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Abstract

Semi-Supervised Learning (SSL) has been an effective way to leverage abundant
unlabeled data with extremely scarce labeled data. However, most SSL methods
are commonly based on instance-wise consistency between different data transfor-
mations. Therefore, the label guidance on labeled data is hard to be propagated to
unlabeled data. Consequently, the learning process on labeled data is much faster
than on unlabeled data which is likely to fall into a local minima that does not
favor unlabeled data, leading to sub-optimal generalization performance. In this
paper, we propose FlatMatch which minimizes a cross-sharpness measure to ensure
consistent learning performance between the two datasets. Specifically, we increase
the empirical risk on labeled data to obtain a worst-case model which is a failure
case that needs to be enhanced. Then, by leveraging the richness of unlabeled data,
we penalize the prediction difference (i.e., cross-sharpness) between the worst-case
model and the original model so that the learning direction is beneficial to gen-
eralization on unlabeled data. Therefore, we can calibrate the learning process
without being limited to insufficient label information. As a result, the mismatched
learning performance can be mitigated, further enabling the effective exploitation
of unlabeled data and improving SSL performance. Through comprehensive vali-
dation, we show FlatMatch achieves state-of-the-art results in many SSL settings.
Our code is available at https://github.com/tmllab/2023_NeurIPS_FlatMatch.

1 Introduction

Training deep models [31, 45] not only requires countless data but also hungers for label supervision
which commonly consumes huge human laboring and unaffordable monetary costs. To ease the
dependency on labeled data, semi-supervised learning (SSL) [6, 12, 27] has been one of the most
effective strategies to exploit abundant unlabeled data by leveraging scarce labeled data. Traditional
SSL commonly leverages unlabeled data by analyzing their manifold information. For example,
semi-supervised support vector machine [6, 13] finds a classifier that crosses the low-density region
based on large-margin theorem and label-propagation [60, 84] computes an affinity matrix in the
input space to propagate the labels to their neighbor unlabeled data. Due to the computational
burden of exploring manifold knowledge, recent advances in SSL benefit from sophisticated data
augmentation techniques [4, 19, 20, 74, 80], they usually enforce predictive consistency between the
original inputs and their augmented variants [75, 8, 7, 57, 66, 71, 76, 79], meanwhile using pseudo
labels [46, 52, 53, 2] to guide the learning on unlabeled data.
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2D contours of labeled data
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2D contours of unlabeled data
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1D loss curves
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Figure 1: Loss landscapes of labeled data and unlabeled data obtained simultaneously from training using
FixMatch [57] on CIFAR10 with 250 labels per class. The first row and second row show the results obtained
from epoch 60 and epoch 150, respectively. The first column and second column show the 2D loss contours of
labeled data and unlabeled data, respectively, and the last column shows the 1D loss curves.

However, as most of the existing methods only apply instance-wise consistency on each example
with its own transformation, labeled data and unlabeled data are disconnected during training. Hence,
the label guidance cannot be sufficiently propagated from the labeled set to the unlabeled set, causing
the learning process on labeled data is much faster than on unlabeled data. As a result, the learning
model could be misled to a local minima that cannot favor unlabeled data, leading to a non-negligible
generalization mismatch. As generalization performance is closely related to the flatness of loss
landscape [14, 24, 41, 51], we plot the loss landscapes of labeled data and unlabeled data using
FixMatch [57] in Fig. 12. We have two major findings: 1) The loss landscape of labeled data is
extremely sharp, but the loss curve of unlabeled data is quite flat. 2) Moreover, the optimal loss value
of labeled data is much lower than that of unlabeled data. Such two intriguing discoveries reveal the
essence of SSL: The learning on scarce labeled data convergences faster with lower errors than on
unlabeled data, but it is vulnerable to perturbations and has an unstable loss curvature which rapidly
increases as parameters slightly vary. Therefore, the abundant unlabeled data are leveraged so that
SSL models are fitted to a wider space, thus producing a flatter loss landscape and generalizing better
than labeled data. Based on the analysis, existing methods that use instance-wise consistency with
mismatched generalization performance could have two non-trivial pitfalls:

– The label supervision might not be sufficiently leveraged to guide the learning process of
unlabeled data.

– The richness brought by unlabeled data remains to be fully exploited to enhance the general-
ization performance of labeled data.

As seeking the connection in input space is quite prohibitive, we resort to exploring the parameter
space and propose FlatMatch which targets to encourage consistent learning performance between
labeled data and unlabeled data, such that SSL models can obtain strong generalization ability
without being limited by insufficient label information. Specifically, as the loss landscape on
labeled data is quite unstable, we aim to mitigate this problem through applying an adversarial
perturbation [24, 43, 69, 82, 83] to the model parameters so that the worst failure case can be found.
Further, we enforce the worst-case model and the original model to achieve an agreement on unlabeled
data via computing their prediction differences which are dubbed cross-sharpness. By minimizing
such a cross-sharpness measure, the richness of unlabeled data can be fully utilized to calibrate the
learning direction. In turn, the label information can be activated for producing accurate pseudo
labels, thus successfully bridging the two datasets to enable improved SSL performance.

2Note that the loss curves cannot be directly generated using the raw data from training, because networks
can fit all examples perfectly without showing any generalization evidence. Therefore, we load the data for
plotting using slight data augmentation, i.e., Random Rotation with 90◦, which is very commonly used in SSL.
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Furthermore, the proposed FlatMatch is easy to implement and can be adapted to complement many
popular SSL methods [10, 15, 16, 28]. Although computing the proposed cross-sharpness normally
requires an additional back-propagation step, we propose an efficient strategy so that our FlatMatch
can be processed without extra computational burden. Through extensive experiments and analyses
on various benchmark datasets, we show that our FlatMatch achieves huge performance improvement
compared to some of the most powerful approaches. Specifically, on CIFAR100 dataset with 2500
labeled examples, our FlatMatch surpasses the foremost competitor so far with 1.11% improvement.
In general, our contribution can be summarized into three points:

– We identify a generalization mismatch of SSL due to the disconnection between labeled data
and unlabeled data, which leads to two critical flaws that remain to be solved (Section 1).

– We propose FlatMatch which addresses these problems by penalizing a novel cross-sharpness
that helps improve the generalization performance of SSL (Section 4.2).

– We reduce the computational cost of FlatMatch by designing an efficient implementation
(Section 4.3).

– Extensive experiments are conducted to fully validate the performance of FlatMatch, which
achieves state-of-the-art results in several scenarios (Section 5).

2 Related Works

SSL has been developed rapidly since the booming trend of deep learning [31, 45, 25]. We roughly
introduce it through three stages, namely traditional SSL, data-augmented SSL, and open-set SSL.

Traditional SSL: One of the first SSL methods is Pseudo Label [46] which has been very effective
for training neural networks in a semi-supervised manner, which relies on the gradually improved
learning performance to select confident samples [73, 72]. Another classical method is Co-training [9]
which utilizes two separate networks to enforce consistent predictions on unlabeled data so that the
classification can be more accurate. Inspired by co-training, many SSL approaches are motivated
to conduct consistency regularization. Temporal ensembling [44] proposes to leverage historical
model predictions to ensemble an accurate learning target that can be used to guide the learning of
the current model. Mean Teacher [59] further suggests such an ensemble can be operated on the
model weights to produce a teacher model that can provide improved learning targets. Instead of
improving the teacher model, Noisy student [75] finds that adding noise to the student model can also
improve SSL.

Data-Augmented SSL: Thanks to the development of data augmentation techniques and self-
supervised learning [30, 34, 68, 67], further improvements in SSL are achieved by enforcing consis-
tency between the original data and their augmented variants. VAT [49] proposes to add adversarial
perturbations [25, 26] to unlabeled data. By using the pseudo-label guidance to leverage such ad-
versarial unlabeled data, the model can be more robust to strong input noises, thus showing better
performance on the test set. MixMatch [8] employs the MixUp [80] technique to interpolate between
the randomly shuffled examples which largely smooths the input space as well as the label space,
further enhancing the generalization result. Moreover, FixMatch [57] is based on strong augmentation
such as AutoAugment [19] and RandAugment [20] to utilize the predictions of weakly augmented
data to guide the learning of strongly augmented data, which can achieve near supervised learning
performance on CIFAR10. Recently, Dash [76], FlexMatch [79], and FreeMatch [66] advanced SSL
through investigating the threshold strategy for pseudo labels. They analyze the training dynamic
of SSL and design various approaches to enhance the selection of unlabeled data, which effectively
boosts the SSL performance to a new level.

Open-Set SSL: Moreover, another branch of SSL studies the realistic scenario where unlabeled data
contains out-of-distribution (OOD) data [37, 38, 32, 33, 63, 64, 62]. The common goal is to alleviate
the influence of OOD such that the learning process of SSL will not be misled. Several studies
propose many techniques that can achieve this goal, such as distillation [17], meta-learning [29],
large-margin regularization [10], content-style disentanglement [36], and consistency regularization
can also help [56]. But in this paper, we mainly focus on the common assumption that labeled data
and unlabeled are sampled independently and identically.
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3 Preliminary: Improving Generalization via Penalizing Sharpness

Sharpness-Aware Minimization (SAM) [24, 43, 47, 69, 81] which focuses on optimizing the sharp
points from parameter space so that the training model can produce a flat loss landscape. Specifically,
given a set of fully-labeled data Dl = {(xl

i, y
l
i)}ni=1 containing n data points (xl

i, y
l
i), SAM seeks

to optimize a model parameterized by θ ∈ Θ to fit the training dataset Dl so that θ can generalize
well on a test set Dte drawn independently and identically as Dl. Such an optimization process is
normally conducted via minimizing the empirical risk Ll(θ) =

1
n

∑n
i=0 ℓce(θ; gθ(x

l
i), y

l
i) which is

realized by the cross-entropy loss ℓce computed between the label prediction f l = gθ(x
l
i) and the

class label yli. To find the sharp points that maximally increase the empirical risk, SAM applies a
weight perturbation ϵ ∈ Θ to the model parameters θ and conducts the following inner maximization:

ϵ∗(θ) := argmax
∥ϵ∥p≤ρ

Ll(θ + ϵ) ≈ argmax
∥ϵ∥p≤ρ

ϵ⊤∇θLl(θ)
p = 2
≈ ρ

∇θLl(θ)

∥∇θLl(θ)∥2
, (1)

where ϵ∗ denotes the optimal perturbation which can be estimated using the gradient information of
mini-batch inputs, ρ restricts the perturbation magnitude of ϵ within a ℓp-ball, and the approximation
is given by the dual norm problem [24].

By perturbing the original model θ with ϵ∗, we can obtain the sharpness measure from SAM:
sharpness := Ll(θ+ϵ∗)−Ll(θ) which indicates the how quickly loss changes under the worst-case
model perturbation ϵ∗. To combine the sharpness term with empirical risk minimization (ERM), the
SAM objective can be differentiated as follows:

∇θLSAM
l :=∇θ [Ll(θ + ϵ∗(θ))− Ll(θ)] + Ll(θ) ≈ ∇θLl(θ + ϵ∗(θ))

=
d(θ + ϵ∗(θ))

dθ
∇θLl(θ)|θ+ϵ∗(θ) = ∇θLl(θ)|θ+ϵ∗(θ) + o(θ),

(2)

where the last second-order term o(θ) can be discarded without significantly influencing the ap-
proximation. For detailed derivation and analysis, we refer to the original paper and related stud-
ies [1, 24, 82]. Intuitively, the gradient of SAM is computed on the worst-case point θ + ϵ∗, then
such a gradient is utilized to update the original parameter θ. As a result, the model can produce a
more flat loss landscape than ERM which would not change drastically, and being robust along the
sharpest direction ϵ∗ among its ℓp-norm neighbor.

Since the obtained flatness property has been demonstrated to have many benefits for generalization,
such as being resistant to distribution shift [11, 39, 61], robustness against adversarial attack [69, 58],
and effectiveness under label noise [24, 3, 35, 40, 70, 77], SAM has inspired many research progresses.
However, SAM is only conducted under a fully-supervised setting, and whether or how can it be
leveraged to improve learning with unlabeled data is still undiscovered. Next, we carefully introduce
the proposed FlatMatch which improves the generalization performance of SSL by bridging labeled
data and unlabeled data with a novel cross-sharpness.

4 FlatMatch: Semi-Supervised Learning with Cross-Sharpness

In this section, we carefully introduce our FlatMatch. First, we describe the SSL setting in a
generalized way. Then, we demonstrate a novel regularization from FlatMatch which is dubbed
cross-sharpness. Finally, we explain its optimization and design an efficient implementation.

4.1 General Semi-Supervised Learning

In SSL, we are commonly given a small set of labeled data Dl = {(xl
i, y

l
i)}ni=1 containing n labeled

examples (xl
i, y

l
i) and a large unlabeled data Du = {xu

i }mi=1 containing m (m ≫ n) unlabeled
examples xu

i which are drawn independently and identically. Similar to previous notations, we aim
to optimize a deep model θ ∈ Θ in a semi-supervised manner so that θ can perform well on i.i.d
sampled test set Dte. The general objective for SSL is as follows:

min
θ

Lssl = min
θ

Ll + Lu = min
θ

1

n

n∑
i=0

ℓce(θ; gθ(x
l
i), y

l
i) +

1

m

m∑
i=0

I(ŷi > τ)ℓd(θ; gθ(A(xu
i )), ŷi),

(3)
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Figure 2: Illustration of FlatMatch. The blue arrows and red arrows denote the learning flows related to labeled
data and unlabeled data, respectively; and the black arrows indicate the computation of the worst-case model.

where the first term is similar to Eq. 1 and denotes the empirical risk under the label supervision, the
second term indicates the semi-supervised regularization for exploiting unlabeled data, the function
ℓd(·) denotes the loss criterion for unlabeled data, such as KL-divergence or cross-entropy loss, A(·)
stands for an augmentation function that transforms the original input xi to its augmented variants, ŷi
represents the unsupervised learning target which can be a pseudo label or a guiding signal from a
teacher model, and an indexing function I(·) is commonly used to select the confident unlabeled data
if their learning target surpasses a predefined threshold τ . Our FlatMatch replaces the second term
with a cross-sharpness regularization as described below.

4.2 The Cross-Sharpness Regularization

The computation of cross-sharpness can be briefly illustrated in Fig. 2. Particularly, to solve the sharp
loss landscape problem, as demonstrated in Section 1, we penalize the cross-sharpness regularization
on each unlabeled example using a worst-case model derived from maximizing the loss on labeled
data. Formally, such optimization is shown as follows:

min
θ

RX-sharp := min
θ

1

m

∑
xu∈Du

ℓd(gθ̃(x
u), gθ(x

u)), where θ̃ = θ + argmax
∥ϵ∥p≤ρ

Ll, (4)

in which gθ(·) indicates the forward propagation using the parameter θ whose prediction result is
f = gθ(·), and θ̃ stands for the worst-case model that maximally increases the empirical risk on
labeled data. Here we drop the subscript i from each datum x for simplicity. By meaning “cross”, the
sharpness is not obtained by revisiting labeled data as SAM does, instead, we compute the sharpness
by leveraging abundant unlabeled data to take full advantage of their generalization potential.

In detail, we leverage the original model θ to conduct a first propagation step as f l = gθ(x
l); fu =

gθ(x
u), where f l and fu are label predictions from labeled data and unlabeled data, respectively.

Then, the empirical risk on labeled data is computed as Ll =
∑

xl∈Dl ℓce(θ; gθ(x
l), yl). Following

Eq. 1, we maximize the empirical risk Ll to obtain the weight perturbation as ϵ∗ := ρ ∇θLl(θ)
∥∇θLl(θ)∥2

,

further having the worst-case model θ̃ = θ + ϵ∗. Moreover, we conduct a second propagation step by
passing the unlabeled data to θ̃ and have f̃u = gθ̃(x

u). The second unlabeled data prediction f̃u is
combined with the first prediction fu obtained before to compute the cross-sharpness in Eq. 43.

Why does crossing the sharpness work? As shown by many theoretical signs of progress, the
generalization error of SSL is largely dependent on the number of labels [5, 48]. Especially in recently
proposed barely-supervised learning [57], the generalization error would be enormous. Although
such a result may be pessimistic, unlabeled data can still be helpful. It is shown that when two
distinct hypotheses on labeled data are co-regularized to achieve an agreement on unlabeled data, the
generalization error can be reduced, as we quote: “The reduction is proportional to the difference
between the representations of the labeled data in the two different views, where the measure of
difference is determined by the unlabeled data” [54]. Intuitively, disconnecting labeled data and
unlabeled data during training may be sub-optimal. To achieve better theoretical performance, the
SSL model should focus on learning something from unlabeled data that are not contained by labeled

3Note that there is a slight difference between the sharpness from SAM and our cross-sharpness: The former
one is measured by the change of cross-entropy loss under model perturbation. But in SSL, the pseudo labels
of unlabeled data is not accurate enough compared to labeled data, so we use the difference between label
predictions of θ and θ̃ to measure our cross-sharpness.
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Algorithm 1 FlatMatch and FlatMatch-e

Input: Labeled dataset Dl, unlabeled dataset Du, model θ, memory buffer M for storing historical gradients,
and EMA factor α for updating buffer.

1: for t ∈ 0, 1, . . . , T − 1 do
2: if Efficient training then ▷ FlatMatch-e
3: Compute optimal perturbation as ϵ∗ = ρ Mt

∥Mt∥2
;

4: else ▷ FlatMatch
5: Compute gradient as ∇θLl(θ) = ∇θ

∑
xl∈Dl ℓce(θ; gθ(x

l), yl); ▷ First propagation step
6: Compute optimal perturbation as ϵ∗ := ρ ∇θLl(θ)

∥∇θLl(θ)∥2
;

7: Obtain worst-case model as θ̃ = θ + ϵ∗;
8: Compute cross-sharpness via Eq. 4;
9: Optimizing θ via Eq. 5, meanwhile save the gradient ∇θLl(θ); ▷ Second propagation step

10: Update memory buffer as Mt+1 = (1− α)×Mt + α×∇θLl(θ);

data. In our FlatMatch, we can achieve this goal by enforcing θ and θ̃, which produces the maximal
loss difference on labeled data, to be consistent in classifying unlabeled data. Therefore, FlatMatch
can be more effective than other instance-wise consistent methods by bridging the knowledge of
labeled data and unlabeled data for training.

4.3 Optimization and Efficient Implementation

To this end, we solve the optimization of FlatMatch by substituting Lu in Eq. 3 with RX-sharp in Eq. 4:

θ := argmin
θ

Ll(θ) +RX-sharp(θ + ϵ∗(θ)) ≈ ∇θLl +∇θRX-sharp(θ)|θ+ρ
∇θLl(θ)

∥∇θLl(θ)∥2
. (5)

Particularly, the second gradient is obtained on the worst-case point θ+ρ ∇θLl(θ)
∥∇θLl(θ)∥2

, then it is applied
on the original model θ for gradient descent. As we can see, such optimization requires an additional
back-propagation on labeled data, which doubles the computational complexity. Fortunately, our
FlatMatch can be implemented efficiently with no extra computational burden than the baseline
stochastic gradient descent (SGD) optimizer, which is dubbed FlatMatch-e. The implementation is
summarized in Algorithm 1.

Although many efficient methods for implementing SAM have already been proposed [22, 23, 47, 83],
they commonly need extra regularization or gradient decomposition, which are not harmonious to
SSL and would complicate our method. In our scenario, FlatMatch has a critical difference from
SAM regarding the two propagation steps: The gradients from the first step and second step are not
computed on the same batch of data, i.e., they are crossed from labeled data to unlabeled data. Since
in SSL, each labeled batch and unlabeled batch are randomly coupled, we are allowed to use the
gradient computed from the last batch of labeled data to obtain the cross-sharpness from the current
batch of unlabeled data. Even better, we can use exponential moving average (EMA) [30, 44, 59]
to stabilize the gradient so that our cross-sharpness can be computed accurately. Next, we conduct
extensive experiments to carefully validate our approach.

5 Experiments

In this section, we conduct extensive comparisons and analyses to evaluate the proposed FlatMatch
method. We first describe the experimental setup and implementation details. Then we compare
FlatMatch with many edge-cutting SSL approaches to show the effectiveness of our method. Further,
we conduct an ablation study to justify our design of FlatMatch. Finally, we demonstrate the efficiency,
stability, and sensitivity of FlatMatch through various analytical studies.

5.1 Experimental Setup and Details

We follow the most common semi-supervised image classification protocols by using CI-
FAR10/100 [42] SVHN [50], and STL10 [18] datasets where a various number of labeled data
are equally sampled from each class. Following Wang et al. [66], We choose Wide ResNet-28-2 [78]
for CIFAR10 and SVHN, Wide ResNet-28-8 for CIFAR100, ResNet-37-2 [31] for STL10. All
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Table 1: Error rates on CIFAR10/100, SVHN, and STL10 datasets. The fully-supervised results of STL10 are
unavailable since we do not have label information for its unlabeled data. The best results are highlighted with
Bold and the second-best results are highlighted with underline.

Dataset CIFAR10 CIFAR100 SVHN STL10

# Label 10 40 250 4000 400 2500 10000 40 250 1000 40 1000

Π-Model [44] 79.18±1.11 74.34±1.76 46.24±1.29 13.13±0.59 86.96±0.80 58.80±0.66 36.65±0.00 67.48±0.95 13.30±1.12 7.16±0.11 74.31±0.85 32.78±0.40

Pseudo Label [46] 80.21±0.55 74.61±0.26 46.49±2.20 15.08±0.19 87.45±0.85 57.74±0.28 36.55±0.24 64.61±5.6 15.59±0.95 9.40±0.32 74.68±0.99 32.64±0.71

VAT [49] 79.81±1.17 74.66±2.12 41.03±1.79 10.51±0.12 85.20±1.40 46.84±0.79 32.14±0.19 74.75±3.38 4.33±0.12 4.11±0.20 74.74±0.38 37.95±1.12

Mean Teacher [59] 76.37±0.44 70.09±1.60 37.46±3.30 8.10±0.21 81.11±1.44 45.17±1.06 31.75±0.23 36.09±3.98 3.45±0.03 3.27±0.05 71.72±1.45 33.90±1.37

MixMatch [8] 65.76±7.06 36.19±6.48 13.63±0.59 6.66±0.26 67.59±0.66 39.76±0.48 27.78±0.29 30.60±8.39 4.56±0.32 3.69±0.37 54.93±0.96 21.70±0.68

ReMixMatch [7] 20.77±7.48 9.88±1.03 6.30±0.05 4.84±0.01 42.75±1.05 26.03±0.35 20.02±0.27 24.04±9.13 6.36±0.22 5.16±0.31 32.12±6.24 6.74±0.14

UDA [74] 34.53±10.69 10.62±3.75 5.16±0.06 4.29±0.07 46.39±1.59 27.73±0.21 22.49±0.23 5.12±4.27 1.92±0.05 1.89±0.01 37.42±8.44 6.64±0.17

FixMatch [57] 24.79±7.65 7.47±0.28 4.86±0.05 4.21±0.08 46.42±0.82 28.03±0.16 22.20±0.12 3.81±1.18 2.02±0.02 1.96±0.03 35.97±4.14 6.25±0.33

Dash [76] 27.28±14.09 8.93±3.11 5.16±0.23 4.36±0.11 44.82±0.96 27.15±0.22 21.88±0.07 2.19±0.18 2.04±0.02 1.97±0.01 34.52±4.30 6.39±0.56

MPL [52] 23.55±6.01 6.62±0.91 5.76±0.24 4.55±0.04 46.26±1.84 27.71±0.19 21.74±0.09 9.33±8.02 2.29±0.04 2.28±0.02 35.76±4.83 6.66±0.00

FlexMatch [79] 13.85±12.04 4.97±0.06 4.98±0.09 4.19±0.01 39.94±1.62 26.49±0.20 21.90±0.15 8.19±3.20 6.59±2.29 6.72±0.30 29.15±4.16 5.77±0.18

SoftMatch [16] - 4.91±0.12 4.82±0.09 4.04±0.02 37.10±0.77 26.66±0.25 22.03±0.03 2.33±0.25 - 2.01±0.01 21.42±3.48 5.73±0.24

FreeMatch [66] 8.07±4.24 4.90±0.04 4.88±0.18 4.10±0.02 37.98±0.42 26.47±0.20 21.68±0.03 1.97±0.02 1.97±0.01 1.96±0.03 15.56±0.55 5.63±0.15

FlatMatch 15.23±8.67 5.58±2.36 4.22±1.14 3.61±0.49 38.76±1.62 25.38±0.85 19.01±0.43 2.46±0.06 1.43±0.05 1.41±0.04 16.20±4.34 4.82±1.21

FlatMatch-e 15.69±6.35 5.63±1.87 4.53±1.85 3.57±0.50 38.98±1.53 25.62±0.88 19.78±0.89 2.66±0.09 1.47±0.08 1.46±0.07 16.32±4.64 5.03±1.06

FlatMatch (Fix label) 7.36±5.62 4.89±1.24 3.90±1.72 3.61±0.49 36.97±0.95 25.38±0.85 19.01±0.43 2.14±0.05 1.43±0.05 1.41±0.04 14.96±0.67 4.82±1.21

Fully-Supervised 4.62±0.05 19.30±0.09 2.13±0.01 -

SSL approaches are implemented using Pytorch framework, and the computation is based on 12GB
NVIDIA 3090 GPU. We compare our method with well-known approaches, including Π-model [44],
Pseudo Label [46], VAT [49], Mean Teacher [59], MixMatch [8], ReMixMatch [7], UDA [74],
FixMatch [57], Dash [76], MPL [52], FlexMatch [79], SoftMatch [16], and FreeMatch [66].

To optimize all methods, we use SGD with a momentum of 0.9 with an initial learning rate of
0.03. We set the batch size as 64 for all datasets. Moreover, we set the weight decay value,
pseudo label threshold τ , unlabeled batch ratio µ, and trade-off for SSL regularization as the
same for all compared methods. To implement our FlatMatch, we set the perturbation magnitude
ρ = 0.1, and EMA factor α = 0.999 which is the same for Mean Teacher and other methods
that require EMA. Moreover, in line 9 from Alg. 1, we need to separate the gradients regarding
labeled data and unlabeled data in one back-propagation step. Such an operation can be done using
“functorch.make_functional_with_buffers” in Pytorch, which can efficiently compute the
gradients for each sample. For more details, please see the appendix.

5.2 Quantitative Comparison

The main comparison results are shown in Table 1, we can see that our FlatMatch achieves state-of-
the-art results on many scenarios. For example, on CIFAR100 with 2500 labels, FlatMatch achieves
25.38% test errors, surpassing the second-best method, FreeMatch, for 1.09%; and on CIFAR100
with 10000 labels, FlatMatch achieves 19.01% performance, further improving the second-best result,
ReMixMatch, for 1.01%, which even passes the fully-supervised baseline result for 0.29%. Moreover,
FlatMatch reaches extremely low error rates in many settings. For instance, in CIFAR10 with 250
labels and 4000 labels, FlatMatch only has 4.22% and 3.61% error rates; and in SVHN with 250
labels and 1000 labels, FlatMatch can also surpass the fully-supervised learning by producing 1.43%
and 1.41% error rates, respectively. Additionally, FlatMatch breaks the record on the STL10 dataset
with 1000 labels by reaching 4.82% performance.

Figure 3: Gradient angle between cross-
entropy loss Ll and general SSL loss Lssl.

Moreover, we also show the performance of FlatMatch-e, an
efficient variant of FlatMatch, which can also surpass many
existing state-of-the-art methods. Such as in CIFAR100 with
10000 labels, FlatMatch-e can beat the second-best method,
SoftMatch, with a 2.04% improvement. More importantly,
FlatMatch-e only shows slight performance drops from Flat-
Match but significantly reduces the computational burden,
which is demonstrated in Section 5.4.

Despite its effective performance, we also noticed that in
some scenarios where the labels are extremely limited, such
as CIFAR10 with 10 labels, CIFAR100 with 400 labels, etc,
our FlatMatch is slightly worse than a recently proposed
method FreeMatch [66]. This is because the gradient esti-
mated by the extremely scarce labeled data cannot align with the general training direction. To
intuitively demonstrate this issue, we show the gradient angle between the cross-entropy loss from
labeled data and the total SSL loss in Fig. 3. We can see that the gradient angle oscillates stronger as
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Algorithm 2 FlatMatch with fixed labels for Stabilizing Cross-Sharpness

Input: Labeled dataset Dl, unlabeled dataset Du, model θ, number of fixed labels #fix, number of pre-train
epochs #pre_train.

1: for t ∈ 0, 1, . . . , T − 1 do
2: if t ∈ 0, 1, . . . ,#pre_train then
3: SSL pre-training by optimizing Eq. 3;
4: if t = #pre_train then
5: Select Top-#fix confident unlabeled data xu

i and assign fixed labels ŷi := argmax(gθ(xu
i ));

6: else
7: Using the augmented labeled data to compute cross-sharpness via Eq. 4;
8: Using the original Dl and Du to optimize θ via Eq. 5;

the number of labels gets smaller. When the label number reduces to only 10, the angle becomes
extremely unstable and could surpass 90◦. As a result, such a phenomenon could affect the worst-case
perturbation computed by FlatMatch, which would introduce negligible noise to the training process.

However, this drawback can be properly solved by slightly augmenting the number of labels with
pseudo-labeled unlabeled data. Specifically, before we start minimizing cross-sharpness, we first
pre-train the backbone model with a common SSL method, such as FixMatch or FreeMatch, for
16 epochs to increase the confidence on unlabeled data. Then, we choose the most confident, i.e.
high softmax probability, unlabeled data to be pseudo-labeled as labeled data. Different from other
unlabeled data that are also trained with pseudo labels, the selected unlabeled data are fixed with their
labels and act as labeled data when computing the sharpness. In this way, the cross-sharpness would
be computed accurately by using both the original labeled data and augmented labeled data. Note that
the augmentation with fixed labels is only used in the sharpness computation, when conducitng the
second propagation step, all unlabeled data are treated similar to general SSL strategy, such process
is summarized in Algorithm 2. Under this training strategy, we dub our method as “FlatMatch (Fix
label)” and show its result in Table 1. The number of fixed labeled data in CIFAR10, CIFAR100,
SVHM, and STL10 is set to 500, 2500, 500, and 1000, respectively. If the number of the original
labeled dataset contains enough labels, we do not add more fixed labeled data. We can see that in this
scenario, our method has the best performance in all settings including the ones with 1 or 4 labels in
each class, which demonstrates that using more labels can largely stabilize sharpness computation
and further benefits the performance of FlatMatch, thus achieving superior results on all settings.

5.3 Ablation Study
To carefully justify the design of our method, we compare FlatMatch with “sharp. on labeled data Dl”
and “sharp. on unlabeled data Du” where the former one denotes both the worst-case model θ̂ and
sharpness is computed on labeled data and the latter one denotes θ̂ and sharpness are calculated on
unlabeled data. Additionally, we compute the sharpness on the full dataset, as denoted by “sharp.
on unlabeled data Dl ∪ Du”. Moreover, we also analyze the effect of EMA smoothing on the
performance of FlatMatch-e. Specifically, we compare FlatMatch-e with setting “w/o EMA” that just
uses a gradient from the last batch of labeled data to calculate our worst-case model. The ablation
study is conducted using CIFAR100 with a varied number of labels, which is shown in Table 2.

Table 2: Ablation study on CIFAR100.

Dataset CIFAR100

# Label 400 2500 10000

sharp. on Dl 42.63±0.34 26.85±0.45 21.79±0.24
sharp. on Du 49.45±2.76 36.30±2.01 27.05±2.98

sharp. on Dl ∪ Du 43.88±1.64 27.26±1.62 23.42±1.77
FlatMatch 38.76±1.62 25.38±0.85 19.01±0.43
w/o EMA 40.64±0.97 29.44±1.56 23.23±1.28
FlatMatch-e 38.98±1.53 25.62±0.88 19.78±0.89

First, we can see that both two choices of our
method are effective. Particularly, computing
sharpness only on labeled data Dl shows smaller
performance degradation than computing sharp-
ness on unlabeled data Du, and it even shows
better results than FixMatch. Hence, we know
that the sharpness of labeled data can indeed im-
prove the performance of SSL, only having lim-
ited performance because the number of labeled
data is too scarce. On the other hand, when sharp-
ness is completely based on unlabeled data, the
performance significantly drops by nearly 10%
compared to “sharpness on Dl”. This is because the training process on unlabeled data contains
too much noise which causes erroneous gradient computation that would hinder the effectiveness of
penalizing sharpness. Furthermore, we find that “w/o EMA” shows slightly inferior performance
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2D contours of labeled data
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Figure 4: Loss landscapes of labeled data and unlabeled data obtained simultaneously from training using
FlatMatch on CIFAR10 with 250 labels per class. The first row and second row show the results obtained from
epoch 60 and epoch 150, respectively. The first column and second column show the 2D loss contours of labeled
data and unlabeled data, respectively, and the last column shows the 1D loss curves.

to FlatMatch-e. Such degradation is consistent with the findings from Liu et al. [47] that the last
gradient direction is distinct from the current one. As gradient descent has been conducted in the
previous batch, reusing the gradient to perturb the current model might not find the perfect worst-case
model on the current labeled data. Based on our observation, using EMA can stabilize the gradient
can lead to accurate sharpness calculation.

Parameter Sensitivity

Figure 5: Parameter sensitiv-
ity analysis regarding perturbation
magnitude ρ on CIFAR100.

Training Stability

Figure 6: Stability analysis on
gradient norm from training on CI-
FAR100.

Training Efficiency

Figure 7: Training efficiency compari-
son on CIFAR100 with 10000 labels.

5.4 Analytical Study

In this section, we analyze the performance of FlatMatch by considering visualization, parameter
sensitivity, training stability, and .efficiency.

Loss visualization: To show that FlatMatch can properly solve the sharp loss problem of labeled
data, we train FlatMatch under the same setting as the ones demonstrated in Section 1 and plot the
2D loss contour as well as the 1D loss curve in Fig. 4. We can see that our FlatMatch can produce a
much flatter loss landscape than FixMatch does in Fig. 1, where the jagged curve has been eliminated
and become very smooth. Therefore, by minimizing cross-sharpness, the generalization performance
on labeled data can be largely improved.

Sensitivity analysis: Our FlatMatch requires a hyperparameter ρ which controls the perturbation
magnitude to obtain the worst-case model. To analyze the performance sensitivity of varying ρ, we
show the result on CIFAR100 in Fig. 5. We observe that small ρ values show little impact on the test
performance. However, when ρ increases to more than 0.25, the performance would largely degrade.
Moreover, among three settings with varied label numbers, we find that more numbers labels could
enhance the model sensitivity against changing of ρ. For example, when changing the ρ from 0.1
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to 0.25, the performance difference on 400 labels, 2500 labels, and 10000 labels are 0.05%, 1.2%,
3.42%. Generally, the optimal value for ρ is 0.1.

Training stability: To validate the training stability of FlatMatch, we show the gradient norm which
is an important criterion to present gradient variation in Fig. 6. We observe that the gradient norm
of FlatMatch is significantly smaller than FreeMatch during the whole training phase. Therefore,
minimizing the cross-sharpness can indeed improve training stability.

Training efficiency: We compare the training time and test accuracy of FlatMatch, FlatMatch-e,
FreeMatch, FlexMatch, and FixMatch to validate the efficiency property of our method. As shown in
Fig. 7, we find that despite the superior accuracy performance, FlatMatch requires more time for each
iteration than the other three methods. However, the efficient variant FlatMatch-e can largely reduce
the computational cost without losing too much learning performance. Hence, we can conclude that
leveraging EMA for computing cross-sharpness is both effective and efficient.

6 Conclusion, Limitation and Broader Impact

In this paper, we propose a novel SSL method dubbed FlatMatch to address the mismatched gen-
eralization performance between labeled data and unlabeled data. By minimizing the proposed
cross-sharpness regularization, FlatMatch can leverage the richness of unlabeled data to improve
the generalization performance on labeled data. As a result, the supervised knowledge from labeled
data can better guide SSL, and achieve improved test performance than most existing methods.
Moreover, we propose an efficient implementation to reduce the computation cost. We conduct
comprehensive experiments to validate our method regarding effectiveness, sensitivity, stability,
and efficiency. Additionally, FlatMatch is slightly limited under barely-supervised learning due to
the requirement of enough labeled data. Our method shows that SSL can be further improved by
exploring generalization, which could be a potential direction in future research.
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Supplementary Material for
“FlatMatch: Bridging Labeled Data and Unlabeled Data with

Cross-Sharpness for Semi-Supervised Learning”

In this Appendix, we provide additional details and experimental results to complement the proposed
method. First, we describe supplementary experimental details in Section A. Then, we provide
extra quantitative results, including employing FlatMatch to other SSL methods, comparisons on
ImageNet30 and ImageNet [55] datasets, performance on Vision Transformer in Section B. Further,
we show more empirical results to qualitatively validate FlatMatch in Section C. Then, we conduct
convergence study on test accuracy and training loss curves in Section D. Moreover, we provide
extra visualizations to show the loss landscape on later state of training in Section E. Finally, we
summarize this paper and make a discussion on prospective research in Section F.

A Supplementary Details

The experimental setting of this paper follows Wang et al. [65]. Specifically, the hyper-parameters
are composed of algorithm-dependent parameters and algorithm-independent parameters, which are
shown in Table 3 and Table 4, respectively. For algorithm-dependent parameters of FlatMatch, we
use the same unlabeled data and labeled data ratio as FreeMatch [66] as well as all other baseline
methods to sample data into a mini-batch. The perturbation magnitude α is based on the results from
hyper-parameter sensitivity analysis in the main paper and is chosen as 0.05 for all experiments. For
updating the historical gradient using a memory buffer, we use EMA with factor α to ensemble the
gradient result. Moreover, we choose the thresholding strategy from FreeMatch and use an EMA
decay. Note that for combining the cross-sharpness regularization from FlatMatch with empirical risk,
we find that there is no need to introduce another weight to trade off the two loss functions, hence
the weight for cross-sharpness is just set to 1 for all experiments. For algorithm-independent hyper-
parameters, we have listed the important model setting, optimizer parameters, and data sampling
setting as below. Note that all baseline methods follow the implementation of USB [65] and are
trained with EMA decay with 0.999 to smooth the parameter updating.

Table 3: Algorithm-dependent hyper-parameters.
Algorithm FlatMatch

Unlabeled Data to Labeled Data Ratio (CIFAR-10/100, STL-10, SVHN) 7

Unlabeled Data to Labeled Data Ratio (ImageNet30) 1

Perturbation magnitude ρ for all experiments 0.05

EMA factor α for updating gradient 0.999

Thresholding EMA decay for all experiments 0.999

Trade-off weight λX-sharp for cross-sharpness 1

B Additional Quantitative Results

In this section, we conduct additional experiments on CIFAR10 and ImageNet30 [55] datasets to
compare the performance between some of the most edge-cutting methods, including FixMatch [57],
Dash [76], FlexMatch [79], FreeMatch [66], SoftMatch [16], and our FlatMatch.
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Table 4: Algorithm-independent hyper-parameters.
Dataset CIFAR-10 CIFAR-100 STL-10 SVHN ImageNet30

Model WRN-28-2 WRN-28-8 WRN-37-2 WRN-28-2 ResNet-50

Weight decay 5e-4 1e-3 5e-4 5e-4 3e-4

Batch size 64 128

Learning rate 0.03

SGD momentum 0.9

EMA decay 0.999

Table 5: Performance on boosting other SSL methods using FlatMatch with the fixed number of
labels.

Dataset CIFAR10

# label 40 250 4000

FixMatch 7.47±0.28 4.86±0.05 4.21±0.08

FixMatch+FlatMatch 6.50±1.25 4.27±2.15 3.92±1.65

Dash 8.93±3.11 5.16±0.23 4.36±0.11

Dash+FlatMatch 6.73±2.49 4.48±1.56 4.02±1.30

FlexMatch 4.97±0.06 4.98±0.09 4.19±0.01

FlexMatch+FlatMatch 4.47±0.92 4.25±1.37 3.88±0.75

SoftMatch 4.91±0.12 4.82±0.09 4.04±0.02

SoftMatch+FlatMatch 4.89±1.32 3.98±1.14 3.84±0.86

FreeMatch 4.90±0.04 4.88±0.18 4.10±0.02

FlatMatch (Fix label) 4.89±1.24 3.90±1.72 3.61±0.49

B.1 Combining FlatMatch with Other Methods on CIFAR10

We choose CIFAR10 dataset with the number of labeled data varied as 40, 250, and 4000, and apply
the FlatMatch methodology to several recently proposed SSL methods to show the effectiveness of
the proposed cross-sharpness regularization. The results are shown in Table 5, as we can see that our
method can further boost the learning performance of all five methods on all three settings, which
proves that the cross-sharpness method is quite universal to SSL approaches and can bring non-trivial
performance enhancement. Note that in the 40 labels setting, we compute our cross-sharpness on 500
examples with fixed labels, as demonstrated in Section 5.2 from the main paper.

B.2 Comparing FlatMatch to Other Methods on Large-Scale Datasets and Sophisticated
Architecture

To further testify the performance of FlatMatch on a large-scale datasets, we first conduct experiments
on ImageNet30 dataset which is a subset from the original ImageNet dataset and contains 30000
training examples with resolution 256×256 from 30 classes. Moreover, we also test the performance
on the original ImageNet dataset. As Vision Transformer (ViT) [21] has manifested great power on
classification tasks, we also adopt ViT as our backbone to validate the performance of FlatMatch.

The experiments on ImageNet30 are more time-consuming which normally takes 5 days to finish,
much more than CIFAR10 dataset which takes 2 days. We vary the number of labeled data as 1500
and 3000 and show the comparison in Table 6. We observe the effectiveness of FlatMatch over all
other baseline methods in both two settings, which again validates the superiority of our method and
its effective performance on large-scale datasets.

Additionally, we have conducted the experiments on the original ImageNet dataset by choosing only
100 labels per each class, and provide the test error results of FlatMatch, FlatMatch-e, FixMatch,
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Table 6: Comparison on ImageNet30.

Dataset ImageNet30

# label 1500 3000

FixMatch 12.48±0.67 8.25±0.54

Dash 13.29±1.26 8.79±0.42

FlexMatch 11.48±0.52 8.04±0.75

SoftMatch 10.81±0.40 7.78±0.61

FreeMatch 10.34±0.46 7.21±0.19

FlatMatch 9.71±1.55 6.77±1.27

Table 7: Comparison on ImageNet using Wide-ResNet-28-2 and Vision Transformer.
Dataset Architecture FlatMatch FlatMatch-e FreeMatch FlexMatch FixMatch

ImageNet Wide-ResNet-28-2 38.70 39.92 40.57 41.95 43.66
ViT-Base (86M) 21.57 22.07 23.55 23.78 25.52

FlexMatch, and FreeMatch as shown in Table 7. We can see that on large-scale dataset such as
ImageNet, the performances of both FlatMatch and FlatMatch-e are still superior to other components.
Moreover, we can still observe the effectiveness of the two of our methods on ViT. Therefore, it is
reasonable to conclude that the performance of FlatMatch is extendable to large-scale datasets and
sophisticated architectures.

Figure 8: Comparison of sharpness between various SSL methods during training.

C Additional Qualitative Results

To further evaluate the flatness of different SSL models during training, we leverage a validation
set to compute the sharpness. The sharpness is measured by the increase of loss within a ℓ2
bounded neighbor, which is formally defined as Sharpness := L(θ+ ϵ∗(θ))−L(θ),where ϵ∗(θ) =
argmax∥ϵ∥2≤ρ L(θ+ϵ). Specifically, we compare the proposed FlatMatch with FixMatch, Dash, and
FreeMatch, and use fully supervised learning as a baseline method. The experiments are conducted on
CIFAR10 and SVHN datasets whose results are shown in Figure 8. First, we observe that FlatMatch
achieves the lowest sharpness curve during training on both two datasets, which indicates the SSL
model learned by FlatMatch is more robust to perturbations and would not oscillate significantly
when facing changes in parameter space. Moreover, we find that fully supervised learning does not
improve the flatness as the training proceeds, while all SSL methods can decrease the sharpness to
some extent, which demonstrates that training with unlabeled data can help improve the flatness of
SSL models.
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Figure 9: Analysis on changing the number of fixed labels.

Furthermore, as shown in the main paper, we find that FlatMatch has limited performance on
extremely scare labeled settings. However, this limitation can be addressed by introducing some
unlabeled data with fixed labels to improve the computation of cross-sharpness. Hence, here we
investigate the effect of changing the number of fixed on the performance of FlatMatch. Specifically,
we conduct experiments on CIFAR10 and SVHN datasets and fixing different numbers of labels as
0 (“w/o fix label”), 250, 500, 1000, 2000, 40004. The results are shown in Figure 9. We find that
both too few fixed labels, i.e., 250 labels and too many fixed labels, i.e., 4000 labels in CIFAR10
and 2000 labels in SVHN, would show a performance drop compared to the optimal number, 500
fixed labels. This is because if the number of fixed labels is too small, the gradient computation
would be inaccurate, further limiting the learning results. On the other hand, too many fixed labels
would introduce noisy labeled unlabeled data, which would largely mislead the SSL and show serious
performance degradation.

Figure 10: Convergence of accuracy analysis between FlatMatch and FreeMatch.

D Convergence Analysis

In this section, we conduct analyses regarding the test accuracy and training loss to validate the
convergence property of FlatMatch.

For convergence of accuracy, here we compare our FlatMatch with FreeMatch, which has the best
performance among most SSL baseline methods. The accuracy curve is shown in Figure 10. We

4The 4000 fixed labels setting is not conducted on SVHN as the performance of 2000 fixed labels setting
already shows significantly performance degradation.
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observe that the performances of two methods are almost comparable in early stages, but FlatMatch
continues to improve the training performance in the middle and later stages and finally achieves
better accuracy than FreeMatch on the final point. Therefore, we can conclude that our method can
converge to a superior performance than FreeMatch.

Figure 11: Convergence of loss values of FlatMatch and FixMatch.

Moreover, to illustrate the convergence of loss curves, we show the loss values of labeled data
and unlabeled data from both FlatMatch and FixMatch during training. Moreover, we subtract the
loss value of unlabeled data with loss of labeled data to compute a loss difference, which gives an
illustration about the performance gap between both two datasets.

2D contours of labeled data

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.6

1.1

1.62.1
2.6

3.1

3.6

4.1

4.65.1

5.6
6.1

6.6
7.1

7.6

8.1

8.6

9.1

9.6

2D contours of unlabeled data

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.6

1.1

1.6

2.1
2.6

3.1
3.6

4.1

4.65.1

5.6

6.1

6.6

7.1

7.6

8.1

8.6
9.1

9.6
1D loss curves

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

1

2

3

4

5
Lo

ss

Labeled data loss
Unlabeled data loss

0

20

40

60

80

100

Ac
cu

ra
cy

Labeled data accuracy
Unlabeled data accuracy

Loss curves of FixMatch

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.6

1.1
1.62.1

2.6

3.1

3.6

4.1

4.6

5.1

5.6

6.
1

6.6

7.1

7.6

8.1

8.6

9.1

9.
6

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.6

1.11.6
2.12.6

3.1

3.6

4.1

4.6

5.1
5.6

6.1
6.6

7.1

7.6

8.1

8.6

9.
1

9.6

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

1

2

3

4

5

Lo
ss

Labeled data loss
Unlabeled data loss

0

20

40

60

80

100

Ac
cu

ra
cy

Labeled data accuracy
Unlabeled data accuracy

Loss curves of FlatMatch

Figure 12: Loss landscapes of labeled data and unlabeled data obtained simultaneously from training using
FlatMatch and FixMatch on CIFAR10 with 250 labels per class. The results are generated from the last model
checkpoint. The first column and second column show the 2D loss contours of labeled data and unlabeled data,
respectively, and the last column shows the 1D loss curves.

There are two findings: 1) The loss value of labeled data quickly converges to zero and is significantly
smaller than unlabeled data. Such phenomenon occurs in two methods which supports our claim that
the learning on labeled data converges faster than unlabeled data. 2) The loss difference between two
datasets of FlatMatch is significantly smaller than FixMatch, which indicates that our FlatMatch can
alleviate the unmatched convergence speed of two datasets and helps decrease the loss gap between
two datasets.
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E More Visualizations

To show how the loss curves appears in the later stage of training, we generate the loss landscape
of FixMatch and FlatMatch on the last training epoch (220). We can see that FlatMatch generates
a wider loss landscape than FixMatch. Moreover, the loss curve of labeled data from FlatMatch is
smoother than that of FixMatch. Therefore, we can again conclude that FlatMatch can benefit the
generalization result.

F Summary and Future Work

In this paper, we propose a novel FlatMatch approach that minimizes the cross-sharpness measure
to improve the generalization performance of SSL. Through extensive quantitative and qualitative
experiments, we have thoroughly evaluated the performance of FlatMatch and demonstrated its
superiority to other compared methods. Thanks to the generalization improvement of FlatMatch, the
classification accuracy on many scenarios have even passed the fully-supervised baseline.

However, the learning performance of SSL still largely depends on the careful selection of labeled
data. Specifically, in the barely-supervised learning scenario, if the selected scarce labeled data
deviate from the cluster center, the learning performance of many existing SSL methods would
be significantly affected. This is due to the generalization performance between labeled data and
unlabeled data being largely mismatched. Under this scenario, the performance of FlatMatch should
be further evaluated.
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