ℓ ) so that F agrees with H except at indicies ℓ,
and let η̂′ = 1

(n)4

∑
(i,j,q,r)∈in

4
Fijqr be it’s HSIC estimator.

For convenience, we denote (i, j, q, r) ∈ in
4 simply as (i, j, q, r), and (i, j, q)\k to be the set of 3-tuples drawn

without replacement from in
3 that exclude the number k. We can compute the maximal bounded difference

|∆ − ∆′| = |η̂ − η̂′| as

|η̂ − η̂′| =

∣∣∣∣∣∣ 1
(n)4

∑
(i,j,q,r)

Hijqr − Fijqr

∣∣∣∣∣∣ ≤ 1
(n)4

∑
(i,j,q,r)

|Hijqr − Fijqr| (15)

= 1
(n)4

 ∑
(j,q,r)\ℓ

|Hℓjqr − Fℓjqr|︸ ︷︷ ︸
≤8νkνl

+
∑

(i,q,r)\ℓ

|Hiℓqr − Fiℓqr| +
∑

(i,j,r)\ℓ

|Hijℓr − Fijℓr| +
∑

(i,j,q)\ℓ

|Hijqℓ − Fijqℓ|


= 1

(n)4

(
(n− 1)3 · 8νkνl · 4

)
= 32νkνl

n
.
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Then, applying McDiarmid’s inequality on ∆ := η̂ − η followed by a union bound over the TΩTΓ center pairs
gives us, with probability at least 1 − δ, that

max
ω′∈{ω1,...,ωTΩ }
γ′∈{γ1,...,γTΓ }

|η̂θ′ − ηθ′ | ≤ 32νkνl

√
1

2n log 2TΩTΓ

δ

= 16νkνl√
n

√
2 log 2

δ
+ 2 log TΩ + 2 log TΓ

= 16νkνl√
n

√
2 log 2

δ
+ 2DΩ log 4RΩ

ρΩ
+ 2DΓ log 4RΓ

ρΓ
.

Finally, we combine these results to get our uniform convergence bound:

sup
θ∈Θ

|η̂θ − ηθ| ≤ 8νkLlρΓ + 8νlLkρΩ + 16νkνl√
n

√
2 log 2

δ
+ 2DΩ log 4RΩ

ρΩ
+ 2DΓ log 4RΓ

ρΓ

= 8νkνl

(
Lk

νk
ρΩ + Ll

νl
ρΓ + 2√

n

√
2 log 2

δ
+ 2DΩ log 4RΩ

ρΩ
+ 2DΓ log 4RΓ

ρΓ

)
.

Setting ρΩ = ρΓ = 1/
√
n yields the desired result.

Proposition D.4 (Uniform convergence of σ̂2
ω,γ). Under Assumptions (A’) to (C’), we have that with

probability at least 1 − δ,

sup
θ∈Θ

|σ̂2
θ − σ2

θ | ≤ 2048ν2
kν

2
l√

n

(
Lk

νk
+ Ll

νl
+ 3
√

2 log 2
δ

+ 2DΩ log(4RΩ
√
n) + 2DΓ log(4RΓ

√
n) + 9

4
√
n

)
.

Proof. We use an ϵ-net argument on both spaces Ω and Γ. Using the same construction as in Proposition D.3,
we once again decompose our convergence bound:

sup
θ∈Θ

|σ̂2
θ − σ2

θ | ≤ sup
θ

|σ̂2
θ − σ̂2

θ′ | + max
ω′∈{ω1,...,ωTΩ }
γ′∈{γ1,...,γTΓ }

|σ̂2
θ′ − σ2

θ′ | + sup
θ

|σ2
θ′ − σ2

θ |.

First, let us analyze |σ2
θ − σ2

θ′ | for any θ, θ′ ∈ Θ. Recall that σ2 = 16
(
E[H1234H1567] − η2). It follows that

|σ2
θ − σ2

θ′ | = 16
∣∣∣E[H(θ)

1234H
(θ)
1567 −H

(θ′)
1234H

(θ′)
1567] − E[H(θ)

1234H
(θ)
5678] + E[H(θ′)

1234H
(θ′)
5678]]

∣∣∣
≤ 16E

∣∣∣H(θ)
1234H

(θ)
1567 −H

(θ′)
1234H

(θ′)
1567

∣∣∣+ 16E
∣∣∣H(θ)

1234H
(θ)
5678 −H

(θ′)
1234H

(θ′)
5678

∣∣∣ .
Under Assumptions (A’) and (C’) we know that |H1234| ≤ 4νkνl and |H(θ)

1234 −H
(θ′)
1234| ≤ 4νkLlρΓ + 4νlLkρΩ,

and so

|H(θ)
1234H

(θ)
1567 −H

(θ′)
1234H

(θ′)
1567| ≤ |H(θ)

1234H
(θ)
1567 −H

(θ)
1234H

(θ′)
1567| + |H(θ)

1234H
(θ′)
1567 −H

(θ′)
1234H

(θ′)
1567|

= |H(θ)
1234||H(θ)

1567 −H
(θ′)
1567| + |H(θ′)

1567||H(θ)
1234 −H

(θ′)
1234|

≤ 32νkνl(νkLlρΓ + νlLkρΩ).

This expression is true for both components of |σ2
θ − σ2

θ′ | and so it follows that

|σ2
θ − σ2

θ′ | ≤ 1024νkνl(νkLlρΓ + νlLkρΩ). (16)

Similarly, replacing the expectations E[H1234H1567] and E[H1234H5678] with the respective estimators
1

(n)4(n−1)3

∑
(ijqr),(bcd)\i HijqrHibcd and 1

(n)2
4

∑
(ijqr),(abcd) HijqrHabcd give us the same bound

|σ̂2
θ − σ̂2

θ′ | ≤ 1024νkνl(νkLlρΓ + νlLkρΩ). (17)
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Next, using Lemma D.1 and Lemma D.2 followed by a union bound over the TΩTΓ center combinations gives
us, with probability at least 1 − δ,

max
ω′∈{ω1,...,ωTΩ }
γ′∈{γ1,...,γTΓ }

|σ̂2
θ′ − σ2

θ′ | ≤ 6144ν2
kν

2
l

√
2
n

log 2TΩTΓ

δ
+ 4608ν2

kν
2
l

n
(18)
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l√

n

(
3

√
2 log 2

δ
+ 2DΩ log 4RΩ

ρΩ
+ 2DΓ log 4RΓ

ρΓ
+ 9

4
√
n

)
.

Finally, we combine Equations (16) to (18) to get

sup
θ∈Θ

|σ̂2
θ − σ2

θ | ≤ 2048ν2
kν

2
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n

(
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√
2 log 2
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+ 9

4
√
n

+
√
n

(
Lk

νk
ρΩ + Ll

νl
ρΓ

))
.

Setting ρΩ = ρΓ = 1/
√
n gives us our desired uniform convergence bound.

D.5 Main Results

Theorem D.5 (Uniform convergence of Ĵλ
HSIC). Under Assumptions (A’) to (C’), let Θ ⊆ Ω × Γ be the set

of kernel parameters θ ∈ Θ for which σ2
θ ≥ s2, and take λ = n−1/3. Assume νk, νl ≥ 1. Then, with probability

at least 1 − δ,

sup
θ∈Θ

∣∣∣∣ η̂θ
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,

and thus, treating νk, νl as constants,

sup
θ∈Θ
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.

Proof. Let σ̂2
θ,λ := σ̂2

θ + λ be our regularized variance estimator from which we can assume is positive. We
start by decomposing
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Proposition D.3 and Proposition D.4 show the uniform convergence of η̂θ and σ̂θ, from which we get that
with probability at least 1 − δ, the error is at most
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θ∈Θ
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Taking λ = n−1/3 gives
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Using νk, νl ≥ 1 we can slightly simplify our bound to
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E Experimental Details

Figure 7: RatInABox simulation environ-
ment. The red dot is the current position of
the rat and the purple circles indicate the
past trajectory over 5 seconds. The box is
designed to have only a single protruding
wall.

Figure 8: Samples drawn from the sinusoidal problem with
frequency ℓ = 1 (left) and ℓ = 4 (right). We consider the
latter frequency in our experiments.

E.1 Training & Test Details

We design the featurizers ϕω and ϕκ of our deep kernels kω and lκ to be neural networks with ReLU activations.
We avoid using normalization as it may affect test power. Moreover, we make the Gaussian bandwidth of
both kω and lκ a learnable parameter, as well as the smoothing rate ϵ. To make comparisons as fair as
possible, we use similar neural network architectures for each deep learning based method. In general, we
let the featurizer of HSIC-D and MMD-D be identical up to a concatenation layer which concatenates X
and Y to frame the problem as a two-sample test. We construct the C2ST-S/L classifier as the MMD-D
featurizer plus a linear layer classification head with scalar output, and we let C2ST-S/L, InfoNCE, NWJ,
and NDS all use identical architectures for the classifier and critic. Detailed descriptions of each architecture
are demonstrated in the following subsections.

All optimization-based methods (HSIC-D/Dx/O, NDS/InfoNCE/NWJ, MMD-D, C2ST-S/L) are first trained
on an identical split of the data, and then tested on the remaining split. In contrast, HSIC-M selects the
median bandwidth based on the entire dataset, and is evaluated on the test set. We train our models using
the AdamW optimizer with a learning rate of 1e-4 over 1,000 epochs for HDGM and RatInABox, and 10,000
epochs for Sinusoid and Wine. We use a batch size of 512. All methods are implemented in PyTorch and
trained on a NVIDIA A100SXM4 GPU.
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Regarding the power vs. test size experiments, we use a training size of 10,000 for HDGM ≤ 30, 100,000 for
HDGM > 30, and 2000 validation samples for all dimensions. For the Sinusoid problem, we train on 5,000
samples and use 1,000 for validation. RatInABox uses a training size of 4,000 samples without validation,
and Wine uses 1,200 training samples without validation.

Once learned, each methods’ empirical power is evaluated on 100 test sets (Ste1
Z , ..., Ste100

Z ). Each test set
contains m test samples Stei

Z = (Ztei
1 , ..., Ztei

N ), which are then used to compute the average rejection rate
under the null via a permutation test. We use 500 permutations for each test and with a predetermined
type-I error rate of 0.05.

E.2 Validation

Although validation sets were only used for early stopping in our experiments, it’s certainly possible to use
them for hyperparameter selection. The validity of permutation tests still hold as long as this validation
set is separate from the test set. As for the validation criterion, a natural approach is to evaluate the
same approximation of the asymptotic power used for our training objective. This avoids the need for
relatively-expensive permutations, while providing a reasonable estimate of performance. Alternatively, we
could also directly estimate the test statistic in cases where there isn’t a simple expression for asymptotic
power, though this approach may be less reliable since the statistic is not necessarily correlated with test
power. It is also possible to select hyperparameters through cross-validation, where the training data is
split into folds: one fold for evaluating hyperparameters and the remaining folds for training the model.
Again, as long as this data is separate from the test set, any permutation test would be well-controlled. The
drawback to these validation-based approaches is that effective power is reduced since we need to construct
this validation set from either the training or test data.

Ideally, we would like to perform hyperparameter selection while avoiding sample splitting, but this is a chal-
lenging problem. One potential approach is to perform separate tests corresponding to each hyperparameter,
and then combine these tests using a multiple test correction procedure like MMDAgg (Schrab et al., 2023)
to ensure valid level control on the test data. However, this is potentially expensive if hyperparameters need
to be optimized. It’s also unclear if this would perform better than simply using a validation set due to the
conservatism of the multiple test correction procedure. A related approach is MMDFuse (Biggs et al., 2023),
which constructs an aggregate statistic by combining MMD estimates at varying bandwidths. This approach
could be naturally extended to consider estimates based on different training sets and would naturally fit
into our optimization framework; though doing so in a way that does not explode compute nor reduce critic
quality is another challenge.

E.3 Architectures

In all experiments we consider deep kernels with Gaussian feature and smoothing kernels κ and q, where each
bandwidth is a trainable parameter randomly initialized around 1.0. We let the smoothing weight ϵ also be
a learnable parameter initialized to 0.01. No batch normalization is used and all hidden layers use ReLU
activations. Dataset-specific designs are elaborated below.

High-dimensional Gaussian mixture. We use a feed-forward network for our deep kernel featurizer with
latent dimensions 2d, 3d, and 2d. Details of each model is given in Table 1.

Sinusoid. The deep kernel featurizer is taken to be a feed-forward network with widths 1x8x12x8. C2st,
infoNCE, and NWJ use a similar architecture –one with widths 2x8x12x8x1– which includes an additional
scalar output layer.

RatInABox. We use a feed-forward featurizer with details given in Table 2. Unlike the previous two
problems, the sample spaces X and Y are not equivalent, and so the deep featurizers for k and l have different
architectures.
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dataset model input featurizer

HDGM-4

HSIC-D X or Y
[

2 → 4 → 6 → 4
]

MMD-D [X, Y]
[

4 → 8 → 12 → 8
]

C2ST-S/L [X, Y]
[

4 → 8 → 12 → 8 → 1
]

HDGM-8

HSIC-D X or Y
[

4 → 8 → 12 → 8
]

MMD-D [X, Y]
[

8 → 16 → 24 → 16
]

C2ST-S/L [X, Y]
[

8 → 16 → 24 → 16 → 1
]

HDGM-10

HSIC-D X or Y
[

5 → 10 → 15 → 10
]

MMD-D [X, Y]
[

10 → 20 → 30 → 20
]

C2ST-S/L [X, Y]
[

10 → 20 → 30 → 20 → 1
]

HDGM-20

HSIC-D X or Y
[

10 → 20 → 30 → 20
]

MMD-D [X, Y]
[

20 → 40 → 60 → 40
]

C2ST-S/L [X, Y]
[

20 → 40 → 60 → 40 → 1
]

dataset model input featurizer

HDGM-30

HSIC-D X or Y
[

15 → 30 → 45 → 30
]

MMD-D [X, Y]
[

30 → 60 → 90 → 60
]

C2ST-S/L [X, Y]
[

30 → 60 → 90 → 60 → 1
]

HDGM-40

HSIC-D X or Y
[

20 → 40 → 60 → 40
]

MMD-D [X, Y]
[

40 → 80 → 120 → 80
]

C2ST-S/L [X, Y]
[

40 → 80 → 120 → 80 → 1
]

HDGM-50

HSIC-D X or Y
[

25 → 50 → 75 → 50
]

MMD-D [X, Y]
[

50 → 100 → 150 → 100
]

C2ST-S/L [X, Y]
[

50 → 100 → 150 → 100 → 1
]

Table 1: Featurizer architectures used in deep kernels for HSIC-D, MMD-D, and classifier architecture used
for C2ST-S/L on the HDGM problem. Brackets denote a sequence of linear layers with corresponding input
and output features.

method input network

HSIC-D
X

[
8 → 32 → 64 → 32

]
Y

[
2 → 4 → 8 → 4

]
MMD-D [X, Y]

[
10 → 32 → 64 → 32

]
C2ST-S/L [X, Y]

[
10 → 32 → 64 → 32 → 1

]
Table 2: Featurizer architectures used in deep kernels for HSIC-D, MMD-D, and classifier architecture used
for C2ST-S/L on the RatInABox problem. Brackets denote a sequence of linear layers with corresponding
input and output features.

F Additional Experiments

F.1 High-Dimensional Gaussian Mixture

We provide comprehensive power versus test size results for the HDGM problem at all dimensions d =
{2, 4, 5, 10, 15, 20} in Figure 9. Overall, our method HSIC-D/Dx achieves highest power at the smallest test
sizes.

Additionally, we demonstrate the effectiveness of our method at various dimensions d/2 by examining the
empirical test power at HDGM-d for d ∈ {4, 8, 10, 20, 30, 40, 50} with fixed test sizes m. Results are shown in
Figure 10. Again, HSIC-D exhibits the highest test power across all dimensions. When using a small number
of test samples (e.g. m = 100), the performance of HSIC-D slightly degrades with increasing dimension,
whereas at larger test sample sizes it consistently has near-perfect power.

F.2 Type-I Error

Table 3 shows that the type-I error rates for our optimization-based tests are well-controlled.
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Figure 9: Power vs test size m for the HDGM problem at dimensions d = {2, 4, 5, 10, 15, 20}. The average
test power is computed over 5 training runs, where the empirical power is determined over 100 permutation
tests. The shaded region covers one standard error from the mean
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Figure 10: Empirical power vs dimension across various test sample sizes m = {100, 200, 500, 1000} for
HDGM. The shaded region covers one standard error over 5 training runs.

F.3 Maximizing HSIC vs. its SNR

We examine the trade-off between directly optimizing HSIC versus its SNR objective J . The results on
power versus test size are shown in Figure 11. Optimizing our proposed objective J significantly outperforms
optimizing HSIC for all problems.

F.4 Independence Testing with MMD

Let Z = {(X1, Y1), ..., (Xm, Ym)} be a test set and Sm be the permutation group of [m] with elements σ ∈ Sm.
Suppose we take p permutations σ = {σ1, ..., σp}, with each permutation sampled uniformly from Gm. We
define the action of σ on test samples Z as σZ = {(Xi, Yσℓ(i))}i∈[m],ℓ∈[p], and the action of σ on the empirical
distribution P̂XY as the empirical distribution of the permuted samples, i.e. σP̂XY = 1

np

∑n
i=1
∑p

ℓ=1 δXi×Yσℓ(i) .
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Method HDGM-4 HDGM-8 HDGM-10 HDGM-20 HDGM-30 HDGM-40 HDGM-50 Sinusoid RatInABox
HSIC-D 0.043 0.043 0.050 0.050 0.062 0.057 0.052 0.050 0.048
MMD-D 0.048 0.055 0.040 0.053 0.048 0.048 0.055 0.054 0.050
C2ST-L 0.060 0.030 0.053 0.048 0.053 0.058 0.045 0.046 0.048
InfoNCE 0.046 0.046 0.046 0.054 0.044 0.050 0.048 0.048 0.045

NWJ 0.050 0.054 0.058 0.052 0.044 0.064 0.054 0.052 0.042

Table 3: Average type-I error rates under the null distribution over 400 tests. We use m = 512 samples.
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(c) HDGM-50
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(d) RatInABox

Figure 11: Test power using deep kernels optimized for the approximate asymptotic test power J (red) versus
optimizing just the test statistic HSIC (blue).

One way we can construct an independence criterion is by taking the MMD between PXY and PX × PY . We
do this for MMD-D by using the empirical distributions P̂XY and σP̂XY respectively, which yields

MMD2
k×l(P̂XY ,σP̂XY ) = 1

m2

∑
i,j∈[m]

ki,j li,j − 2
m2p

∑
i,j∈[m]

q∈[p]

ki,j li,σq(j) + 1
m2p2

∑
i,j∈[m]
q,r∈[p]

ki,j lσq(i),σr(j).

We first show that even with one permutation, this yields a consistent estimator.

Proposition 3.2. Suppose h satisfies supx∈X ,y∈Y h((x, y), (x, y)) ≤ ν2. The estimator M̂MD
2
b(Z, σZ), where

Z is independent of a uniformly random σ, satisfies with probability at least 1 − δ that

|M̂MD
2
b(Z, σZ) − MMD2(Pxy,Px × Py)| ≤ 17ν2

√
m

[√
2 log 8

δ
+ 1√

m

]
.

Proof. First notice that

MMD2(Pxy,Px × Py) = Eh((X,Y ), (X ′, Y ′))︸ ︷︷ ︸
µ1

+Eh((X,Y ′), (X ′′, Y ′′′))︸ ︷︷ ︸
µ2

−2Eh((X,Y ), (X ′, Y ′′))︸ ︷︷ ︸
µ3

,

while the estimator M̂MD
2
b(Z, σZ) is given by

1
m2

m∑
i=1

m∑
j=1

h((xi, yi), (xj , yj))︸ ︷︷ ︸
T1

+ 1
m2

m∑
i=1

m∑
j=1

h((xi, yσi), (xj , yσj ))︸ ︷︷ ︸
T2

−2 1
m2

m∑
i=1

m∑
j=1

h((xi, yi), (xj , yσj ))︸ ︷︷ ︸
T3

.

The first term T1 is a typical V -statistic:

1
m2

∑
i ̸=j

h((xi, yi), (xj , yj)) + 1
m2

m∑
i=1

h((xi, yi), (xi, yi)) = m− 1
m

U1 + 1
m
R1,
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where we have defined a U -statistic U1 = 1
m(m−1)

∑
i ̸=j h((xi, yi), (xj , yj)) and a remainder term R1 =

1
m

∑
i h((xi, yi), (xi, yi)). For U1, we have immediately that EU1 = Eh((X,Y ), (X ′, Y ′)) =: µ1. Noting that

both R1 and µ1 are necessarily in [0, ν2], the overall error from this term is therefore

|T1 − µ1| =
∣∣∣∣(1 − 1

m

)
(U1 − µ1) + 1

m
(R1 − µ1)

∣∣∣∣ ≤
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m
ν2.

Changing a single (xi, yi) pair changes U1 by at most 1
m(m−1) · 2(m − 1) · ν2 = 2ν2

m , and so McDiarmid’s
inequality gives that with probability at least 1 − δ1,
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and so with probability at least 1 − δ1,
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Turning to T3 next, we can use a similar approach if we also take into account the random σ. We can write
T3 as

1
m2

∑
i,j:|{i,j,σj}|=3

h((xi, yi), (xj , yσj
)) + 1

m2

∑
i,j:|{i,j,σj}|<3

h((xi, yi), (xj , yσj
)) = N

(σ)
3
m2 U3 +

(
1 − N

(σ)
3
m2

)
R3,

where we let N (σ)
3 be the (random) number of (i, j) pairs for which i, j, σj are all distinct, U3 the mean of

h((xi, yi), (Xj , yσj
)) for which these indices are distinct, and R3 the mean for which they are not. Note that

|µ3|, |R3| ≤ ν2, regardless of the choice of σ and Z, and so

|T3 − µ3| =
∣∣∣∣∣N (σ)

3
m2 (U3 − µ3) +

(
1 − N

(σ)
3
m2

)
(R3 − µ3)

∣∣∣∣∣ ≤ N
(σ)
3
m2 |U3 − µ3| +

(
1 − N

(σ)
3
m2

)
2ν2.

Fix the choice of σ, but let Z be random. Then EU3 = µ3, and changing a single (xi, yi) pair changes the
value of U3 by at most 1

N
(σ)
3

· 3(m− 1) · ν2. Thus, applying McDiarmid’s inequality conditionally on the choice
of σ, with probability at least δ′

3

|U3 − µ3| ≤ 3ν2
√

2

√
m(m− 1)
N

(σ)
3

√
log 2

δ′
3
,

obtaining that

|T3 − µ3| ≤ 3ν2
√

2
m− 1
m

√
m

√
log 2

δ′
3

+
(

1 − N
(σ)
3
m2

)
2ν2.

We will also need to show that N (σ)
3 /m2 is nearly 1. We have that

EN (σ)
3 = E

m∑
i=1

m∑
j=1

1(|{i, j, σj}| = 3) =
∑
i̸=j

Pr(σj /∈ {i, j}) = m(m− 1) · m− 2
m

= (m− 1)(m− 2),

so that E
(

1 −N
(σ)
3 /m2

)
= 3

m − 2
m2 . Moreover, if σ and σ′ almost agree except that σ′

k = σl and σ′
l = σk,

then |N (σ)
3 −N

(σ′)
3 | ≤ 2m: the only (i, j) which are potentially affected are those of the form (·, k) or (·, l).

Using a version of McDiarmid’s inequality for uniform distributions of permutations (Lemma F.1) then gives
us that with probability at least 1 − δ′

3 over the choice of σ,

N
(σ)
3 ≥ (m− 1)(m− 2) −m

√
8m log 1

δ′′
3
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and so

1 − N
(σ)
3
m2 ≤ 3

m
− 2
m2 +

√
8
m

log 1
δ′′

3
;

thus with probability at least δ′
3 + δ′′

3 , we have that

|T3 − µ3| ≤ ν2
√
m

[
3√
2
m− 1
m

√
log 2

δ′
3

+ 6√
m

− 4
m

√
m

+ 4
√

2 log 1
δ′′

3

]

≤ ν2
√
m

[
3
2

√
2 log 2

δ′
3

+ 4
√

2 log 1
δ′′

3
+ 6√

m

]
.

To simplify this a little further, let δ′
3 = 2

3δ3 and δ′′
3 = 1

3δ3; then it holds with probability at least 1 − δ3 that

|T3 − µ3| ≤ 6ν2
√
m

[√
2 log 3

δ3
+ 1√

m

]
. (20)

It remains to handle T2, which is similar to T3. Letting N (σ)
2 be the number of (i, j) pairs for which i, j, σi, σj

are all distinct, we can similarly define U2 with mean µ2 and R2 with |R2| ≤ ν2 so that

|T2 − µ2| =
∣∣∣∣∣N (σ)

2
m2 (U2 − µ2) +

(
1 − N

(σ)
2
m2

)
(R2 − µ2)

∣∣∣∣∣ ≤ N
(σ)
2
m2 |U2 − µ2| +

(
1 − N

(σ)
3
m2

)
2ν2.

For a fixed σ, changing a single (xi, yi) pair changes the value of U2 by at most 1
N

(σ)
2

· 4(m− 1) · ν2, and we
obtain like before that with probability at least 1 − δ′

2,

|T2 − µ2| ≤ 4ν2
√

2
m− 1
m

√
m

√
log 2

δ′
2

+
(

1 − N
(σ)
2
m2

)
2ν2.

Since when i ̸= j any permutation satisfies that σi ̸= σj , we have that

EN (σ)
2 =

∑
i ̸=j

Pr(σi, σj /∈ {i, j}) =
∑
i ̸=j

m− 2
m

· m− 3
m− 1 = (m− 2)(m− 3).

A single transposition changes changes N (σ)
2 by no more than 4m, and so by Lemma F.1 we obtain that with

probability at least 1 − δ′′
2 ,

1 − N
(σ
2
m2 ≤ 5

m
− 6
m2 + 4√

m

√
2 log 1

δ′′
2
.

Letting δ′
2 = 2

3δ2 and δ′′
2 = 1

3δ2, it thus holds with probability at least 1 − δ2 that

|T2 − µ2| ≤ 2ν2
√
m

[
m− 1
m

√
2 log 3

δ2
+ 5√

m
− 6
m

√
m

+ 4
√

2 log 3
δ2

]
≤ 10ν2

√
m

[√
2 log 3

δ2
+ 1√

m

]
. (21)

To combine (19), (20), and (21), it will be convenient to use δ1 = 1
4δ and δ2 = δ3 = 3

8δ, since then δ1/2 = δ/8,
δ2/3 = δ/8 and δ1 + δ2 + δ3 = δ. Then we obtain that with probability at least 1 − δ,

|T1 + T2 − 2T3 − (µ1 + µ2 − 2µ3)| ≤ 17ν2
√
m

[√
2 log 8

δ
+ 1√

m

]
.
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Lemma F.1 (McDiarmid’s inequality for uniform permutations). Let f : Sm → R, where Sm is the
symmetric group of permutations on [m], satisfy that for every σ, σ′ ∈ Sm, |f(σ) − f(σ′)| ≤ c |{i : σi ≠ σ′

i}|.
Let S be a random variable which is uniform on Sm. Then it holds with probability at least 1 − δ that
f(S) − ES f(S) ≤ c

√
8m log 1

δ .

Proof (based on Błasiok, 2025). For i ∈ {0, . . . ,m} and any permutation σ, define the Doob martingale

Xi = E
S

[f(S) | S1 = σ1, . . . , Si = σi],

so that X0 = ES f(S) and Xm = f(σ).

We now show that |Xi − Xi+1| ≤ 2c. No matter the known values (σ1, . . . , σi), for any (σi+1, . . . , σn),
we can identify a uniquely paired (σ′

i+1, . . . , σ
′
n) differing in at most two positions, which implies that

|f(σ) − f(σ′)| ≤ 2c. Because these pairs are equiprobable under the uniform distribution of S, this implies
that any E [Xi+1 | Si+1 = j] differs from any E [Xi+1 | Si+1 = j′] by at most 2c, and so the same holds on
average over j.

The Azuma-Hoeffding inequality then gives Pr(Xm −X0 ≥ ε) ≤ 2 exp
(
−ε2/(2m(2c)2)

)
, and the desired

result follows by solving for ε.

When considering more than one permutation, this looks reminiscent of the biased HSIC estimator. Indeed,
when we consider the set of n circular shifts σ◦ (i.e. permutations where the order of the Y s are rotations of
one another), then the two are equal with

MMD2
k×l(P̂XY ,σ◦P̂XY ) = MMD2

k×l(P̂XY , P̂X ⊗ P̂Y ) = HSICk,l(P̂XY ).

In practice, MMD-D underperforms against HSIC-D. We believe this might be because the variance of the
permuted MMD estimator is often higher than that of HSIC. The following proposition proves this for the
biased estimators.
Proposition F.2. Suppose we have samples Z = {(X1, Y1), ..., (Xm, Ym)} drawn iid from PXY , and let
σ = {σ1, ..., σp} be a set of p permutations sampled uniformly from Sm, the permutation group of [m]. We
define the action of σ on samples Z as σZ = {(Xi, Yσℓ(i))}i∈[m],ℓ∈[p]. Then for the biased HSIC and MMD
estimators we have

Var[ĤSICk,l(Z)] ≤ Var[M̂MD2
k×l(Z,σZ)].

Proof. First we note that

M̂MD2(Z,σZ) = 1
m2

∑
i,j∈[m]

ki,j li,j − 2
m2p

∑
i,j∈[m]

q∈[p]

ki,j li,σq(j) + 1
m2p2

∑
i,j∈[m]
q,r∈[p]

ki,j lσq(i),σr(j).

Taking the expectation of this estimator conditioned on the samples Z gives us a Rao-Blackwellization. Now
notice that for part of the second term

E
σ

[
1
p

p∑
q=1

ki,j li,σq(j)

]
= ki,j

(
1
p

p∑
q=1

E
σq

[li,σq(j)]
)

= 1
m

m∑
t=1

ki,j li,t,

where we use the fact that Eσq
[li,σq(j)] = 1

m

∑m
t=1 li,t since the permutation of j is equally likely to be any

number in [m]. Similarly part of the last term yields

E
σ

 1
p2

∑
q,r∈[p]

ki,j lσq(i),σr(j)

 = ki,j

(
1
p

∑
q

E
σq

[
1
p

∑
r

E
σr

[lσq(i),σr(j)]
])

= 1
m2

∑
t,u∈[m]

ki,j lt,u.
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Therefore, the Rao-Blackwellization is just the biased HSIC estimator

E
[
M̂MD2(Z,σZ) | Z

]
= ĤSIC(Z). (22)

It follows from the law of total variance that

Var[M̂MD2(Z,σZ)] = Var[E[M̂MD2(Z,σZ) | Z]] + E[Var[M̂MD2(Z,σZ) | Z]] ≥ Var[ĤSIC(Z)].

The result follows.
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Figure 12: (a) compares the sample variance of the biased MMD estimator using p shuffles of the original
sample. (b) examines how the number of shuffles p affects the empirical test power. All results are based
on m = 50 samples from the Sinusoid problem with frequency parameter ℓ = 1. Both MMD and HSIC use
Gaussian kernels k and l with bandwidth 1.

Figure 12 shows that the higher variance of the permuted MMD estimator negatively impacts its overall test
power compared to HSIC. Also, including more permutations seems to decrease the overall variance, although
never lower than that of HSIC.

In practice, the kernels learned by MMD-D and HSIC-D may not correspond, and so Proposition F.2 is
inapplicable. That said, we observe the same phenomenon in experiments. Figure 13 shows estimates of the
asymptotic variance of MMD and HSIC along a training trajectory. For permuted MMD we consider both a
single shuffling of the data (MMD-full), as well as a split shuffling (MMD-split) where we use half the data
for our joint distribution sample, and the other half to permute for our product-of-marginals sample. We
note that the initial variance of MMD-split is substantially higher than that of MMD-full, which is much
higher than the variance of HSIC. MMD-split/full also exhibit greater final variances, particularly at larger
batch sizes.
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(a) m = 128
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(b) m = 512
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Figure 13: Estimates of the asymptotic variance of HSIC (blue), MMD with a single permutation (orange),
and MMD with a split permutation (green) along a training trajectory for HDGM-10 at sample sizes m = 128
(a), m = 512 (b), and m = 1024 (c).
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F.5 SNR Pitfall

Recent work by Ren et al. (2024) argues a so-called pitfall of the HSIC signal-to-noise ratio paradigm.
They identify a corner case whereby, when the bandwidth of one of kernel k or l approaches 0, ignoring
the threshold term causes the SNR objective Jw/o = ĤSICb/σ̂H1 to differ from the true asymptotic power
objective Jw/ =

(
ĤSICb − r/m

)
/σ̂H1 by a factor of −(m − 1), where r denotes the asymptotic threshold.

We argue that this is not a cause for concern, and in some cases, ignoring this is even preferred.

First, the behavior of the SNR objective in the bandwidth limit tells us nothing about the actual global
maximum. Their argument tells us that Jw/o = −(m − 1)Jw/ when the bandwidth wX → 0 and for a
specific estimator r = E[mĤSICb]. This does not imply, however, that Jw/o explodes as wX → 0 since the
SNR objective is optimized at a fixed sample size m, and even in the bandwidth limit Jw/o can not be −∞.
The latter observation is true because ĤSICb is bounded and our variance estimates σ̂2

H1
are also bounded

away from zero. Therefore even though Jw/o is high when wX ↘ 0, this value is not necessarily the global
maximum. Second, their argument seems entirely dependent on the choice of estimators. For instance, if we
use ĤSICu rather than ĤSICb, and take the asymptotic threshold to be E[mĤSICu] = mHSIC(Px × Py) = 0,
we get that Jw/o = Jw/ in this regime.

As further evidence, we plot both Jw/ and Jw/o at varying bandwidths wX on the ISA dataset used in Ren
et al. (2024). We use the same settings as they do: m = 250, d = 3, θ = π/10, wY = 1.0. Results are shown
in Figure 14. For very small bandwidths, Jw/o does not explode and is not the global maximum. Moreover,
the actual maximum agrees relatively well between Jw/ and Jw/o at larger sample sizes m. We were unable
to reproduce their Figure 1.

Additionally, Figure 14 (a) shows that ignoring this threshold term may actually be preferred. Consider
the limiting behavior as the bandwidth ωX goes to infinity. In this regime, the Gram and centered Gram
matrices are respectively K|ω=∞ = 11T and Kc|ω=∞ = 0, which tells us that ĤSICb = Tr[KcL]/m = 0.
Since mĤSICb is degenerate its variance and 1 − α quantile are zero, and so both Jw/ and Jw/o are also 0 in
this bandwidth limit13. Now consider a difficult problem where the power at initialization is less than 0.5,
meaning Jw/ is less than 0. Then the maximum of Jw/ is erroneously this bandwidth limit.
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Figure 14: Plots of Jw/o (blue) and Jw/ (orange) at very small bandwidths ωX with sample size m. For
the threshold estimate, we use the .95-quantile of the Gamma approximation. The objective maximum is
indicated by stars.

F.6 SNR with Threshold

Although maximizing the HSIC signal-to-noise objective JHSIC is sufficient for learning powerful tests, it
may also be beneficial to estimate the threshold-dependent term in the asymptotic power expression of
Equation (6). Adopting the same notation as before, we define the SNR with threshold expression as

J̃HSIC(X,Y ; k, l) = HSIC(X,Y ; k, l)
σH1(X,Y ; k, l) − Ψ−1(1 − α)

mσH1(X,Y ; k, l)
13recall that our variance estimate in J adds a small positive constant for stability, preventing J from being undefined
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where Ψ is the problem-dependent cdf described in Proposition A.2. Estimating J̃HSIC proves troublesome,
largely due to Ψ−1 depending on both the variables X,Y as well as kernels k, l. Additionally, it needs to be
differentiated with respect to those kernel parameters. We opt to approximate the null distribution Ψ with a
Gamma distribution Fν,θ with shape and scale parameters

ν = E[ĤSICb]2

Var[ĤSICb]
and θ = mVar[ĤSICb]

E[ĤSICb]
,

as suggested by Gretton et al. (2007). When performing gradient updates, we need to compute the gradients
∇νF

−1
ν,θ (1 − α) and ∇θF

−1
ν,θ (1 − α). This is typically not possible with auto-differentiation, as the inverse cdf

is not tractable. Instead, we propose a solution based on implicit differentiation: suppose fν,θ is the Gamma
pdf and r = F−1

ν,θ (1 − α). Then

∇νF
−1
ν,θ (1 − α) = −∇νFν,θ(r)

fν,θ(r) and ∇θF
−1
ν,θ (1 − α) = −∇θFν,θ(r)

fν,θ(r) .

The gradient of the Gamma cdf with respect to the scale θ yields the simplified expression

∇θFν,θ(r) = − 1
θ · Γ(ν)

(r
θ

)ν

e−r/θ.

The gradient ∇νFν,θ(r) is more troublesome. We resort to approximating this gradient via series expansions,
detailed in Moore (1982).

We compare the performance of HSIC and NDS tests maximized with and without the threshold-dependent
term in Figure 15. For HSIC, including this term seems to hurt the overall test power for harder problems.
This is expected, since the null distribution is difficult to accurately estimate. We use two approximations
here: one being the Gamma approximation, and two being the series expansion used to estimate the derivative
of the Gamma cdf with respect to the shape parameter. On the other hand, NDS with the threshold term
yields higher test power. Again, this is not too surprising as, unlike for HSIC, the null distribution here
follows the CLT and thus is easily approximated given enough samples.
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250 500 750 1000 1250 1500 1750 2000
test size m

0.2

0.4

0.6

0.8

po
we

r nds-w/
nds-w/o

(b) NDS @ HDGM-10
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(c) HSIC @ HDGM-4
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Figure 15: Power vs test size based on NDS and HSIC signal-to-noise objectives, both with (blue) and
without (red) estimating the threshold-dependent term. Our proposed methods NDS (12) and HSIC-D (13)
correspond to nds-w/ and hsic-w/o, respectively. We consider both HDGM-8 and HDGM-10, and use the
same training configuration as specified in Section 6.

F.7 Why do Permutation Tests deviate from Asymptotics?

As Figure 6 suggests, the asymptotics (i.e. tests based on the asymptotic null and alternative distributions)
may not explain permutation tests well. Figure 16 illustrates why this might be: we observe strong dependency
between the sample statistic T̂ (X,Y) and its rejection threshold, estimated via permutation.

For the InfoNCE critic this dependency is substantial, with a correlation between the two of 98%. While
permutation tests still ensure the appropriate level, this coupling between the test statistic and permutation
threshold is not accounted for in our asymptotic analysis. If these tests do follow their asymptotics, then we
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expect this correlation to be relatively small, since the threshold should always be a reasonable estimate of
the 1 − α quantile. This is certainly not true for InfoNCE, and explains why its permutation test power is
so much higher than what its asymptotics suggest. As for why or how InfoNCE critics exhibit such strong
coupling, we do not yet know; this is a very interesting area for future work.
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Figure 16: Plot of the NDS statistic T̂ evaluated on a sample (X,Y) from RatInABox, versus its rejection
threshold estimated with 200 permutations. Each point corresponds to a separate test set (X,Y) of size
m = 1000, but is evaluated with the same critic function f . The results in (a) use a critic that maximizes the
NDS test power, as in Section 5. The critic in (b) directly maximizes InfoNCE. The red line is y = x, which
is the rejection boundary; points above this line (colored yellow) are tests that reject the null hypothesis,
while points below (purple) do not.
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