
Armadillo: Robust Secure Aggregation for Federated
Learning with Input Validation

Yiping Ma, Yue Guo, Harish Karthikeyan, Antigoni Polychroniadou
University of Pennsylvania, JP Morgan AI Research and AlgoCRYPT CoE

yipingma@seas.upenn.edu
yue.guo@jpmchase.com

harish.karthikeyan@jpmorgan.com
antigoni.polychroniadou@jpmorgan.com

Abstract

Secure aggregation protocols allow a server to compute the sum of inputs from1

a set of clients without learning anything beyond the sum (and what the sum2

implies). This paper introduces Armadillo, a single-server secure aggregation3

system for federated learning with input validation and robustness (guaranteed4

output delivery). Specifically, Armadillo allows the server to check if the input5

vectors satisfy some pre-defined constraints (e.g., the vectors have L2, L∞ norms6

bounded by a constant), and ensures the server can always obtain the sum of valid7

inputs.8

Armadillo significantly improves the round complexity of ACORN-robust, a recent9

work by Bell et al. (USENIX Security ’23) with similar security properties, from10

logarithmic rounds (to the number of clients) to constant rounds; concretely, when11

running one aggregation on 1K clients with corruption rate 10%, ACORN-robust12

requires at least 10 rounds while Armadillo has 3 rounds.13

1 Introduction14

Federated learning [52] is a mechanism to train models on private data distributed across many clients15

(e.g., mobile devices) under the orchestration of a central server, without having the server explicitly16

collect the data. It works by having the clients train local models using their own data and upload17

only their model weights to the server who aggregates the weights up (typically by averaging).18

Under this distributed training mechanism, the clients never need to hand their private data to the19

server; however, prior works [53,68] in the machine learning community shows that the uploaded20

model weights of a client still leak information about the client’s training data. Fortunately, the21

federated training only requires the server to learn the sum of the weights but not the individual22

weights. This motivates using secure aggregation to compute such sum, and indeed, many existing23

works [13,64,41,37,8,65,51] design protocols tailored for the federated learning setting, mostly24

aiming for efficient computation and communication.25

A critical property that most of the prior protocols [13,8,64,41,51,48,65,37] lack is robustness: even26

if a single client misbehaves in the protocol execution, the server will possibly get a result that is27

vastly different from a correct sum, or even will not get any result (the protocol just aborts). Given28

the scale of the training participants, in practice, it is unlikely that every participating client is honest.29

Note that here the misbehaving is not the passive dropouts considered in prior work; it is actively30

deviating from the protocol prescription.31

Beyond robustness, we want to aggregate only the valid client inputs (i.e., satisfy some pre-defined32

constraints). This is well motivated by adversarial machine learning: if the server incorporates33
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malformed weights into the model, then the model accuracy may be downgraded, or even more34

severely, a backdoor could be injected into the model (altering the model’s prediction on a minority35

of inputs while maintaining good overall accuracy on most inputs). Though such attacks are hard36

to provably prevent, previous work [58,9,24,50] offer criterion for input validation (e.g., bounds37

on L2, L∞ norms) that one can alleviate the effects of these attacks. Aside from the federated38

learning application, both robustness and input validation are also important for private statistics39

aggregation [14].40

While a few existing works [50,9,24] delved into input validation, only ACORN-robust [9] provide41

robustness. ACORN-robust proposed a probabilistic approach to identify malicious clients and42

remove their inputs: when running a summation on n clients, the protocol requires 6 + O(log n)43

rounds asymptotically; concretely, when running on 1K clients with corrupted rate 10% (20%), the44

protocol executes for at least 10 (15) rounds, except small probability. In this work, we propose a45

robust secure aggregation protocol with only 3 rounds. This achieves the same (or even smaller)46

round complexity compared to prior non-robust protocols [13,8,65,51]. Along the way, we also47

achieve a stronger property compared to ACORN-robust: the latter assumes a semi-honest server48

and we have malicious security. Next, we formally describe our problem, and our threat model and49

discuss the properties as mentioned above in detail.50

1.1 Problem Statement and Thread Model51

We proceed to formally describe our problem setting. A training process in federated learning52

consists of T iterations, running between the server and in total N clients. Each iteration has the same53

procedure: n clients (indexed by numbers from 1 to n) are selected from the N clients, where client i54

holds vector xi, and the goal is to let the server obtain the sum
∑n

i=1 xi without revealing to the server55

anything except what can be implied by the sum.56

In a real-world setting, a sum of all the n clients is hard to guarantee, as some clients may stop57

responding to the server during protocol execution (e.g., due to power failure or unstable connection).58

The server must continue without waiting for them to come back; otherwise, the training might be59

blocked for an unacceptable amount of time. Therefore, the goal (more precisely) is to compute the60

sum of the input vectors from the largest possible subset of the n clients.61

Before we describe the desired properties, we first give the threat model and communication model62

of Armadillo.63

Threat model. We follow the most commonly used model in federated learning literature [13,8,64

50,24,37,51,9], where there is a single (logical) server and n clients in each training iteration. We65

assume the adversary is static throughout an iteration, but it may change the corrupted set of clients66

across iterations, under the restriction that the corruption rate is always at most η.1 We assume the67

server may also be corrupted. Within a complete iteration, we also assume at most δ fraction of n68

clients will drop out during the protocol execution.69

Looking ahead, our protocol needs sub-sampling C out of n clients as a set C (to assist with the70

computation), so we introduce another notation ηC for the corruption rate of clients in C. The relation71

between n, C, η, ηC is analyzed in Appendix H. Similarly, we assume at most δC fraction of clients72

drop out when the server communicates with the clients in C. See details in Section C.4 regarding the73

sub-sampling.74

Communication model. Clients are heterogeneous devices with varying reliability (e.g., cellphones,75

laptops) and can stop responding due to device or network failure. We assume there is an implicit76

distribution for client response time.77

Each client communicates with the server through a private and authenticated channel. Private78

messages sent from clients to other clients are forwarded via the server and are encrypted with79

authenticated encryption under their shared symmetric keys (existing works [8,51] give ways to set up80

these keys with a public key infrastructure, or PKI). Public messages sent by a client to other clients81

are signed using the sender’s public key (again, assuming a PKI) if the messages are the same for82

1This means the adversary cannot keep corrupting more and more users: for example, in practice, an adversary
can corrupt users via distributing malware and the users will be refreshed (and uncorrupted) until the malware is
detected.
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multiple recipients, otherwise, the client uses MAC under the symmetric key. We implicitly assume83

such client-to-client communication throughout our protocol description.84

Communication is performed in rounds, starting from the server. We will count a complete round trip85

(or round) as the communication from the server to clients and from clients back to the server. The86

server first sends out messages to clients, waits for a fixed amount of time to receive messages, and87

puts them in a message pool. When the waiting period is over, the server processes the messages in88

the pool and proceeds to the next round.89

Concrete parameters. A recent survey of federated learning deployments [42] describes typical90

communication models and gives common parameters as outlined below. The size of the total91

population N is in the range of 100K–10M, wherein in a given iteration t, a set of 50–5K clients are92

chosen to participate. The number of training iterations T for a model is 500–10K. Input vectors93

(xi) have typically on the order of 1K–500K entries for the datasets we surveyed [46,45,20,19]. For94

malicious rate η, most of the prior work can handle η up to 1/3, but in practical scenarios, it is much95

smaller [62] (e.g., 0.1%); the dropout rate δ depends on the waiting time set by the server and it is up96

to 10% in prior works [9,51] (if we allow more dropouts, the trained model will be biased towards97

the results from powerful devices).98

1.2 Properties99

Due to system and networking constraints in federated learning deployment, we aim for the aggrega-100

tion protocol to ensure not just privacy but also additional properties, which we outline below. Formal101

definitions of these properties are given in Appendix D.102

Privacy. Informally, an aggregation protocol is private if the server only learns the sum of inputs103

and what the sum implies. Formally, we can define privacy using an ideal/real simulation paradigm104

(see details in §D). Since privacy is well-studied in previous works, we will use most of this section105

to describe the next three properties.106

Dropout resilience. This property is motivated by the instability of client devices and has been107

considered in many prior works [13,8,50,24,37,51,9]. Specifically, some clients may disconnect108

from the network during the aggregation process (which can be a passive or active failure) but we109

wish the protocol can still execute even if we drop those clients. We, therefore, require our private110

summation protocol to have dropout resilience: when all the parties follow the protocol, the server, in111

each iteration, will get a sum of inputs from the online clients (those who participate throughout this112

iteration).113

Input validity. The decentralized feature of federated learning, on the negative side, allows clients114

to play adversarial attacks on the model by submitting maliciously generated weights (to inject115

backdoors to the model or downgrade the model accuracy). It is imperative for the server involved in116

the summation process to detect malformed inputs, which we call input validity.117

Recent works in the machine learning community proposed effective criteria to classify valid weights118

(e.g., L1, L2 norms) [54,59,66,34]. If the client weights (input vector xi) are sent in the clear, it is easy119

for the server to apply these criteria to check the validity of the collected weights and exclude those120

invalid ones. However, checking input validity becomes a challenge in the private setting since the121

server does not know any individual weights. Furthermore, it’s important to differentiate between the122

server’s capability to identify malformed inputs and subsequently abort without a sum result (which123

already satisfies input validity) [50], and the ability to exclude malformed inputs and ultimately124

obtaining a valid sum. This latter capability aligns closely with the subsequent property we are about125

to describe.126

Robustness. This property is motivated by the scale of users in federated learning: since the number127

of clients per iteration ranges from a few hundred to a few thousand, if the protocol aborts when128

clients misbehave, the cost for the server to re-run the protocol is prohibitively high. We, therefore,129

require guaranteed output delivery, which we call robustness; namely, if the server is semi-honest,130

then it always obtains a sum of the inputs from the online honest clients even if malicious clients131

arbitrarily deviate from the protocol. Note that Armadillo does not guarantee robustness when the132
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Client comm. Client comp. Server comm. Server comp. Rounds Robust Val. Priv. agst. server

Effiel [24] ℓn2 ℓn2 ℓn3 ℓn3 4 No∗ Yes Malicious

RoFL [50] ℓ+ log n ℓ log n ℓn + n log n nℓ log n 6 No Yes Malicious

ACORN-detect [9] ℓ+ log n ℓ+ log n ℓn + n log n ℓn 7 No Yes Malicious

ACORN-robust [9] ℓ+ log2 n ℓ log n + log2 n ℓn + n log2 n ℓn + n log2 n 6 + log n Yes Yes Semi-honest

Flamingo [51] Regular: ℓ+ C
Helper∗: n + C

Regular: ℓ+ C
Helper∗: n + C ℓn + Cn ℓn + Cn 3 No No Malicious

Armadillo (this work) Regular: ℓ+ C
Helper: n + C

Regular: ℓ+ C
Helper: n + C ℓn + Cn ℓn + Cn 3 Yes Yes Malicious

Figure 1: Asymptotic communication and computation cost for one training iteration, where vector
length is ℓ and number of clients per iteration is n; for simplicity, we omit the asymptotic notation
O(·) in the table. In practice we have n < ℓ (§1.1). All the costs include zero-knowledge proof for
the protocols with input validation. The round complexity excludes any setup that is one-time. The
round complexity of ACORN-detect are counted using the fixed version (Appendix H.3). The header
“Priv. agst. server” means if the protocol achieves privacy against a semi-honest or malicious server.
We choose the baseline protocols that has similar properties as ours or use the similar model as ours:
ACORN-detect, Eiffel and RoFL have input validation, and ACORN-robust has robustness. Flamingo
also uses the idea of sub-sampling helpers (which they call decryptors); we denote the number of
sampled clients as C where C = o(n). In Flamingo, the helper has asymptotic cost slightly larger
than n when dropouts happen (marked ∗ in the table). Eiffel can additionally have robustness with
expensive replication which we do not include it here (marked ∗ in the table).

server acts maliciously—after all, in the federated learning application, the server is the one who133

wishes to receive the output.134

1.3 Our Contributions135

We introduce Armadillo, a secure aggregation protocol that achieves all the outlined properties: it has136

dropout resilience and ensures privacy even when the server and a subset of clients act maliciously137

(as detailed in the threat model presented in §1.1). The server in our protocol can verify if the client138

inputs satisfy certain norm constraints, and the protocol is robust against malicious clients.2139

Figure 1 offers an in-depth comparison between our protocol and prior works in terms of asymptotic140

costs (computation, communication, and rounds). Our contributions can be summarized as:141

• Armadillo reduces the asymptotic round complexity from 6 + O(log n) of ACORN-robust proto-142

col [9] to 3 rounds, while keeping the asymptotic computation and communication cost on par143

with ACORN-robust, assuming C = O(log2 n). See Figure 1 for details.144

• For concrete performance, Armadillo’s client computation is roughly 1.5× smaller than that of145

ACORN (Fig.2a,2b). Importantly, we have 3–7× improvement for round complexity concretely146

(Fig.3a), which translates to 10× improvement for performing a complete sum (Fig.4). Our147

competitive advantage of round complexity over ACORN-robust is bigger when there are more148

clients (n is larger) or the malicious rate is higher (η is larger).149

• Our protocol has privacy against a malicious server, which is an improvement from the prior robust150

protocol of [9] (ACORN-robust’s threat model assumes a semi-honest server). We also address a151

mild security concern in ACORN-family protocols (Appendix H.3); the fix incurs an additional152

round to their original protocol.153

Due to space constraints, we defer related work to Appendix B.154

2 Preliminaries155

Notation. Let [z] denote the set {1, 2, . . . , z}. We use [a, b] to denote the set {x ∈ N : a ≤ x ≤ b}.156

We use bold lowercase letters (e.g. u) to denote vectors and bold upper case letters (e.g., A) to157

denote matrices. Unless specified, vectors are column vectors. For distribution D, we use a ← D158

2We do not consider robustness when the server is malicious, because in the federated learning setting, the
server wants to get the aggregation result.
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to denote sampling a from D. For a vector v, we use ⌊v⌉c to denote rounding each entry of v to159

nearest multiples of c. For two vectors v1 of length ℓ1, v2 of length ℓ2, we use v1|v2 to denote the160

concatenation of them which is a vector of length ℓ1 + ℓ2. We use ∥v∥2 to denote L2 norm of v and161

use ∥v∥∞ to denote the largest entry in v.162

We defer our cryptographic preliminaries to Appendix A.163

3 Technical Overview164

In this section, we describe our construction for computing one sum. We discuss computing multiple165

sums and related security issues in Appendix C.4.166

3.1 A two-layer secure aggregation167

We start with a base secure aggregation scheme with only dropout resilience and semi-honest security.168

The high-level idea is to reduce the secure aggregation for long vectors to secure aggregation for short169

vectors, utilizing the key and message homomorphism of Regev’s encryption. Note that a similar170

idea has appeared in many similar or orthogonal settings [65,6,48,16,35,10] but none of these works171

addresses the robustness.172

Each client i ∈ [n] holding an input vector xi (model weights) samples a Regev’s encryption key ki173

and sends to the server yi = Enc(ki, xi); note that yi is of the same length as input xi. Then the server174

simply computes the sum of all the yi’s. Note that175

y :=
∑
i∈[n]

yi =
∑
i∈[n]

Enc(ki, xi) = Enc(
∑
i∈[n]

ki,
∑
i∈[n]

xi).

To get the sum result
∑

i∈[n] xi, the server just needs to know k :=
∑n

i=1 ki to decrypt y. For this, we176

can use a black-box secure aggregation protocol to aggregate ki’s. Since the length of ki is much177

shorter than the length of xi, we reduce an aggregation problem on long vectors xi’s to an aggregation178

problem on short vectors ki’s. Finally, the server computes Dec(k, y), and the decryption succeeds if179 ∑
i∈[n] ei <

1
2⌊q/p⌋. For simplicity, we call the aggregation for ki’s as inner aggregation, and the180

summation for yi’s as outer aggregation.181

In this work, we instantiate the inner aggregation (that run on short vectors ki’s) as follows: we182

sub-sample3 a small set of clients as helpers, and have each client i secret share ki to C helpers using183

packed secret sharing in a threshold way, and we denote the shares of ki as s(1)
i , . . . , s(C)

i . These184

shares are sent under end-to-end encrypted channels (similarly as [13,8,51]) and happens at the same185

time when the client sends the ciphertext yi’s. Finally, each helper j locally adds up the received186

shares as s(j) =
∑n

i=1 s(j)
i and then sends s(j) to the server who reconstructs k from s(1), . . . , s(C).187

The above inner-outer solution immediately handles dropouts, as opposed to the pairwise masking188

approach that some prior work [13,8,51] use which incurs extra rounds. If a client drops out when189

sending yi and the shares, it will not affect the aggregation process at all (the server just safely ignores190

the client); if a helper client drops in the inner aggregation, later our protocol design and choice of191

parameters guarantee that as long as the active honest helpers is above the pre-set threshold, the192

server will always reconstruct the desired k; so the inner-aggregation is robust to helper dropouts or193

malicious helpers who modify the shares.194

The key challenge remaining is achieving robustness against malicious clients, which we discuss195

next.196

3.2 Robustness197

Recall the robustness property we briefly described in Section 1.1: the server will always get a sum198

of the inputs from honest clients; namely, once the clients send to the server the encryption of xi’s, no199

malicious client should be able to change the sum of those xi’s anymore. To this end, we require that200

1. In the outer aggregation, each client encrypts input vector xi using key ki correctly.201

3We discuss how to do sub-sampling securely in §C.4.

5



2. The ki in the inner aggregation is consistent with what was used in the outer aggregation.202

3. In the inner aggregation, each client secret-shares ki using a polynomial of the degree as203

prescribed (this is to ensure the inner aggregation itself is robust).204

We express all these requirements using only simple inner-product relations. As a result, our robust205

protocol at a high level works as follows: each client sends to the server the commitments to its206

input, its key, and the shares of the key4; and then proves that the above requirements hold under the207

commitments. Crucially, these requirements are simply a few inner-product statements. In short, a208

client in our robust protocol will just send the commitments along with a few inner-product proofs in209

addition to what was sent in the base protocol (ciphertext yi and the Shamir shares of ki).210

Due to space constraints, we defer details on the various proof techniques to Appendix C. However,211

we now present a succinct overview of our techniques:212

• For points 2, 3, we need to demonstrate that the clients have behaved as expected when gen-213

erating the shares. ACORN solves this problem by relying on verifiable secret sharing [31]214

where the clients provide proof of honest behavior to the recipient parties. Unfortunately,215

the verification is expensive. Instead, we take the approach of pushing the majority of this216

burden onto the server by relying on a publicly verifiable secret-sharing approach. To this217

end, we use a modification of SCRAPE test [21]. While this typically only proves point218

3, we successfully extend to also support the binding with the secret. This is discussed in219

Appendix C.220

• For point 1, we express the proof statement using linear proof together with a norm proof221

on the error vector. This is fundamentally different from ACORN-family protocols, where222

they do not prove correctness of encryption but instead rely on a distributed key correctness223

protocol. See details in Appendix C.224

Theorem 1 (Cost of proofs in Armadillo). Given a set of parameters (λ, ℓ, q, C). Let k ∈ Zλ
q , s ∈

ZC
q , M ∈ Zλ×C

q , x ∈ Zℓ
q. Let G be a group of size q. Let ∆ be a constant and w be a constant vector.

Let
CSShamir : {io : com(s), st : ⟨w, s⟩ = 0, wt : (s, k)}.
CSbind : {io : (com(s), com(k)), st : k = M · s, wt : (s, k)}.
CSenc : {io : (com(k), com(x), com(e)),

st : y = A · k + e +∆ · x,
∥e∥2 < Be(L2), ∥x∥∞ < Bx(L∞), ∥x∥2 < Bx(L2),
wt : (k, x, e)}.

There exist commit-and-proof protocols (based on group G) for proving the above statements with225

the following cost, dominated by the inner-product proof (IP) invocations:226

• 2 IPs of length 4ℓ,227

• 4 IP of length ℓ,228

• 1 IP of length λ,229

• 1 IP of length C,230

• 1 IP of length λ+ C,231

where we omit the lower order terms and write e.g., ℓ+ 256, as ℓ.232

We defer additional discussions on our construction to the appendix. See Appendix C.4.233

4 Implementation and Evaluation234

In this section, we provide benchmarks to answer the following questions:235

• What are the concrete costs of the client and the server, for aggregation and proofs, respectively?236

• What is the cost of the helpers and how does it compare to the cost of regular clients?237

• How is Armadillo’s performance compared to prior works with similar properties, i.e., ACORN-238

robust?239

4For our construction, each of the vector components and the shares are committed using different generators.
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To better understand the concrete cost, readers can find the cost overview of the client and the server240

in Appendix F.241
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(a) Armadillo.
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Figure 2: Computational time per client in Armadillo and ACORN depicted as log scale, for different
input vector lengths. For Armadillo, the total time per client includes commitment generation, proof
generation, masking and sharing; the per-client cost is independent of the number of clients. The
verification time depicted is for per client proof and the verification is done by the server. For ACORN,
the total time per client we show includes the commitment generation and proof generation. We do
not include the computational cost of the cheating client identification, for which the computation cost
is negligible compared to the proof generation (see details in Algorithm 4 in [9] and our description
in §4).

Experimental results. Figure 2a shows the computation time for a client by breaking down to242

several parts: “Commitment generation” is the time for the client to commit to all the vectors and the243

secret shares required in the proof, “Proof generation” is the time to create the proof (using Nova),244

and “Masking” is the time for the client to compute the masked input vector (with the preprocessing245

optimization in Section E.2), and “Sharing” is the time for generating Shamir shares for the helpers.246

Note that all these costs are independent of the number of clients, as long as the number of helpers C247

is fixed. We also depict the time for verifying a single client’s proof in Figure 2a (to contrast with the248

client costs), but this is done by the server. Our protocol has the property that the server cost scales249

linearly with the number of clients.250

For ACORN-robust, since they did not have implementation and benchmarks, we depict in Figure 2b251

the time of the dominating computation of their protocol. Specifically, ACORN-robust works by first252

doing aggregation and then identifying and removing the invalid inputs. The bulk of computation253

for clients happens in the aggregation phase, and during the identification phase, the client only254

provides the server with the messages it stored from previous rounds, without extra computation. See255

Algorithm 4 in [9] for details. Therefore, we can focus on the aggregation-phase client computation,256

where the dominating cost is generating commitments and creating proofs. We implemented and257

microbenchmarked their commitment and proof generation (for L2, L∞ norms on inputs), instantiating258

their inner-product proofs with Bulletproof [17,28] as reported in their paper. In sum, what depicted259

in Figure 2b will be a slight underestimate of their client cost.260

From Figure 2a and 2b we can see that the client computation of Armadillo is ~1.5× better than that261

of ACORN-robust. However, what makes a big difference is the round complexity. In Figure 3a, we262

depict the round complexity for ACORN-robust under different settings of n and η, based on their263

probabilistic analysis (Theorem 4.1, [9]). Since their protocol does not have a fixed number of rounds264

(their identification protocol runs in a probabilistic iterative manner), we count the number of rounds265

such that ACORN protocol ends with more than 0.9 probability. Our protocol remains the same266

number of rounds (3) in all the settings we show. In the best setting when n = 500 and η = 0.05,267

ACORN-robust still has 9 rounds (3× of ours); and in the worst setting when n = 2000 and η = 0.2,268

their protocol has 21 rounds (7× of ours). Also, in these rounds, the ACORN server communicates269

with all the clients; while in Armadillo the server communicates with all the clients in the first round,270

and in the rest of the 2 rounds the server communicates with only the helpers.271
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Figure 3: The number of rounds for ACORN-robust and Armadillo under different η, and the server
waiting time under different target δ. These two sets of information is useful for estimating the total
round trip time in Figure 4.

η δ #rounds avg δ
per round

per-round
waiting
(second)

total round
trip time
(second)

Armadillo
0.1 0.1 3 0.0333 4 12
0.2 0.1 3 0.0333 4 12
0.1 0.2 3 0.0667 2 6

ACORN
0.1 0.1 12 0.0083 10 120
0.2 0.1 19 0.0053 10 190
0.1 0.2 12 0.0167 10 120

Figure 4: Estimated total time spent on round trips (a server and 500 clients). Fixing a set of δ and η
(which should be set within the bound that the protocol can tolerate), we can calculate the average
dropouts per round that a protocol can tolerate (dividing total dropout δ by the number of rounds).
Then fixing a per-round dropout, we determine server waiting time using the data points in Figure 3b.
The total round trip time is estimated as the waiting time per round (Fig.3b) multiplied with the
number of rounds (Fig.3a).

Figure 4 shows how the round complexity translates to the run time of a complete summation. To do272

this, we first run a network simulator ABIDES [18] to get the relation between the dropouts and the273

server waiting time (Fig.3b). If we fix a message arrival distribution, then the shorter the time that the274

server waits, the less number of messages it will get. If a protocol only tolerates dropout, say 5%275

(meaning that if 10% of the clients drop then the protocol is insecure), then it means that the server276

needs to wait until 95% messages arrive. So if the protocol tolerate less dropout, say 1%, then the277

server needs to wait until 99% messages to arrive, which takes longer than the former case. In the278

extreme case, if the server needs to wait for 100% of the messages to arrive, then the protocol could279

never terminate because there could be a client that goes offline in the middle of the execution and280

stays offline forever.281

In short, fixing the dropout rate that a protocol can tolerate, then there will be a big difference in the282

server waiting time when the protocol has 12 rounds vs. the protocol has 3 rounds. Figure 4 explains283

how we estimate the total round trip time.284

5 Conclusion285

In this work, we present Armadillo which focuses on achieving robustness by detecting and removing286

cliens behaving maliciously. Armadillo outperforms the state-of-the-art ACORN protocol [9], as287

backed by our benchmarking efforts. We point out the following limitations of the work:288

• It is known that the Regev encryption scheme can be made more efficient by relying on the289

Ring-LWE assumption. This work does not explore this counterpart, which is a direction for290

future research.291
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Secure aggregation for training iteration t

Server and clients agree on public parameters: LWE parameters (λ, m, p, q, A ∈ Zλ×m
q ), the group G (of order

q) for the commit-and-proof system, the norm bound Bx(L∞), Bx(L2), Be). Let ∆ = ⌊q/p⌋. The dropout
rate is δ and malicious rate over n clients is η across all rounds in each iteration. The set of C helpers is
determined via a random beacon or Feige election (Appendix C.4), with threshold being d.
Round 1 (Server→ Clients)
Server notifies n clients (indexed by numbers in [n]) to start iteration
t ∈ [T].
Round 1 (Clients→ Server)
Client i ∈ [n] on input xi ∈ Zm

q , computes the following:

1. ki
$←− Zλ

q , ei ← χm,
2. yi = A · ki + ei +∆xi, where yi ∈ Zm

q ,
3. Compute degree-d packed secret sharing of ki as si =

(s(1)
i , . . . , s(C)

i ).
4. Computes commitment to vector ki as com(ki) and to

vector xi as com(xi), // two elements in G

5. Computes commitment to shares s(j)
i as comGj(s

(j)
i ) for

j ∈ [C], where {Gj}j∈[C] are a set of generators in G. // C
elements in G

6. Set constraint system {io : (com(si), w), st : ⟨si, w⟩ =
0, wt : si},
and computes πShamir ← Πip.P(io, st, wt), where w is
computed as: m∗(X)←$ F[X]≤C−d−2 and let w := (v1 ·
m∗(1), . . . , vn · m∗(C)).

7. Set constraint system {io : (com(si), com(ki), M), st :
ki = M · si, wt : (si, ki)} ,
and compute πbind ← Πlinear.P(io, st, wt), //
O(log C + logλ) elements in G, see algorithm in Figure 6

8. Set constraint system CSenc : {io :
(com(k), com(x), com(e)),
st : y = A · k + e + ∆ · x, ∥e∥2 < Be(L2), ∥x∥∞ <
Bx(L∞), ∥x∥2 < Bx(L2), wt : (k, x, e)},
and compute πenc ← Πenc.P(io, st, wt). // O(log m)
elements in G, see algorithm in Section 3

Client i ∈ [n] sends a tuple to the server:

{“server” : (yi, com(ki), com(xi), com(ei), {comGj(s
(j)
i )}j∈[C],

πShamir,πbind,πinput,πenc) ;

“helper j ∈ C” : (s(j)
i , r(j)

i )}

where r(j)
i is the randomness for comGj(s

(j)
i ).

// Note that every message from clients intended for clients/helpers
is symmetrically encrypted.

Round 2 (Server→ Helpers)
Let S1 ⊂ [n] be the clients who sent the prescribed
messages in Round 1.
The server does the following computation for each
client i ∈ S1:

1. Compute com(si) :=
∏

j∈[C] comGj(s
(j)
i ),

2. Run Πip.V(io, st,πShamir),
Πlinear.V(io, st,πbind), Πenc.V(io, st,πenc).

3. If all the proofs are valid, then send to each
helper j the share commitment comGi(s

(j)
i ).

Round 2 (Helpers→ Server) Each helper j ∈ [C]:

1. If received less than (1 − δ − η)n shares
s(j)

i , abort. Otherwise, it verifies (s(j)
i , r(j)

i )

against the commitment comGj(s
(j)
i ), denote

the set of clients whose commitments are
valid as S2.

2. Sign the set S2 and sends the signature to all
the other helpers via the server.

Round 3 (Server → Helpers) Server forwards the
signatures to helpers.
Round 3 (Helpers → Server) Each helper j ∈ [C]:
if received more than 2C/3 valid signatures on the
same set (including its own signature), then continues.
Otherwise abort. Computes s(j) :=

∑
i∈S2

s(j)
i and

sends it to the server.
Server reconstruct the shares {s(j)}j∈C to k, and com-
putes y :=

∑
i∈S3

yi.
Server computes ⌊y− A · k mod q⌉∆.

Figure 5: A secure aggregation protocol with dropout resilience, robustness, and input validity.

• While identifying malicious behavior can lead to robustness, there has been independent292

lines of work such as RSA [49] that achieves robustness in the face of byzantine action,293

without relying on identifying malicious behavior. This work does not investigate composing294

results with these alternate mechanism for robustness.295

• While secure aggregation has the capability to aggregate model updates without any loss296

in accuracy and privacy, we leave it as future work to use Armadillo for end-to-end model297

training.298
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A Cryptographic Preliminaries486

Our construction utilizes two properties of Regev’s encryption: key homomorphism and message487

homomorphism. We give the details below.488

Regev’s encryption. Given a secret key s $←− Zλ
q , the encryption of a vector x ∈ Zm

p is489

(A, c) := (A, As + e + ⌊q/p⌋ · x),

where A $←− Zm×λ
q is a random matrix (m > λ), and e $←− χm is an error vector, χ is a discrete490

Gaussian distribution. Decryption is computed as (c − As) mod q and rounding each entry to the491

nearest multiples of ⌊q/p⌋. The decrypted result is only correct if entries in e are less than 1
2 · ⌊q/p⌋.492

Looking ahead, for efficiency reasons, we are interested in small λ (e.g., 40–100) and entries of s493

being small, and in Appendix E, we give concrete parameter selection according to recent security494

analysis on LWE [3,22,26].495

As observed in a few works in orthogonal areas [38], Regev’s encryption remains secure even if A is496

made public and the same matrix A is used to encrypt polynomially many messages, as long as the497

secret key s and the noise e are independently chosen in each instance of encryption. In our case, A is498

a public random matrix and it can be generated by a trusted setup (i.e., random beacon service [27,1]499

generates a seed and the parties use PRG to expand the seed to matrix A). Since A can be reused, so500

this setup only needs to run once.501

Now, given two ciphertexts (A, c1), (A, c2) of vectors x1, x2 under the key s1, s2 with noise e1, e2, the502

tuple (A, c1 + c2) is an encryption of x1 + x2 under the key s1 + s2. The ciphertext (A, c1 + c2) can503

be properly decrypted if e1 + e2 is small. Note that computing c1 + c2 is very efficient—it is simply504

vector addition.505

For ease of presentation later, we define a tuple of algorithms (Enc, Dec) about public parameters506

(p, q,λ, m, A ∈ Zm×λ
q ) as follows:507

• Enc(s, x)→ y: on input a secret key s ∈ Zλ
q and a message x ∈ Zm

q , output y := A · s + e +∆ · x,508

where ∆ = ⌊q/p⌋.509

• Dec(s, y)→ x′: on input a secret key s ∈ Zλ
q and a ciphertext y ∈ Zm

q , output x′ := ⌊y− As⌉∆.510

Packed secret sharing. In standard Shamir secret sharing [61], one picks a secret s and generate a511

polynomial f (x) = a0 + a1x + . . .+ atxd where a0 = s and a1, . . . , ad are random. Assuming there512

are n parties, the share for party i ∈ [n] is f (i), and any subset of at least d + 1 parties can reconstruct513

s and any subset of d shares are independently random.514

In packed secret sharing [33], one can hide multiple secrets using a single polynomial. Specifically,515

let F be a field of size at least 2n and k be the number of secrets packed in one sharing. Packed516

Shamir secret sharing of (s1, . . . , sk) ∈ Fk first chooses a random polynomial f (·) ∈ F[X] of degree517

at most d + k− 1 subject to f (0) = s1, . . . , f (−k + 1) = sk, and then sets the share vi for party i to be518

vi = f (i) for all i ∈ [n]. Reconstruction of a degree-(d + k − 1) sharing requires at least d + k shares519

from v1, . . . , vn. Note that now the corruption threshold is d, i.e., any d shares are independently520

random but any d + 1 shares are not.521

Shamir share testing. Looking ahead, we will also use a probabilistic test for Shamir’s secret522

shares, called SCRAPE test [21]. To check if (s1, . . . , sn) ∈ Fn is a Shamir sharing over F of degree523

d (namely there exists a polynomial p of degree ≤ d such that p(i) = si for i = 1, . . . , n), one can524

sample w1, . . . , wn uniformly from the dual code to the Reed-Solomon code formed by the evaluations525

of polynomials of degree ≤ d, and check if w1s1 + . . . + wnsn = 0 in F. If the test passes, then526

s1, . . . , sn are Shamir Shares, except with probability 1/|F|.527

Specifically, for a finite field F and given parameters d, n such that 0 ≤ d ≤ n − 2, and inputs528

s1, . . . , sn ∈ F. Let vi :=
∏

j∈[n]\{i}(i− j)−1 and m∗(X) :=
∑n−d−2

i=0 mi · Xi ←$ F[X]≤n−d−2 (i.e., a529

random polynomial over the field of degree at most n−d−2). Now, let w := (v1·m∗(1), . . . , vn·m∗(n))530

and s := (s1, . . . , sn). Then,531

• If there exists p ∈ F[X]≤d such that si = p(i) for all i ∈ [n], then ⟨w, s⟩ = 0.532
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• Otherwise, Pr[⟨w, s⟩ = 0] = 1/|F|.533

Pedersen and vector commitment. Let G be a group of order q, and G, H be two generators in534

G. A Pedersen commitment to a value v ∈ Zq is computed as comG(v) := GvHr, where r is the535

commitment randomness, uniformly chosen from Zq. We use comG(·) notation because later in our536

protocol, we will compute commitments with different generators.537

We can also commit to a vector v = (v1, . . . , vL) ∈ ZL
q as follows: let G = (G1, . . . , GL) be a list of L538

random generators in G, define comG(v) := Gv1
1 · · ·G

vL
L · Hr, where r is randomly chosen from Zq.539

Inner-product proof. The inner-product proof allows a prover to convince a verifier that, given540

vector commitments to two vectors a, b ∈ ZL
q , and a public value c, the prover knows the opening of541

the commitments such that ⟨a, b⟩ = c. Bulletproof [17] and its later variants [36] give inner-product542

proof in one round (using Fiat-Shamir), with proof size O(log L) and prover/verifier cost O(L).543

For ease of presentation later, we introduce the following notations for proof. A proof system Π544

consists of a tuple of algorithms (P ,V) run between a prover and verifier. An argument to prove545

can be described with public inputs/outputs io, a statement to be proved st, and a witness wt. Given546

a proof system Π, the prover can generate a proof π ← Π.P(io, st, wt) and the verifier checks the547

proof by b← Π.V(io, st,π) where b ∈ {0, 1} indicates rejecting or accepting π. For example, for548

proving inner product of a and b, we set the constraint system to be549

{io : (com(a), com(b), c), st : ⟨a, b⟩ = c, wt : (a, b)}.

Denote the inner product proof system (e.g., Bulletproof [17]) as Πip, the prover runs π ←550

Πip.P(io, st, wt) and the verifier runs b ← Πip.V(io, st, wt). The algorithms Πip.P and Πip.V both551

has complexity linear to the length of a (or b) and π has logarithmic length of a (or b). Later we will552

also use an optimized inner-product proof when a is public, called linear-relation proof; in this case,553

the constraint system will be554

{io : (com(b), c), st : ⟨a, b⟩ = c, wt : b}.

B Related Work555

Single-server setting. Bonawitz et al. [13] gives the first dropout-resilient secure aggregation556

protocol for federated learning. Subsequently, a line of work [8,64,65,51,37,48] focuses on improving557

the efficiency of this protocol. Recently, there has been growing interest in ensuring input validity558

inside secure aggregation, and we briefly review the techniques used in prior work.559

Eiffel [24] uses SNIP [25] to prove arbitrary predicate on inputs but with high communication.560

Specifically, each client secret-shares its input vector to other clients who act as the multiple verifiers561

in SNIP. RoFL [50] adopts the protocol by Bonawitz et al. [13], and uses range proof (and hence does562

not work for arbitrary predicates) to bound the norms of input vectors. RoFL’s communication cost563

is significantly less than Eiffel but is still expensive as the client in RoFL proves the range for each564

entry of the input vector which requires sending ℓ Pedersen commitments to the server for a vector of565

length ℓ. Readers can refer to a comprehensive comparison of communication costs in Bell et al. [9,566

Table 1].567

The most relevant work to ours is ACORN family [9], where they present two protocols, ACORN-568

detect which have the same property as RoFL, and ACORN-robust which additionally has robustness.569

ACORN-detect reduces the expensive m commitments (for range proof on a length-m vector) to a570

single commitment using the technique of approximate proof [36]. They extend ACORN-detect to571

ACORN-robust but with the price of a significant increase in rounds: after aggregating the inputs, they572

run an O(log n)-round protocol between the server and clients to identify the cheaters and remove573

their inputs from the sum.574

Armadillo has four rounds only, but the tradeoff is that a small set of clients will need to do O(n)575

work (though concretely fast); meanwhile, ACORN-robust has O(polylog n) work per client. This576

tradeoff is meaningful if one considers concrete parameters (Section 1.1) since each client anyway577

needs to do work proportional to ℓ (input vector length) if that is already larger than n.578

For completeness, we also briefly survey related literature in the multi-server setting.579
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Two (or more) servers. There are also works that split trust across multiple servers, like the two-580

server solutions Elsa [58] and SuperFL [67] or the generic multi-server solution Flag [7]. These works581

have the clients secret share their input vectors to two or more servers, and the servers communicate582

with each other to validate the inputs. These solutions are more efficient in terms of run time compared583

to the single-server ones. However, ensuring non-collusion among communicating servers is the584

major source of criticism against these solutions, aside from the obvious overhead of deploying585

multiple servers.586

To be precise, in the multi-server setting, the servers are powerful machines and thus can execute587

heavy computation (e.g., O(nℓ) for the secret-sharing-based solutions [58,7] where n is the number of588

clients and ℓ is the vector length); in the single-server setting, the heavy computation is pushed to the589

only server and all the clients are restricted in both computation and communication. In other words,590

any protocol incurring O(nℓ) cost at any client is not an effective single-server protocol. In Armadillo591

each client has cost O(n + ℓ); in practice, ℓ is much larger than n, so the cost will be dominated by ℓ592

which is the input size.593

Prior work [4,51] gives detailed discussion and formalization for this model, where the trust is split594

across a small set of clients with restricted power, but they can still help the server aggregation with595

reasonable cost. Crucially, a helper is also a client; and in our protocol, they just do slightly more596

work than the regular clients.597

C Deferred Material for Zero-knowledge Proof598

Proof of Shamir sharing. To be precise why we need such proof: suppose each client should share599

its key (i.e., ki) using a degree-d polynomial, but a malicious client shares its key using a polynomial600

of degree higher than d. Later when the server collects the shares from the helpers, the server cannot601

interpolate the shares to a degree-d polynomial and hence the inner aggregation fails.602

A natural approach is to use a verifiable secret sharing (VSS) (eg.[31]), where each client acts as the603

dealer who shares ki to the helpers, and the helpers themselves run the VSS to identify malicious604

dealers (and exclude their shares from inner aggregation). This either requires interaction between605

the helpers (e.g., if using BGW [11]), or heavy computation cost at the helpers (e.g., if using Feldman606

protocol [30]).607

We instead use the SCRAPE test (Appendix C). Suppose client i has a sharing si = (s(1)
i , . . . , s(C)

i ),608

which the client claims is Shamir sharing of a prescribed degree d over F. Now, the client commits to609

s using vector commitment and then invokes a linear-relation proof that610

⟨si, w⟩ = 0 in F,
where w := (w1, . . . , wn) is sampled uniformly random from some code space (details in Section 2).611

In our setting, we cannot let the client choose w (since they can be malicious), so we apply the612

Fiat-Shamir transform and have the client derive w by hashing the commitment to si.613

As long as we assume the secrets are correctly shared, and assuming δC + ηC < 1/3, the server can614

always reconstruct k successfully (with Berlekamp-Welch algorithm).615

Binding ki in inner and outer aggregation. We can extend the SCRAPE test to prove that the616

shares lie on a polynomial that interpolates ki, namely, the shares and the components of ki lie on617

a degree-t polynomial. Here we require that a vector commitment to si|ki, each component using618

distinct generators, G1, . . . , GC for si and GC+1, . . . , GC+λ for ki.619

A final complication is that each helper j needs to check if the received share s(j)
i is what the client620

committed to—this is because the communication between clients is using end-to-end symmetric621

encryption (§1.1), and a malicious client could send to the helper j a share s(j)
i that is not consistent622

with the commitment. To prevent this, we let client i send to each helper j the following messages:623

1. The commitments to the shares, comGj(s
(j)
i ) := Gs(j)

i
j ·Hrj , where H, Gj are group generators. Note624

that for different helper j, the generator Gj used for commitment is different. The commitments625

are sent in the clear.626

2. The openings to the commitment, namely the commitment randomness rj and the actual share627

s(j)
i , symmetrically encrypted.628
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Constraint system CS:

{io : (com(v1), com(v2), M),
st : v2 = M · v1,

wt : (v1, v2)}, where v1, v2 ∈ ZL
q , M ∈ ZW×L

q

Let r ← H(com(v1), com(v2)), whereH : {0, 1}∗ → Zq.
Let r := (r0, r1, . . . , rW−1).
Set constraint system CS′:

{io′ : (com(v1) · com(v2), 0)

st′ : ⟨M⊤r− r, v1|v2⟩ = 0,

wt′ : v1|v2}.
Πlinear.P(io, st, wt): Output Πip.P(io′, st′, wt′).
Πlinear.V(io, st,π): Output Πip.V(io′, st′,π).

Figure 6: Protocol Πlinear proves matrix-vector multiplication, built on inner-product proof protocol
Πip.

Note that the vector commitment to si will be directly derived from the individual commitments to629

the shares, i.e., given comG1(s
(1)
i ), . . . , comGC(s

(C)
i ) where the underlying randomness are r1, . . . , rC630

respectively, the vector commitment to si is computed as
∏C

j=1 comGj(s
(j)
i ) with randomness r =631 ∑C

j=1 rj.632

Proof of linear relation. Now we specify the details for the proof of linear relation. Given633

commitments to vectors v1, v2 and a public matrix M, we show how to prove v2 = M · v1 using a634

single inner-product proof by Schwartz-Zippel Lemma. We first rewrite the statement as Mv1−v2 = 0,635

where 0 is a zero vector. The idea is to view the vector as coefficients of a polynomial and check if636

the evaluation of a random point on the polynomial gives 0. Specifically, suppose M has W rows,637

and let r be a random value in Zq and let r = (r0, r1, . . . , rW−1). We transform the matrix-vector638

multiplication into linear combinations of inner products:639

⟨M⊤r, v1⟩+ ⟨−r, v2⟩ = ⟨M⊤r|(−r), v1|v2⟩ = 0.

If r is chosen after v1 and v2 are committed, then we can be sure (except with probability W/q)640

that Mv1 = v2 holds as long as the above equation holds. Also, note that the verifier can compute641

com(v1|v2) as com(v1) · com(v2). Figure 6 formally shows the protocol.642

C.1 Proof of Encryption and Input Validity643

In this section, we describe how to 1) prove the encryption is computed correctly and 2) the input644

vector has a bounded L2, L∞ norm.645

The first part is to prove yi = Enc(ki, xi) is correctly computed, i.e., we want to prove that, given646

commitment to xi, ki, ei, and a public yi, there is yi = Aki + ei + ⌊q/p⌋ · xi and ei has small L∞ norm.647

We next break this down into several proofs, some of which will also be useful for proving input648

validity.649

Proof of L∞ norm. We first explain the reason why trivially applying range proof (such as650

Bulletproof [17]) to each vector component will not work well in our setting. Let us recall how651

Bulletproof proves range for a single value: say we want to prove v ∈ [0, 2B − 1], then the prover652

decomposes v into B binary values, denoted as a ∈ ZB
2 ; and let b = (20, 21, . . . , 2B−1) be a public653

vector. Then the prover proves that ⟨a, b⟩ = v, and proves that every entry of a is in {0, 1}. This654

approach has the cost growing with range size for each entry—if the range size is large, say 216,655

then the prover needs to decompose each value into 16 binary values. This is efficient when the656

prover only proves range on a small number of values, however, in the federated learning setting,657

the client needs to prove ℓ values (ℓ is the vector length), meaning that the client needs to compute658
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Bℓ commitments. Since ℓ is large (see concrete examples in Section 1.1), even B is small like 16,659

computing 16ℓ Pedersen commitment is already a high cost for the client.660

We use a technique by Bell et al. [9] which builds a range proof on vectors with a cost of only O(ℓ).661

Given a of length m, we want to prove that ∥a∥∞ < B. It is then reduced to proving the following662

statements:663

• The prover defines a′ = 2a−(B−1)1 and finds u, v, w and proves that a′◦a′+u◦u+v◦v+w◦w =664

−(B2 − 2B + 2)1,5665

• The prover proves ∥a′|u|v|w∥∞ <
√

q/4.666

The first part can be reduced into an inner product using Schwartz-Zippel Lemma. Let r be a random667

value chosen after the witness u, v, w, a′ are committed, and let r := (r0, r1, . . . , rm−1). If the prover668

can prove the following relation,669

⟨a′, a′ ◦ r⟩+ ⟨u, u ◦ r⟩+ ⟨v, v ◦ r⟩+ ⟨w, w ◦ r⟩ = ⟨c, r⟩

where c = −(B2 − 2B + 2)1, then the original relation holds except probability m/q. The above670

proof can be further reduced to a single inner-product proof ⟨z1, z2⟩ = c for some z1, z2 of length 4m671

and a public value c [9,36].672

The second part requires again a proof of L∞, but the essence is that it is a loose range proof, where673

the actual entries in a′ (similarly u, v, w) are much smaller than the bound
√

q/4. This is exactly674

approximate proof, introduced by Gentry et al. [36]: given a vector b of length m′ where ∥b∥∞ < B,675

we aim to prove ∥b∥∞ < B′ where B ≪ B′, which is much easier than proving ∥b∥∞ < B. They676

give a protocol that proves ∥b∥∞ < B′ using only a single inner-product proof of length m′ + σ677

where σ is a security parameter (see details in Appendix C.2). In our case, we just set b = a′|u|v|w678

and correspondingly m′ = 4m.679

In sum, proving L∞ norm of a length-m vector requires a length-4m inner-product proof (the first680

part), and a length-(4m + σ) inner-product proof (the second part) where σ is a security parameter681

typically taken as 256.682

Proving L2 norm. Suppose the prover has a length-m vector a and wishes to prove ∥a∥2 < B. The683

prover finds four non-negative integers α1,α2,α3,α4 such that (α2
1 + α2

2 + α2
3 + α2

4) + ∥a∥2 = B2.684

Let u = (α1,α2,α3,α4) and v = (a|u). The prover does an inner product proof that ∥v∥2 = B2.685

Also, the prover does an approximate proof that ∥a∥∞ <
√

q/(m + 4).686

We can reduce the cost of the quadratic proof ∥v∥2 = B2 using a matrix projection technique from687

Gentry et al. [36]: this reduces proving L2 norm on a long vector into proving L2 norm on a size-256688

vector. Given a vector a of length m, sample a matrix R← D256×m from a special distribution6 D, if689

b := Ra has small L2 norm, then with high probability a also has small L2 norm. Therefore, we just690

need to invoke L2 proof on b.691

The above projection technique is correct when we work over integers, but if we work over Zq, a692

may have a large L2 norm but b has a small L2 norm. But this event can only occur when the entry693

of a is large enough so that when multiplied with R, the values get wrapped around in Zq. Since R694

consists of entries only from {−1, 0, 1}, we just still need the above approximate proof for a to show695

that wrapping around does not happen.696

Putting things together. We now describe the proof of Regev’s encryption Πenc ([36, Lemma 3.7]).697

For now, we set the ciphertext modulus q in LWE equal to the group size in the commit-and-proof698

system for ease of presentation. In Section E, we will discuss how to handle different ciphertext699

modulus and proof system modulus.700

5This is also known as Lagrange’s four-square theorem. Rabin and Shallit proposed randomized algorithms
for computing a single representation for a given integer a as a = α2

1 + α2
2 + α2

3 + α2
4 in O(log2 a) time [57].

6The distribution D is: D(0) = 1/2 and D(±1) = 1/4. Since a sample from D is binary, transmitting
matrices R and R′ incur very small communication costs. The row dimension 256 is chosen by Johnson-
Lindenstrauss lemma [40] to ensure checking on the projected (short) vector is sufficient except with negligible
probability.
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Recall that the constraints that client i wishes to prove is
CS : {io : (com(ki), com(xi), com(ei)),

st : yi = A · ki + ei + ⌊q/p⌋xi,
∥ei∥2 < Be, ∥xi∥2 < Bx(L2), ∥xi∥∞ < Bx(L∞),

wt : (ki, xi, ei)}
Since already described how to prove the L∞ bound of ∥xi∥∞, so we omit it here. For simplicity,701

below we omit the subscript i. Protocol Πenc works as follows:702

1. The prover sets y = Ak + e + ⌊q/p⌋x mod q, sends to the verifier y and the commitment703

to k, x, e. Recall that A ∈ Zm×λ
q , e ∈ χm.704

2. The verifier chooses projection matrices R← D256×λ and R′ ← D256×m, and sends them705

to the prover.706

3. The prover computes u := R′ · e, and v = R′ · x. The prover aborts if ∥u∥2 > Bu or707

∥v∥2 > Bv, otherwise it sends to the verifier the commitment to u, v. The bound Bu, Bv are708

determined by the LWE parameters and the bound Bx, Be. Note that vectors u, v are only of709

length 256.710

4. The prover and the verifier run the following sub-protocols:711

(a) Proof of L2 norm that712

∥u∥2 < Bu, ∥v∥2 < Bv
(b) Proof of linear relation that:713

R′ · e = u, R′ · x = v mod q.
(c) Proof of linear relation that:714

R′ · y = (R′A) · k + u + ⌊q/p⌋v mod q.
(d) Approximate proof that:715

∥x∥∞, ∥e∥∞ <
√

q/(m + 4)
5. The verifier accepts if all the above proofs pass.716

For step 4(a), we can directly prove L2 norm as we described before for length-256 vectors u, v. For717

step 4(b), we can directly invoke the linear proof (Figure 6). Step 4(c) can be proved by showing718

⟨(R′A)⊤r, k⟩+ ⟨r, u⟩+ ⟨⌊q/p⌋r, v⟩ = ⟨R′b, r⟩,
where r is powers of a random value r as before; and the sum on the LHS is in fact719

⟨(R′A)⊤r|r|⌊q/p⌋r, k|u|v⟩,
and note that the verifier can compute the commitment to k|u|v as com(k) · com(u) · com(v). For720

step 4(d), we use the approximate proof described before (see details in Appendix C.2).721

C.2 Approximate proof722

For completeness, we describe the protocol in Gentry, Halevi, and Lyubashevsky [36] below. Let723

the security parameter be σ. The prover has a vector a of length m where ∥a∥∞ < B. Let B′ be the724

bound that the prover can prove with the following protocol. For security, the gap γ := B′/B should725

be larger than 19.5σ
√

m.726

1. The prover first sends com(a) to the verifier.727

2. The prover chooses a uniform length-σ vector y $←− [±⌈b/2(1 + 1/σ)⌉]σ, and sends com(y) to728

the verifier.729

3. The verifier chooses R← Dσ×m and sends it to the prover.730

4. The prover computes u := R · a and z = u + y. It restarts the protocol from Step 2 if either731

∥u∥∞ > b/2λ or ∥z∥ > b/2.732

5. The prover sends z to the verifier.733

6. The verifier chooses a random r and sends r to the prover.734

7. The prover and the verifier run an inner-product proof that735

⟨R⊤r, a⟩+ ⟨r, y⟩ = ⟨R⊤r|r, a|y⟩ = ⟨z, r⟩,
where r = (r0, r1, . . . , rσ−1).736

Note that ⟨z, r⟩ is a public value. The last step is essentially a length-(m + σ) inner product proof.737

19



C.3 Proof of Theorem 1738

Below we analyze the number of inner-product proof (IP) invocations required for a client. Proving739

Shamir shares requires an IP of length C. Proving binding relation requires an IP of length C + λ.740

Proving L∞ norm requires two IPs of length 4m. Proving the encryption requires two IPs of length m741

for step 4(b), one IP of length λ for step 4(c), and two IPs of length m for step 4(d).742

C.4 Other details743

Selecting helpers. We can select helpers in two different ways, based on different assumptions. If744

assuming a random beacon, one can follow the approach in Flamingo [51], where the helpers are745

determined by the randomness generated from a beacon. Assuming the corrupted rate of the total746

population N, and fix a target ηC , then one can derive C with N and ηC (Appendix C, [51]).747

If assuming a public bulletin board, one can use Feige’s election protocol [29] to select the set of748

helpers: we initialize a certain number of bins on the bulletin board, and each client chooses to jump749

in a bin independently random (malicious clients may not do it randomly). Then we take the bin of750

the smallest number of clients as the helper set. The advantage of the Feige protocol is that when the751

total population has a corruption rate η, the sampled set also has a corruption rate at most η.752

Selecting participants per iteration. Several works discuss attacks orthogonal to the cryptographic753

design, and we discuss how to mitigate them in our system. So et al. [63] demonstrate that the server754

can infer some clients’ data if it observes the sums from many rounds of aggregation, even if each755

round the participants are selected at random. They proposed a selection strategy called batch756

partitioning, with the idea of restricting the clients into certain batches that either participate together757

or do not participate at all.758

When the server is semi-honest, we can let the server follow this selection strategy. When the server759

is malicious, we ask the helpers to cross-check if the participating clients conform with the selection760

algorithm.761

Pasquini et al. [55] show another attack where a malicious server can elude secure aggregation by762

sending clients inconsistent models. Prior work on secure aggregation [51] proposes mitigation that763

prevents the server from learning anything if it sends inconsistent models; their key idea is to bind764

the hash of the model to the pairwise masks which are canceled out if all the clients have the same765

hash. Here we use a different approach: let the client hash the received model and send the hash to766

the helpers, then the helpers do a majority vote on the hashes and exclude the shares from the clients767

whose hashes do not equal the majority vote.768

Privacy against malicious server. So far we only consider a semi-honest server. A malicious769

server can ask the helpers for any set of which it wishes to know the sum: say the server wants to770

target for client i ∈ S, it asks d + 1 helpers for aggregating shares for the set S and asks another d + 1771

helpers for aggregating the shares for the set S\{i}. What we can guarantee is that the server learns772

the sum from a sufficiently large set of size (1− δ− η)n by having the helpers cross-check the online773

set (Round 2 in Figure 5): if the majority of the helpers agrees on the online set, they will continue774

the protocol; otherwise they abort. We formally state the malicious security in Appendix D.775

We give the full details for a single aggregation in Figure 5. There are three proof sub-protocols we776

use: Πip (Section 2),Πlinear(Figure 6), Πenc (Appendix C.1). The protocol works in three rounds: in777

the first round, the server collects the encrypted inputs from all the clients, and in the second and third778

round, the server talks to only the helpers who compute an aggregate key for the server to decrypt the779

aggregate ciphertext.780

D Security analysis781

In this section, we discuss how to select proper parameters for our protocol, and formally state the782

properties of Armadillo.783

Parameters. The system Armadillo has a set of parameters listed below. First, n is the number of784

clients per round. (λ, m, p, q) are LWE parameters (for the outer aggregation), (C, d, a) are secret-785
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sharing parameters (for the inner aggregation), where C is the number of helpers selected, d is the786

degree of the secret-sharing polynomial and a is the number of packed secrets. In our protocol, a = λ.787

Finally, G is the group (of order q) for commit-and-proof system, and Bx(L∞), Bx(L2), Be are bounds788

on norms.789

The parameters n, Bx(L∞), Bx(L2), Be are chosen depending on the machine learning setting, which790

is orthogonal to security analysis. For (λ, m, p, q), we can choose any secure instance of LWE and we791

can refer to recent security analysis [3,26,22].792

For C, we need to choose according to the LWE parameters together with the dropout rate δC and
malicious rate ηC . Recall that in our protocol (Section 3), each client secret-shares a short vector of
length λ (with packed secret sharing) using a polynomial of degree d. We must have

d − λ > C · ηC by security of packed secret sharing,
d < C(1− δC) in order to reconstruct the secret.

Combining these two equations, we get C > λ/(1− δC − ηC). Also note that we have δC + ηC < 1/3793

as the assumption required for robustness (Section 3.2), we have λ/(1− δC − ηC) < 3λ/2; therefore,794

setting C ≥ 3λ/2 is sufficient, and accordingly, we set d to be795

(1 +
3
2
ηC)λ < d <

3
2
λ(1− δC).

Now we formally state the properties of Armadillo. Let Φ denote the protocol in Figure 5 (private796

sum for a single training iteration). In particular, Φ is a protocol running between n clients and the797

server, where each client i has inputs xi ∈ Zm
q and the server has no input. We describe the ideal798

functionality of Φ in Figure 7.799

Theorem 2 (Dropout resilience of Φ). Let (δ, η, δC , ηC) be threat model parameters defined in800

Section 1.1. Let (C, d) be parameters for the secret-sharing protocol (the inner aggregation). If801

d < C(1− δC), then protocol Φ (Figure 5) satisfies dropout resilience: on input xi for client i ∈ [n],802

when the n clients and the server follow protocol Φ, given a dropout set O ⊂ [n] (where |O| < δn) at803

any point of the execution, protocol Φ will terminate and output
∑

i∈[n]\O xi.804

Theorem 3 (Privacy and robustness of Φ). Let (δ, η, δC , ηC) be threat model parameters defined in805

Section 1.1. Let (λ, m, p, q) be LWE parameters, and let (C, d,λ) be the parameters of packed secret806

sharing. If (λ, m, p, q) is a secure instance of LWE, and δC + ηC < 1/3, C ≥ 3λ/2, (1 + 3
2ηC)λ <807

d < 3
2λ(1− δC), then under the communication model defined in Section 1.1, assuming PKI, and a808

random beacon (or a public bulletin board), protocol Φ (Figure 5) securely realizes ideal functionality809

Fsum (defined in Figure 7), in the presence of a static malicious adversary controlling η fraction of810

clients and ηC fraction of helpers.811

E Optimizations812

E.1 Sparse LWE813

Recall that during the server decryption, it needs to compute A · s, which is a matrix-vector multiplica-814

tion. If we use sparse LWE assumption, then most of the entries in A will be zero, which significantly815

reduces the time of computing A · s. The only tradeoff here is security: for a LWE secret of length λ816

in the standard LWE instance, to guarantee the same level of security in the sparse LWE, we need a817

secret of length λ′ > λ, but concretely only slightly larger [39].818

E.2 Client Preprocessing819

Since A is public and the secret ki is independent of the input, the client can do most of the work of820

computing yi even before it knows the input xi: once it samples ki, it computes A · ki and stores it821

locally. Later when it knows the input xi, it adds xi to the locally stored result together with the error822

vector. Namely, the online computation only requires a single addition on two vectors of the input823

length.824
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E.3 Multi-exponentiation825

Naively computing commitments to a length-m vector requires m + 1 group exponentiations and m826

group multiplications. We can reduce the number of group exponentiations to sublinear in m using827

the Pippenger algorithm, given in Lemma 1.828

Lemma 1 (Complexity of Pippenger algorithm [56,15,32]). Let G be a group of order q ≈ 2σ,829

and G1, . . . , Gm be m generators of G. Given v1, . . . , vm ∈ Zq, Pippenger algorithm can compute830

Gv1
1 · · ·Gvm

n using 2σm
log m group multiplications and σ group exponentiations.831

In short, the Pippenger algorithm requires only a small number of expensive group exponentiation832

(e.g., σ is typically no larger than 256) by increasing the cheap group multiplication by a factor of σ.833

Therefore, we can use Pippenger for Pedersen vector commitment in any of our inner-product proofs.834

E.4 Parameter Selection835

We use an LWE security estimator implemented by Albrecht, Player, and Scott [3], which can estimate836

bits of security when many LWE samples are given (the number of samples equals the vector length837

in our setting). To have the proof work, we can set the ciphertext modulus q to be the order of the838

elliptic curve group, such as q being a 253-bit prime for the Ristretto group. However, this requires839

expensive computation for encryption and decryption. On the other hand, recent efficient protocols840

based on LWE use machine-friendly q such as 232. We propose a technique inspired by Angel et841

al. [5] that does not require setting the ciphertext modulus q equal to the order of the group in the842

commit-and-proof system.843

Proving modulo operation inversely. Let q be the ciphertext modulus in LWE and Q = |G| where844

G is the group for the commit-and-proof system. We set q to be architecture-friendly numbers (e.g.,845

232) and keep the group order Q in zero-knowledge proof systems as it is (e.g., a 256-bit prime).846

Crucially, we require Q≫ q so that wrap-around does not happen (explained next).847

The client first performs the encryption without any modulo operations. Namely, entries in A, k are848

in Zq, and we let849

ỹ = Ak + e + ⌊q/p⌋x ∈ ZQ.
The ciphertext y the client sends to the server is y ∈ Zq where ỹ mod q. Note that the client must850

know a vector m ∈ Zℓ
Q such that851

ỹ = m ◦ (q · 1) + y.
The client will include m in the witness and prove that852

y = Ak + e + ⌊q/p⌋x−m ◦ (q · 1) (1)

where the witness consists of k, x, e, m, and A, y are public. This technique additionally requires the853

client to do proof of L∞ on x, e, k to show their entries are indeed in Zq, but since the client already854

did it for x, e (see Section 3), the client just additionally does L∞ proof for k. The same idea can be855

applied to packed secret sharing as well (the secret k can be sampled uniformly from {0, 1}); a caveat856

is that Shamir secret sharing requires q to be prime (see references [12] for q being power-of-2).857

The Schwartz-Zippel optimization can be applied to proving equation 1 even when q does not858

equal the proof system modulus. Generically, suppose we have M ∈ ZW×L
q and v1, v2 ∈ ZL

q ,859

and we want to prove v2 = Mv1 mod q. The prover first receives a challenge r ← Zq and let860

r = (r0, r1, . . . , rW−1) ∈ ZW
q , and it first computes in Zq that a = M⊤r− r and b = v1|v2 (entries of861

a, b are in Zq). We want to prove that ⟨a, b⟩ = 0 in Zq, but the proof system has Q≫ q. To this end,862

we let the prover find m ∈ ZQ that863

⟨a, b⟩ = q · m ∈ ZQ.
Note that a is a public vector, and b is a secret vector (witness). Now we can append q to a (denoted864

as a′) and append m to b (denoted as b′) and prove that ⟨a′, b′⟩ = 0 using a proof system with865

modulus Q. Moreover, we additionally need to prove ∥b∥∞ < q, and this is easy to do since q≪ Q866

(Section C.1). We do not need to prove the L∞ norm for a or a′ because they are public.867

With the above technique, we can choose the following set of parameters to get over 128-bit security:868

let λ be 1200, let q be 232, and let s and e be both sampled from normal distribution mod 7, then869

according to the LWE estimator, this set of parameters gives 129 bits of security and allows p = 216870
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for summation of 4,000 clients. This should be sufficient for most of the scenarios since the number871

of clients per iteration varies from 500 to 5K [42, Table 2]).872

Vector slicing. We now give the second technique that further reduces the number of helpers.873

Recall that packed secret sharing allows one to pack λ secrets into a polynomial and each party gets874

one share. We can instead pack fewer secrets and have each party hold more shares (we call it vector875

slicing). For example, if λ = 1024, we can pack λ/8 secrets (slicing the key vector by a factor of 8)876

into the polynomial and each client shares 8 polynomials. Now the number of shares held by each877

helper will be 8n, but in practice, this is less than 1MB even when n = 10, 000. When λ = 1024, we878

require a total number of helpers only C = (3/2) · (λ/8) = 192, which is much smaller than n.879

A final complication is to incorporate the vector slicing into the zero-knowledge proof design. We880

can modify our description in Section 3.2 as follows: client i computes vector commitment to each881

sliced vector of ki; then it performs the same linear proof as before, except now we have 8 smaller882

instances. The client sends to the server the vector commitments to the 8 sliced vectors which allows883

the server to compute the commitment to ki.884

F Cost Overview of Armadillo885

To better understand the concrete cost, we first give a cost overview of the client and the server.886

Cost overview of Armadillo. A client first masks its input vector of length m using the preprocessed887

vector (Section E.2); this involves m additions over Zq. Also, the client computes C shares of the888

key and the corresponding C Pedersen commitments to the shares; this is dominated by 2C group889

exponentiations. The client then creates the proofs, of which the cost is stated in Theorem 1.890

Each helper j receives and verifies n Pedersen commitments, which is 2n group exponentiations. It891

kicks out the clients whose shares fail the verification. Then the helper adds up the valid shares and892

sends the sum to the server; this is at most n additions on field elements.893

Baselines. The most related work is ACORN-robust [9], where they provide the same input894

validation guarantee as our protocol but achieve robustness in a very different way. We provide details895

in Appendix G.2. Roughly, ACORN-robust follows the pairwise masking approach by Bell et al. [8],896

and each client does the proof of input validity same as ours, but additionally computes Feldman897

commitments to the shares of its pairwise secrets, which is later useful for identifying cheating clients.898

The other protocols that achieve input validation (but without robustness) are Eiffel [24], and899

RoFL [50]. It was shown in [9] that Eiffel and RoFL are both more expensive than ACORN, so we900

do not use them as baselines here.901

Libraries, testbed, and parameters. We implement our protocol using Rust. For instantiating902

the proofs, we use Nova [60,44,2], which is an R1CS-based proof system. For linear and quadratic903

proof, this has faster prover and verifier time compared to the state-of-the-art rust implementation of904

Bulletproof [28]. We run our experiment on a laptop with a 2.4GHz Apple M2 chip. The range of the905

clients’ inputs are integers in [0, 216 − 1]. Both the client and server-side experiments vary the length906

of the inputs from 211 to 215. Note that 210 is too small for our protocol to make sense since the LWE907

secret already has dimension on par with 210.908

G Details on Baseline Protocols909

G.1 Cost Overview of ACORN-detect910

To understand how ACORN-robust works we first present ACORN-detect. In ACORN-detect911

protocol, the server can detect if a client cheats but the protocol does not have guaranteed output912

delivery. We outline the protocol below and briefly analyze its cost.913

We start with the protocol (without input validation) in Bell et al. [8] which is also a base protocol914

for ACORN. Initially, the server establishes a public graph on all n clients where each client has915

k = O(log n) neighbors; let N(i) ⊂ [n] denote the neighbors of i. Each pair of clients establish916
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pairwise secrets pij. Each client i generates a random PRG seed zi and masks the input xi as917

yi = xi + ri,

where the mask ri is defined as918

ri =
∑

i<j,j∈N(i)

PRG(pij)−
∑

i>j,j∈N(i)

PRG(pij) + PRG(zi).

The client sends yi to the server. Note that zi is for ensuring privacy when handling dropouts; see919

more details in Bell et al. [8]. We skip the rest of details of the protocol here, but their key feature is920

that for any online set O ⊂ [n], the server eventually gets r :=
∑

i∈O ri so that it can remove r from921

y :=
∑

i∈O yi and obtain the desired output
∑

i∈O xi.922

To achieve input validity, they added the following steps to the above protocol. Each client i computes923

the commitment to xi and the commitment to the aggregated mask ri and sends them together with924

the masked vector yi = xi + ri. Then the client proves that925

• xi has valid L2, L∞ norm (same as Section C.1);926

• It added ri to xi correctly (which can be done using a linear proof).927

Recall that the server learns r :=
∑

i∈O ri. Next, the clients and the server run a distributed key928

correctness (DKC) protocol to check if the server obtains r :=
∑

i∈O ri where the ri’s are indeed929

consistent with the commitments that the clients sent in the first place.930

Remark 1. When the PRG is instantiated with homomorphic PRG (e.g., RLWE-based PRG), the931

client can optimize its computation by first computing the sum of the seeds and then expanding the932

aggregated seeds with PRG. A trade-off is that the masking here is not simply xi + ri: since the PRG933

output is defined over polynomial rings, the input xi should be interpreted as polynomials when added934

to ri and this requires non-trivial encoding of xi (see Equation 5 in ACORN [9]). As a result, the935

client also needs to prove it performs the encoding correctly.936

Cost. Each client computes two vector commitments to length ℓ vectors xi, ri. For the DKC protocol,937

the client performs a constant number of elliptic curve scalar multiplications, and the server performs938

3n of them.939

G.2 Cost Overview of ACORN-robust940

ACORN-robust is similar to ACORN-detect but with the following differences:941

• The pairwise secrets are established differently (see details below);942

• When the server fails verification in the DKC protocol, it invokes an O(log n)-round bad message943

resolution protocol with all the clients to remove the malicious clients’ contribution from the sum.944

Suppose the server establishes a public graph on all n clients where each client has k = O(log n)945

neighbors. First, each client i generates k seeds si,j for neighbor j, and sends them to the neighbors;946

client i additionally generates (deterministic) commitments to the seeds, namely si,j · G, which are947

sent to the server. Next, clients exchange the seeds with their neighbors: a client i neighboring with948

client j will send si,j and receive sj,i, and vice versa. Client i and j then establish pairwise secret949

pij = si,j + sj,i; this pij will be used for pairwise-masking the input vector.950

Each client i then Shamir-shares si,j and sends the Feldman commitments to the sharing of si,j951

(commitments to the coefficients of the sharing polynomial) to the server. The server checks if the952

Feldman commitments match the commitment si,j · G. If not, the server disqualifies client i; if it953

matches, the server computes s(k)
i,j · G from Feldman commitments, where s(k)

i,j is the share meant for954

the k-th neighbor of client i. Then the server sends s(k)
i,j · G to the corresponding client. The recipient955

client checks if the decrypted share s(k)
i,j matches the commitment s(k)

i,j · G. Then the server and clients956

invoke an O(log n)-round bad message resolution protocol to form a set of clients whose pairwise957

masks can be canceled out.958

There are two costly parts of ACORN-robust: 1) the obvious complexity of the logarithmic number959

of rounds between the server and all the clients; 2) the server needs to verify O(n log n) Feldman960
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Functionality F

Parties: A set of n clients P1, . . . , Pn and a server S.
Parameters: corruption rate η and dropout rate δ among {P1, . . . , Pn}.
Let P = {P1, . . . , Pn} and X = P ∪ S.

• F receives from the adversary a set of corrupted parties A ⊂ X , where |A ∩ P| ≤ ηn.
• F receives a set of dropout clients O ⊂ P , and inputs xi for client Pi ∈ P\(O ∪A).
• The output of F :

1. If S ̸∈ A, then F outputs z =
∑

Pi∈P\(A∪O) xi;

2. If S ∈ A, then F asks the adversary for a set: if the adversary replies with a setM ⊆ P where
|M| ≥ (1 − δ)n, then F outputs z′ =

∑
Pi∈M\(A∪O) xi; otherwise, F sends abort to clients

Pi ∈ P\A.

Figure 7: Ideal functionality of a private sum with robustness. We follow the definition in prior
works [13,8] that assumes an oracle gives a valid dropout set to F .

commitments of sharing of degree log n. Concretely, using the parameters estimated by Bell et961

al., with n = 1000 clients and δ = η = 0.05, the neighbors required (for security) is roughly 30,962

meaning that here the server needs to perform 2 · 302 · 1000 = 1, 800, 000 elliptic curve scalar963

multiplications and this takes roughly 10 minutes; note that this cannot be trivially optimized with964

multi-exponentiation because the server needs to identify the malicious clients.965

H Security proof of Armadillo966

H.1 Proof of Theorem 2967

The proof for dropout resilience is simple. When all parties follow the protocol, given a dropout set968

O ⊂ [n], the server will compute y =
∑

i∈[n]\O yi (Round 4 in Fig.5). For the inner aggregation, the969

set of helpers C will obtain shares of ki for all i ∈ [n]\O (because the server honestly forwards the970

messages). Assuming d < C(1− δC), the server will get the result from inner aggregation which is971

k =
∑

i∈[n]\O ki. Therefore, we have Dec(k, y) =
∑

i∈[n]\O xi.972

H.2 Proof of Theorem 3973

We follow the proof of security similar to that of ACORN-robust [9]. However, there are key974

differences. Their protocol guarantees the privacy of honest clients only with a semi-honest server.975

This is an artifact of their protocol where the server is empowered to recover the masks—both the976

self-masks and pairwise masks—for misbehaving clients to then remove their inputs. In other words,977

the server is capable of recovering the actual inputs of malicious clients. Consequently, a malicious978

server could claim honest clients to be malicious and thereby recover the inputs of these clients. In979

contrast, our protocol works by using a single mask, and these masks are never revealed to the server,980

even for those misbehaving clients.981

Our proof methodology relies on the standard simulation-based proof, where we show that every982

adversary attacking our protocol can be simulated by an adversary Sim in an ideal world where the983

functionality F (Fig.7). In the following, we first prove privacy against any adversary corrupting ηn984

clients and the server; then we prove robustness assuming the adversary corrupting ηn clients but not985

the server (recall our threat model in §1.1).986

The challenge in the simulation is the ability of Sim to generate a valid distribution for the honest987

clients’ inputs, even without knowing their keys. To this end, we will show that Sim, when only988

given the sum of the user inputs X =
∑n

i=1 xi, can simulate the expected leakage for the server which989

includes n ciphertexts, the sum of the n keys K =
∑n

i=1 ki, and such that the sum of the n ciphertexts,990

when decrypted with K, correctly decrypts to X.991

Before we detail the definition of Sim and prove its security, we present an assumption that we will992

use later.993
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Definition 1 (A variant of Hint-LWE [47,23]). Consider integers λ, m, q and a probability distribution994

χ′ on Zq, typically taken to be a normal distribution that has been discretized. Then, the Hint-LWE995

assumption states that for all PPT adversaries A, there exists a negligible function negl such that:996

Pr

b = b′

A $←− Zm×λ
q , k $←− Zλ

q , e $←− χ′m

r $←− Zλ
q , f $←− χ′m

y0 := Ak + e, y1
$←− Zm

q , b $←− {0, 1}
b′ $←− A(A, (yb, k + r, e + f))

 =
1
2
+ negl(κ)

where κ is the security parameter.997

Intuitively, Hint-LWE assumption says that y0 looks pseudorandom to an adversary, even when given998

some randomized leakage on the secret and the error vectors. Kim et al. [43] show that solving999

Hint-LWE is no easier than solving LWE problem. For a secure LWE instance (λ, m, q,χ) where χ1000

is a discrete Gaussian distribution with standard deviation σ, the corresponding Hint-LWE instance1001

(λ, m, q,χ′), where χ′ is a discrete Gaussian distribution with standard deviation σ′, is secure when1002

σ′ = σ/
√

2. Consequently, any e ∈ χ can be written as e1 + e2 where e1, e2 ∈ χ′. This gives us the1003

real distribution DR, with the error term re-written and the last ciphertext modified.1004  K =
∑n

i=1 ki mod q ∀i ∈ [n], ki
$←− Zλ

q , ei, fi
$←− χ′m

y1, . . . , yn ∀i ∈ [n− 1], yi = A · ki + ei +∆xi

yn = AK−
∑n−1

i=1 yi +
∑n

i=1(ei + fi) + ∆X


We now define Sim(A, X):1005

Sim(A, X)1006

Sample u1, . . . , un−1
$←− Zm

q1007

Sample k1, . . . , kn
$←− Zλ

q1008

Sample e1, . . . , en
$←− χ′m1009

Sample f1, . . . , fn
$←− χ′m1010

Set K :=
∑n

i=1 ki mod q1011

Set un = A ·K−
∑n−1

i=1 ui +
∑n

i=1(ei + fi) + ∆ · X1012

Return K, u1, . . . , un1013

In other words, the simulated distribution, DSim, is:1014 
K =

∑n
i=1 ki mod q ∀ i ∈ [n] ki

$←− Zλ
q , ei, fi

$←− χ′m

u1, . . . , un ∀ i ∈ [n− 1] ui
$←− Zm

q

un = AK−
∑n−1

i=1 ui +
∑n

i=1(ei + fi) + ∆X


We will now prove that DR is indistinguishable from DSim through a sequence of hybrids.1015

• Hybrid 0: This is DR.1016

• Hybrid 1: In this hybrid, we will replace the real ciphertext y1 with a modified one. In other1017

words, we set:1018  K ∀ i ∈ [n] ki
$←− Zλ

q , ei, fi
$←− χ′m, u′

1
$←− Zm

q
y1 = u′

1 + f1 +∆x1 ∀ i ∈ [2, n− 1] yi = A · ki + (ei + fi) + ∆xi

{yi}n
i=2 yn = AK−

∑n−1
i=1 yi +

∑n
i=1(ei + fi) + ∆X


Now, we will show that if there exists an adversary B that can distinguish between Hybrid1019

0 and 1, then we can define an adversary A who can distinguish the two ensembles in the1020

Hint-LWE Assumption. Let us define A now.1021

A(A, y∗, k∗ = k + r mod q, e∗ = e + f)1022

Sample k2, . . . , kn−1
$←− Zλ

q1023
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Sample e2, . . . , en
$←− χ′m1024

Sample f2, . . . , fn
$←− χ′m1025

Set K =
∑n−1

i=2 ki + k∗ mod q // implicitly, kn := r1026

∀ i ∈ {2, . . . , n− 1}, yi = Aki + ei + fi +∆xi1027

Set y1 = y∗ + fn +∆x11028

Set yn := AK−
∑n−1

i=1 yi + e∗ +
∑n

i=2(ei + fi) + ∆ · X1029

Run b′ $←− B(K, y1, . . . , yn)1030

return b′1031

We need to argue that the reduction correctly simulates the two hybrids, based on the choice1032

of y∗.1033

– If y∗ = Ak+e, then y1 is a valid encryption of x1 with key k and error (e+ fn). Further,1034

it is easy to verify that yn satisfies the definition present in Hybrid 0.1035

– If y∗ = u for some random u. Then, we get that yn is of the prescribed format, while1036

also guaranteeing that y1 is generated as expected.1037

• Hybrid 2: In this hybrid, we will replace y1 with y1 that is sampled uniformly at random.1038

 K ∀ i ∈ [n] ki
$←− Zλ

q , ei, fi
$←− χ′m, u1

$←− Zm
q

u1 ∀ i ∈ [2, n− 1] yi = A · ki + (ei + fi) + ∆xi

{yi}n
i=2 yn = AK− u1 −

∑n−1
i=2 yi +

∑n
i=1(ei + fi) + ∆X


Hybrid 1, and Hybrid 2 are identically distributed u′

1 is uniformly sampled and essentially1039

mask the values in y1 of Hybrid 1.1040

In Hybrids 3 and 4, we replace y2 with a random element u2, by using a similar logic. Therefore, in1041

Hybrid 2n− 2, the distribution will resemble DSim. This concludes the proof of simulatability.1042

Privacy. Here we prove privacy against an attacker corrupting the server and a set of ηn clients1043

(some of them can be helpers). Denote the simulator as Simp. The formal proof proceeds through a1044

sequence of hybrids. The sequence of hybrids is similar to the work of Bell et al. [8]. LetH = [n] \ C.1045

Below, we detail the hybrids.1046

• Hybrid 0: This is the real execution of the protocol where the adversary is interacting with1047

honest parties.1048

• Hybrid 1: This is where we introduce a simulator Sim which knows all the inputs and1049

secret keys involved, i.e., it knows the keys and the shares of all the clients. Sim runs a full1050

execution of the protocol with the adversary and programs the random oracle as needed.1051

The view of the adversary in this hybrid is indistinguishable from the previous hybrid.1052

• Hybrid 2: Our next step is for the simulator Sim to rely on the Special Honest Verifier Zero1053

Knowledge (SHVZK) property of all the proof systems to simulate the zero-knowledge1054

proofs for each honest client. Any non-negligible distinguishing advantage between Hybrids1055

1 and 2 will violate the SHVZK property of the underlying proof systems.1056

• Hybrid 3: In the next step, we rely on the hiding property of Pedersen commitments. Recall1057

that the hiding property guarantees that there is a negligible distinguishing advantage for an1058

adversary between an actual Pedersen commitment and a random group element. Therefore,1059

for all the honest clients, Sim can simply replace the commitments provided with a random1060

group element. Any non-negligible distinguishing advantage between Hybrids 2 and 3 will1061

violate the hiding property of the commitment scheme.1062

• Hybrid 4: In the next step, we rely on the privacy property of Shamir Secret Sharing. This1063

guarantees that any insufficient number of shares does not leak the privacy of the secret.1064

In this hybrid Sim uses this property to replace the shares of the honest user’s keys meant1065

for the corrupt helpers with random values. Recall that the number of corrupt helpers is1066

strictly less than the reconstruction threshold. Therefore, any non-negligible advantage in1067

distinguishing advantage between Hybrids 3 and 4 will imply that the statistical security of1068

Shamir’s Secret Sharing is broken.1069
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Thus far, for the honest clients’ Sim has successfully generated all the contributions for1070

the honest users, except for the ciphertexts themselves. However, Sim cannot simply rely1071

on the semantic security of LWE encryption to replace with encryptions of random values.1072

This is because the output might differ from the real world. Instead, Sim, which has control1073

of the corrupted parties, simply instructs the corrupted parties to provide their inputs as 0.1074

Then, the output of the functionality is simply the sum of the honest clients’ inputs. Let us1075

call it xH . With this knowledge, Sim can generate its own choices of individual inputs for1076

honest clients, with the only constraint that the values necessarily need to sum up xH . This1077

guarantees that the output is correct.1078

• Hybrid 5: Sim now relies on the semantic security of LWE encryption, under leakage1079

resilience as argued earlier in this section, to instead encrypt these sampled values for honest1080

clients. Any non-negligible distinguishing advantage between Hybrids 4 and 5 will imply1081

that the LWE encryption is no longer semantically secure.1082

At Hybrid 5, it is clear that Sim can successfully simulate a valid distribution that does not rely on1083

the honest party’s inputs. This concludes the proof.1084

Remark 2 (On privacy of ACORN-robust). A critical artifact of ACORN-robust in [9] is the loop-1085

based resolution of malicious behavior. Specifically, the protocol relies on a looping process by1086

which the server identifies some malicious clients in every round of communication. This is done by1087

finding inconsistencies in the clients’ communication. Unfortunately, once a misbehaving client is1088

detected, the protocol necessarily needs to communicate with the parties to retrieve the self-mask and1089

the pairwise masks along each edge of the neighborhood graph. Consequently, the server receives1090

all the information necessary to unmask the inputs. Therefore, a malicious server could conceivably1091

claim an honest client to be a misbehaving client, thereby compromising the privacy of the inputs.1092

This is acknowledged by the authors of [9]. However, a simple fix would be for the server to attach1093

necessary proofs of malicious behavior but the communication involved in this process is higher.1094

(a) the honest clients send their inputs to T , (b) A chooses which corrupted clients send their input to1095

T and which ones abort, (c) if the server is corrupted A gets to choose whether to abort the protocol or1096

continue, and (d) if the protocol is not aborted, T gives the server its prescribed output F (X ). Finally,1097

(e) if the server is not corrupted then it outputs what it received from T .1098

Robustness. Now we turn to proving robustness (and also showing privacy) when the adversary1099

corrupting only a set of ηn clients (some of them can be helpers). Here the server follows the protocol,1100

but can try to violate the privacy.1101

We denote the simulator here as Simr. Note that in the ideal world Simr has to provide the inputs1102

for both the honest and corrupted clients. Meanwhile, in the real world the inputs for the corrupted1103

clients comes from the adversary, call it B. Note that B can choose these inputs, with any restrictions1104

of its own. Therefore, to ensure that it produces a valid set of inputs to the functionality in the ideal1105

world, Simr does the following:1106

• It invokes B by internally running it. Simr honestly follows the protocol, fixing the inputs1107

for the honest clients to be some valid vector X. To B, this is an expected run and therefore1108

it behaves exactly like in the real world execution.1109

• Simr records the set of corrupted parties A and the set of dropout clients O encountered in1110

this internal execution.1111

• At some point, B provides the NIZK proofs to the server for adversarial clients. However,1112

Simr controls the server with these proofs including proof of Shamir sharing, proof of1113

correct encryption, range proofs, and the proof of binding of shares and the key.1114

• Using the Knowledge Soundness property of the NIZK proofs, Simr is able to extract the1115

witnesses, specifically the inputs for the adversarial clients.1116

• Finally, Simr also records whatever B outputs in the internal execution.1117

With these steps in place, Simr can simulate the ideal world.1118

• It sends the recorded O,A to the ideal functionality.1119

• It sends the extracted adversarial inputs for those clients, while sending the valid inputs for1120

the non-dropout honest clients.1121
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• Note that the inputs in both the real-world and ideal-world match. We need to show that the1122

computed output matches too.1123

• Finally, Simr outputs whatever B had output in the internal execution.1124

It is clear that the output of Simr (in the ideal world) is indistinguishable from the output of B (in the1125

real world). However, we now need to argue that the output sum cannot differ at all. Specifically,1126

while it is guaranteed that the adversarial inputs are included in the sum in the real world (as it1127

was done in the internal execution of B). We need to show that the honest clients’ inputs cannot be1128

dropped from the computed sum.1129

To see this, observe that the server only removes a client if there is a proof of the client misbehaving.1130

As a corollary, it implies that an honest party’s input is never rejected by the honest server as it would1131

not have proof of malicious behavior. This guarantees that any honest client’s inputs, which hasn’t1132

dropped out, is always included in the computed sum in the real world. In other words, the computed1133

sum in the real and ideal world have to match.1134

H.3 A Fix to ACORN-detect1135

We clarify details related to counting rounds in experiments, point out an overlooked issue in1136

ACORN-detect, and propose a patch.1137

ACORN-detect, as described in Figure 6 of [9], achieves input validation by integrating the distributed1138

key correctness (DKC) protocol (as described in Figure 2 of [9]) and zero-knowledge proof into the1139

main secure aggregation protocol. The DKC protocol is an interactive protocol which helps the server1140

verify that the masks the server reconstructs is what the clients committed to when sending the masked1141

inputs to the server. In the protocol description of ACORN-detect in Figure 6, communication of the1142

distributed key correctness protocol is embedded into the main protocol, thus there is no additional1143

communication round incurred. However, it seems that the authors overlooked the assumption that1144

the clients can drop offline in any round in the protocol execution when plugging the DKC protocol1145

into ACORN-detect. More specifically, the set of clients who participate in step 8 in ACORN-detect1146

(which contains step 3 of DKC) in which each client sends both the masked input and the commitment1147

to the mask the user might be a superset of the set of clients participating in Step 10 (which contains1148

step 5 of DKC) in which each client sends the server the information needed to verify the commitment1149

of the mask if some clients drop offline between these two rounds. Note that the set O of clients1150

whose inputs are chosen to be included in the final result is determined when the server receives the1151

masked input in step 9 of ACORN-detect and is not changed later. As a consequence, in the last step1152

of ACORN-detect (which contains step 6 of DKC), the server is not able to collect all the information1153

needed for the key verification for the online set and the server will abort due to the verification failure1154

even when all participants are honest, which breaks dropout resilience. This problem can be fixed by1155

extracting step 4 and 5 of the DKC protocol from ACORN-detect as a separate round between steps 81156

and 9 of ACORN-detect rather than embedded in step 9 and 10 of ACORN-detect and determining1157

the online set O by who sends both the commitment of the masks and the information needed for the1158

verification of the commitment. This fix introduces one extra round to ACORN-detect.1159
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NeurIPS Paper Checklist1160

The checklist is designed to encourage best practices for responsible machine learning research,1161

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove1162

the checklist: The papers not including the checklist will be desk rejected. The checklist should1163

follow the references and follow the (optional) supplemental material. The checklist does NOT count1164

towards the page limit.1165

Please read the checklist guidelines carefully for information on how to answer these questions. For1166

each question in the checklist:1167

• You should answer [Yes] , [No] , or [NA] .1168

• [NA] means either that the question is Not Applicable for that particular paper or the1169

relevant information is Not Available.1170

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).1171

The checklist answers are an integral part of your paper submission. They are visible to the1172

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it1173

(after eventual revisions) with the final version of your paper, and its final version will be published1174

with the paper.1175

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.1176

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a1177

proper justification is given (e.g., "error bars are not reported because it would be too computationally1178

expensive" or "we were unable to find the license for the dataset we used"). In general, answering1179

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we1180

acknowledge that the true answer is often more nuanced, so please just use your best judgment and1181

write a justification to elaborate. All supporting evidence can appear either in the main paper or the1182

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification1183

please point to the section(s) where related material for the question can be found.1184

IMPORTANT, please:1185

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",1186

• Keep the checklist subsection headings, questions/answers and guidelines below.1187

• Do not modify the questions and only use the provided macros for your answers.1188

1. Claims1189

Question: Do the main claims made in the abstract and introduction accurately reflect the1190

paper’s contributions and scope?1191

Answer: [Yes]1192

Justification: The paper sets out to solve a critical problem in prior work on secure aggre-1193

gation. In this work, we demonstrate how to guarantee robustness of model, in the face of1194

malicious clients by identifying and removing these bad actors. We demonstrate experiments1195

to show competitive performance over prior work.1196

Guidelines:1197

• The answer NA means that the abstract and introduction do not include the claims1198

made in the paper.1199

• The abstract and/or introduction should clearly state the claims made, including the1200

contributions made in the paper and important assumptions and limitations. A No or1201

NA answer to this question will not be perceived well by the reviewers.1202

• The claims made should match theoretical and experimental results, and reflect how1203

much the results can be expected to generalize to other settings.1204

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1205

are not attained by the paper.1206

2. Limitations1207

Question: Does the paper discuss the limitations of the work performed by the authors?1208

Answer: [Yes]1209
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Justification: We have a conclusion paragraph that draws attention to some of the limitations1210

while identifying how they can be remedied in future work.1211

Guidelines:1212

• The answer NA means that the paper has no limitation while the answer No means that1213

the paper has limitations, but those are not discussed in the paper.1214

• The authors are encouraged to create a separate "Limitations" section in their paper.1215

• The paper should point out any strong assumptions and how robust the results are to1216

violations of these assumptions (e.g., independence assumptions, noiseless settings,1217

model well-specification, asymptotic approximations only holding locally). The authors1218

should reflect on how these assumptions might be violated in practice and what the1219

implications would be.1220

• The authors should reflect on the scope of the claims made, e.g., if the approach was1221

only tested on a few datasets or with a few runs. In general, empirical results often1222

depend on implicit assumptions, which should be articulated.1223

• The authors should reflect on the factors that influence the performance of the approach.1224

For example, a facial recognition algorithm may perform poorly when image resolution1225

is low or images are taken in low lighting. Or a speech-to-text system might not be1226

used reliably to provide closed captions for online lectures because it fails to handle1227

technical jargon.1228

• The authors should discuss the computational efficiency of the proposed algorithms1229

and how they scale with dataset size.1230

• If applicable, the authors should discuss possible limitations of their approach to1231

address problems of privacy and fairness.1232

• While the authors might fear that complete honesty about limitations might be used by1233

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1234

limitations that aren’t acknowledged in the paper. The authors should use their best1235

judgment and recognize that individual actions in favor of transparency play an impor-1236

tant role in developing norms that preserve the integrity of the community. Reviewers1237

will be specifically instructed to not penalize honesty concerning limitations.1238

3. Theory Assumptions and Proofs1239

Question: For each theoretical result, does the paper provide the full set of assumptions and1240

a complete (and correct) proof?1241

Answer: [Yes]1242

Justification: The paper introduces all the necessary theoretical framework and assumptions1243

for security of the construction. There’s detailed proof deferred to the appendix.1244

Guidelines:1245

• The answer NA means that the paper does not include theoretical results.1246

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1247

referenced.1248

• All assumptions should be clearly stated or referenced in the statement of any theorems.1249

• The proofs can either appear in the main paper or the supplemental material, but if1250

they appear in the supplemental material, the authors are encouraged to provide a short1251

proof sketch to provide intuition.1252

• Inversely, any informal proof provided in the core of the paper should be complemented1253

by formal proofs provided in appendix or supplemental material.1254

• Theorems and Lemmas that the proof relies upon should be properly referenced.1255

4. Experimental Result Reproducibility1256

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1257

perimental results of the paper to the extent that it affects the main claims and/or conclusions1258

of the paper (regardless of whether the code and data are provided or not)?1259

Answer: [Yes]1260

Justification: The protocols are well detailed, including the parameter settings for our1261

classifier. We use publicly available ABIDES framework to simulate real-life networking1262

situations.1263
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Guidelines:1264

• The answer NA means that the paper does not include experiments.1265

• If the paper includes experiments, a No answer to this question will not be perceived1266

well by the reviewers: Making the paper reproducible is important, regardless of1267

whether the code and data are provided or not.1268

• If the contribution is a dataset and/or model, the authors should describe the steps taken1269

to make their results reproducible or verifiable.1270

• Depending on the contribution, reproducibility can be accomplished in various ways.1271

For example, if the contribution is a novel architecture, describing the architecture fully1272

might suffice, or if the contribution is a specific model and empirical evaluation, it may1273

be necessary to either make it possible for others to replicate the model with the same1274

dataset, or provide access to the model. In general. releasing code and data is often1275

one good way to accomplish this, but reproducibility can also be provided via detailed1276

instructions for how to replicate the results, access to a hosted model (e.g., in the case1277

of a large language model), releasing of a model checkpoint, or other means that are1278

appropriate to the research performed.1279

• While NeurIPS does not require releasing code, the conference does require all submis-1280

sions to provide some reasonable avenue for reproducibility, which may depend on the1281

nature of the contribution. For example1282

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1283

to reproduce that algorithm.1284

(b) If the contribution is primarily a new model architecture, the paper should describe1285

the architecture clearly and fully.1286

(c) If the contribution is a new model (e.g., a large language model), then there should1287

either be a way to access this model for reproducing the results or a way to reproduce1288

the model (e.g., with an open-source dataset or instructions for how to construct1289

the dataset).1290

(d) We recognize that reproducibility may be tricky in some cases, in which case1291

authors are welcome to describe the particular way they provide for reproducibility.1292

In the case of closed-source models, it may be that access to the model is limited in1293

some way (e.g., to registered users), but it should be possible for other researchers1294

to have some path to reproducing or verifying the results.1295

5. Open access to data and code1296

Question: Does the paper provide open access to the data and code, with sufficient instruc-1297

tions to faithfully reproduce the main experimental results, as described in supplemental1298

material?1299

Answer: [NA]1300

Justification: Unfortunately, there was no support for supplementary material upload. How-1301

ever, we are happy to furnish the anonymized code for interested reviewers.1302

Guidelines:1303

• The answer NA means that paper does not include experiments requiring code.1304

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1305

public/guides/CodeSubmissionPolicy) for more details.1306

• While we encourage the release of code and data, we understand that this might not be1307

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1308

including code, unless this is central to the contribution (e.g., for a new open-source1309

benchmark).1310

• The instructions should contain the exact command and environment needed to run to1311

reproduce the results. See the NeurIPS code and data submission guidelines (https:1312

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1313

• The authors should provide instructions on data access and preparation, including how1314

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1315

• The authors should provide scripts to reproduce all experimental results for the new1316

proposed method and baselines. If only a subset of experiments are reproducible, they1317

should state which ones are omitted from the script and why.1318
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• At submission time, to preserve anonymity, the authors should release anonymized1319

versions (if applicable).1320

• Providing as much information as possible in supplemental material (appended to the1321

paper) is recommended, but including URLs to data and code is permitted.1322

6. Experimental Setting/Details1323

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1324

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1325

results?1326

Answer: [NA]1327

Justification: We do not perform any training or testing in this work.1328

Guidelines:1329

• The answer NA means that the paper does not include experiments.1330

• The experimental setting should be presented in the core of the paper to a level of detail1331

that is necessary to appreciate the results and make sense of them.1332

• The full details can be provided either with the code, in appendix, or as supplemental1333

material.1334

7. Experiment Statistical Significance1335

Question: Does the paper report error bars suitably and correctly defined or other appropriate1336

information about the statistical significance of the experiments?1337

Answer: [NA]1338

Justification: Our running time experiments report the mean as specified.1339

Guidelines:1340

• The answer NA means that the paper does not include experiments.1341

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1342

dence intervals, or statistical significance tests, at least for the experiments that support1343

the main claims of the paper.1344

• The factors of variability that the error bars are capturing should be clearly stated (for1345

example, train/test split, initialization, random drawing of some parameter, or overall1346

run with given experimental conditions).1347

• The method for calculating the error bars should be explained (closed form formula,1348

call to a library function, bootstrap, etc.)1349

• The assumptions made should be given (e.g., Normally distributed errors).1350

• It should be clear whether the error bar is the standard deviation or the standard error1351

of the mean.1352

• It is OK to report 1-sigma error bars, but one should state it. The authors should1353

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1354

of Normality of errors is not verified.1355

• For asymmetric distributions, the authors should be careful not to show in tables or1356

figures symmetric error bars that would yield results that are out of range (e.g. negative1357

error rates).1358

• If error bars are reported in tables or plots, The authors should explain in the text how1359

they were calculated and reference the corresponding figures or tables in the text.1360

8. Experiments Compute Resources1361

Question: For each experiment, does the paper provide sufficient information on the com-1362

puter resources (type of compute workers, memory, time of execution) needed to reproduce1363

the experiments?1364

Answer: [Yes]1365

Justification: We detail the system settings of the device on which experiments are performed.1366

Guidelines:1367

• The answer NA means that the paper does not include experiments.1368

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1369

or cloud provider, including relevant memory and storage.1370
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• The paper should provide the amount of compute required for each of the individual1371

experimental runs as well as estimate the total compute.1372

• The paper should disclose whether the full research project required more compute1373

than the experiments reported in the paper (e.g., preliminary or failed experiments that1374

didn’t make it into the paper).1375

9. Code Of Ethics1376

Question: Does the research conducted in the paper conform, in every respect, with the1377

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1378

Answer: [Yes]1379

Justification: The paper complies with the code of ethics.1380

Guidelines:1381

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1382

• If the authors answer No, they should explain the special circumstances that require a1383

deviation from the Code of Ethics.1384

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1385

eration due to laws or regulations in their jurisdiction).1386

10. Broader Impacts1387

Question: Does the paper discuss both potential positive societal impacts and negative1388

societal impacts of the work performed?1389

Answer: [Yes]1390

Justification: The work focuses on privacy of client-held data. This is surveyed in the1391

introduction and motivates why privacy-preserving federated learning is important and its1392

positive impact.1393

Guidelines:1394

• The answer NA means that there is no societal impact of the work performed.1395

• If the authors answer NA or No, they should explain why their work has no societal1396

impact or why the paper does not address societal impact.1397

• Examples of negative societal impacts include potential malicious or unintended uses1398

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1399

(e.g., deployment of technologies that could make decisions that unfairly impact specific1400

groups), privacy considerations, and security considerations.1401

• The conference expects that many papers will be foundational research and not tied1402

to particular applications, let alone deployments. However, if there is a direct path to1403

any negative applications, the authors should point it out. For example, it is legitimate1404

to point out that an improvement in the quality of generative models could be used to1405

generate deepfakes for disinformation. On the other hand, it is not needed to point out1406

that a generic algorithm for optimizing neural networks could enable people to train1407

models that generate Deepfakes faster.1408

• The authors should consider possible harms that could arise when the technology is1409

being used as intended and functioning correctly, harms that could arise when the1410

technology is being used as intended but gives incorrect results, and harms following1411

from (intentional or unintentional) misuse of the technology.1412

• If there are negative societal impacts, the authors could also discuss possible mitigation1413

strategies (e.g., gated release of models, providing defenses in addition to attacks,1414

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1415

feedback over time, improving the efficiency and accessibility of ML).1416

11. Safeguards1417

Question: Does the paper describe safeguards that have been put in place for responsible1418

release of data or models that have a high risk for misuse (e.g., pretrained language models,1419

image generators, or scraped datasets)?1420

Answer: [NA]1421

Justification: We do not use any of the stated models or data sources.1422

Guidelines:1423

• The answer NA means that the paper poses no such risks.1424
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• Released models that have a high risk for misuse or dual-use should be released with1425

necessary safeguards to allow for controlled use of the model, for example by requiring1426

that users adhere to usage guidelines or restrictions to access the model or implementing1427

safety filters.1428

• Datasets that have been scraped from the Internet could pose safety risks. The authors1429

should describe how they avoided releasing unsafe images.1430

• We recognize that providing effective safeguards is challenging, and many papers do1431

not require this, but we encourage authors to take this into account and make a best1432

faith effort.1433

12. Licenses for existing assets1434

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1435

the paper, properly credited and are the license and terms of use explicitly mentioned and1436

properly respected?1437

Answer: [NA]1438

Justification: This is not applicable for our work.1439

Guidelines:1440

• The answer NA means that the paper does not use existing assets.1441

• The authors should cite the original paper that produced the code package or dataset.1442

• The authors should state which version of the asset is used and, if possible, include a1443

URL.1444

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1445

• For scraped data from a particular source (e.g., website), the copyright and terms of1446

service of that source should be provided.1447

• If assets are released, the license, copyright information, and terms of use in the1448

package should be provided. For popular datasets, paperswithcode.com/datasets1449

has curated licenses for some datasets. Their licensing guide can help determine the1450

license of a dataset.1451

• For existing datasets that are re-packaged, both the original license and the license of1452

the derived asset (if it has changed) should be provided.1453

• If this information is not available online, the authors are encouraged to reach out to1454

the asset’s creators.1455

13. New Assets1456

Question: Are new assets introduced in the paper well documented and is the documentation1457

provided alongside the assets?1458

Answer: [NA]1459

Justification: We are not releasing any new assets.1460

Guidelines:1461

• The answer NA means that the paper does not release new assets.1462

• Researchers should communicate the details of the dataset/code/model as part of their1463

submissions via structured templates. This includes details about training, license,1464

limitations, etc.1465

• The paper should discuss whether and how consent was obtained from people whose1466

asset is used.1467

• At submission time, remember to anonymize your assets (if applicable). You can either1468

create an anonymized URL or include an anonymized zip file.1469

14. Crowdsourcing and Research with Human Subjects1470

Question: For crowdsourcing experiments and research with human subjects, does the paper1471

include the full text of instructions given to participants and screenshots, if applicable, as1472

well as details about compensation (if any)?1473

Answer: [NA]1474

Justification: There were no human subjects involved in this project.1475

Guidelines:1476
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• The answer NA means that the paper does not involve crowdsourcing nor research with1477

human subjects.1478

• Including this information in the supplemental material is fine, but if the main contribu-1479

tion of the paper involves human subjects, then as much detail as possible should be1480

included in the main paper.1481

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1482

or other labor should be paid at least the minimum wage in the country of the data1483

collector.1484

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1485

Subjects1486

Question: Does the paper describe potential risks incurred by study participants, whether1487

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1488

approvals (or an equivalent approval/review based on the requirements of your country or1489

institution) were obtained?1490

Answer: [NA]1491

Justification: We do not have any research with human subjects that forms a part of this1492

work.1493

Guidelines:1494

• The answer NA means that the paper does not involve crowdsourcing nor research with1495

human subjects.1496

• Depending on the country in which research is conducted, IRB approval (or equivalent)1497

may be required for any human subjects research. If you obtained IRB approval, you1498

should clearly state this in the paper.1499

• We recognize that the procedures for this may vary significantly between institutions1500

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1501

guidelines for their institution.1502

• For initial submissions, do not include any information that would break anonymity (if1503

applicable), such as the institution conducting the review.1504
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