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Abstract

Many tools exist to detect dependence between random variables, a core question across a wide
range of machine learning, statistical, and scientific endeavors. Although several statistical
tests guarantee eventual detection of any dependence with enough samples, standard tests
may require an exorbitant amount of samples for detecting subtle dependencies between
high-dimensional random variables with complex distributions. In this work, we study
two related ways to learn powerful independence tests. First, we show how to construct
powerful statistical tests with finite-sample validity by using variational estimators of mutual
information, such as the InfoNCE or NWJ estimators. Second, we establish a close connection
between these variational mutual information-based tests and tests based on the Hilbert-
Schmidt Independence Criterion (HSIC); in particular, learning a variational bound (typically
parameterized by a deep network) for mutual information is closely related to learning a
kernel for HSIC. Finally, we show how to, rather than selecting a representation to maximize
the statistic itself, select a representation which can maximize the power of a test, in either
setting; we term the former case a Neural Dependency Statistic (NDS). While HSIC power
optimization has been recently considered in the literature, we correct some important
misconceptions and expand to considering deep kernels. In our experiments, while all
approaches can yield powerful tests with exact level control, optimized HSIC tests generally
outperform the other approaches on difficult problems of detecting structured dependence.

1 Introduction

Independence testing, the question of using paired samples to determine whether a random variable X and
another Y are associated with one another or if they are statistically independent, is one of the most common
tasks across scientific and data-based fields. Traditional methods make strong parametric assumptions, for
instance assuming that X and Y are jointly normal so that dependence is characterized by covariance, and/or
operate only in limited settings, for instance the tabular setting of the celebrated x? test or Fisher’s exact
test. Applying these approaches to high-dimensional continuous data is difficult at best.

One characterization of independence is the Shannon mutual information (MI): this quantity is zero if two
random variables are independent, and positive if they are dependent. Substantial effort has been made in
estimating this quantity with a variety of estimators; see e.g. the broad list based on binning, nearest-neighbors,
kernel density estimation, and so on implemented by Szabé (2014). In high-dimensional cases, however, recent
work has focused on estimating variational bounds defined by deep networks (see e.g. Poole et al., 2019),
which can ideally learn problem-specific structure. To our knowledge, this class of estimators has not yet
been used to construct statistical tests of independence: in particular, if we run the estimation algorithm and
estimate a lower bound on the MI of 0.12, does that mean that the variables are (perhaps weakly) dependent,
or might that be due to random noise on the samples we saw? The first contribution of this paper is to
construct and evaluate tests of this form.

Mutual information, though, is notoriously difficult to estimate (Paninski, 2003). If the question we want to
ask is “are X and Y dependent,” we can also consider turning to a different characterization of dependence
which may be statistically easier to estimate. The Hilbert-Schmidt Independence Criterion (HSIC), introduced
by Gretton et al. (2005), measures the total cross-covariance between feature representations of X and Y,
and can be estimated from samples efficiently. The construction supports even infinite-dimensional features
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in a reproducing kernel Hilbert space (RKHS), equivalent to choosing a kernel function. With appropriate
choices of kernel (see Szab6 & Sriperumbudur, 2018), the HSIC is also zero if and only if X 1 Y. Székely
et al. (2007) and Lyons (2013) separately proposed distance covariance tests, which measure the covariance
of pairwise distances between X values with distances between Y values; this can be viewed as HSIC with a
particular kernel (Sejdinovic et al., 2013). Our second contribution describes how HSIC, in fact, is also a
lower bound on mutual information, and that tests based on either are very closely related.

Alternatively, we can characterize an independence problem as a two-sample one. Two-sample problems
are concerned with the question: given samples from P and Q, is P = Q7 Under this framework, when we
consider samples from the joint distribution P, and the product of the marginals P, x P, (where X L Y by
construction), the two-sample problem characterizes an equivalent independence problem between variables
X and Y. One way we can measure the discrepancy between P, and P, x P, is with the kernel-based
Maximum-Mean Discrepancy (MMD) (Gretton et al., 2012a); doing so recovers HSIC.

Any reasonable choice of kernel, such as the Gaussian kernel with unit bandwidth or the distance kernel that
yields distance covariance, will eventually (with enough samples) be able to detect any fixed dependence.
In practice, however, this scheme can perform extremely poorly; if, for instance, the data varies on a very
different scale than the bandwidth of the Gaussian kernel, it may take exorbitant quantities of data to achieve
any reasonable test power. Thus, tests using Gaussian kernels often rely on the median heuristic to choose a
kernel relevant to the data at hand: choosing a bandwidth based on the median pairwise distance among
data points (Gretton et al., 2012a). While this is a reasonable first guess for many data types, there exist
many two-sample testing problems where it can be dramatically better to instead select a bandwidth that
optimizes a measure of test power (Sutherland et al., 2017). Beyond that, there are many problems where no
Gaussian kernel performs well — for instance, many problems on natural image data or involving sparsity
— but Gaussian kernels applied to latent representations of such data do. As an extreme example in the
dependence case, consider the construction X ~ A(0,1), Yy ~ N(0,1), but then Y is obtained by replacing
the fifteenth decimal place of Yy with that of X. Representations based on Euclidean distance would require
an absurd number of samples to detect the dependence between X and Y, but a representation that extracts
only the fifteenth decimal place will make the dependence obvious.

These considerations apply similarly to tests based on mutual information. In fact, we can view estimation of
a variational MI bound as learning a representation of the data that maximizes its measure of dependency.
Thus, learning representations of the data that make any dependency more explicit is central to developing
more powerful independence tests. Our main algorithmic contribution involves developing a scheme to learn
these optimal representations, both for HSIC tests and for a class of tests closely related to the variational
MI-based tests. In both settings, this is based on maximizing an estimate of the asymptotic power of the test,
the primary term of which is an estimate of the signal-to-noise ratio of the statistic: the estimator divided by
its standard deviation. In both cases, we can efficiently, and differentiably, estimate this quantity; we also
show via a uniform convergence argument that optimizing the power estimate leads to a representation which
generalizes well. Using data splitting and permutation testing (as in e.g. Rindt et al., 2021), we obtain a test
which is exactly valid and achieves high power. In experiments, we find that while both methods often work
well, there are settings where the HSIC optimization scheme far outperforms the other categories of tests.

In both cases, the overall approach builds on prior work in kernel two-sample testing (Gretton et al., 2012b;
Jitkrittum et al., 2016; Sutherland et al., 2017; Liu et al., 2020). We show, however, that performing the
direct reduction to two-sample testing and applying these techniques, in addition to breaking the assumptions
of their theoretical results, yields a notably less powerful test than our direct HSIC power optimization, due
to statistical properties of the estimators. We also note that Ren et al. (2024) recently proposed a closely
related scheme for the HSIC power optimization setting; unfortunately, however, we show that several of
their main algorithmic suggestions are misguided and the proof of their main theorem is incorrect.

2 Tests Based On Variational Mutual Information Bounds

Problem 2.1 (Independence testing). Let Z = (X,Y) ~ P,y on a domain X x Y, and Py, P, be the
corresponding marginal distributions of X and ). We observe m paired samples X = (x1,...,2;) and
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Figure 1: Vanilla kernel-based HSIC tests struggle on high-dimensional data. (a) A bimodal Gaussian mixture,
with visible dependence between X and Y. (b)-(d) Test power as we add an increasing number of independent
noise dimensions. When d = 4 the median heuristic (HSIC-M) confidently detects dependence between X
and Y with a reasonably large sample size, but struggles when d = 10 or d = 15. Our method (HSIC-D)
detects dependence in high dimensions with many fewer samples.

Y = (y1, ..., Ym) jointly drawn from Pg,. We wish to conduct a null hypothesis significance test, with null
hypothesis $o : Pyy = Py x Py and alternative $1 : Pyy # Py x Py.

We wish to solve this problem without making strong (parametric) assumptions about the form of P, Py,
or P,. Most independence tests are based on estimating the “amount” of dependence between X and Y, or
equivalently the discrepancy between between P, and P, x P,. Given a nonnegative quantity which is zero
if X 1Y, we can reject g if our estimate is large enough that we are confident the true value is positive.

The most famous such quantity is the Shannon mutual information I(X;Y’). It can be defined as the
Kullback-Liebler divergence of P, from P, x Py, and is zero if and only if X 1 Y; equivalently, it is the
amount by which knowledge of Y decreases the entropy of X. While many estimators exist based roughly
on various forms of density estimation (see e.g. Szabo, 2014), as discussed above these can fail to detect
subtle or structured forms of dependence with reasonable numbers of samples. Variational estimators of
mutual information give an opportunity for problem-specific representations. As an example, consider the
following lower bound (van den Oord et al., 2018; Poole et al., 2019), called InfoNCE for its connection to
noise-contrastive estimation (Gutmann & Hyvérinen, 2012):

F(ziy:)
K (X:V)= E [IfK] <IX:Y here LK — log — < "
Nee(X;Y) (1) ~BE Nee| S I(X5Y) where  Iycg ; 08 KZ 1ef(xuy])

Here K is a batch size, which in our setting will typically be the total number of available points. Each
f: X xY — R (and each K) leads to a different lower bound; the largest I 7KE is the tightest bound. In

practice, users typically parameterize f as a deep network and maximize I CE on minibatches from a training
set, providing an opportunity for f to learn useful feature adapted to the problem at hand. There are a
variety of bounds of this general type; Poole et al. (2019) give a unified accounting of many. Different bounds
yield different bias-variance tradeoffs, but run up against various limitations on the possibility of estimation
(Song & Ermon, 2020; McAllester & Stratos, 2020).

For independence testing, the key question is whether the true value I(X;Y) > 0. This is guaranteed if a

lower bound, such as I{\IgE for some particular f and K, is positive at the population level, i.e. with the true

expectation. To estimate this, by far the easiest approach is data splitting: choose f to maximize LK NCE on

(minibatches from) a training set, then evaluate I E on the heldout test set.

How large should I@CE be in order to be confident that IngE > 07 That is, what does the distribution of

I{\ICE look like when I(X;Y) = 0, and hence I{\Ié{E < 07 For a given f, we can answer this question with
permutation testing, which estimates values under the null hypothesis (P, = P, x P,) by randomly shuffling
the test data, breaking dependence. To construct a test with probability of false rejection at most «, we can
compute the empirical 1 — a quantile from this permuted set, as long as we include the original paired data

in this shuffling (Hemerik & Goeman, 2018, Theorem 2). We reject the null hypothesis if this quantile is
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smaller than the test statistic

1 K 1 K 1 K
I 7K i Y3
s = T E f(wi,ys) — e E log o ef (@ivi) | (1)
i=1 i=1 j=1

Written in this form, notice that the second term of TNCE is permutation-invariant: changing each y; with y,,
for some permutation o changes the value of the first term, but does not change the value of the second. Put
another way, the test statistic and each of its permuted versions are % Zfil f(z;,y;) shifted by the same
constant. Thus, although this second term plays a vital role in selecting the critic function f, at test time the
only thing that matters is whether the mean value of f(z,y) is higher for the true pairings than for random
pairs. We call this term the neural dependency statistic (NDS) and denote it for a batch of K paired samples
X=(x1,..,zx) and Y = (y1, ..., yx) by

TO6Y) = 22 D fwi). @)

The same is true for the NWJ (Nguyen et al., 2010), DV (Donsker & Varadhan, 1983), Iys, and I, lower
bounds discussed by Poole et al. (2019), as well as the MINE estimator (Belghazi et al., 2018); that is, at test
time only the NDS statistic (2) matters.

2.1 Asymptotic test power

Typically, a mutual information lower bound is considered better if the population value of the bound is larger:
that makes it a tighter bound. This viewpoint, however, neglects the issue of statistical estimation of that
bound, e.g. the difference between I{;gE and i{;gE The best statistical test, among tests with appropriate
Type I (false rejection) control, is the one with highest test power: the probability of correctly rejecting the
null hypothesis £y when X } Y. Taking this into account, we examine the behavior of a permutation test
based on (1) or the many other mutual information bounds based only on the NDS (2). Each bound will

choose a different f during training, but at test time only the NDS matters.

Let Ty, = Ep,xp, f(z,y) and T, = Ep,, f(z,y) be the population level statistics under the null and
alternative distributions. Assuming a fixed critic f is chosen independently from test samples X and Y (e.g.
because of sample splitting), and that 0 < T%l = Varp,, f(z,y) < oo, the central limit theorem implies that

L /m(T —Ts,) SN (0,1). Then, using ® for the standard normal cdf, the rejection threshold r,, satisfies

T$H1

\ T-T m — /T, m — /mT.
oz:gr (\/mT>rm) zlgr <\/m o o T m 50) _1@(7M> + o(1).
0 0 T T

T$Ho $o o

As ® is Lipschitz, this implies 7, = /mTq, + Tg, (27! (1 — @) + o(1)). Using the asymptotic normality of T
under £, we then have that

R T-T m — VT
lgr (\/mT>'rm) :Er <,/m 91 > T m Y)l)
1 1

UG T$H,
i (me + 75 (<1>-1<1T; o) +o(1)) — VimTs, > o)
= (\/RTﬁT;T% - 2—1(@*1(1 —a)+ 0(1))> +0o(1). (3)

To confirm that these asymptotics give a reasonable approximation in finite sample sizes, we can check that
the asymptotic test power (3) for a given critic function f roughly agrees with the empirical test power using
a non-asymptotic rejection threshold estimated by obtaining fresh samples from the null distribution, i.e.
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Figure 2: Power of NDS tests with a particular critic f (learned by the approach of Section 5) on three
datasets described in Section 6. For each problem, the blue line (asymp) is power described by the asymptotic
formula (3) with the o(1) error terms set to zero, where we use 20 000 samples to estimate the population-level
statistics Tg,, Ty, and their standard deviations 7g,, 74,. The orange line (empirical) computes the power
based on the simulated null distribution, i.e. the threshold estimated via the empirical CDF of fg with test
size m. The green line (perm) is the permutation test power. All three lines roughly agree with each other.

the empirical quantile of T under the null. (This would not be available in practical situations, but is in
synthetic problems where we can obtain arbitrary numbers of fresh samples.) Figure 2 indeed confirms that
(3) gives a good estimate of the empirical power even at moderate sample sizes. (Intriguingly, the power of a
permutation test is consistently slightly higher than the test based on the correct non-asymptotic threshold;
we will discuss this issue in Section 7.)

This argument shows that, as long as T, > T4, and T has finite positive variance under both P, and
P, x Py, a test based on T will almost surely eventually reject any fixed alternative: the test is consistent.
How quickly in m it reaches high power, however, depends on the expression (3), which in particular for large
m is dominated by the signal-to-noise ratio (SNR) given by (T, — Tg,)/7s,. When we choose a test based on
maximizing the value of a mutual information lower bound, we maximize a criterion, e.g., (1), which does not
directly correspond to the test power. We will discuss instead maximizing the asymptotic power in Section 5.

3 Tests with the Hilbert-Schmidt Independence Criterion (HSIC)

The Hilbert-Schmidt Independence Criterion (HSIC, Gretton et al., 2005) is also zero if and only if X and YV
are independent when an appropriate kernel is chosen (Szabd & Sriperumbudur (2018) give precise conditions).
Unlike the mutual information, HSIC is easy to estimate from samples; for a fixed bounded kernel, the typical
estimators concentrate to the population value with deviation O,(1/y/m).

To define HSIC, we first briefly review positive-definite kernels. A (real-valued) kernel is a function k : X x X —
R that can be expressed as the inner product between feature maps ¢ : X — F, k(x,2’') = (¢(z), d(2')) 7,
where F is any Hilbert space. An important special case is F = R? and k(x,2’) = ¢(z) - #(z’), where ¢(x)
extracts p-dimensional features of z. For every kernel function, there exists a unique reproducing kernel
Hilbert space (RKHS), which consists of functions f : X — R. The key reproducing property of an RKHS F
states that for any function f € F and any point € X, we have (f, ¢(x))r = f(x).

Suppose we have a kernel k on X with RKHS F and feature map ¢, as well as another kernel [ on ) with
RKHS G and feature map 9. Let ® denote the outer product.! The cross-covariance operator is

Cuy = E | (0(2) - E(2)) ® (4(y) ~E¥ ()]

for kernels with finite-dimensional feature maps, this is exactly the standard (cross-)covariance matrix between
the features of X and those of Y. Under mild integrability conditions on the kernel and the distributions,?

IThe Euclidean outer product ab' is a matrix with [abT ]’ = a[bTb']; in Hilbert spaces, f®g : G — F has [f®4lg’ = f(g,9")g-
21t suffices that E[+/k(z, 2)I(y,y)] < oo; this is guaranteed regardless of the distribution when k, I are bounded.
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the reproducing property shows that (f, Cryg) = Cov(f(X),g(Y)) for all f € F, g € G. One definition of
independence is whether there exist any correlated “test functions” f and g. Thus, for rich enough choices
of kernel — using universal k and [ suffices, but is not necessary (Szabé & Sriperumbudur, 2018) — we have
that X 1 Y if and only if the operator C,, = 0. We can thus check whether the operator is zero, and hence
whether X 1 Y, by checking the squared Hilbert-Schmidt norm of Cy,, HSIC(X,Y) = ||Cyyllhg. With
finite-dimensional features, this is the squared Frobenius norm of the feature cross-covariance matrix.

Another way to interpret HSIC is as a distance between P,, and P, x P,, similarly to how the mutual
information is the KL divergence between those same distributions.

Proposition 3.1 (Gretton et al., 2012a, Theorem 25). Let k and | be kernels on X and Y, and define a
kernel on X x Y by h((z,y),(«',y")) = k(z,2")l(y,y') with RKHS H. Then

HSIC) (X, Y) = MMDy, (B, Py x By) = s E XY) - E [f(X,Y'
ki(X,Y) WPy, P x By) = sup - B &Y X/Nﬂ%[f( )]
1£ll2e<1 Y/~P,

vy iy, [RCG XDUY,Y7) = 2k(X, XY, Y7 + k(X XY™, Y7 |
Y”,Y/”N]P’y :

Taking the last form and rearranging to save repeated computation yields two similar, popular estimators of
HSIC. “The biased estimator” is HSIC(PMI7 P, x P, ) for empirical distributions P:

— 1
HSICy (X, Y) = — (K,HLH)  for (4, B)r = ZAijBij, (4)
ij
where here K is the m x m matrix with entries k;; = k(x;, x;), L similarly has entries l;; = I(y;,y;), and

H is the “centering matrix” I, — %1,,11;I (so the estimator can be easily implemented without matrix
multiplication). This estimator has O(1/m) bias, but is consistent.

The other common estimator, “the unbiased estimator,” is a U-statistic (Song et al., 2012):

— 1 _ 1) K1,,1) L1, 21)KI1,,
HSICEY) = =) (Y o m 2 m—2 |

m(m — 3)
where K and L are m x m matrices whose diagonal entries are zero but whose off-diagonal entries agree
with those of K or L. It is unbiased, EH/SI\Cu(X,Y) = HSIC(X,Y); it is also consistent, and can be
computed in the same O(m?) time as H/SI\Cb, without matrix multiplication. Either statistic can be used
with a permutation test to construct an independence test with finite-sample validity, in the same way as
described for mutual information bounds. The following subsection describes the behavior of such tests in
the large-sample limit.

(5)

3.1 Asymptotic test power

The unbiased HSIC estimator is asymptotically normal with f(HSIC — HSIC) 4 N(0,0% ) (Proposi-
tion A.1, in Appendix A). It is possible, however, to have 05.j = 0, which makes that result less useful;
this occurs in particular whenever HSIC = 0, and hence is always true under $)y. In that case, it is more
informative to say instead that mH/Sﬁu converges in distribution (which is not the case when 0’%1 > 0).
The distribution to which it converges is a mixture of shifted chi-squareds with complex dependence on P,
P,, k, and | (Proposition A.2). Thus, if we consider a test statistic mH/SEu, when HSIC = 0 this statistic
has mean zero and standard deviation ©(1). When HSIC > 0, though, the statistic has mean and standard
deviation ©(y/m) — oo. Thus, as m — 0o, eventually the test will reject if HSIC > 0 (Rindt et al., 2021).

Recall that the optimal test is one with highest test power among those with appropriate level control. As
for NDS-based tests, we can describe this power asymptotically. Let ¥ be the cdf of the null distribution of
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Figure 3: Power of HSIC tests based on kernels k and [ learned with the method of Section 5, evaluated
on problems described in Section 6. For each problem, the blue line (asymp) is power described by the
asymptotic formula (6), where we use 10000 samples to estimate the population level statistics HSIC, its
deviation og,, and the threshold ¥~1(1 — ) via simulation. The orange line (empirical) computes the power
based on the simulated null distribution, i.e. the threshold estimated via the empirical CDF of H/Sﬁu with
test size m. The green line (perm) is the permutation test power. All three lines roughly agree.

mH/S-Eu, which depends on k, [, P, and P,. It follows that the rejection threshold r;, satisfies

— 1
a= Er(HSICu >7ry)=1—Y(mry)+o(1) SO T = E(\Ilfl(l —a) +o(1)).
0

Using Proposition A.1, when oy, > 0 the asymptotic test power then satisfies

pr (FSIC, > 1) = Pr (WnHSICu—HSIC . mrm—ﬂsm>
M 5 0551 0'57)1
o (v - 1)) — HSIC
1@<mm( (1= 2)+ ofl) >+o(1)
0%,

B VmHSIC  ¥1(1 —a)+o(1) .
= ( 05, maﬁl ) - (1) (6)

Figure 3 verifies that this expression lines up well with the empirical test power even at moderate test sizes.
Additionally, (6) also tells us that, as long as HSIC > 0 and H/SI\Cu has finite positive variance, an HSIC-based
test will eventually reject with probability of one. The rate at which it increases in power is described by
the gap between the signal-to-noise ratio HSIC /o, and a threshold-dependent term ¥=1(1 — a)/og,, with
the former dominating the latter. This gap increases at a faster rate than the one described for NDS-based
tests (3); the ratio of the two terms is ©(m) for HSIC, while it is only ©(y/m) for NDS. (Appendix B gives
another motivation for the power being dominated by this signal-to-noise ratio, without using the central
limit theorem.)

3.2 MMD-based independence test

Given that more attention has been recently paid to learning two-sample tests than dependence tests, we
can consider reformulating the independence problem into a two-sample one: are P, and P, x P, the same
distribution? A natural measure of difference between distributions P, and P, x P, is MMDz(]P’w7 P, x Py)
with some kernel h, which becomes HSIC(X,Y') if h is a product kernel. For sufficiently powerful h, as
characterized by Szabé & Sriperumbudur 2018, MMD(P,,, P, x P,) = 0 if and only if X 1 Y. Thus it makes
sense to use any consistent MMD estimator as the test statistic; we use the biased U-statistic estimator
described in Gretton et al. (2012a) for simplicity.

Next we consider a testing procedure. The standard independence problem observes paired samples Z =
((:cl, Y1)y vy (Timy ym)) drawn i.i.d. from the joint distribution Py, and so to simulate samples from P, x P,
we first shuffle the Y samples by some permutation o on {1,...,m}. We define this action of permuting Z

2
with o as 6Z = ((#1,Y5(1))s - - - » (Tms Yo(m))) . These samples are then used to compute MMD,,(Z, 6Z). The
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following proposition shows that, with enough samples, this statistic is a consistent estimator of the true
MMD value.

2
Proposition 3.2. Suppose h satisfies sup,cx ,ey h((2,y), (x,y)) < v?. The estimator MMD, (Z, 0Z), where
Z is independent of a uniformly random o, satisfies with probability at least 1 — § that

INIMD, (7, 07) — MMD? (P, P ><]P’)\<LV2 2log > 4
b\ xys L x y)l = \/ﬁ g(s \/m

This result is proved in Appendix F.4.

Viewing this permuted MMD estimator as a function of the original paired samples, i.e. f(Z) := mi(z, oZ),
we then perform an independence permutation test by shuffling only the Y samples in Z. Under the null
hypothesis the distribution of Z is unchanged by shuffling the Y samples, and so an independence permutation
test on f(Z) is guaranteed by Theorem 2 of Hemerik & Goeman (2018) to have correct level control, provided
the original sample order is included in the permutations.?

It’s also worth noting that, since the MMD estimator is a two-sample statistic, the number of samples of Py,
and P, x P, can be different. As such, we can also consider using multiple permutations o = {01, ...,0,}
rather than just one, and then simulate the null samples as 6Z = |J 0;Z. It turns out that if we consider all

rotation permutations, l\mi(Z, oZ) is exactly the biased HSIC estimator H/Sﬁb(X, Y). We elaborate on
this connection in Appendix F.4 and show that using more permutations improves estimation quality. The
HSIC estimator, which effectively uses all permutations, is the minimum variance estimator for this permuted
MMD statistic (Proposition F.2).

4 Connecting HSIC and Mutual Information Tests

4.1 HSIC as a lower bound on MI

Suppose the kernel h on (x,y) pairs of Proposition 3.1 is bounded: sup,¢y ey h((7,y), (z,y)) < v? for v > 0.
Then

[f (@ 9)| = [(fs on (@, 9))a| < fllwlon (@, 9)lle < vl Flln
f(@,9)] = L||f|loc. This implies that

by the reproducing property and Cauchy-Schwarz, so || f|lx > %supm’y
{fIflle <1} CH{f: || fllc < v}, and so by Proposition 3.1,

HSIC(X,Y) < su E X, Y)]- E X, YN] =20 TV(P,,,P, x P,), 7
) f:HfHoIzSu(X’Y)NPw[f( . f,”ﬂﬁ;w[f( )] (Py v) (7)

where TV is the total variation distance between distributions (Sriperumbudur et al., 2012).* Applying
standard bounds relating the total variation to the KL divergence, we obtain the following.

Proposition 4.1. In the setting of Proposition 3.1, suppose sup,cx ey h((7,v), (z,y)) < v2. Then

1 1
— <I(X; - N <I(X:;Y).
5,5 BSIC(X,Y) <I(X:Y)  and log (1 o HSIC(X,Y)) <I(X;Y)

Proof. The first bound applies Pinsker’s inequality, which relates total variation to KL, to (7). The second
instead applies the bound of Bretagnolle & Huber (1978) (also see Canonne, 2022). O

30ne might wonder whether we can instead perform a two-sample permutation test. Consider the test statistic as a function

of the pooled samples f([Z,0Z]) = l\mi (Z,0Z). The two-sample permutation test involves shuffling the order of Z U oZ,
however, exchangeability of Z U ¢Z under the null is not guaranteed as variables in the first split are deterministically tied to
variables in the second; thus a two-sample permutation test may not be valid. A workaround would be to independently split
the data into Z;1 and Z2 and then construct the pooled sample as Z1 U 0Zsa, but this process is more involved and potentially
lower-power.

4Sriperumbudur et al. (2012) define the TV as twice the more common definition, which we use here.
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The second bound is tighter for large values of I(X;Y’), but both are monotonic in HSIC(X,Y)/v?. We could
thus consider, as in Section 2, choosing kernels k, [ to maximize a lower bound on I(X;Y), by maximizing
HSIC(X,Y)/v?. Indeed, maximizing HSIC has been used by previous applications in many areas (e.g.
Blaschko & Gretton, 2009; Song et al., 2012; Li et al., 2021; Dong et al., 2023).

4.2 Kernel-based tests and variational MI tests

Now consider a test based on MMD f(P,,,, P, xIP,) using a kernel of the form h((x,y), (',y")) = f(z,y) f(2',y)
for some real-valued function f. If f(x,y) = fi(z )fQ(y), this is an HSIC test with kernels k(x, ') = f1(z) f1(z)
and I(y,y") = f2(y) f2(y'). Because ¢p(z,y) = f(x,y) € R is a valid feature map, every function in H is of
the form af = [(z,y) — af(z,y)] with ||af]l% = |a|. By Proposition 3.1,

MMD f(Pyy, P, x P,)? = (supa(]E FX,Y)- E f(X,Y’))) =(E f(X,Y)- E F(X,Y))°

Ja|<1 Pay z Xy Pzy Xy

The plug-in estimator would yield the test statistic

MMD, (X, Y) Zf Tiys) — — ZZf(xi,yj) ; (8)

which when f(z,y) = f1(z)f2(y), corresponds exactly to H/SI\Cb.

Comparing (8) to (1) with K = m, we can see that the main term 7' = LS. f(xi,y;) is identical, which
we called the NDS (2). The other term is permutation-invariant; it is the mean of T over all possible
permutations, 7. Thus, a permutation test based on (8) asks how far the value of T for the true data is from
T, while a test based on any variational MI estimator based on (2) is equivalent to asking how much the
value of T' exceeds T. The only difference is that (8) gives a two-sided test, while (1) is a one-sided test.”

Our usual test uses mu of (5) instead of @b, but the difference in estimators is typically small. Thus,
if we use deep kernels of the form k(z,z’) = f(x)f(z') and I(y,y") = g(y)g(y’), obtaining a test quite closely
related to a witness two-sample test (Kiibler et al., 2022) used for independence, the HSIC test is nearly
equivalent to the NCE test with a separable critic function (z,y) — f(2)g(y). This relationship is roughly
analogous to the relationship between classifier two-sample tests and MMD tests observed by Liu et al. (2020):
while each test chooses a critic/kernel in a different way, at test time they are essentially equivalent.

5 Learning Representations for Independence Testing

Choosing a test based on maximizing the value of its statistic does not directly correspond to the test power.
Instead, we would perhaps be better served by maximizing the power directly. Recall the asymptotic power
expressions for NDS and HSIC-based tests given by (3) and (6), respectively:

Pr(l > r) 0 (VLT D1 - a)) and PrISIC, > 1) w0 (YLIIC XL -0
1 T LG Rl 0%, \/70&1

In both cases, as the sample size m grows, the power is dominated by the signal-to-noise ratio

SNR[T] = (T — Ts,)/7s, and  SNR[HSIC] = HSIC /o4, . (9)

Maximizing the SNR maximizes the limiting power of the test as m — co. (Also see Appendix B.) Thus,
maximizing estimates of the SNR (based on a finite number of samples n) will roughly maximize the power
of a test at an arbitrarily large sample size (m — 00); also see discussion by Sutherland & Deka (2019); Deka
& Sutherland (2023).

5Li et al. (2021, Section 3.1) also found a relationship between HSIC and Iycg for categorical Y.



Under review as submission to TMLR

Alternatively, we can also choose to include the threshold-dependent term. This may be helpful, particularly
in estimating the power at points where the number of samples is not overwhelming: for tests with a 50%
probability of rejection, the two terms in the power expression are necessarily the same size. For NDS,
the gap between the two terms only grows with /m, and additionally estimating 7, is no problem when
already estimating T, , thus we propose to include the threshold term in choosing an NDS critic. For HSIC,
however, the threshold-dependent term is both relatively less important as m grows and much more difficult
to estimate.5 Therefore, we propose to optimize the SNR with the threshold term for NDS, and without it
for HSIC. Our population level objectives, as functions of random variables X and Y, are then

T(Xay;f)_Tfjo(va;f) T-V.)O(X7Y;f)

Jxps(X, Y5 f) = - 1 - 10
and SIC )
HSIC(X,Y; k
X.V: — Ui b 11
JHSIC( 3 7kal) O'ﬁl(X,Y;k,l) ( )

Then, if we have a batch of paired observations X = (X1, ..., X;p) and Y = (Y3,...,Y,;,) sampled jointly from
Pxy, we can approximate Jxps and Jusic by the estimators Jﬁ\IDS and JQSIC, which we define below.

NDS objective. We define JAl(\IDS as the plug-in estimator of Jypg with variance regularization A > 0. We
estimate T, = Ep,, [f(X,Y)] by its sample mean T(X,Y) = L 3" f(X;,Y;), and Tm =Ep, xpy f(X,Y)
by the V-statistic T, (X, Y) = Ly ZT:l f(X3,Yj). The variance terms 78 and 7¢  are estimated with
a regularized version of the sample variance,

2

2oAE Y f) = %ZZ J(X:, 7)) zZZf -
=1 i—1 i'=1j/=1
m y m ] ?

72 XY f) = ;Z( (X;,Yi) = %Zf(XJHYj) A
-1 j=1

where A > 0. Putting it all together, our complete NDS objective is

T(X’Y§ f) _TO(va; f) 7A—f.)o(Xv Y; f)

_ —1 _
oA (X, Y5 ) NN S (12)

Rps(X,Y; f) =

HSIC objective. jﬁSIc is defined in a similar manner. We estimate HSIC by the unbiased estimator
HSIC,(X,Y) given in (5), and we approximate the variance term 0%1’ , according to

—2
63, A(X,Y; k1) = 16(R — HSIC,)) + A

which is just a regularized version of the variance estimate stated in Proposition A.1. Following Song et al.

(2012), this can be computed more efficiently with R = %Hh“ , where the vector h is

h=(n-2?(KoL)1-n(K1)o(Ll)+ (1 "L1)K1+ (1"K1)L1 - (1"KL1)1
+(n—-2) (1" (KoL)1)1- KL1- LK1),

6Ren et al. (2024) proposed using a moment-matched gamma approximation to the threshold, and claimed that not including
this threshold can lead to catastrophically wrong kernel choice. We argue in Appendix F.5, however, that their argument is
unjustified. We also find experimentally in Section 6 that including it can choose worse kernels in practice. More common
contemporary approaches to estimating the threshold use permutation testing or eigendecomposition; both involve substantial
computational overhead, and the latter is particularly expensive to differentiate while the former can be quite difficult to usefully
estimate on the same data as the HSIC estimate, as observed for MMD by Deka & Sutherland (2023) and discussed further in
Section 7.

10
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Algorithm 1 Independence testing with learned representations
Input: paired samples Sz = (Sx, Sy); split the data into Si U S with (S%, S%) « SU; (5%, Ste) « Ste;
model parameters 6 < 0y and test statistic 7(X,Y;0); various hyperparameters like A < 1078, etc.

# Phase 1: train the parameters 6 on S“Zr
for T =1,2,...,Tmax do
(X,Y) < minibatch from S% = (S¥, 5ir);

J> (X,Y;0) « compute SNR estimate; # as in Equation (12) or Equation (13)
0 04+nVeJ X, Y;0) # gradient ascent step
# Phase 2: permutation test on S? with learned representations
perm,y < T (S%,5%2;0) # evaluate test statistic
for i =2,...,nperm do
perm; <+ T (S, shuffle(S%2); 0) # no need to shuffle both sets
Output: ko, I, permy, p-value npi'rm :L:pﬁl,,.m 1(perm; > perm,)
with o denoting elementwise multiplication on matrices, and 1 = (1,...,1) € R™. Thus, the complete HSIC

objective is
HSIC, (X, Y; k,1)
G AX Y5 k,0)

Jsic(X, Y k1) = (13)

Maximizing (12) or (13) then gives us a structured approach to select the critic or kernel yielding the strongest
asymptotic test. Typically, we run some variant of a gradient-based optimization algorithm with respect to
the parameters of the critic or kernel class, and do hyperparameter selection and early stopping based on the
same objective on a validation set.

Critic & kernel architecture. We consider function families parameterized by deep networks, as this
allows us to learn representations of the data that more efficiently capture dependency. For critics, this
parameterization is straightforward and is typically some problem-specific architecture like multilayer percep-
trons or convolutional networks. For kernels, we first incorporate a featurizer that acts on individual inputs x
and y, and is then fed to some standard kernel function. When our feature mapping is parameterized by
deep networks, we get the class of deep kernels (Wilson et al., 2016), which have been successfully used in
two-sample testing (Sutherland et al., 2017; Liu et al., 2020; 2021) and many other settings (e.g. Li et al.,
2017; Arbel et al., 2018; Jean et al., 2018; Li et al., 2021; Gao et al., 2021). We use the following deep kernels
for X and Y:

ko(z,2") = (1 = ex) kix (fu(@), fu(z") + ex gx (2, 27)
Iy(y,y') = (1 —ev) ky (94(%), 9+ (¥')) + ev av (v, ).

Here f, and g, are deep networks with parameters in w, v, which extract relevant features from X or ) to a
feature space RP. These features are then used inside a Gaussian kernel & on the space R, to compute the
baseline similarity between data points. We then take a convex combination of that kernel with a Gaussian
kernel ¢ on the input space; the weight of this component is determined by a parameter ¢ € (0,1).” The
lengthscale of k and ¢ as well as the mixture parameter e are included in the overall parameters, w or -y, and
learned during the optimization process.

Overall representation learning algorithm. The overall procedure, written based on minibatch gradient
ascent for simplicity, is shown in Algorithm 1. In practice, we use AdamW (Loshchilov & Hutter, 2019), and
draw minibatches in epochs; experimental details are given in Appendix E.1. The randomized p-value is
potentially conservative in the case of ties; breaking ties randomly can give a slight improvement when ties
are present (Hemerik & Goeman, 2018).

Time complexity. Each training iteration is dominated by computing the objectives Jpg and Jigc-
Suppose K is the minibatch size. For NDS tests, if Ey is the cost of evaluating critic fp(x,y), then one

"Using € > 0 provides a “backup” to the deep kernel, perhaps giving some signal early in optimization when the deep kernel
features are not yet useful, and guaranteeing that the overall kernel is characteristic.

11
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training step costs O(K2?Ez). For HSIC tests, if Ex and Ey are the costs of computing embeddings f.,(z)
and fy(y), and L the cost of computing k,(z,2’) and I4(y,y’) given the embeddings, then each training
iteration costs O (KEX + KEy + KQL). Typically, for practical values of K, Ex + Fy > KL, so this cost
is “almost” linear in practice.®

Theoretical analysis. While neither jli\IDS nor jﬁSIC are biased estimates of the relevant population
quantities,” the following Theorems 5.1 and 5.2 show that they are both uniformly bounded in probability.

Theorem 5.1 (Uniform convergence of jﬁ‘IDS). Let {fy : 0 € O} be a critic family with parameter space
O satisfying Assumptions (A) to (C) in Appendiz C.2 which define a critic bound B, dimension D, and
smoothness L. Suppose 792 > 52 for some positive s under both $Hy and H1, and X = 9(n‘1/3). Then

. . 1 B
A — = — | =+ B’L+B*VD| ).
Sgg Japs(0) JNDS(Q)‘ Op <s2n1/3 [S t +

Theorem 5.2 (Uniform convergence of Jjgic). Let {ky : w € Q} and {I,, : v € T} be kernel families with
parameter spaces Q and T satisfying Assumptions (A’) to (C°) in Appendiz D.2 which define kernel dimensions
Dgq, Dr and smoothnesses Ly, L;. Suppose wa > 52 >0 under $H; and A = G(nfl/?’), Then

2 . 1 1
sup | Jpsro(w,y) — JHSIC(w,'y)‘ =0, (21/3 { + Ly + Ly ++/Dq + Dp]) .
wen,yer s2n s

Appendices C and D state and prove non-asymptotic versions of the above results based on covering numbers;
the assumptions and proof techniques are similar to those of Liu et al. (2020)!°, but is slightly more involved
for a few reasons: 1) Uniform convergence of HSIC and its variance estimators now include two kernels, & and
[, instead of one, and a somewhat different estimator form. 2) For NDS we also need to show convergence of
a null-to-alternative variance ratio, a term which is not present in the MMD or HSIC objectives.

Following Theorem C.13 (a standard result from van der Vaart, 1998), successfully maximizing these estimates
will thus also maximize the population quantity, and consequently the asymptotic test power, for sufficiently
large training set sizes n.

6 Experiments

Baselines. We compare our HSIC-based (HSIC-D/Dx/0) and MI-based (NDS/InfoNCE/NWJ) tests with
various alternative methods. All tests are performed using permutation testing.

e HSIC-D: HSIC using deep kernels on each space A and Y; simultaneously trained via Section 5.
o HSIC-Dx: HSIC using a tied deep kernel, i.e. k, = [, and trained via Section 5.

e HSIC-O: HSIC using Gaussian kernels, with each bandwidth parameter optimized via Section 5.
o NDS: The neural dependency statistic (2) trained via Section 5.

e InfoNCE (van den Oord et al., 2018; Poole et al., 2019): the statistic Iyqg as in (1).

o NWJ (Nguyen et al., 2010; Poole et al., 2019): another mutual information bound statistic Inwy.
o HSIC-M: HSIC using a Gaussian kernel, with bandwidth selected via the median heuristic.

o HSIC-Agg (Albert et al., 2021; Schrab et al., 2023): aggregating Gaussian kernels of various bandwidths.
We use the complete U-statistic with default settings: B1 = 500, B2 = 500, B3 = 50, and uniform weights.

o MMD-D: The method of Liu et al. (2020) applied to Py, vs P, X IP’y,H with a Gaussian kernel on X' x ).

8Equation (13) could use block estimators (Zaremba et al., 2014) or incomplete U-statistics (Blom, 1976) to reduce O(K?2L)
to O(KPL) for any B < 2, at the cost of increased variance (see Ramdas et al., 2015).

9Indeed, no unbiased estimator is likely to exist; see Appendix A of Deka & Sutherland 2023.

10Ren et al. (2024) stated a similar result to Theorem 5.2, but with an incorrect proof; although they claim uniform convergence
over their threshold estimate, their proof makes no attempt at showing uniformity, instead showing pointwise convergence.

M Specifically, we compare Z ~ P, against a single shuffle of the samples ¢Z, as detailed in Section 3.2. We use this approach
over the data-splitting approach since it both minimizes memory (compared to using a large number of permutations) and
performs slightly better in practice, as seen in Figure 13.

12
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o (C2ST-S (Lopez-Paz & Oquab, 2017) / C2ST-L (Cheng & Cloninger, 2022): Sign/logit-based classifier
two-sample test for Py, vs P, x P,, with samples set up the same way as for MMD-D.

Datasets. We consider four informative datasets, where the true answers are known.

e High-dimensional Gaussian mixture. The distribution HDGM-d has d total dimensions (divided
between X and Y'), but has dependence between only two of them:

2 4 1 0.5(-1)" 0%,
[XlaY[d/ij~~7X]'d/2'\7Y1] ~ Zi./\f 0g, [0.5(—1)" 1 0572 ,
i=1 04_2 042 Ig—o

where the odd dimensions are taken to be from P, and even dimensions to be from IP,. Moreover, for d > 4 the
dependent variables X; and Y| 4,2 are at different dimensions. We perform independence tests at dimensions
4, 8, 10, 20, 30, 40, and 50. This distribution is similar to one used by Liu et al. (2020).

e Sinusoid (Sejdinovic et al., 2012). We sample from sinusoidally dependent data with distribution
P, o 1+ sin(¢z) sin(fy) on support X x Y = [—m, «]?. Higher frequencies ¢ produce subtler departures from
the uniform distribution, resulting in a harder independence problem; we use £ = 4. A visualization of this
density is given in Figure 8.

e RatInABox (George et al., 2024). RatInABox simulates hippocampal cells of a rat in motion. In particular,
we test for dependence between firing rates of grid cells and the rat’s head direction. Grid cells respond near
points in a grid covering the environment surface, and should be subtly connected to head direction because
of the geometry of the “box” (Figure 7). We consider 8 grid cells, and simulate motion for 100 000 seconds,
taking a measurement every 5 seconds as our dataset.

e Wine Quality (Paulo et al., 2009). Details physicochemical properties (e.g., sugar, pH, chlorides) of
different types of red and white wines and their perceived quality as an integer value from 1 to 10. We test
for dependency between residual sugar levels and quality.

Power vs. test size. We first compare how well methods identify dependency with a large-size training
set, by comparing the rate at which the learned tests achieve perfect power (1.0) as the test size m increases.
Training and validation sizes for each dataset are given in Appendix E.1, and results are visualized in Figure 4
(with comprehensive results in Figure 9). Overall, HSIC-D outperforms baselines, and is able to reach perfect
power at smaller test sizes m. We note that HSIC-O performs reasonably well for simpler problems like
Sinusoid, but struggles on harder problems like RatInABox. This suggests that no Gaussian kernel on the
input space is well-suited for the task. On the other hand, kernels applied to optimal representations of the
data (HSIC-D) are the most powerful. Surprisingly, optimizing the power of NDS tests is significantly weaker
than directly maximizing InfoNCE or NWJ; we elaborate on this in the following section.

—&— HSIC-D —#— HSIC-Dx —A— NDS InfoNCE Nw) —- C2ST-L C2sT-S —&- MMD-D —A— HSIC-O —#— HSIC-M —#*— HSIC-Agg
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Figure 4: Empirical power vs sample size m for different datasets, when trained with a large training set.
The average test power is computed over 5 training runs, where the empirical power is determined over 100
permutation tests. The shaded region covers one standard error from the mean.

Power vs. dataset size. A drawback to kernel selection via optimization is that we must hold out a split
of the data for training. In contrast, HSIC-M and HSIC-Agg are able to utilize the entirety of the dataset for
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their test. To examine this trade-off, we consider consistent data splitting at datasets of varying sizes. For
the HDGM and Sinusoid problems we use a 7:2:1 train-val-test split, and for RatInABox and Wine we use a
3:2 train-test split. Conversely, HSIC-M and HSIC-Agg use the entire dataset for testing. Results are shown
in Figure 5. Non-splitting methods are able to take advantage of the additional test samples and outperform
some data-splitting methods at smaller dataset sizes; for large dataset sizes the reverse is true. The validation
set in this experiment is used only for early stopping of the training process, and not for hyperparameter
selection.

—&— HSIC-D —#— HSIC-Dx —A— NDS InfoNCE Nw) —- C2ST-L C25T-S —&- MMD-D HSIC-0 —&— HSIC-M —#*— HSIC-Agg
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Figure 5: Empirical power vs dataset size. HDGM and Sinusoid uses a consistent 7:2:1 train-val-test split
across all dataset sizes, while RatInABox and Wine maintain a 3:2 train-test split. HISC-Agg and HSIC-M
do not split the data. The shaded region covers one standard deviation over 5 training runs.

SNR with vs. without threshold. Our HSIC objective jﬁSIC disregards the threshold-dependent term,
whereas the NDS objective J{pg does not. The impact this term has during training, however, is still unclear.
We compare the strength of tests maximized with and without this term in Figure 15. It is important to
note that the threshold estimate for HSIC is challenging (see also Footnote 6); we use a method based on
the moment-matched Gamma approximation, but with improved gradient estimation rather than the finite
differences estimate they used (Appendix F.6). This estimate, in either form, introduces substantial additional
code complexity and its own bias and variance that could each hurt overall performance. In general, we
find that including the threshold for HSIC has no strong effect on simpler problems, but degrades the test
power for harder problems. On the other hand, NDS with the threshold yields stronger tests. This is not too
surprising as, unlike for HSIC, the null distribution here follows the CLT and is easily approximated given
enough samples.

7 Discussion

Independence tests with MMD. We find that MMD-D underperforms HSIC-D in almost all settings,
despite the equivalence between MMD and HSIC specified in Proposition 3.1. This equivalence, while true
at the population level, is not the case when considering finite sample estimates. These estimators exhibit
different statistical properties, with some being more conducive to learning than others. In particular, we
notice that MMD estimators based on a single permutation of the samples (as described in Section 3.2)
exhibit larger variance compared to HSIC ones. We prove this for the biased estimators in Appendix F.4,
and observe the same phenomenon when training MMD-D and HSIC-D.

Permutation tests sometimes disagree with asymptotics. We hypothesized that maximizing an
estimate of the asymptotic power would produce stronger tests than maximizing the test statistic directly.
Although this seems to be true for HSIC (Appendix F.3), it is surprisingly not the case for MI-based statistics;
The previous power versus test size experiments show that directly maximizing InfoNCE or NWJ outperforms
maximizing the NDS asymptotic power, at least when using a permutation test. Why is this?

Figure 6 examines several power estimates for an NDS test based on an InfoNCE-learned critic. Notice
that the asymptotic formula (blue) agrees well with the simulated test power (orange), indicating that the
asymptotics describe the test well. However, the permutation power (green) is significantly greater than what
the asymptotics suggest. Recalling that the simulated test power is in fact using a near-exact threshold based
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Figure 6: Power of NDS tests derived from a learned InfoNCE critic f. For each problem, the blue line
(asymp) is power described by the asymptotic formula (3), where we use a very large sample size (n = 20000)
to estimate the population level statistics T, Ty and their deviations og,,0,. The orange line (empirical)
computes the power based on the simulated null distribution, i.e. the threshold estimated via the empirical
CDF of T}, with test size m. The green line (perm) is the permutation test power.

on the empirical quantile of the test statistic under the null, this should be roughly the most powerful valid
test with a sample-independent threshold. Permutation tests, however, use a sample-dependent threshold,
which in this case apparently can yield a much more powerful test than the best sample-independent threshold.
We explore this discrepancy further in Appendix F.7.

Thus, while maximizing the power of the NDS test maximizes the asymptotic power of a test with a data-
independent threshold, it does not necessarily maximize the power of a permutation test. InfoNCE, and
other variational MI estimators, seem to frequently choose critics whose sample-independent threshold tests
are worse than those obtained by NDS maximization, but whose permutation tests are actually much more
powerful. Exploring this connection more deeply is a very intriguing area for future work.

We did not observe this discrepancy for HSIC; maximizing the sample-independent asymptotics for HSIC
seems to yield permutation tests (roughly matching their asymptotics) which still outperform InfoNCE or
similar NDS permutation tests. Overall, HSIC-D seems to be the most reliable method of those considered
here.

8 Conclusion and Future Work

Independence testing aims to see if two paired random variables are statistically independent. We explored
two families of tests to address this problem. The first are tests based on variational mutual information
estimators, which, to the best of our knowledge, we are the first to construct. The second are tests based on
maximizing the asymptotic power, which was explored for the two-sample problem but not for independence
testing. Our findings show that learning representations of the data via our proposed methods lead to powerful
tests, with HSIC-based tests generally outperforming MI-based ones. Future work may look to extend this
learning scheme to conditional independence testing and apply this to causal discovery. Meanwhile, it will also
be valuable to investigate approaches for mitigating, or even removing, the data-splitting procedure — as done
by Biggs et al. (2023); Kiibler et al. (2020) — while maintaining the ability to learn rich data representations.
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A Asymptotics of HSIC Estimators

Proposition A.1 (Song et al., 2012, Theorem 5). Under the alternative hypothesis 1 : Py, # Py x P, the
unbiased estimator of HSIC is asymptotically normal: with m samples,

V/m(HSIC, — HSIC) % N(0,02 ). (14)
The asymptotic variance offH/Sﬁu, U%l , can be consistently estimated from n samples'? as 16 (R - HSICz)

2
where R = %Z?:l (EZ ;1): Z(J aryein/ (i} h(i,j,q,r)) . Here i’ \ {i} denotes the set of all {-tuples drawn

without replacement from the set {1,...,n} \ {i}, and h(i,j,q,7) = 55 Zgliii,) kst(lst + lyw — 2lsy,), where

the sum ranges over all 4! = 24 ways to assign the distinct indices {i,j,q,7} to the four variables (s, t,u,v)
without replacement.

The behavior of the estimator is different under the null hypothesis (X L Y'); in this regime m H/-SEu (rather
than /mHSIC,,) converges in distribution to something with complex dependence on P, P,, k, and .
Proposition A.2 (Gretton et al., 2007, Theorem 2). Under the null hypothesis $g : Py = Py x Py, the

U-statistic estimator of HSIC is degenerate. In this case mH/SEu converges in distribution as

mHSIC, % Z)\@(Z% - 1),
=1

where zy i N(0,1), and X\, are the solutions to the eigenvalue problem

Aetbe(z5) = /hijqr¢e(2i)dFi,q,r,

where hijqr = h(i,7,q,7) s defined in Proposition A.1, and F; 4, denotes the probability measure with respect
to variables z;, z4, and z,.

B Bernstein-based Justification for the SNR

For both the NDS and HSIC tests, our justifications of the SNR, criterion for test power, (3) and (6), relied
on the asymptotic central limit theorem. A Berry-Esseen theorem would provide uniform bounds on the o(1)
terms that appear in these derivations, but one might expect for HSIC in particular that these might not be
especially tight in some cases: since the null distribution is asymptotically a mixture of chi-squared variables
(Proposition A.2), when the dependence under the current kernel is weak, the distribution may be further
from normal.

We can also justify the same criterion, although less precisely, with a non-asymptotic argument. While we
present it here for HSIC, it also applies in the same way to NDS. The Bernstein-type bound of Maurer (2017,
Theorem 6) gives that, for kernels bounded as in Assumption (C’),

— —ne?
Pr ( HSIC — HSIC| > 5) < 2exp <.
| | 203, v B
Solving for €, we obtain
2
—me 1)
<log =
205, + T4 B =0
1. 2 2304vy, 256
2 2
e” > EIOgS <20,-]1 +7m—4 +—3 s>
256 2 2 2 2304n0
2
TR ( 75,108 5+ m_4> =0

12Typically m = n, but we might want to use a few (n) samples to roughly estimate the power of an m-sample test with
m > n, as done in a different context by Sutherland & Deka (2019); Deka & Sutherland (2023).
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This can be written €2 — Be — C? > 0 for positive B,C; restricting to positive e, this occurs when
€ > %B + %\/ B? + 4C?, and hence also occurs when ¢ is larger than the (slightly larger but simpler) bound
B + C. That is, with probability at least 1 — J, it holds that

— 256 . 2 2 2 2304l/kul
HSIC — HSIC| < log log -7
[HSIC SC‘*Sm 5 \/maﬁl (5 m—4
L 256, 2 N \/2 2 N 230413,
=3m 55 ™ 5 m—4

Recall from the discussion preceding (6) that the rejection threshold rp, is L (¥71(1 — a) 4 o(1)) (where ¥

will vary with the kernel choice). Now, a sufficient condition for the test rejecting is that both HSIC > HSIC —¢
and HSIC —e > r,,. Plugging in the deviation from above, we obtain power at least 1 — § as long as

256 2 2 2 23041y
HSIC m + — log — —log — _
>r +3m 0g5+0ﬁ1\/m0g5+\/

m—4

Vil

2
=0g, Elogf—&—a(\l/*l(l—a)—k(?(l))—|—48 —

absorbing £ 256 1og% = O(1/m). Equivalently, the power condition holds if

HSIC 48 ww 1—a)+o< 1 )

0%, 4 091 mog,

Now, we know that scaling k or [ should not change the difficulty of the problem: indeed, it will scale HSIC,
o5,, Y71(1 — ), and /741 all equally. Thus, the only term in this inequality which is potentially sensitive
to scaling is the final O term. From this point, then, while other changes in the kernel could potentially
affect ¥71(1 — a)/og, in meaningful ways, for reasonably large m and og, not too drastically small, the
right-hand side is only weakly dependent on the kernel choice. It is thus reasonable to think that we can
maximize the left-hand side of the inequality, and ignore the right-hand side, to roughly maximize power. It
seems highly unlikely, however, for the coefficient 48/+/m — 4 to be exactly the right trade-off between HSIC
and the kernel bound; this comes out of the details of the (conservative and somewhat loose) concentration
inequalities to reach this point. To maximize our chance at having high power, then, it is very reasonable to
maximize the SNR.

C Uniform Convergence: NDS

C.1 Preliminaries

We start by defining the notation used in the following proofs. Let fy be the critic function with parameters
0, and {X;,Y;}i=1.» be samples drawn from the joint distribution, with X = {X;};=1., and Y = {Y; }i=1. n-

We define the population level statistics based on critic fy as

T, := ng [fo(X,Y)] and  Tpg:= , E]P, [fo(X,Y)],

x Xy

with their corresponding finite sample estimates
R 1 n R 1 n n
Tro:= 5;@0@-,1@) and Ty = —Q_ji_jlfa(Xi,Yj).

We note that 7} is just the NDS (2), and that Ty is the permutation invariant term in the numerator of
Equation (12). For brevity, we often omit the subscripts 0,1 and/or the parameters 6 when it is uninformative
or clear from the context.
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We respectively denote the alternative and null variances by

0f = Var[fo(X,Y)]  and &= Var [fo(X,Y)],

with corresponding finite sample estimates

M=

f9 XzaYz ZfQ E ]

1
n

=1

and

m] QZZfOszy

i'=15'=1

1n
'772::

We choose this notation, rather than Tﬁl and Tﬁo used in the main body, for distinguishability. As before, we
often omit the subscripts when it is clear from the context.

HM:

C.2 Assumptions

Our main results assume the following

(A) The set of critic parameters © lies in a Banach space of dimension D, where each parameter in the
space is bounded by R

©c{0: 0] <R}

(B) The critic f is uniformly Lipschitz on X x ) with respect to the parameter space ©:
|f9($7y)—f9/(l‘7y)‘SLHH—HIH vx€X7y€y79€®'

(C) The critic is uniformly bounded:

sup sup | fo(z,y)| < B;
€O zeX
yey

that such a B exists is implied by the previous two assumptions.

C.3 Lemmas

Lemma C.1 (Concentration of Tl) For any critic f satisfying Assumption (C), with probability at least

1 — 6 we have
N 2 2
[Th —Th| < By/—log .
n 1)

Proof. The result follows from McDiarmid’s inequality. First, we show that T satisfies bounded differences.
Let 7' fk) denote the 7} statistic but with sample X}, Y}, replaced by 2/, y'. For any k € [n], we have

1 2B
sup |T( ) T1| = SUP - (f(«"y) - f(X,ka))‘ < o
x’%’z P

so that with probability 1 — ¢,

Ty —ETy| <

DN | =

", /2B\? 2 2 2

1=1
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Lemma C.2 (Concentration of TO). For any critic [ satisfying Assumption (C), with probability at least

1 — 6 we have
A . 2 2
|To — ETy| < 2By/ —log —.
n )

Proof. The result follows from McDiarmid’s inequality. First, we show that 7} satisfies bounded differences.
Let T ék) denote the 7T} statistic but with sample X}, Y} replaced by 2/, y'. For any k € [n], we have

Ak a 1
sup (1§ = 1o = sup —| > (£(2', ;) = F(Xi. ¥;))
XY Xy ik

+ > (F&ay) = 1Y) + D () = F(X ) ’

#k i=j=k
~k

2B(2n — 1)

<
> n2

)

(2B(n—1)+2B(n—1)+2B) =

so that with probability 1 — 9,

. . 2 2 1 2 [2 2
Ty —ETy| £2B —— =+ — | log - <2By/—log -
%o ol < \/(n n2+2n3) %85 < n 8%

for all integers n > 0. O

Lemma C.3 (Bias of TO). For any critic f satisfying Assumption (C), the bias of Tb is bounded by

. 2B
|[ETo —To| < —.
n
Proof. Notice that
A 1 1 n—1 1
ETo=E ﬁgf(Xian)‘FﬁZf(Xth) =— T+ T,
i#] =j

so that ) B
|ETy —To| = = |Th — Tp| < —.
n n

O
Lemma C.4 (Concentration of 62). For any critic f satisfying Assumption (C), with probability at least

1— 6 we have
1 2
|62 —E5?| < 53%/%10%.

Proof. The result follows from McDiarmid’s inequality. First, we show that ?2 satisfies boundeq differences.
Let fig := =", f(X;,Y;)? be the 2nd moment estimate so that 6% = i, — T7. Let 6(2k),ﬂ2’(k),T1,(k) denote

the corresponding statistics 62, fio, Ty but with sample Xy, Y}, replaced by 2/,y’. For any k € [n], we have
sup |6(21c) -6% < sup |2, (k) — fi2| + sup \Tf,(k) — 17
T,y T Y

T,y 3
X,Y X,Y X,Y

1 N A N
= sup —|f(2',y)? — F( Xk, Yi)?| + sup [T, (k) — Tl T,y + T4
z’y

a'y T ,

X, Vi XY

B? 4B? 5B2
—+—=—

n n n
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where we use the finite differences computed in the proof of Lemma C.1 to bound |T17(k) — T1| Thus, with

probability at least 1 — 4,
1 2
~2 ~2 2
—E&° <5B%y/ —log —.
o ol m 85

O
Lemma C.5 (Bias of 62). For any critic f satisfying Assumption (C), the bias of 62 is bounded by
B2
IE6% — 0% < —
n
Proof. Let fiy = 137" | f(X;,Y;)? and pg = E[fis] = Ep, f(X,Y)?. It follows that
1 ’
E6® =E[iy — T7] = p2 — E (nZﬂxi,Yi)) =y — — ZZf X, Vi) (X5, Y5)
i=1
= 12 — —E Zf Xi, Yi)? 4+ F(X3, Vi) f(X5,Y5)
i#]
1 9 n—1,
=H2 = o5 (npo +n(n — 1)TT) = 0
which yields
1 B?
|E62 — 0% = —0? < —.
n n
O

Lemma C.6 (Concentration of 52) For any critic f satisfying Assumption (C), with probability at least

1 — 6 we have
N N 1 2
’52 —]E§2‘ <10B%/ = log =.
2n )

Proof. The result follows from McDiarmid’s inequality. We first show that & 2 satisfies bounded differences.
Let 05 := ”2 Z”e[n] f(X;,Y;)? be the 2nd moment estimate so that &2 = py — TO Let f(e),z/g (4),To 0

denote the corresponding statistics 52, Do, Tp but with sample X;, Y, replaced by «’,y’. For any ¢ € [n] w
have

sup |£(2 —§|< SUP 02,0y — 2| + sup |T — 12
éi:%f XY X’é’g
1 PN .
= Sup g | Zf RONE: sup o,y — Tol|To.ce) + Tol
&,Y or XY
j=
B2(2n—1) 2B(2n—1 1082 5B
Ben=l)  2BEn =)y p o
n n n n

It follows that with probability at least 1 — 6,

Y B2 2
‘52—1@52’ < (1032—5) R
n n 1)

Lemma C.7 (Bias of 52) For any critic f satisfying Assumption (C), the bias of €2 s bounded by

75?2
i - ] < S
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Proof. Let vo = Epy wpy, [f(X,Y)?] and puz = Ep,, [f(X,Y)?] be the second moment under the null and

alternative distributions, and let 75 =
we can write the bias as

nQZzgf( ) J) a‘ndﬂQZ

L5, F(X;,Y:)? be their estimates. First,

[EIE) - | = |Elo — T3] — (va — T)| < [E 2 — vo| + [EIF] - 7.
Now since
Eiy— L E X,,Y;)? X, v)?| = 2 1 pe  n—l
Dy =5 Y FXLY)P ) (XLY)) = 3 (nuz +n(n —1jwg) = —= + ——w,

i=j i
we have that |E Dy — 1s| =

2

BIT5 =E | | o5 37X )
0,J

1

7E Z.f 17j

Z]q’l"

1|4y — 15| < B?/n. For the remaining term, note that

f(Xq, Yr)

= SE| Y YK Y) Y (X YK Y)
(i,4,q,7) €1} (i,4,0,7) 1Y
! 2, (ph 2 6 11 6\, ., (6 11 6\ ,
< ot [T+ (0" = (n)a) B°] = (1_+7”L2_7ﬁ)T0 e te) P
so that |E[T2] — Tg| = (8 =L 4+ 8 (B> —17)| < (& — 15 + 5)B2. Therefore, putting it all together we get
2 B? 11B* 6B? 7B?
n n n n

C.4 Propositions

Proposition C.8 (Uniform convergence of Tl) For any critic family {fy : 0 € ©} and parameter space ©
satisfying Assumptions (A) to (C), we have with probability at least 1 — § that

sup|T19—T19\< 2log +2D10g(4R\F) O(n~1?).

oy

Proof. We employ a covering-number argument on the parameter space. Let U = {6;};=1..n C O be a p-cover
of ©; i.e., any point in © is in the closed p-neighborhood of some point in ¢. Assumption (A) ensures the
minimal cover exists with at most N = (4R/p)® points (Cucker & Smale, 2002, Proposition 5). Now, for any
6 € O, let # be the center in U closest to #, and then decompose the bound into

~ Ty

~———
(e

sup |7y — Ty| < sup |Tp — T |+ max [Ty — Ty |+ sup |Tor
6O EE oeu EE

—_———

~———
()

(a)
We first handle terms (a) and (c). From Assumption (B), we have
— Tyl <supE|fo (X,Y) — fo(X,Y)| < sup L||¢
0€o 0cO

sup | Ty — 0| < Lp.
0€©

This same bound applies for (a) by replacing E with its empirical expectation E.

Next, we find a high probability bound on (b). Recalling the result of Lemma C.1, and then taking the union
bound over all N points in U, we get that with probability at least 1 — ¢

. 2 2 4
max |Ty — Tp| < B\/ <log +DlogR>.
oeu n 1) p
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Finally, putting it all together, we get with probability at least 1 — § that

. 2 2 4R
sup |Tp — Ty| < 2Lp+ B (log+Dlog>,
C) n o p

which, for p = 1//n, gives the desired result. O

Proposition C.9 (Uniform convergence of To). For any critic family {fy : 0 € ©} and parameter space ©
satisfying Assumptions (A) to (C), we have with probability at least 1 — § that

A 2L 2B 2B 2 -
sup |Tpg — Too| < == + 2= 4+ Z=/2log = + 2D log(4R\/n) = O(n~Y/?).
9€g| 0,0 — To| < Attt &5 g(4Rv/n) = O( )

Proof. We employ a covering-number argument on the parameter space. Let U = {6;};=1.. v C O be a p-cover
of ©; i.e., any point in O is in the closed p-neighborhood of some point in ¢. Assumption (A) ensures the
minimal cover exists with at most N = (4R/p)? points (Cucker & Smale, 2002, Proposition 5). Now, for any
0 € O, let #' be the center in U closest to #, and then decompose the bound into

sup |Tg —Tp| < sup |T9 — T9/| + max \Tg: — IET9/| + max | ETy — Ty |+ sup [Ty — Ty .
IE) ) oreu 9 e 0€O

— ——
(a) (b) () (d)

We first handle terms (a) and (d). From Assumption (B), we have

sup [Ty — Ty| < supE|fo (X,Y) — fo(X,Y)| < sup L||¢' — || < Lp,
0cO 0O 6O

which is the same bound when considering T(),g instead of Tp,g.

Next, we find a high probability bound on (b). Recalling the result of Lemma C.2, and then taking the union
bound over all N points in U, we get that with probability at least 1 —§

N A 2 2 4
max [Ty — ETy| < 23\/ <log + Dlog R).
oeu n 0 p

Finally, combining everything and using Lemma C.3 to bound (c), we get that with probability at least 1 — §

. 2B 2 2 4
sup [Ty — Ty| < 2Lp+ — + 2B <log+DlogR>,
(4<C) n n 4 p

which, for p = 1/4/n, gives the desired result. O

Proposition C.10 (Uniform convergence of 62). For any critic family {fs : 0 € ©} and parameter space ©
satisfying Assumptions (A) to (C), we have with probability at least 1 — § that

8BL B2 532\/ 2 -
5 - = 4+ == /2log = +2Dlog(4 = —1/2y,
sup < + - —&—2\/77 og(s—f— og(4Rv/n) = O(n )

Proof. We employ a covering-number argument on the parameter space. Let U = {6;}i=1. n C O be a p-cover
of ©; i.e., any point in © is in the closed p-neighborhood of some point in U. Assumption (A) ensures the
minimal cover exists with at most N = (4R/p)P points (Cucker & Smale, 2002, Proposition 5). Now, for any
6 € O, let " be the center in U closest to 6, and then decompose the bound into

sup |62 — 02| < sup |62 — 62| +max |62, — E62 |+ max|Eé2 — 02| +sup oz — o3

00 =L greu greu =)

—_———— —_—————
(a) (b) (c) (d)
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We first handle terms (a) and (d). From Assumption (B), we have

sup o7, — of] < sup | Elfor (X, Y)? = fo(X, Y)?]| +sup |(E for (X, V)? = (E fo(X,Y))*
[UdSC) 0co

6ee
< SggE ’f(,/(X7Y) — fo(X, Y)Hfof(Xa Y) + fo(X, Y)‘
+ s [fyr (X, ) = folX, Y)[E|fo(X,7) + fo(X,7)|

<supL||§ — 6| -2B +sup L||¢' — 60| - 2B = 4BLp,
06 00

which yields the same bound for (a) when replacing E with its empirical expectation k.

Next, we find a high probability bound on (b). Recalling the result of Lemma C.4, and then taking the union
bound over all N points in U, we get that with probability at least 1 — ¢

R 1 2 AR
Igleai/}{(|0'9 E&p| < 532\/2” (1og5 —l—Dlogp).

Finally, combining (a), (b), (d), and using Lemma C.5 to bound (c), we get that with probability at least
1-46

B? 1 2 4
sup|c70709|<8BL,0+er5B2 <10g+DlogR>,
€O 2n d p

which, for p = 1//n, yields the desired result. O

Proposition C.11 (Uniform convergence of 52) For any critic family {fy : 0 € ©} and parameter space ©
satisfying Assumptions (A) to (C), we have with probability at least 1 — § that

SBL 7B? 10B2 2
su + — + ———1/2log +2Dlo 4R —1/2
668 |§9 fe| \f " 2f g( \f) ( )

Proof. We employ a covering-number argument on the parameter space. Let U = {6;};=1.. v C O be a p-cover
of ©; i.e., any point in © is in the closed p-neighborhood of some point in ¢. Assumption (A) ensures the
minimal cover exists with at most N = (4R/p)® points (Cucker & Smale, 2002, Proposition 5). Now, for any
0 € O, let #" be the center in U closest to #, and then decompose the bound into

sup €5 — &3] < sup |&§ — €3/ + max |3, — E&3| +max |E&Z, — €| +sup |&5 — &3] .
€O €O 0’eUd = IG)

S——— ——
(a) (b) () (d)

First, we bound terms (a) and (d) using Assumption (B) and the covering-number argument. Let Tp =
E[fs(X,Y)] and vy = E[fs(X,Y)?] be the first and second moments under the null distribution, so that
& =vg — T7. Tt follows that

sup €2, — €2| < sup |vp — vg| + sup [T3 — T3
0cO 0cO 0cO
< SWDE|for (X, Y) = fo X,V for (X, Y) + fo(X,Y)| + sup [Ty = Tyl Ty + T
€ €
=4BLsup |0/ — 0| = 4BLp.
0co

We obtain the same bound for (a) by replacing E with its V-statistic estimator.

Next, we bound (b) using Lemma C.6 and a uniform bound over all N points in the p-cover. We get that
with probability at least 1 — §

1 2 4R
glg&qgg ]E§9|<1()B2\/ (1og6+Dlogp>
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Finally, combining (a), (b), (d), and using Lemma C.7 to bound (c), we get that with probability at least
1-0

iy 7B2 1 2 4R
sup |5 — &7| < 8BLp+ —— +10B%*/ — [ log = + Dlog — |,
e n 2n ) p

which, for p = 1/y/n, yields the desired result. O

C.5 Main Results

Theorem C.12 (Uniform convergence of Jipg). Let {fy: 0 € ©} be a critic family with parameter space ©
satisfying Assumptions (A) to (C). Suppose o3 > s* and £ > s* for some positive s, and X = n~1/3. Then,
with probability at least 1 — 9§,

. 2B 16B%L 5B3 12
A -1/3
slelg |Jvps — Inps| < Ve + 2173 + 2173 \/2 log 5T 2D log(4R/n) + o(n™ /%),

and thus

R - 1 B
2“3 |JNps — Jnps| = Op ( [S + B?L + B%/B}) .
=

$2n1/3

Proof. Let z, denote the standard normal a-quantile. We start by making the following decomposition:

~ Tio—Toe Tre—Toe &0 o0
sup |JNDS - JNDS| = sup N - 21— — ~ *1—
0co 9co 0o, o) Vnog Vn o
Tieg Ty To,e  Toe| 2i-a o S0
<sup |— — —— - — sup |—— — —
0co |00, lof gco | O¢ o vV ogeo|Gon 0o

(a) (b) (e)

Define 057 N = O'g + A and notice that 63 > 0 since it is the biased variance estimator; this implies that
U%}A:agjL)\szJr/\and 63,>\:62+)\2)\.

Now, we rewrite (a) (with subscripts 6 omitted) as

Tl Tl Tl Tl Tl Tl Tl T1
sup |— — —| <sup|— — —|+sup|— — —|+sup|— — —
0co | O o gco |Ox O 0co | O o pco | O o)
~2 2 2 2
A oy — Oy N oy —0 1 .
=sup |T1| | —F—>—| +sup |T1| | —F———| +sup — |11 — T1|
) GroA (G +0)) ) oxo(or+0) 0ce O
B B

1 .
sup |62 — o?| + + —sup|Ty — T4

<
T WS N+ VA(s2 + A) veo s(s24+ X)) +82vVs2+ X\ Sgeo

<

B\ 1 N
sup 6% — o®| + — + —sup [T} — T4,
As2 gco s S peo

where the first term in the last line uses the slowest growing upper bound as A — 0.

27



Under review as submission to TMLR

Employ Propositions C.8 and C.10 as uniform bounds on |T1 —T1| and |62 — 02| respectively, then take the
union bound to give us, with probability at least 1 — 6,

T T 8B2L B3
|7~ | < By ovR a1 2DtV
B
T
+ — 2L \/210g + 2Dlog(4Rv/n)
f Sf

B\  8B2L 2L B3 ( 5B3 B ) \/ 4
=— 4 + + + + 2log = + 2D log(4Rv/n).
s3 2V svn s2ny/ 2s2v/n\  svyn & d g4V

The best-case (fastest to decay) asymptotic bound follows when A = n~1/3, which yields with probability at
least 1 — 6,

T T B 8B2L 5B3 4 13
;gg P B e v e ey Yo Y 2log 5T 2D log(4Rv/n) + o(n='/%).

Term (b) can be handled in a similar manner, except we use Proposition C.9 as a uniform bound on |To — Tyl
It turns out this gives us the same asymptotic bound as (a).

For term (c), we first define &\ = 53 + A. Since ég is the biased estimator we have ég > 0. Also,
Ga=E&+A= s>+ Xand §n =& + X = A so that

& _¢ S £ ¢ ¢ ¢ £ ¢
sup |— — < sup — = |+sup|———|+sup|— — =|+sup|—— —
9co |0N O eee Ox  Ox| ove0|0n Ox| ¢eo|On 0| geco|0 O
£2 52 2 2 _ 2 £2 g2
| S + sup [€] | ~—2—TA | 4 sup [¢] | —2—— sup | =5
0co |A(Ex+E)| e [0A0A(Gx + 0| seo UAU(UA4-U) pco [o(E+€)
B BA
<1+ 0—02—‘—7 sup’f2 52’
A\/52+/\+\f( +)\)9e®| | s(s? +A)

B
2|+f+—sup’£2 52’

<l4+——
As2 vco

Propositions C.10 and C.11 are uniform bounds on |62 — 02| and |£2 — £2|. Then, taking the union bound
gives us, with probability at least 1 — 4,

su é)‘—§<1—|—B)\+[B }SBL-I-[B ]BQ
beb|on o 52\F vn 2\
B 582 4
—_ 2log = + 2D log(4R
[32\5 ]2\F &5 g(4Rv/n).

When A = n~'/3, we have 1/v/nX = n=/3 and 1/(nv/X) = n~%/¢ so that the overall order of this bound is
O(1). Then, multiplying by the factor z;_,/y/n in front of (c) gives us order O(n=1/?).

Finally, taking the union bound of (a), (b), and (c¢) gives us, with probability at least 1 — 4,

N 2B 16B2L 5B3 12
A —-1/3
Sup Japs — JINps| < ey R . v \/210g 3 +2Dlog(4Rv/n) + o(n™"/?).
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Theorem C.13 (Consistency [van der Vaart, 1998, Theorem 5.7]). Let Jn be the finite sample estimate of J
with n samples, as a function of the parameters 0, and suppose that J, satisfies uniform convergence

sup | J,,(6) — J(6)| 2> .
0cO

If 0* is a well-separated mazimum of J, then any sequence of estimators 0, approzimately mazimizing Jp, ie.

~ A ~

In(07) — Jn(6,) < op(1),

. . . . A p
18 a comsistent estimator, i.e. 6,, — 0*.

D Uniform Convergence: HSIC

D.1 Preliminaries

We start by defining the notation used in the proofs. Let kernels k., and [, be parameterized by some w €
and v € I', with © C Q x I as the joint parameter space. The samples (X;,Y;) ~ Py, are drawn i.i.d. from
the joint distribution. We denote the n x n gram matrices of k,, and I, by K @) and LO) respectively. We
will often omit the kernel parameters w and v when it is clear from the context.

Let n be the HSIC test statistic and # to be its U-statistic estimator given by
. 1
nN=-—= Z Hijqr7
(n)a . A= .
(4,3,4,r) €1}

where (n); = nl/(n—k)! is the Pochhammer symbol and i} is all possible 4-tuples drawn without replacement
from 1 to n. H is the kernel gram matrix of the U-statistic defined by

(4,5,4,7)
Hijor = > Kab (Lab + Lea — 2Lac)
" (a,byc,d)

where sum represents all 4! combinations of tuples (a, b, ¢, d) that can be selected without replacement from
(Z.7 .j7 q’ 7") .
D.2 Assumptions

Our main uniform convergence results require the following assumptions.

(A’) The set of kernel parameters €2 lies in a Banach space of dimension Dg, and the set of kernel
parameters I lies in a Banach space of dimension Dr. Furthermore, each parameter space is bounded
by Rq and Rp respectively, i.e.,

QCH{w | || < Ra},
L C{y |l < Rr}.

(B’) Both kernels k and [ are Lipschitz with respect to the parameter space: for all z, 2’ € X and w,w’ €
ko (@, 2") = ki (2,27)] < Lpflow — '],
and for all y,y’ € Y and 7,7 €T
(') = by (g, )] < Lally =

(C’) The kernels k,, and [, are uniformly bounded:

sup sup k, (z,x) < vy,
weEQ TEX

sup sup Iy (y,y) < .
yel z€y

For the kernels we use in practice, v, = v = 1.
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D.3 Lemmas

Lemma D.1 (Concentration of 63)77). For any kernels k and | satisfying Assumption (A’), with probability

at least 1 — § we have
2 2
|62 —E62| < 614407074/ = log ~.
n

Proof. We apply McDiarmid’s inequality to 62. First, we show that the variance estimator satisfies bounded
differences. For convenience, we denote (i, j,q,r) € i} simply as (4,4, ¢,7), and (4,7, ¢q)\k to be the set of
3-tuples drawn without replacement from i% that exclude the number k. Recall that

1
A2 A2
6°=16 ——— Z HijorHipeq — 1)
(n)a(n = 1)s 52
(b,e,d)\i

Let F denote the kernel tensor H but with sample (X, Y;) replaced by (X},Y/) so that F agrees with H
except at indices ¢, and let /' and 6’2 denote the HSIC and its variance estimators according to this updated
sample set. The deviation is then

16
N /. 1N Hz rHibcd*Fi' rFibcd + 16 7?2 — A/2~
(n)4(n _ 1) Z | Jq J4q ‘ |77 n |

3 (Gidar)
(b,c,d)\i

|(AT2 o 6'/2| §

We bound the first term by noticing that A := H;jqr Hipea — FijqrFivea i zero when none of the indices
{i7j7 a7, bv Cy d} is £. Let S := {(23]7 q,T, b» ¢, d) : (ivj, q, 7") € i;rb (bﬂ C, d) € ig\{%}, te {"L',j, q,T, b, (&) d}} be the
set of indices where A may be non-zero. By Assumption (A’) we know that |A| < 320717, Thus, we can
bound the first term by

5121/,§V12

16
i~ 15 221 = G - 13,1

_ Sy An—1)343(n —1)(n —2)2(n—1)3— 9(n —1)3(n — 2),
(n)a(n —1)5 |~——

teigar} te{b,c.d} te{j.q.r} and Le{b,c.d}

16 9
= 5120317 ( - )
n

n—1

81921212
< MLy > 1),
n

We can bound the second term using || < 4v,v; and the bounded difference result (15) from Proposition D.3:

N A~ ~ NN N 321/le 4096V2l/2
167 — 7% = 16|/ +7'||7 — 7| < 16 - Sy - = LA

n

Combining these two terms, the maximal bounded difference for 62 is

122881212
|6_2_6/2|S k‘l.
n

Finally, applying McDiarmid’s inequality gives us, with probability at least 1 — 9,

[2 2
|62 —E 67| < 6144vivi 4/ = log = O
n

Lemma D.2 (Bias of &377). For any kernels k and l satisfying Assumption (A’), the bias is bounded by

2| < 46081/,31/12.

|E62 — o
n
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Proof. The expectation of the variance estimator is

1 1

E&Q =16 N Z ]E[Hijquibcd] Ry Z E[Hijquabcd]
(n)a(n=D)s ) (M (S
(b,c,d)\¢ (a,b,c,d)

First, we can break down the left-hand sum into only terms of E[H1234H1567] by considering the cases where
{4,4,q,7r,b,c,d} are unique. Let S = {(i,7,¢,7,b,¢,d) : (i,4,q,7) € i}, (b,c,d) € if\{i}} be the set of all
possible indices of our left-hand sum. It follows that

> E[HjjqrHibea) = > E[HijqrHivea) + Y B[Hijqr Hibed)-
S (i,4,q,m,b,c,d)€ir S\iz

If all indices are unique, then the expectation E[H;;qHipea] is equivalent to E[Hy234H1s567]; otherwise, we
can bound the expectation by 16v2v7 via Assumption (A’). Thus, the bound on the left-hand sum is

Z E[H;jqrHivea] < (n)7 E[H1234H1567] + ((n)4(n —1)3 — (n)7)16y,§ul2.
(2,3,4,7)
(b,c,d)\i
Similarly, we can break down the right-hand sum into only terms of E[Hjs34Hse7s]. Let R =
{(iy4,q,m,a,b,¢,d) = (i,4,q,7) € i}, (a,b,c,d) € i}} be the possible indices of our right-hand sum. We
have that

Z E[Hijquabcd} = Z E[Hijquabcd} + Z E[HiquHabcd]
(i,4,q,7) (4,3,9,7m,a,b,¢c,d)€iy R\ip
(a,b,c,d)

< (n)s E[Hiogs Hsors] + ((n)3 — (n)s ) 160707,

Now, using these two results and Assumption (A’), we can compute a bound on the desired bias of 52:

A 1 1
|E6* — 0% =16|—————— Z E[Hijqr Hipea] — E[H1234 H1567] — 75 Z E[Hijqr Hapea) + E[H1234 H5678]
(n)a(n —1)3 i (n)i 4
1,3,4,7) (4,4,9,7)
(b,c,d)\i (a,b,c,d)
< 16 (1 — (’fl)?) 161/21/2 — E[H1234H1567] =+ (1 — n)8> E[H1234H5678] —161/21/2
- (TL)4(TL — 1)3 kol —— —— (n)?l ———— k=l
—16v2v2<-<16vEv} 0<-<16vEv}
(n)7 > 2.2 2 9 9
<161 — ——+~—— ) 32vfv; <bl2viv; - — (Vn>4
—= ( (n)4(n o 1)3 kYl k¥l n ( - )
4 2.,2
_ 608v;, v . —~
n

D.4 Propositions

Proposition D.3 (Uniform convergence of H/SI\Cu) Under Assumptions (A’) to (C’), we have that with
probability at least 1 — 9,

8 Li L 2
sup |fig — ng| < —er! (k vy 2\/2 log 5 +2Dq log(4Rav/n) + 2Dr 1og(4Rr\/7L)> .
EC) v\ v v

Proof. We use e-net arguments on both spaces 2 and I'. Let {wi};@l be arbitrarily placed centers with
radius pg such that any point w € Q satisfies min [|w — w;|| < po. Similarly, let {7;}7F, be centers with
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radius pr satisfying min ||y — ;|| < pr for any v € T'. Assumption (A’) ensures this is possible with at most
Ta = (4Rq/pa)P? and Tt = (4Rr/pr)Pr points respectively (Cucker & Smale, 2002, Proposition 5).

We can decompose the convergence bound into simpler components and tackle each component individually

sup |[flg — mg| < sup|ijp —fler| + = max |[fg: — 1g:| + sup [ner — nel.
0coe 0 wef{wr,wrg } 0
v eV,

First, let us analyze |y —ng/| for any 6,60" € ©. Recall that 7 = E[H1234] where Hya34 = 5 Z(iii’ 3) Kop(Lop+
Leq —2L,.). We have that

(1234)
G, - B < 5 S0 K@+ 1Q) -2 - K@) + 1)~ 2000)|
4 (abed)
1 (1234)
w (w w/) ’ w/ ’ w
<q > ((Kaed - +| KL - KGDLG| 2 KGO - K10
(abed)

From Assumption (A’) we know that |K,p| < v and |Lgy| < v, and via Assumption (B’) we notice that
KL~ K| = (KRG - KGR+ KOG - K L)|
< K| [ = 20|+ o] K3 - 1)
<y Liljv = V'|| + v Lllw — &
< vipLipr +viLgpo.

This expression is true for all three components of |H 1(3:)34 - H g;ﬂ and so it follows that

\770 — 1y | = ‘]E[Hl(ggaﬂ - E[Hg ‘ <E ’H1234 H1(g3)4‘ < 4vgLipr + 4v Lipq,

A~ N 1 0 0 1 o'
[0 — 7o | = (n)4 Z HZ(J;T Hz(ng* < )s ‘H1234 H£23)4 < 4wy Lipr + 4v Ly po.
(4,4,9,7) €LY (i,9,9,7) €LY
Now, we study the random error function A := # — 7. Note that EA = 0 since # is unbiased, and

|H;jqr| < 4vgyy via Assumption (A’). This 7, and hence A, satisfies bounded differences. Let F' denote the
kernel tensor H but with sample (X, Y;) replaced by (X;,Y}) so that F' agrees with H except at indicies ¢,
and let 7/ = ﬁ Z(i,j gr)ein Fjqr be it’s HSIC estimator.

For convenience, we denote (4, j,q,r) € i} simply as (4, j,¢,7), and (7, j, ¢)\k to be the set of 3-tuples drawn
without replacement from i3 that exclude the number k. We can compute the maximal bounded difference
A=A = |7 — | as

1
j— — N Hijgr - < —
|’r] 7,_]q7‘ ’qu — (’I’L)4

( 135457)

> |Hijgr = Fijor| (15)

(4,4,9,7)

/\

1
= > |Hijgr — Fojgrl+ > |Hitgr — Fitgrl + Y |Hijor — Fijerl + Y |Hijqo — Fijotl
Gar\ T e (i,a.)\E (i,3.r)\E (i.3.2)\¢
((n —1)5 - 8vy -4) -

1

" ()

321/]€ 14

n
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Then, applying McDiarmid’s inequality on A := 1) — ) followed by a union bound over the ToTT center pairs
gives us, with probability at least 1 — 4, that

1 2TqT
max ‘ﬁg/ — 7]9/| < 32Vle — log i)
w'e{wi,..., WTg, 2n 1)

v e{visymp

1 2
— 6\7%” \/210g 5 +2logTo + 2log Ty
16 2 4R 4R
— 22U o log = + 2Dq log =y 2Dr log =
vn é 2 pr

Finally, we combine these results to get our uniform convergence bound:

164y, 2 4R, 4R
sup [lg — o] < 8viLipr + 811 Lipa + ——~— 1 [2log = + 2Dq log =2 4 2Drlog —~
00 vn 4 j2e) pr

L 4Rq 4R
2 log + 2Dgqlog —— + 2Dr log ) I
f P pr

Setting po = pr = 1/4/n yields the desired result. O

Ly
= 8uy (pn +—

Proposition D.4 (Uniform convergence of 62 ). Under Assumptions (A’°) to (C’), we have that with
probability at least 1 — 9,

2
Jn — + —+ 3\/2 log 5 +2Dgq log(4Rav/n) + 2Dr log(4Rry/n) +

2048 L L
sup 9 — of| < 2430 ( £
6cO Vi 12

9
4n |
Proof. We use an e-net argument on both spaces 2 and I'. Using the same construction as in Proposition D.3,
we once again decompose our convergence bound:
sup |63 — 0| < sup |65 — 65| + max |62, — o3/| +sup oy — ofl.
0€O [2 W' ef{wi,.wr, )
Y e{yisyrp }

First, let us analyze |07 — 03| for any 6,60’ € ©. Recall that 0% = 16 (E[H1234H1567] — 772). It follows that

0 0 6’ 0’ 0 0 0’ 0’
|‘73 - 03/| =16 ‘E[H1(21)34H1(5257 - H§23)4H1(56)7] - IE[H1(2:)34HE()6)78} + ]E[H{23)4Hé67)8]]’

1234

0 [4 0 o)
< 16 ‘H1(2234H1(5237 H1(23)4H1(567’ + 16K ‘H1234H5(6)78 5678

Under Assumptions (A’) and (C’) we know that |Hya34] < 4vr; and |H1234 Hgg)ﬂ <AdvpLipr + 4v Lgpa,
and so

0 0') 1. (6' 0 0 0 ) 0
‘H1234H§5257 - H1(23)4H1(56)7| < |H1(2?°,4Hf5257 H1(2?34H1567| + |H1234H£06)7 H1(23)4H1(567‘
0 0 0 0
|H1234 ‘H1567 H£56)7| + ‘H£56)7 |H1(2:)34 - H1(23)4
< 32vv (v Lipr + viLipa).

This expression is true for both components of |03 — o2,| and so it follows that
lo2 — o/| < 1024v vy (v Lipr + viLipa). (16)

Similarly, replacing the expectations E[H1234H1567] and E[Hj234 Hs67s] with the respective estimators
m 2 igqr), (beayi Hijar Hivea and ﬁ > (i), (abed) Hijar Habea give us the same bound

|62 — 62, < 1024vvy (v Lipr + v Lipa). (17)
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Next, using Lemma D.1 and Lemma D.2 followed by a union bound over the ToTT center combinations gives
us, with probability at least 1 — ¢,

A 2ToTr  4608v2v?
2 2 2 2 kYl
max 0y — og| <6144v;v74/ —lo + 18
wle{wl,,..,wTQ}| o 9| ko n S ) n ( )
v el
20481212 2 4R 4R 9
< k71 (3,/2log = 4+ 2Dg log —— + 2Drlog — + —— | .
G (\/gé GO T o Ty

Finally, we combine Equations (16) to (18) to get

20481/21/2 2 4Rq 4Rr 9 (Lk L, >
~2 2 )

sup |65 — 05| < 34/2log — +2Dg lo +2Dr lo + + +

gep\ 0 ol < Jn < \/ g(S Q 10g oo rlog or NG vn 49’ PF

Setting po = pr = 1/4/n gives us our desired uniform convergence bound.

D.5 Main Results

Theorem D.5 (Uniform convergence of Jjig;). Under Assumptions (A’) to (C”), let © C Q x T be the set

of kernel parameters 0 € © for which o > s*, and take \ = n=1/3. Assume vy, v > 1. Then, with probability
at least 1 — 0,
Tl No vy |1 92161/]%%2
sup | — — —| < 4
e | 0o 0p| ~ s2nl/3|s vn

8s L L 4
+ (12288uk1/l + 1/6) (Vk + J + \/2 log 5 +2Dgq log(4Rqv/n) + 2Dr log(4Rr\/ﬁ)> ] )

and thus, treating vy, v as constants,

o Mo

sup | =
Jg.\ O¢

0cO

- 1 1

Proof. Let 63 N = &g + A be our regularized variance estimator from which we can assume is positive. We
start by decomposing

sup 7370 _e < sup 7}7{9 _ e + su /) e _Te
0cO |09, 09 0cO |06, 2 06, 6O |06, 08 0cO |06  Of
|63>\_ng| |716] |U§,,\_U§ 1.
= sup — + sup + sup — |7 — 16
0 0o 00 Gox+ 002 0 Ogx 09 Og T+ 09 0 0o
< 4Vle | 2| + 41/le/\ 1 | |
sup 09 Jg bup o — Mo
sxf(s—i—\f) sVS2+ ANs+vVs?+ )
dvgy 1 2Vkl/l)\
< 2\fsup\ 5—op|+ -~ bup|n9—ng|+

Proposition D.3 and Proposition D.4 show the uniform convergence of 7y and &y, from which we get that
with probability at least 1 — §, the error is at most

Mo ne| _2upuA\ 184320313 8192v3v¢ 8y | [(Lr Ly
sup | m=—— — —| < —5— + —+—
0co |09 x  Op s $2nv/\ s2vAn sv/n 1z
24576v37 1614, \/ 4
21o 2Dq log(4R 2Dr log(4R
[s%/% Y og 5 +2Dglog(4Rav/n) + 2Dr log(4Rr V).
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Taking A = n~ /3 gives

sup Aﬁa Mo < 2y " 184321/2%3 81921/;2’1/13 n 8uiuy & N ﬂ
0co | 0o n 09 §3nl/3 §2n5/6 s2n1/3 svn ey
245761307 161, 4
[ oy o 2log < +2Dq log(4Rav/n) + 2Dr log(4Rr+/n).

Using vg, v; > 1 we can slightly simplify our bound to

i 2457637 16 L L 4
sup |1 — | < | SR o R (2R Ly \/2 log < + 2Dq log(4Rav/n) + 2Dr log(4Rr+/n)
€O |00, o) s2nl/ S\/ﬁ Vi 2] 1)
2upy; | 184320307
$3nl/3 $21,5/6
O
E Experimental Details
b
- —
Figure 7: RatInABox simulation environ-
ment. The red dot is the current position of
the rat and the purple circles indicate the Figure 8: Samples drawn from the sinusoidal problem with
past trajectory over 5 seconds. The box is frequency ¢ = 1 (left) and £ = 4 (right). We consider the
designed to have only a single protruding latter frequency in our experiments.
wall.

E.1 Training & Test Details

We design the featurizers ¢,, and ¢,; of our deep kernels k,, and I,; to be neural networks with ReLLU activations.
We avoid using normalization as it may affect test power. Moreover, we make the Gaussian bandwidth of
both k. and [, a learnable parameter, as well as the smoothing rate e. To make comparisons as fair as
possible, we use similar neural network architectures for each deep learning based method. In general, we
let the featurizer of HSIC-D and MMD-D be identical up to a concatenation layer which concatenates X
and Y to frame the problem as a two-sample test. We construct the C2ST-S/L classifier as the MMD-D
featurizer plus a linear layer classification head with scalar output, and we let C2ST-S/L, InfoNCE, NWJ,
and NDS all use identical architectures for the classifier and critic. Detailed descriptions of each architecture
are demonstrated in the following subsections.

All optimization-based methods (HSIC-D/Dx/O, NDS/InfoNCE/NWJ, MMD-D, C2ST-S/L) are first trained
on an identical split of the data, and then tested on the remaining split. In contrast, HSIC-M selects the
median bandwidth based on the entire dataset, and is evaluated on the test set. We train our models using
the AdamW optimizer with a learning rate of le-4 over 1,000 epochs for HDGM and RatInABox, and 10,000
epochs for Sinusoid and Wine. We use a batch size of 512. All methods are implemented in PyTorch and
trained on a NVIDIA A100SXM4 GPU.
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Regarding the power vs. test size experiments, we use a training size of 10,000 for HDGM < 30, 100,000 for
HDGM > 30, and 2000 validation samples for all dimensions. For the Sinusoid problem, we train on 5,000
samples and use 1,000 for validation. RatInABox uses a training size of 4,000 samples without validation,
and Wine uses 1,200 training samples without validation.

Once learned, each methods’ empirical power is evaluated on 100 test sets (StZel sy StZewU). Each test set
contains m test samples StZei =( fe", e Z}‘“\‘,ﬂi), which are then used to compute the average rejection rate

under the null via a permutation test. We use 500 permutations for each test and with a predetermined
type-1 error rate of 0.05.

E.2 Validation

Although validation sets were only used for early stopping in our experiments, it’s certainly possible to use
them for hyperparameter selection. The validity of permutation tests still hold as long as this validation
set is separate from the test set. As for the validation criterion, a natural approach is to evaluate the
same approximation of the asymptotic power used for our training objective. This avoids the need for
relatively-expensive permutations, while providing a reasonable estimate of performance. Alternatively, we
could also directly estimate the test statistic in cases where there isn’t a simple expression for asymptotic
power, though this approach may be less reliable since the statistic is not necessarily correlated with test
power. It is also possible to select hyperparameters through cross-validation, where the training data is
split into folds: one fold for evaluating hyperparameters and the remaining folds for training the model.
Again, as long as this data is separate from the test set, any permutation test would be well-controlled. The
drawback to these validation-based approaches is that effective power is reduced since we need to construct
this validation set from either the training or test data.

Ideally, we would like to perform hyperparameter selection while avoiding sample splitting, but this is a chal-
lenging problem. One potential approach is to perform separate tests corresponding to each hyperparameter,
and then combine these tests using a multiple test correction procedure like MMDAgg (Schrab et al., 2023)
to ensure valid level control on the test data. However, this is potentially expensive if hyperparameters need
to be optimized. It’s also unclear if this would perform better than simply using a validation set due to the
conservatism of the multiple test correction procedure. A related approach is MMDZFuse (Biggs et al., 2023),
which constructs an aggregate statistic by combining MMD estimates at varying bandwidths. This approach
could be naturally extended to consider estimates based on different training sets and would naturally fit
into our optimization framework; though doing so in a way that does not explode compute nor reduce critic
quality is another challenge.

E.3 Architectures

In all experiments we consider deep kernels with Gaussian feature and smoothing kernels x and g, where each
bandwidth is a trainable parameter randomly initialized around 1.0. We let the smoothing weight € also be
a learnable parameter initialized to 0.01. No batch normalization is used and all hidden layers use ReLLU
activations. Dataset-specific designs are elaborated below.

High-dimensional Gaussian mixture. We use a feed-forward network for our deep kernel featurizer with
latent dimensions 2d, 3d, and 2d. Details of each model is given in Table 1.

Sinusoid. The deep kernel featurizer is taken to be a feed-forward network with widths 1x8x12x8. C2st,
infoNCE, and NWJ use a similar architecture —one with widths 2x8x12x8x1— which includes an additional
scalar output layer.

RatInABox. We use a feed-forward featurizer with details given in Table 2. Unlike the previous two
problems, the sample spaces X and ) are not equivalent, and so the deep featurizers for k£ and [ have different
architectures.
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dataset model input featurizer
HSIC-D | XorY [294-56-4]
HDGM-A MMD-D X, Y] [ 15851258 ] dataset model input featurizer
HSIC-D | XorY [ 15— 30— 45 — 30 |
C2ST-S/L | [X,Y] [4—2851258—1 ]
HDGM-30 | MMD-D | [X,Y] [ 30— 60 — 90 — 60 |
HSIC-D | XorY [428—21258]
C2ST-S/L | [X, Y] | [30—60—90—60—1]
HDGM-8 || MMD-D | [X, Y] [8—16—>24-16]
HSIC-D | XorY [ 20— 40— 60— 40 |
C2ST-S/L | [X, Y] | [8 165245161 |
HDGM-40 || MMD-D | [X,Y] [ 40— 80— 120 — 80 ]
HSIC-D | XorY [5210-15—-10 ]
C2ST-S/L | [X,Y] [ 40— 80— 120 - 80— 1 |
HDGM-10 || MMD-D | [X,Y] [10—-20—30—20 ]
HSIC-D | XorY [ 25— 50— 75— 50 ]
C2ST-S/L | [X, Y] | [ 105205305201 ]
HDGM-50 || MMD-D | [X, Y] [ 50 — 100 — 150 — 100 ]
HSIC-D | XorY | [ 10203020 ]
C2ST-S/L | [X, Y] | [ 50 = 100 — 150 — 100 — 1 |
HDGM-20 || MMD-D | [X,Y] [ 20— 40 — 60 — 40 |
C2ST-S/L | [X, Y] | [ 20—40—60—40—1 ]

Table 1: Featurizer architectures used in deep kernels for HSIC-D, MMD-D, and classifier architecture used
for C2ST-S/L on the HDGM problem. Brackets denote a sequence of linear layers with corresponding input
and output features.

’ method H input \ network ‘
X [ 8—32—64—32 |
HSIC-D
Y [2—54—-8—4]

MMD-D || [X,Y] | [10-32-64—32]

C2ST-S/L || X, Y] | [ 10 +32—64—32—1 |

Table 2: Featurizer architectures used in deep kernels for HSIC-D, MMD-D, and classifier architecture used
for C2ST-S/L on the RatInABox problem. Brackets denote a sequence of linear layers with corresponding
input and output features.

F Additional Experiments

F.1 High-Dimensional Gaussian Mixture

We provide comprehensive power versus test size results for the HDGM problem at all dimensions d =
{2,4,5,10,15,20} in Figure 9. Overall, our method HSIC-D/Dx achieves highest power at the smallest test
sizes.

Additionally, we demonstrate the effectiveness of our method at various dimensions d/2 by examining the
empirical test power at HDGM-d for d € {4, 8,10, 20, 30, 40,50} with fixed test sizes m. Results are shown in
Figure 10. Again, HSIC-D exhibits the highest test power across all dimensions. When using a small number
of test samples (e.g. m = 100), the performance of HSIC-D slightly degrades with increasing dimension,
whereas at larger test sample sizes it consistently has near-perfect power.

F.2 Type-l Error

Table 3 shows that the type-1 error rates for our optimization-based tests are well-controlled.
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Figure 9: Power vs test size m for the HDGM problem at dimensions d = {2,4,5,10,15,20}. The average
test power is computed over 5 training runs, where the empirical power is determined over 100 permutation
tests. The shaded region covers one standard error from the mean
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Figure 10: Empirical power vs dimension across various test sample sizes m = {100, 200,500, 1000} for
HDGM. The shaded region covers one standard error over 5 training runs.

F.3 Maximizing HSIC vs. its SNR

We examine the trade-off between directly optimizing HSIC versus its SNR objective J. The results on
power versus test size are shown in Figure 11. Optimizing our proposed objective J significantly outperforms
optimizing HSIC for all problems.

F.4 Independence Testing with MMD

Let Z = {(X1,Y1), ..., (X, Yim)} be a test set and S,,, be the permutation group of [m] with elements o € S,
Suppose we take p permutations o = {071, ..., 0, }, with each permutation sampled uniformly from G,,. We
define the action of o on test samples Z as 0Z = {(X;, Yy, (s)) }ic[m],¢c[p), and the actlon of o on the empirical

distribution Pyy as the empirical distribution of the permuted samples, i.e. oPyy = n—p 21—1 P v—10X,xY, o)
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[ Method [ HDGM-4 | HDGM-8 | HDGM-10 | HDGM-20 | HDGM-30 | HDGM-40 | HDGM-50 | Sinusoid | RatInABox |

HSIC-D 0.043 0.043 0.050 0.050 0.062 0.057 0.052 0.050 0.048
MMD-D 0.048 0.055 0.040 0.053 0.048 0.048 0.055 0.054 0.050
C2ST-L 0.060 0.030 0.053 0.048 0.053 0.058 0.045 0.046 0.048
InfoNCE 0.046 0.046 0.046 0.054 0.044 0.050 0.048 0.048 0.045

NWJ 0.050 0.054 0.058 0.052 0.044 0.064 0.054 0.052 0.042

Table 3: Average type-I error rates under the null distribution over 400 tests. We use m = 512 samples.
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Figure 11: Test power using deep kernels optimized for the approximate asymptotic test power J (red) versus
optimizing just the test statistic HSIC (blue).

One way we can construct an independence criterion is by taking the MMD between Pxy and Px x Py. We
do this for MMD-D by using the empirical distributions Pyy and oPxy respectively, which yields

R R 1
MMDixl(PXY’G}PXY):W > kijli - Z kijlio,) + 53 2 D Fijloy6).onG)-
i.j€lm] P e ijelm]
q€[p] q,7€[p]

We first show that even with one permutation, this yields a consistent estimator.

2
Proposition 3.2. Suppose h satisfies sup,cy ey h((7,y), (z,y)) < v2. The estimator MMD, (Z, 0Z), where
Z is independent of a uniformly random o, satisfies with probability at least 1 — § that

2 1702 8 1
MMD, (Z,07Z) — MMD?(P,,, P, x P — [4/2log
| b( , O ) (iy’ X )‘ ml \/*

Proof. First notice that

MMD?(P,,, P, x P,) = ER((X,Y), (X, Y)+EAr((X,Y"), (X", Y")) —2EL((X,Y), (X", Y")),

H1 M2 M3

2
while the estimator MMD, (Z, 0Z) is given by

m m m m m m

mzzzh i, Yi)s (5,Y5)) szh Tis Yo ), xwyoj))_QLZZh((xivyi)a(xjayoj))~

=1 j=1 i=1 j=1 =1 j=1

T Ty T3
The first term 77 is a typical V-statistic:

1 1 « m—1 1
) Z h((i, 1), (z5,9;)) + oz Z h((i, yi), (i, ) = TUl + ERM

i£] i=1
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where we have defined a U-statistic U; = m > iz M(2i,94), (25,9;)) and a remainder term Ry =
L5 h((i, i), (@,:)). For Uy, we have immediately that EU; = Eh((X,Y),(X’,Y’)) =: u1. Noting that
both Ry and p; are necessarily in [0, 1/2], the overall error from this term is therefore

1
< (1— > Ur — | + —v°.
m

Changing a single (x;,y;) pair changes U; by at most m 2(m—1) -2 = %, and so McDiarmid’s
inequality gives that with probability at least 1 — 01,

[m /2 2
Uy — N1|<7 *1 v [ = log =,
m 51

and so with probability at least 1 — 41,

1 2 1 2 2 1
T — <|{1l-—— —l < 2log — + —| . 1
-l < (1= ) [ 2op 24 S < oo 2 (19)

Turning to T3 next, we can use a similar approach if we also take into account the random o. We can write
T3 as

1 1
Ty — | = ‘(1 - ) (U =)+ —(R1 —m)| <
m m

1 1 N N
— D @) @)+ — Y (@), (35,50,)) = 25 Us + [ 1- =2 | B,

i,5:1{4,4,05}1=3 i,5:[{1,5,05}1<3

where we let N?EJ) be the (random) number of (4, j) pairs for which 4, j, o; are all distinct, Us the mean of
h((xi,y:), (X}, ys,;)) for which these indices are distinct, and R3 the mean for which they are not. Note that
lus), | Rs| < v, regardless of the choice of o and Z, and so

() (o) N?EJ) N?Eﬂ) ,
T — ps| = | —=5-(Us — p3) + 7 | (Bs —ms)| < 5 pal + (1= — 5 | 207
Fix the choice of o, but let Z be random. Then E Uz = ug3, and changing a single (x;,y;) pair changes the
value of Us by at most —zy s +3(m—1)-v2. Thus, applying McDiarmid’s inequality conditionally on the choice
of o, with probability at least 0%
3v2 m—1 2
|Us — ps| < w log =,
V2 N{° \/ &4
obtaining that
32 m—1 NN L,
T3 — pa| < B min log 7 ( Sl R

We will also need to show that N / m? is nearly 1. We have that

m m
m—2

ENg” =B Y 1({ijioj} =3) =) Prlo; # {i.g}) =m(m — 1) == = (m —1)(m ~2),
i=1 j=1 i#j
so that E (1 — Néa)/m2) =3 — 2. Moreover, if o and ¢’ almost agree except that o}, = 0; and o] = oy,

then |N3(U) — Néal)\ < 2m: the only (i, j) which are potentially affected are those of the form (-, k) or (-,1).
Using a version of McDiarmid’s inequality for uniform distributions of permutations (Lemma F.1) then gives
us that with probability at least 1 — §% over the choice of o,

1
N > (m—1)(m—2)—m 8mlogy
\ 3
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and so

AL B I LR
m2 — m  m? mOgég”

thus with probability at least 65 + 0%, we have that

T — sl < 3L L flog 2+i 4, [210g =
sTHI= T |2 Jm m\ﬁ &5y
< \/» [ 1/21og 5 +41/210g5//

To simplify this a little further, let 05 = 253 and df = 153, then it holds with probability at least 1 — d3 that

|T3M3<\6/7% {,/210g533+\/1m} (20)

It remains to handle T5, which is similar to T5. Letting N ) be the number of (z Jj) pairs for which ¢, j,0;, 0;
are all distinct, we can similarly define Uy with mean pq and Ry with |Ry] < 2 so that

N(U) N(U)
<% u2|+<1—32 207,
m ™m

For a fixed o, changing a single (z;,y;) pair changes the value of Uy by at most ﬁ ~4(m —1)-v?, and we
2
obtain like before that with probability at least 1 — d5,

42 m—1 2 N
Ty — po| < — —— [log 11— 222
V2 mym m?

(o)

(o)
5 (U2 — p2) + (

5 )(RZ_,UQ)

T — po| =

Since when ¢ # j any permutation satisfies that o; # o, we have that

ENSY =3 Pr(oi,05 ¢ {i,j}) =Y " " = (m—2)(m — 3).
i#£] i#£]

A single transposition changes changes N by no more than 4m, and so by Lemma F.1 we obtain that with
probability at least 1 — 65,

Letting 64 = 28, and 65 = %05, it thus holds with probability at least 1 — d, that

2?2 [m—1 3 5 3
T — — | ——/2log — + — 447121
T — ps| — { o ) 5 + — ﬁ‘i‘ og 62]
1002 / 3 1 ]
2log — + — 21
A/ |: 52 A/m ( )

To combine (19), (20), and (21), it will be convenient to use d; = 44 and d, = d3 = 24, since then 01 /2 = §/8,
d2/3 =0/8 and 61 + d2 + d3 = §. Then we obtain that with probability at least 1 — ¢,

Ty + Ty — 275 — (1 + o — 2 )|<17”2 J2log S 4
1 2 3 1 T 2 u3 _\/ﬁ g5 \/771
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Lemma F.1 (McDiarmid’s inequality for uniform permutations). Let f : S,, — R, where S,, is the
symmetric group of permutations on [m], satisfy that for every 0,0’ € Sy, |f(o) — f(o”)] <c|{i:0; # oL}
Let S be a random wvariable which is uniform on S,,. Then it holds with probability at least 1 — § that

£(S) ~Es £(S) < c\/8mlog L.

Proof (based on Blasiok, 2025). For i € {0,...,m} and any permutation o, define the Doob martingale

Xi :H;:[f(S) | Sl = 0'1,...,Si = O'i},

so that Xo = Eg f(S) and X,,, = f(0).

We now show that |X; — X;4+1| < 2¢. No matter the known values (o1,...,0;), for any (oi41,...,0n),
we can identify a uniquely paired (oj,,,...,0;,) differing in at most two positions, which 1mphes that
|f (o) — f(o")] < 2¢c. Because these pairs are equiprobable under the uniform distribution of S, this implies
that any E[X; 11 | S;y1 = j] differs from any E [X;;1 | Si+1 = j'] by at most 2¢, and so the same holds on
average over j.

The Azuma-Hoeffding inequality then gives Pr(X,, — Xo > £) < 2exp (—?/(2m(2¢)?)), and the desired
result follows by solving for ¢. O

When considering more than one permutation, this looks reminiscent of the biased HSIC estimator. Indeed,
when we consider the set of n circular shifts o, (i.e. permutations where the order of the Y's are rotations of
one another), then the two are equal with

MMD?,(Pxy,ooPxy) = MMD?,,(Pxy, Px © Py) = HSIC, ;(Pxy).

In practice, MMD-D underperforms against HSIC-D. We believe this might be because the variance of the
permuted MMD estimator is often higher than that of HSIC. The following proposition proves this for the
biased estimators.

Proposition F.2. Suppose we have samples Z = {(X1,Y1), ..., (X, Ym)} drawn iid from Pxy, and let
o ={o1,...,0p} be a set of p permutations sampled uniformly from S,,, the permutation group of [m]. We
define the action of o on samples Z as oZ = {(Xi, Yy, (5)) bicim) eep)- Then for the biased HSIC and MMD
estimators we have

Var[HSIC},(Z)] < Var[MMD?,,,(Z, o'Z)).

Proof. First we note that

— 1
2
MMD (ZaUZ) = W Z k 4,5 z,j Z kz] 1,04(J) + Z k i, O'q(’L or(d):
i,j€[m] i,7€[m] i,j€[m
q€(p] qyre[p]

Taking the expectation of this estimator conditioned on the samples Z gives us a Rao-Blackwellization. Now
notice that for part of the second term

1 p
]:o'E lp Zki’jli7gq(j)‘| = kZJ ( Z ]E ZO’q .7) ) Zk ,] ’Lt7
q=1

where we use the fact that E,,_[l; , ;)] = Zt 1 li,¢+ since the permutation of j is equally likely to be any
number in [m]. Similarly part of the labt term ylelds

1
EZ}? ()armD 5 > kgl
.

t Ju€[m]

1
2l 52 Kl | = b <pZE
q

q,7€[p]
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Therefore, the Rao-Blackwellization is just the biased HSIC estimator
E |MMD?(Z, 0Z) | Z| = HSIC(Z). (22)

It follows from the law of total variance that

Var[MMD?(Z, 07)] = Var[E[MMD?(Z, 0Z) | Z]] + E[Var[MMD(Z, 07 | Z]] > Var[[(SIC(Z)].

The result follows. O
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Figure 12: (a) compares the sample variance of the biased MMD estimator using p shuffles of the original
sample. (b) examines how the number of shuffles p affects the empirical test power. All results are based
on m = 50 samples from the Sinusoid problem with frequency parameter ¢ = 1. Both MMD and HSIC use
Gaussian kernels k and | with bandwidth 1.

Figure 12 shows that the higher variance of the permuted MMD estimator negatively impacts its overall test
power compared to HSIC. Also, including more permutations seems to decrease the overall variance, although
never lower than that of HSIC.

In practice, the kernels learned by MMD-D and HSIC-D may not correspond, and so Proposition F.2 is
inapplicable. That said, we observe the same phenomenon in experiments. Figure 13 shows estimates of the
asymptotic variance of MMD and HSIC along a training trajectory. For permuted MMD we consider both a
single shuffling of the data (MMD-full), as well as a split shuffling (MMD-split) where we use half the data
for our joint distribution sample, and the other half to permute for our product-of-marginals sample. We
note that the initial variance of MMD-split is substantially higher than that of MMD-full, which is much
higher than the variance of HSIC. MMD-split/full also exhibit greater final variances, particularly at larger
batch sizes.
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Figure 13: Estimates of the asymptotic variance of HSIC (blue), MMD with a single permutation (orange),
and MMD with a split permutation (green) along a training trajectory for HDGM-10 at sample sizes m = 128
(a), m =512 (b), and m = 1024 (c).
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F.5 SNR Pitfall

Recent work by Ren et al. (2024) argues a so-called pitfall of the HSIC signal-to-noise ratio paradigm.
They identify a corner case whereby, when the bandwidth of one of kernel k or [ approaches 0, ignoring

the threshold term causes the SNR objective J,,/, = H/Sﬁb/(?yh to differ from the true asymptotic power
objective J,,, = (H/SE;, - r/m) /6%, by a factor of —(m — 1), where r denotes the asymptotic threshold.

We argue that this is not a cause for concern, and in some cases, ignoring this is even preferred.

First, the behavior of the SNR objective in the bandwidth limit tells us nothing about the actual global
maximum. Their argument tells us that J,,,, = —(m — 1)J,,, when the bandwidth wx — 0 and for a

specific estimator r = E[mH/SEb}. This does not imply, however, that J,,,, explodes as wx — 0 since the
SNR objective is optimized at a fixed sample size m, and even in the bandwidth limit .J,,/, can not be —oo.

The latter observation is true because @b is bounded and our variance estimates &%1 are also bounded
away from zero. Therefore even though J,,/, is high when wx ™\ 0, this value is not necessarily the global
maximum. Second, their argument seems entirely dependent on the choice of estimators. For instance, if we
use H/SEU rather than H/SI\Cb, and take the asymptotic threshold to be E[mH/S—Eu] = mHSIC(P, x Py) =0,
we get that J,/, = J,,, in this regime.

As further evidence, we plot both J,,, and J,,/, at varying bandwidths wx on the ISA dataset used in Ren
et al. (2024). We use the same settings as they do: m = 250, d = 3, § = 7/10, wy = 1.0. Results are shown
in Figure 14. For very small bandwidths, .J,,/, does not explode and is not the global maximum. Moreover,
the actual maximum agrees relatively well between J,,, and J,,/, at larger sample sizes m. We were unable
to reproduce their Figure 1.

Additionally, Figure 14 (a) shows that ignoring this threshold term may actually be preferred. Consider
the limiting behavior as the bandwidth wx goes to infinity. In this regime, the Gram and centered Gram
matrices are respectively K|,—oo = 117 and K.|,—oc = 0, which tells us that H/SI\CI7 = Tr[K.L]/m = 0.
Since mH/SI\Cb is degenerate its variance and 1 — « quantile are zero, and so both J,,, and J,,, are also 0 in
this bandwidth limit'®. Now consider a difficult problem where the power at initialization is less than 0.5,
meaning J,,/ is less than 0. Then the maximum of J,,, is erroneously this bandwidth limit.
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Figure 14: Plots of J,,/, (blue) and J,,, (orange) at very small bandwidths wx with sample size m. For
the threshold estimate, we use the .95-quantile of the Gamma approximation. The objective maximum is
indicated by stars.

F.6 SNR with Threshold

Although maximizing the HSIC signal-to-noise objective Jusic is sufficient for learning powerful tests, it
may also be beneficial to estimate the threshold-dependent term in the asymptotic power expression of
Equation (6). Adopting the same notation as before, we define the SNR with threshold expression as

HSIC(X, Yk, 1) U1(1-a)

oo (XY k1) mog, (X,Y; k1)

jHSIC(Xa Y7 ka l) =

B3recall that our variance estimate in J adds a small positive constant for stability, preventing J from being undefined
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where ¥ is the problem-dependent cdf described in Proposition A.2. Estimating Jugic proves troublesome,
largely due to U1 depending on both the variables X,Y as well as kernels k, . Additionally, it needs to be
differentiated with respect to those kernel parameters. We opt to approximate the null distribution ¥ with a
Gamma distribution F}, g with shape and scale parameters

E[HSIC,)? mVar[HSIC)
V= —— and =
Var[HSICy)] E[HSIC))]

as suggested by Gretton et al. (2007). When performing gradient updates, we need to compute the gradients
VI,FV_ﬂl(l — ) and VgF;‘gl(l — «). This is typically not possible with auto-differentiation, as the inverse cdf
is not tractable. Instead, we propose a solution based on implicit differentiation: suppose f, ¢ is the Gamma
pdf and r = F;’(}(l — ). Then

_ VVFVQ(T) -1 VgFl,g(T)
VoF ,(1-a)=-—22  and VoF, j(1-a)=———""".
e 03 e WD
The gradient of the Gamma cdf with respect to the scale 6 yields the simplified expression
1 r\Y
S e —— ]
oFrol) = =70y \5)

The gradient V, F, ¢(r) is more troublesome. We resort to approximating this gradient via series expansions,
detailed in Moore (1982).

We compare the performance of HSIC and NDS tests maximized with and without the threshold-dependent
term in Figure 15. For HSIC, including this term seems to hurt the overall test power for harder problems.
This is expected, since the null distribution is difficult to accurately estimate. We use two approximations
here: one being the Gamma approximation, and two being the series expansion used to estimate the derivative
of the Gamma cdf with respect to the shape parameter. On the other hand, NDS with the threshold term
yields higher test power. Again, this is not too surprising as, unlike for HSIC, the null distribution here
follows the CLT and thus is easily approximated given enough samples.
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Figure 15: Power vs test size based on NDS and HSIC signal-to-noise objectives, both with (blue) and
without (red) estimating the threshold-dependent term. Our proposed methods NDS (12) and HSIC-D (13)
correspond to nds-w/ and hsic-w /o, respectively. We consider both HDGM-8 and HDGM-10, and use the
same training configuration as specified in Section 6.

F.7 Why do Permutation Tests deviate from Asymptotics?

As Figure 6 suggests, the asymptotics (i.e. tests based on the asymptotic null and alternative distributions)
may not explain permutation tests well. Figure 16 illustrates why this might be: we observe strong dependency
between the sample statistic 7'(X,Y) and its rejection threshold, estimated via permutation.

For the InfoNCE critic this dependency is substantial, with a correlation between the two of 98%. While
permutation tests still ensure the appropriate level, this coupling between the test statistic and permutation
threshold is not accounted for in our asymptotic analysis. If these tests do follow their asymptotics, then we
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expect this correlation to be relatively small, since the threshold should always be a reasonable estimate of
the 1 — a quantile. This is certainly not true for InfoNCE, and explains why its permutation test power is
so much higher than what its asymptotics suggest. As for why or how InfoNCE critics exhibit such strong
coupling, we do not yet know; this is a very interesting area for future work.

‘power: 63%

‘power: 46% |
correlation: 98%

correlation: 37%

T(X, V)
.'i-;i

R

T, )

51
* . .‘s“;@
.

permutation threshold permutation threshold
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Figure 16: Plot of the NDS statistic T evaluated on a sample (X,Y) from RatInABox, versus its rejection
threshold estimated with 200 permutations. Each point corresponds to a separate test set (X,Y) of size
m = 1000, but is evaluated with the same critic function f. The results in (a) use a critic that maximizes the
NDS test power, as in Section 5. The critic in (b) directly maximizes InfoNCE. The red line is y = x, which
is the rejection boundary; points above this line (colored yellow) are tests that reject the null hypothesis,
while points below (purple) do not.
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