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Abstract. This paper considers the optimal sensor allocation for estimating the emission rates
of multiple sources in a two-dimensional spatial domain. Locations of potential emission sources
are known (e.g., factory stacks), and the number of sources is much greater than the number of
sensors that can be deployed, giving rise to the optimal sensor allocation problem. In particular, we
consider linear dispersion forward models, and the optimal sensor allocation is formulated as a bilevel
optimization problem. The outer problem determines the optimal sensor locations by minimizing
the overall Mean Squared Error of the estimated emission rates over various wind conditions, while
the inner problem solves an inverse problem that estimates the emission rates. Two algorithms,
including the repeated Sample Average Approximation and the Stochastic Gradient Descent based
bilevel approximation, are investigated in solving the sensor allocation problem. Convergence analysis
is performed to obtain the performance guarantee, and numerical examples are presented to illustrate
the proposed approach.

Key words. optimal sensor placement, linear dispersion, inverse modeling, bi-level optimization,
sample average approximation, stochastic gradient descent

1. INTRODUCTION.

1.1. Overview. Inverse modeling refers to the inference of unknown parameters
of a physical system using observation data [15, 7, 43, 26]. Accurate inverse modeling
hinges on where observation data are collected and how sensors are allocated. Among
various inverse problems, source term estimation is an important class that can be
found in fugitive methane gas leak source detection [22], air pollution source identi-
fication [19], nuclear source detection in an urban area [37], heat source localization
[41], molecular strain identification [31], etc. Very often, the number of sensors that
can be placed is far less than the number of potential emission sources (meaning that
it is not possible to monitor all sources individually) [51]. This naturally gives rise
to an important question: when the number of sensors is far less than the number of
sources, how can sensors be optimally allocated to obtain accurate estimation of the
emission rates for multiple sources?

To elaborate, consider an illustrative scenario in Figure 1. This figure shows
seven potential emission sources where three of them are leaking under a specific wind
condition. Four sensors can be afforded to detect the leaking sources by estimating
their emission rates. Our objective is to determine the locations of these four sensors
so that the emission rates of the seven sources can be accurately estimated. This
problem can be formulated as a bilevel optimization problem: the inner level solves
an inverse problem to estimate the emission rates with non-negativity constraints (on
emission rates), whereas the outer level chooses the sensor locations to minimize the
overall Mean Squared Error (MSE) of the estimated emission rates under various wind
conditions. A nested structure can be seen, i.e., the objective function at the outer
level relies on the solutions of multiple inner inverse problems.
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Fig. 1: Illustration of the sensor allocation problem for estimating the emission rates
of leaking emission sources.

1.2. Literature Review. Considering discrete domains, the problem of optimal
sensor allocation can be formulated as a sensor selection problem [29] for which the
best subset of sensor locations are chosen from a discrete set of potential candidates.
The selection of sensor locations is closely related to the D-optimal design [20]. For
example, [24] maximized the mutual information between the chosen and unselected
locations, [35] used a greedy algorithm to minimize aD-optimal proxy of the MSE, and
[48] proposes a swapping greedy algorithm to minimize the expected information gain.
Due to the combinatorial nature of the sensor selection problem, convex optimization
[20] and heuristics [50] have also been investigated. [2] used the L0 regularization
while casting the sensor placement for a Bayesian inverse problem as an A-optimal
design problem. [36] used two separate optimal experimental design formulations to
firstly determine the number of sensors with sparsity promoting regularizations, and
then seek the optimal sensor locations using a relaxed interior point method.

For continuous domains, [6] augmented the grid-based sensor allocation with con-
tinuous variables to allow off-grid sensor placement. [17, 16] developed gradient-based
stochastic optimization methods to maximize the expected information gain while ap-
proximating the forward models with polynomial chaos expansion. [39] presented a
continuous-time, two-timescale stochastic gradient descent algorithm for minimizing
the MSE of the hidden state estimates. [3] proposed three efficient ways of evaluating
the D-optimal and its gradient for infinite-dimensional Bayesian linear inverse prob-
lems. Note that, the continuous-domain design problem can sometimes be converted
to a discrete-domain design problem by discretizing the continuous domain and lever-
aging the existing algorithms and open-source tools for discrete problems, such as the
‘Chama’ software for sensor placement optimization using impact metrics [23], the
‘Polire’ software for spatial interpolation and sensor placement [32], the ‘PySensors’
software for selecting and placing a sparse set of sensors for classification and signal
reconstruction [8, 5, 28].

In this paper, the sensor allocation problem is formulated as a bilevel optimization
where the outer level depends on the estimated emission rates from the inner inverse
problem [10, 45]. The inner problem is often an ill-posed non-smooth minimization
problem. To handle the ill-posed inverse model, constraints or regularizations are
often added, e.g., the tightly coupled sets of variables [14], the L1-type prior [46],
the goal-oriented inversions [42, 48], the total variation regularization [40] and the
fractional Laplacian [4]. One of the most commonly adopted approaches is to add
the Tikhonov regularization [47, 44, 11]. For linear inverse problems with a squared
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loss function, adding the Tikhonov regularization yields a closed-form A-optimal de-
sign [44, 12, 13]. On the other hand, when non-negativity constraints are added to
emission rates and an elastic-net regularization is considered in the inverse model (as
is the case in this paper), neither the closed-form design (i.e., the outer problem)
nor the closed-form solution of the inverse model (i.e., the inner problem) is available
[26, 52, 49]. In this case, one approach for solving bilevel optimization problems is
to replace the inner problem with its necessary and sufficient Karush-Kuhn-Tucker
(KKT) conditions [27]. Because this approach may not be scalable for large-scale in-
ner problems [9], iterative algorithms are needed for solving the bilevel optimization
problem, such as the stochastic approximation methods with finite-time convergence
analysis under different convexity assumptions on the outer objective function [9], the
bilevel stochastic gradient method with lower level constraints for large-scale prob-
lems [10], the implicit gradient-type algorithm for strongly convex linear inequality
constrained lower-level problems [45, 21], and a relaxed interior point method with
the Tikhonov-regularized linear inversion estimate [36].

1.3. Contributions. First, this paper presents a bilevel optimization frame-
work for sensor placement that minimizes the MSE of the estimated emission rates,
while taking into account the non-negativity of emission rates, uncertainty associ-
ated with wind conditions, and the sparsity of the inner inverse problem. Hence, for
our sensor allocation problem, neither the closed-form design nor the closed-form in-
verse estimator is available. To the best of our knowledge, there exists no prior work
that explicitly tackles the constrained non-smooth bilevel optimization for solving
the optimal sensor placement problem with constrained and elastic-net regularized
inversion estimators. Second, we investigate two stochastic optimization algorithms
for solving the constrained non-smooth bilevel optimization problems, and obtain
the performance guarantee through convergence analysis. Third, because the bilevel
optimization problem is non-convex for our problem, the solution of a first-order al-
gorithm strongly depends on the choice of the initial design. Hence, this paper also
provides a practical approach to find appropriate starting points for the stochastic
optimization algorithms, and demonstrate the performance of the proposed approach
through comprehensive numerical experiments.

The remainder of this paper is organized as follows. Section 2 presents the inverse
modeling and the bilevel optimization problem. Section 3 investigates two optimiza-
tion algorithms for solving the proposed bilevel optimization problem, and presents
the convergence analysis. Two numerical examples, including a simple illustrative
example and a more realistic case, are presented in Section 4 to demonstrate the per-
formance of the proposed approach. Conclusions and discussions on future research
are presented in Section 5. All proofs and lengthy derivations are provided in the
Appendices submitted as supplementary materials.

2. Formulation of the Optimal Sensor Allocation Problem. Let Ω ⊂ R2

be a two-dimensional rectangular spatial domain. Within Ω, there exist Np potential
emission sources with known locations but unknown emission rates. Let θi ≥ 0 be the
emission rate for the ith source, and let θ = (θ1, ..., θNp). Each source has a constant
background emission rate µ under normal operation, whereas a higher-than-normal
emission rate under abnormal conditions. We are interested in finding the optimal
allocations of n sensors that facilitate the detection of abnormal emission sources. In
particular, we assume a steady concentration field, while the sources only have two
states: constant leaking (i.e., constant emission rates) or not leaking (i.e., a constant
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background emission rate).
Note that we consider the case when the number of sensors is less than (usually

far less than) the number of potential sources, i.e., n < Np, giving rise to the optimal
sensor allocation problem. When n ≥ Np, the problem becomes trivial as one could
allocate at least one sensor to each emission source. Without loss of generality, the
background emission rate µ is set to zero throughout this paper.

The observation model is given as follows,

Φ = G(θ,β, s) + ϵ, ϵ ∼ N (0,Γϵ),(2.1)

where Φ ∈ Rn is a vector that contains the observations from n sensors, G is a forward
dispersion model, β ∈ R2 is the wind vector, s = (s1, s2, ..., sn) is the location of n
sensors with si = (Xi, Yi), and ϵ ∼ N (0,Γϵ) is the observation noise with Γϵ = σ2

ϵI.
In this paper, s is the decision variable and the decision space is defined by

Ωs = {s ∈ Ω : sL ≤ s ≤ sH}, where sL and sH respectively represent the lower
and upper bounds within which sensors can be placed. Given the estimated emission
rates, θ̂(Φ,β, s), for all Np sources, finding s can be formulated as minimizing the
MSE averaged over various wind and emission scenarios

Ψ(s) = Eθ,β{EΦ|θ,β{∥θ̂(Φ,β, s)− θ∥22}}

=

∫∫∫
∥θ̂(Φ,β, s)− θ∥22 · p(Φ|θ,β, s)p(θ)p(β)dΦdθdβ,

(2.2)

where p(β) and p(θ) are the prior distributions of β and θ. Prior knowledge on β
can be obtained from historical data or numerical weather predictions, while prior
knowledge on θ can be elicited from domain experts on possible leaking scenarios.

The objective function (2.2) can be approximated from N Monte Carlo samples,
θ(i) ∼ p(θ), β(i) ∼ p(β), and Φ(i) ∼ p(Φ|θ(i),β(i), s) for i = 1, 2, · · · , N , as follows

(2.3) Ψ̂N (s) =
1

N

N∑
i=1

∥θ̂(i)(s)− θ(i)∥22

where θ̂(i)(s) is the estimated θ from Φ(i) given s. Hence, the evaluation of (2.3)
requires estimating the emission rate θ(i) from data (i.e., solving the inverse model

first). In this paper, we obtain θ̂(i) by minimizing an elastic net loss function [18],

(2.4) L(θ) =
1

2
∥G(θ,β(i), s)−Φ(i)∥2Γϵ

+ λ1∥θ∥22 + λ2∥θ∥1 s.t. θ ≥ 0,

where ∥x∥2Γϵ
= σ−2

ϵ xTx for some vector x, and λ1 and λ2 are the hyperparameters.
It is noted that the minimization of (2.4) yields the Maximum a Posteriori (MAP)

estimate given a prior distribution, p(θ;λ1, λ2) ∝ exp(−λ1∥θ∥22 − λ2∥θ∥1) for θ ≥ 0
[36]. Because emission rates are non-negative, this prior distribution incorporates the
truncated Gaussian when λ2 = 0. It also incorporates a truncated Laplacian when
λ1 = 0 so that the prior information on θ can be flexibly captured. The posterior
distribution is given by

p(θ|Φ(i),β(i), s) ∝ p(Φ(i)|θ,β(i), s) · p(θ|β(i), s)

= p(Φ(i)|θ,β(i), s) · p(θ).
(2.5)
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Because log(p(θ)) = c − λ1∥θ∥22 − λ2∥θ∥1 for θ ≥ 0 where c is a constant, the MAP
estimate is obtained by maximizing

(2.6) − 1

2
∥G(θ,β(i), s)−Φ(i)(s)∥2Γϵ

− λ1∥θ∥22 − λ2∥θ∥1 s.t. θ ≥ 0,

which is a constrained non-smooth optimization problem.

In this paper, we focus on a linear dispersion model, which includes the Gaussian
plume model [43] derived from the advection-diffusion equation. Confining our focus
gives G(θ,β, s) = F(β, s)θ, where F(β, s) is a function of the wind vector β and
sensor location s. From (2.3) and (2.6), the problem in (2.2) can be cast as a bilevel
optimization problem

min
s∈Ωs

Ψ̂N (s)(2.7a)

s.t. θ̂(i)(s) = argmin
θ

{1

2
∥F(β(i), s)θ−Φ(i)∥2Γϵ

+ λ1∥θ∥22 + λ2∥θ∥1 : θ ≥ 0
}
,(2.7b)

for i = 0, · · · , N − 1,(2.7c)

where the evaluation of the outer objective requires the solution of the inner inverse
model. Note that, the inverse problem (2.7b) is a convex Quadratic Programming
(QP) problem:

(2.8) θ̂(i)(s) = argmin
θ

{1

2
θTC(i)θ + d(i)θ : θ ≥ 0

}
,

where C(i) := C(i)(s) = σ−2
ϵ F∗(β(i), s)F(β(i), s) + λ1I is a Np ×Np matrix, d(i) :=

d(i)(s) = λ21 − σ−2
ϵ (Φ(i)(s))TF(β(i), s) is a 1 × Np row vector, F∗ is the complex

conjugate transpose, and 1 is a Np-dimensional row vector of ones.

3. Solving the Sensor Allocation Problem. The computational cost of the
bilevel optimization problem (2.7) is non-trivial when N is large. This section investi-
gates two algorithms, including the repeated Sample Average Approximation (rSAA)
and the Stochastic Gradient Descent based bilevel approximation (SBA), that can be
used to find the optimal sensor allocation.

The rSAA algorithm, shown in Algorithm 3.1, involves K parallel runs for k =
0, 1, · · · ,K − 1. Each run solves both the outer and inner optimization problems of
the bilevel optimization using only a small number of Ñ Monte Carlo samples to
speed up the computation (Ñ ≪ N). The outputs from the K repeated runs are later
combined to obtain the final solution.

The algorithm starts with two initialization settings: i) the initial sensor locations,
{s̃k

Ñ,0
∈ Ωs}K−1

k=0 , for the K repeated runs, where the first subscript Ñ is the number

of Monte Carlo samples, the second subscript is the index of the outer iteration
(“0” corresponds to the initial value), and k is the index of the repeated runs. (ii)

{θ̂(i)
m,0 ∈ R+, η̂

(i)
m,0 ∈ R+}i=0,··· ,Ñ−1;m=0,··· ,M−1 are the initial emission rates and the

Lagrangian multipliers. For the kth run (k = 1, 2, · · · ,K), both outer and inner
problems are solved. The outer optimization requiresM iterations (m = 0, 1, · · · ,M−
1), and each outer iteration involves Ñ inner problems (i = 0, 1, · · · , Ñ−1). Each inner
problem requires J iterations (j = 0, 1, · · · , J − 1) to update the estimated emission

rate θ̂
(i)
m,j+1 and its Lagrangian multiplier η̂

(i)
m,j+1 (see Section 3.1). Once the inner

problem has been solved, each outer iteration updates the sensor locations s̃k
Ñ,m+1

←
5



s̃k
Ñ,m

(see Section 3.2). After the M outer iterations, the optimal sensor location

ŝk
Ñ

:= s̃k
Ñ,M

is found and the objective function Ψ̂k
Ñ

:= Ψ̂Ñ (ŝk
Ñ,M

) is evaluated for

the k-th run. After the K repeated runs, the final optimal sensor location ŝÑ is

determined from ŝ0
Ñ
, ŝ1

Ñ
, ..., ŝK−1

Ñ
(see Section 3.2).

Algorithm 3.1 Repeated SAA (rSAA) for Sensor Allocation Problem

Initialization {s̃k
Ñ,0
∈ Ωs}K−1

k=0 , {θ̂(i)
m,0 ∈ R+, η̂

(i)
m,0 ∈ R+}i=0,··· ,Ñ−1;m=0,··· ,M−1, and

a relatively small Ñ
for k = 0, 1, · · · ,K − 1 do // K repeated runs

Sample{θ(i),β(i),Φ(i)}i=1,··· ,Ñ
for m = 0, 1, · · · ,M − 1 do // outer problem

for i = 0, 1, · · · , Ñ − 1 do
for j = 0, 1, · · · , J − 1 do // inner problem

Update θ̂
(i)
m,j+1 ← θ̂

(i)
m,j , η̂

(i)
m,j (see Section 3.1)

Update η̂
(i)
m,j+1 ← θ̂

(i)
m,j , η̂

(i)
m,j (see Section 3.1)

end

end

Update s̃k
Ñ,m+1

← s̃k
Ñ,m

(see Section 3.2)

end

Save ŝk
Ñ

:= s̃k
Ñ,M

, Ψ̂k
Ñ

:= Ψ̂Ñ (ŝk
Ñ,M

)

end

Set ŝÑ = g(ŝ0
Ñ
, ŝ1

Ñ
, . . . , ŝK−1

Ñ
) (see Section 3.2) // final output

Return ŝÑ

To ensure K is sufficiently large, the stochastic upper bound of the optimality
gap can be defined as follows:

(3.1) δ(K) := Ψ(ŝÑ )−Ψ∗,

where Ψ(ŝÑ ) is the value of the objective function given ŝÑ , and Ψ∗ is the true
optimal value [38]. In (3.1), Ψ(ŝÑ ) can be estimated from N Monte Carlo samples,
and an approximate 100(1 − α)% confidence upper bound for Ψ(ŝÑ ) is given by

Ψ̂N+zασ̂N , where Ψ̂N (ŝÑ ) = 1
N

∑N−1
i=0 Ψ̂(i)(ŝÑ ), zα is the critical value from standard

normal, and σ̂2
N = 1

N(N−1)

∑N−1
i=0 (Ψ̂(i)(ŝÑ )− Ψ̂N )2. To derive the lower bound of Ψ∗,

note that Ψ∗ ≥ E(Ψ̂k
Ñ
) (see [38]), and an approximate 100(1 − α)% lower bound

for E(Ψ̂k
Ñ
) is Ψ̄Ñ − tασ̂Ñ,K , where Ψ̄Ñ = 1

K

∑K−1
k=0 Ψ̂k

Ñ
, tα is a critical value, and

σ̂2
Ñ,K

= 1
K(K−1)

∑K−1
k=0 (Ψ̂k

Ñ
− Ψ̄Ñ )2. Hence, for a chosen K, a stochastic upper bound

(with confidence at least 1− 2α) of δ(K) is

(3.2) ∆(K) = (Ψ̂N + zασ̂N )− (Ψ̄Ñ − tασ̂Ñ,K).

The second algorithm, i.e., the SBA algorithm, is provided in Algorithm 3.2.
While the SBA algorithm shares some common building blocks with the rSAA algo-
rithm, this algorithm requires only one run. Hence, no extra steps are needed for post-
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processing the optimal solutions from repeated runs. In addition, following the idea of
stochastic approximation [33], the Ñ Monte Carlo samplings {θ(i),β(i),Φ(i)}i=1,··· ,Ñ
are re-sampled for each outer iteration m.

Algorithm 3.2 The SGD-based Bilevel Approximation Method (SBA)

Initialization s̃Ñ,0 ∈ Ωs, {θ̂(i)
m,0 ∈ R+, η̂

(i)
m,0 ∈ R+}i=0,··· ,Ñ−1;m=0,··· ,M−1, and the

small Ñ
for m = 0, 1, · · · ,M − 1 do // outer problem

Sample {θ(i),β(i),Φ(i)}i=1,··· ,Ñ
for i = 0, 1, · · · , Ñ − 1 do // inner problem

for j = 0, 1, · · · , J − 1 do

Update θ̂
(i)
m,j+1 ← θ̂

(i)
m,j , η̂

(i)
m,j (see Section 3.1)

Update η̂
(i)
m,j+1 ← θ̂

(i)
m,j , η̂

(i)
m,j (see Section 3.1)

end

end
Update s̃Ñ,m+1 ← s̃Ñ,m (see Section 3.2)

Set ŝÑ := s̃Ñ,M // final output

end
Return ŝÑ

Next, we present the details of how θ̂
(i)
m,j+1, η̂

(i)
m,j+1, and s̃Ñ,m+1 are updated in

the inner and outer iterations for both Algorithms 3.1 and 3.2.

3.1. Update θ̂
(i)
m,j+1 and η̂

(i)
m,j+1. When solving the inner problem, both algo-

rithms require the update of θ̂
(i)
m,j+1 and η̂

(i)
m,j+1. For any i = 0, 1, · · · , Ñ − 1, the

Lagrangian of the inner problem is given by

h(s,θ,η) =
1

2
θTC(i)θ + d(i)θ − ηTθ(3.3)

with the KKT conditions C(i)θ + (d(i))T − η = 0, θ,η ≥ 0, and ηθ = 0. The
augmented primal-dual gradient algorithm can be employed to solve the inner QP
problem by defining the augmented Lagrangian as [30]:

(3.4) hγ(s,θ,η) =
1

2
θTC(i)θ + d(i)θ +

Np∑
b=1

[γ(−θb) + ηb]
2
+ − η2b

2γ
,

where γ is a penalty parameter, θb the bth entry of θ, and ηb the bth entry of η.
The gradient of the augmented Lagrangian with respect to θ and η can be ob-

tained as

∇θhγ(s,θ,η) = C(i)θ + (d(i))T −
Np∑
b=1

[γ(−θb) + ηb]+e
T
b

∇ηhγ(s,θ,η) =

Np∑
b=1

1

γ
([γ(−θb) + ηb]+ − ηb)e

T
b

(3.5)
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where eb is an Np-dimensional row vector with the bth entry being 1 and other ele-

ments being 0. Finally, θ̂
(i)
m,j+1 and η̂

(i)
m,j+1 are updated as

θ̂
(i)
m,j+1 = [θ̂

(i)
m,j − τm,j∇θhγ(s̃Ñ,m, θ̂

(i)
m,j , η̂

(i)
m,j)]+

η̂
(i)
m,j+1 = [η̂

(i)
m,j + τm,j∇ηhγ(s̃Ñ,m, θ̂

(i)
m,j , η̂

(i)
m,j)]+

(3.6)

where τm,j is the stepsize, and [x]+ = x if x ≥ 0 and [x]+ = 0 if x < 0.

3.2. Update s̃Ñ,m+1. The outer problem requires updating the sensor locations
s given the solution of the inner problem. Since the true optimal solution may not be
found for each of the N inner problems (see (2.7b)), we approximate the gradient of
s for any inner problem i (i = 0, 1, · · · , N − 1) by

(3.7) ∇sΨ̂Ñ,m(s) =
2

Ñ

Ñ∑
i=1

(∇sθ̂
(i))T (θ̂(i) − θ(i))

where ∇sθ̂
(i) is from the implicit differentiation of the inner optimality condition

given by

∇sθ ≈ (C(i))−1(−∇s(C
(i))θ −∇s(d

(i))T + ĪT∇sη̄)

∇sη̄ ≈ (Ī(C(i))−1ĪT )−1(Ī(C(i))−1(∇s(C
(i))θ +∇s(d

(i))T )).
(3.8)

Here, let {j; θ(i)j = 0} be a set of active constraints, Ī contains the rows of an identity
matrix I corresponding to the active constraints, and η̄ denotes the elements of η
that correspond to the active constraints.

Next, we show how (3.8) is derived. Following the idea of [34, 45], the Lagrangian
function of the inner QP problem can be written as

(3.9) h(s,θ,η) =
1

2
θTC(i)θ + d(i)θ − ηTθ.

Consider a KKT point (θ,η) for some fixed s ∈ Ωs, we have

∇θh(s,θ,η) = C(i)θ + (d(i))T − η = 0,

ηθ = 0,η ≥ 0,θ ≥ 0.

By considering only the active constraints at (θ,η), the KKT conditions can be equiv-
alently written as

C(i)θ + (d(i))T − ĪT η̄ = 0, Īθ = 0, η̄ > 0,

Note that, the KKT conditions above require the following assumption,

Assumption 1. For the bilevel optimization problem in Eq. (2.8), we assume that
the strict complementarity holds (i.e., for the Lagrangian multipliers η̄ that correspond
to the active constraints Īθ = 0, we have η̄ > 0).

Then, computing the gradient of the KKT conditions w.r.t. s, we obtain

(3.10) ∇s(C
(i))θ +∇s(d

(i))T +C(i)∇sθ − ĪT∇sη̄ = 0,
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(3.11) Ī∇sθ = 0.

Re-arranging (3.10) yields the first line of (3.8), and substituting the first line (3.8)
into (3.11) yields the second line of (3.8).

Based on (3.8), the following update equation is obtained,

(3.12) s̃Ñ,m+1 = PΩs(s̃Ñ,m − ρm∇sΨ̂Ñ,m(s̃Ñ,m)),

where ρm is the stepsize, PΩs denotes projection operator which projects the solution
to the closest point in the feasible set Ωs of s. The selection of the final optimal sensor
location ŝÑ from ŝ0

Ñ
, ŝ1

Ñ
, . . . , ŝK−1

Ñ
is given by a function g. In this paper, g is chosen

as the mean of ŝ0
Ñ
, ŝ1

Ñ
, . . . , ŝK−1

Ñ
, while other choices are possible.

3.3. Initial Sensor Locations. The bilevel optimization depends on the ini-
tial guess of sensor locations. In this paper, we propose to obtain the initial sensor
locations using the following Proposition.

Proposition 3.1. Assuming a Gaussian prior θ ∼ N (µpr,Γpr) with mean µpr

and variance Γpr, the initial sensor locations can be chosen by minimizing

Ψ̂risk, linear, Gaussian(s) = Eβ{||ΓpostL
T ||2F + ||ΓpostF∗UT ||2F }(3.13)

where Γpost is the posterior covariance matrix, || · ||F is the Frobenius norm, LTL =
Γ−1
pr , and Γ−1

ϵ = UTU .

Derivation of Proposition 3.1 is provided in Appendix 6.1. This proposition
is motivated by the A-optimal design without considering the non-negativity of
emission rates. In the numerical examples, we approximate the objective function
Ψ̂risk, linear, Gaussian(s) using the Monte-Carlo method and obtain the initial sensor
locations using a heuristic dual annealing algorithm.

3.4. Convergence Analysis. Following the work of [9, 45, 10, 21], we present
the performance guarantee of the two algorithms by showing the upper bound of the
hypergradient of the objective function. Two assumptions are firstly made.

Assumption 2. (Smoothness of Ψ) The hypergradient ∇Ψ is Lipschitz continu-
ous in s with a constant L∇Ψ, i.e., for any two sensor locations s1 and s2,

(3.14) ∥∇sΨ̂(s2)−∇sΨ̂(s1)∥ ≤ L∇Ψ∥s2 − s1∥.

As shown in (3.7), the solution of the inner problem affects the evaluation of the

hypergradient. Let θ̂∗(i) and θ̂(i) respectively be the true optimal and the obtained
solutions of the ith inner problem (in many cases, θ̂∗(i) ̸= θ̂(i)), we assume that

Assumption 3. (Inner optimality) The gap between θ̂∗(i) and θ̂(i) is bounded,

i.e., for some δ > 0, ∥θ̂(i) − θ̂∗(i)∥ ≤ δ, i = 1, 2, · · · , Ñ .

Following Assumptions 2 and 3, Lemma 3.2 below presents the upper bound of
the accuracy of the approximate hypergradient (3.7), which is based on the obtained

solution θ̂(i) of the inner problem.

Lemma 3.2. For the rSAA method presented in Algorithm 3.1, we have

(3.15) (a) ∥∇sΨ̂(s; {θ̂(i)}Ñi=1)−∇sΨ̂(s; {θ̂∗(i)}Ñi=1)∥ ≤ LΨδ,
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where the constant LΨ varying with Ψ is given by Assumptions 4-6 in Appendix 6.3.1.
For the SBA method presented in Algorithm 3.2, we have

(b) E
(
∥∇sΨ̂(s; θ̂)−∇sΨ̂(s; θ̂∗)∥

)
≤ LΨδ + LD

σ
√
ncov√
Ñ

,

(c) E
(
∥∇sΨ̂(s; θ̂)−∇sΨ̂(s; θ̂∗)∥2

)
≤ 2L2

Ψδ
2 + 2L2

D

σ2

Ñ
,

(3.16)

where the expectation is taken with respect to the joint distribution of wind, emission
rates and observation noise, and LD, σ and ncov are constants defined in Appendix
6.3.2.

Based on Lemma 3.2 above, we obtain the upper bound of the hypergradients
given in Theorems 3.3 and 3.4. The two theorems require Assumption 7 given in
Appendix 6.3.3.

Theorem 3.3. For the rSAA method presented in Algorithm 3.1, we have
• if ρm is a constant, i.e., ρm = ρ and 0 < ρ < 2

L∇Ψ
, then

1

M

M−1∑
m=0

∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2

≤
C∇ΨLΨ + ρC∇ΨLΨL∇Ψ + 1

2ρL
2
ΨL∇Ψδ

1− 1
2ρL∇Ψ

δ +
Ψ̂(s0; {θ̂∗(i)(s0)}Ñi=1)−Ψ∗

M(ρ− 1
2ρ

2L∇Ψ)
,

(3.17)

where C∇Ψ is a constant defined in Appendix 6.3.1, and Ψ∗ is the global
minimum objective value.

• if ρm decays with ρm = ρ0

m+1 , i.e.,
∑∞

m=0 ρm = ∞ and
∑∞

k=0 ρ
2
m < ∞, and

we let sM = sm with a probability 1
AM (m+1) , where AM =

∑M−1
m=0

1
m+1 , then

(3.18) lim
M→∞

EsM

[
∥∇sΨ̂(sM ; {θ̂∗(i)(sM )}Ñi=1)∥2

]
≤ C∇ΨLΨδ.

To provide some insights on Theorem 3.3, it is noted that the first term on the right-
hand-side (RHS) of (3.17) goes to zero if δ (see Assumption 3) becomes smaller,
implying that the actual solution of the inner problem gets closer to the true optimal
solution. The second term on the RHS of (3.17) indicates that the solution is O(M−1)
with a constant stepsize 0 < ρ < 2

L∇Ψ
. If we adopt a decaying stepsize ρm, (3.18)

shows that the solution converges when M goes to infinity and the true optimal
solution is obtained for the inner problem.
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Theorem 3.4. For the SBA method presented in Algorithm 3.2 and s ∈ Rn×2,
we have the following.

• If ρm is a constant, i.e., ρm = ρ and 0 < ρ < 2
L∇Ψ

, then

1

M

M−1∑
k=0

E
[
∥∇sΨ̂(sm; θ̂∗)∥2

]
≤ E[Ψ̂(s0; θ̂

∗)]

(ρ− 1
2ρ

2L∇Ψ)M

+
C∇Ψ(LΨδ + LD

σ
√
ncov√
Ñ

)(1 + ρL∇Ψ) + L∇Ψρ(L2
Ψδ

2 + L2
D

σ2

Ñ
)

1− 1
2ρL∇Ψ

.

(3.19)

• If ρm decays with ρm = ρ0

m+1 , i.e.,
∑∞

m=0 ρm = ∞ and
∑∞

k=0 ρ
2
m < ∞, and

we let sM = sm with a probability 1
AM (m+1) , where AM =

∑M−1
m=0

1
m+1 , then

(3.20) lim
M→∞

E[∥∇sΨ̂(sM ; θ̂∗)∥2] ≤ C∇Ψ(LΨδ + LD
σ
√
ncov√
Ñ

).

It is seen that the second term on the RHS of (3.19) goes to zero if Ñ →∞ and δ → 0
(i.e., the approximate solution of the inner problem gets closer to the optimal solution).
If the true optimal solution is obtained for the inner problem and a sufficiently large
batch size Ñ is used, the first term on the RHS indicates that the solution converges
to a stationary point at a rate of M−1 if we set a constant stepsize 0 < ρ < 2

L∇Ψ
. If

we adopt decaying stepsize, (3.20) shows that the solution converges to a stationary
point when M and Ñ goes to infinity and the inner problem is solved to optimality
(i.e., δ = 0).

Proofs are provided in the Appendices 6.3.3 and 6.3.4.

4. Numerical Examples. Two numerical examples are presented to illustrate
the proposed approaches. Example I is a simple illustrative example that considers
the placement of one or two sensors for three emission sources only. In Example II,
we consider a more realistic problem that involves the placement of multiple sensors
for 10, 20, 50 and 100 emission sources.

4.1. Example I: A Simple Illustration. We start with a simple case for
which 1 or 2 sensors are placed along a straight line for only 3 potential emission
sources under a constant wind field. The wind vector is set to β = (0,−5), i.e., north
wind, and the emission rates of the three sources are θ∗ = (80, 60, 40). The standard
deviation of the observation noise in (2.1) is set to σϵ = 1. Figure 2 shows the spatial
domain of the problem.

A Gaussian plume model [43] is used as the atmospheric dispersion process, which
approximates the transport of airborne contaminants due to turbulent diffusion and
advection [43]. The data is generated by the following equation,

(4.1) Φi =

Np∑
j=1

θjAj(si) + ϵ,

where si is the location of the i-th sensor, θj is the emission rate of the j-th source,
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ϵ ∼ N (0, σ2
ϵ ) is the observation noise, and Aj(si) is the Gaussian plume kernel,

(4.2) Aj(si) =
1

2πK∥(si − xj) · β∥∥
exp

(
−

(
∥(si − xj) · β⊥∥2 +H2

j

)
4K∥(si − xj) · β∥∥

)
,

where K value depends on eddy diffusivity [1], Hj is the height of stack j, xj is the
location of the j-th emission source, β⊥ and β∥ are the unit vectors perpendicular
and parallel to β respectively.
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Fig. 2: Placement of sensors (green stars) on the straight line (red line)

For illustrative purposes, Example I considers the sensor placement along the
horizontal line as shown in Figure 2. We start with placing 1 sensor in Example
I(a). Let λ1 = λ2 = 0.0001 for the inverse model (2.7), Figure 3 shows the results
obtained from the rSAA algorithm. Figure 3a shows how the cumulative mean of
the objective function changes against repeated runs (we set Ñ = 5), which appears
to converge after K = 250 runs. Figure 3b shows the histogram of optimal sensor
locations from each run, and the mean of sensor location is found to be 449.8. Because
we only consider the deployment of one sensor along a straight line, it is possible to
re-evaluate the objective function (for validation purposes), using a large N = 10, 000,
based on the optimal sensor locations from repeated runs; see Figure 3c. The lowest
point of this curve corresponds to the true optimal solution (i.e., 450.57 in Figure 3c).
We see that, the solutions obtained from multiple repeated runs vary around the true
optimal solution, and the average sensor location is close to the true optimal solution,
justifying the necessity of repeating SAA runs. Figure 4 shows the (log) gap, defined
in (3.2), against repeated runs, and the convergence of the algorithm is observed.

In Example I(b), we consider the placement of 2 sensors along the same line
using the SBA algorithm. Figure 5 shows the trajectories of the locations of these
two sensors on the straight line given different initial guesses (marked by stars). The
contour in this figure is the objective function Ψ̂N (s) evaluated using a large number of
Monte Carlo samples for different sensor locations. It is seen that the sensor location
goes downhill as the iteration proceeds, which demonstrates the effectiveness of the
algorithm. We also investigate if a small J can be used in Algorithm 3.2, such as
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Fig. 3: Output of Example I(a)
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Fig. 4: The stochastic upper bound defined in (3.2), α = 0.025.

J = 1, to further accelerate the inner solver. Because a smaller J requires a larger
M for the algorithm to converge, we also double the value the M when J = 1. The
result is shown in Figure 6 with different choices of λ1 and λ2. It is seen that the
SBA algorithm still works well even when J = 1. A drawback of a small J = 1 is that
there exists an inevitable gap between the best-found solution and the true minimum
(of the contour), as shown in Figure 6a and 6c when λ1 = λ2 = 0.01. The optimal
selection of λ in inverse modeling can also be formulated as a bilevel optimization
problem; see reference [4]. Finally, the optimal locations of the 2 sensors are shown
in Figure 2.

4.2. Example II: Sensor Placement over a Continuous 2D domain. In
Example II, a more complex problem is considered for which sensors are placed over
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(d) λ1 = λ2 = 0.001, J = 30, 000

Fig. 5: Example I(b): trajectories for different initial guesses, λ1 and λ2 (J = 30, 000).

a continuous 2D domain with 10, 20, 50 and 100 emission sources. In this example,
data are still generated from a Gaussian plume model.

We start with 10 emission sources, {xj}j=1...10, distributed over a 2D domain,

[−25, 25]×[−25, 25]. We set the source locations {xj}j=1...10 to {(−15, 17), (−10,−5),
(−9, 22), (−5, 10), (5, 18), (5, 0), (8,−10), (10, 19), (15,−10), (20, 5)}. We assume
that the emission strengths θ = (θ1, ..., θ10) follow a multivariate truncated (i.e.,
nonnegative) normal distribution obtained from a multivariate normal distribution
N (µpr,Γpr); see Proposition 3.1. Here, µpr = (8, 10, 9, 8, 10, 9, 8, 10, 9, 10)T , Γpr is a
diagonal matrix, σ2

PrI where σPr = 20. The standard deviation of the observation
noise is set to 0.01. The distribution of wind vector is shown in Figure 7, where the
wind speed is uniformly sampled between [1, 2], and the wind direction is sampled
between north-west and north-east. The SBA algorithm is used to find the optimal
sensor locations. For the inner problem, we let λ1 = λ2 = 0.01, and J = 2000. The
learning rate τm,j = 0.0005 for any m and j. For the outer loop, the learning rate

ρm = 0.00005 for any m. The re-sampling size Ñ is set to 100.
The locations of sensors and the corresponding objective values along the itera-

tions are shown Figures 8 and 9. In these figures, the objective value is re-evaluated
with large Monte Carlo samples (i.e., 100,000 samples) for each iteration step, and
the iteration number M for the outer problem is chosen according to the computing
budget. We see that the SBA algorithm is able to iteratively optimize sensor alloca-
tion with decreasing objective values in most cases. In Appendix 6.4, we present more
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Fig. 6: Example I(b): trajectories for different initial guesses, λ1 and λ2 (J = 1).
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Fig. 7: Wind rose plot

results on different scenarios of the number of sensors, number of emission sources,
initial sensor locations, and inner problem iteration limit J . Figure 10 shows the final
allocation of 5, 7, 8 and 9 sensors for 10 emission sources.

It is also worth noting that the final sensor locations highly depend on the initial
guess. In Figure 11a and 11c, we generate different initial sensor locations, and obtain
different final designs. In other words, the solutions reach different local optimums
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Fig. 8: Deployment of 5 sensors for 10 emission sources.
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(b) objective value along iterations

Fig. 9: Deployment of 6 sensors for 10 emission sources.

(or saddle points) due to different initial sensor locations, and the objective value also
converges differently to the corresponding local minimum, as shown in Figure 11b and
11d. We also note that the proposed approximate A-optimal design provides a better
initial guess than random guesses.

We also investigated the effect of the inner iteration number J on the final designs
of sensor locations. A small J affects the choice of the outer learning rate ρm and
outer iteration number M . Based on our numerical experiments, a small J reduces
the total computational time but may cause oscillation along iterations if the same
outer learning rate is used. For example, we compare J = 2000 and J = 200 for the
7-sensor placement task, as shown by Figure 11a and 21a (in the Appendix). Both
settings converge to local optimums but a ‘ziggy’ movement of sensor locations is
observed when J = 200. Considering their similar final objective value, as shown by
Figure 11b and 21b (in the Appendix), a small J appears to be good enough to find
a local optimum. Of course, the ‘ziggy’ movement, due to a small J , could make the
solution diverge from the current valley. To avoid the ‘ziggy’ pattern of small J , a
small outer learning rate ρm is needed. Again, this affects the convergence rate: a
large J = 2000 leads to a smaller inner optimality gap, but the computation of the
hypergradient becomes more expensive. Since a smaller inner optimality gap makes
the upper bound tighter (as shown in Theorems 3.3 and 3.4), there is a trade-off
between the upper bound assurance and the computational time affected by J .
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Fig. 10: Final deployment of 5, 7, 8 and 9 sensors for 10 emission sources.
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Fig. 11: Allocation of 7 sensors for 10 emission sources with different initial guesses
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To illustrate the trade-off above, Figure 12 shows the designs for 20 emission
sources whose locations are randomly selected. We compare ρm = 5 × 10−7 and
ρm = 1 × 10−6 for J = 1. In this case, ρm = 5 × 10−7 and ρm = 1 × 10−6 lead to
similar final designs with the same iteration numbers, so ρm = 1 × 10−6 is better in
this case.
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(a) J = 1, ρm = 5× 10−7 and M = 3000
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(b) J = 1, ρm = 1× 10−6 and M = 3000

Fig. 12: Allocation of 10 sensors for 20 emission sources.

Finally, we place multiple sensors, 10, 20, and 30, for 50 emission sources and
place 50 sensors for 100 emission sources. When 10 sensors are deployed for 50 sources,
Figure 13 shows that 4 out of 10 sensors are finally placed on the bottom boundary
because of the north-to-south wind direction. The deployment of 20 and 30 sensors
are shown in Figure 14, and the deployment of 50 sensors is shown in Figure 15. For
all of these scenarios, there are always sensors evenly placed on the bottom boundary.
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(b) J = 1, ρm = 1× 10−6 and M = 300

Fig. 13: Allocation of 10 sensors for 50 sources.
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Fig. 14: Sensor placement for 50 emission sources.
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Fig. 15: Placement of 50 sensors for 100 emission sources (M = 1000).

4.3. Validation. In this subsection, we further validate the performance of emis-
sion estimation based on the sensor allocation obtained above. In particular, we focus
on the placement of 10 sensors for 20 sources in subsection 4.2 (see Figure 16), and
compare different designs, emission uncertainties, and observational noise. The wind
profile is still defined as Figure 7.

Figure 17 shows the effect of observation noise and emission uncertainty (i.e.,
σPr) on estimation error. It is seen that a larger observation noise increases the
estimation error. Figure 18 shows both the estimated and true emission rates for
different emission sources. It is seen that source E15 (at the bottom left corner) is
not well covered by the sensor network, and this explains a less accurate estimated
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emission rate for E15. In Figure 18, we compare the random design (i.e., randomly
placed sensors), the initial design based on Proposition 3.1, and our design under the
same settings. It is seen that the boxplots of actual emission rates are closer to that
of the estimated rates based on our design. The MAPE (Mean Absolute Percentage
Error) are respectively 69.06%, 50.79% and 29.94% for the random design, the initial
design based on Proposition 3.1, and the optimal design obtained.
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Fig. 16: Allocation of 10 sensors (S1-S10) for 20 sources (E1-E20)
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(b) The initial design based on Proposition 3.1
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(c) The proposed design in Figure 16

Fig. 18: Comparison of the estimated emission rates based on different sensor alloca-
tions

5. Conclusions. This paper investigated the optimal sensor placement prob-
lem using bilevel optimization. The paper considered linear inverse models when the
closed-form designs do not exist due to the non-negativity constraints on the inver-
sion estimates. Two algorithms, including rSAA and SBA, have been utilized, and
their performance guarantees have also been obtained by convergence analysis. Com-
prehensive numerical investigations demonstrated the effectiveness of the proposed
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approach. Note that, this paper only considers the sensor deployment in a 2D do-
main. A challenging extension is to consider the sensor allocation problems in the 3D
space, including the height, which require incorporating surface terrain modeling and
computationally efficient algorithms.
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[7] F. K. Chow, B. Kosović, and S. Chan, Source inversion for contaminant plume dispersion in
urban environments using building-resolving simulations, Journal of applied meteorology
and climatology, 47 (2008), pp. 1553–1572.

[8] B. M. de Silva, K. Manohar, E. Clark, B. W. Brunton, S. L. Brunton, and
J. N. Kutz, Pysensors: A python package for sparse sensor placement, arXiv preprint
arXiv:2102.13476, (2021).

[9] S. Ghadimi and M. Wang, Approximation methods for bilevel programming, arXiv preprint
arXiv:1802.02246, (2018).

[10] T. Giovannelli, G. Kent, and L. N. Vicente, Inexact bilevel stochastic gradient methods
for constrained and unconstrained lower-level problems, arXiv preprint arXiv:2110.00604,
(2021).

[11] G. H. Golub, P. C. Hansen, and D. P. O’Leary, Tikhonov regularization and total least
squares, SIAM journal on matrix analysis and applications, 21 (1999), pp. 185–194.

[12] E. Haber, L. Horesh, and L. Tenorio, Numerical methods for the design of large-scale
nonlinear discrete ill-posed inverse problems, Inverse Problems, 26 (2009), p. 025002.

[13] E. Haber, Z. Magnant, C. Lucero, and L. Tenorio, Numerical methods for a-optimal de-
signs with a sparsity constraint for ill-posed inverse problems, Computational Optimization
and Applications, 52 (2012), pp. 293–314.

[14] J. L. Herring, J. G. Nagy, and L. Ruthotto, Lap: a linearize and project method for solving
inverse problems with coupled variables, Sampling Theory in Signal and Image Processing,
17 (2018), pp. 127–151.

[15] S. Houweling, T. Kaminski, F. Dentener, J. Lelieveld, and M. Heimann, Inverse modeling
of methane sources and sinks using the adjoint of a global transport model, Journal of
Geophysical Research: Atmospheres, 104 (1999), pp. 26137–26160.

[16] X. Huan and Y. Marzouk, Gradient-based stochastic optimization methods in bayesian ex-
perimental design, International Journal for Uncertainty Quantification, 4 (2014).

[17] X. Huan and Y. M. Marzouk, Simulation-based optimal bayesian experimental design for
nonlinear systems, Journal of Computational Physics, 232 (2013), pp. 288–317.

[18] Y. Hwang, E. Barut, and K. Yeo, Statistical-physical estimation of pollution emission, Sta-
tistica Sinica, 28 (2018), pp. 921–940.

[19] Y. Hwang, H. J. Kim, W. Chang, K. Yeo, and Y. Kim, Bayesian pollution source identifica-
tion via an inverse physics model, Computational Statistics & Data Analysis, 134 (2019),
pp. 76–92.

[20] S. Joshi and S. Boyd, Sensor selection via convex optimization, IEEE Transactions on Signal
Processing, 57 (2008), pp. 451–462.

[21] P. Khanduri, I. Tsaknakis, Y. Zhang, J. Liu, S. Liu, J. Zhang, and M. Hong, Linearly
constrained bilevel optimization: A smoothed implicit gradient approach, (2023).

[22] L. J. Klein, T. van Kessel, D. Nair, R. Muralidhar, H. Hamann, and N. Sosa, Monitoring

22

https://personalpages.manchester.ac.uk/staff/paul.connolly/teaching/practicals/gaussian_plume_modelling.html
https://personalpages.manchester.ac.uk/staff/paul.connolly/teaching/practicals/gaussian_plume_modelling.html


fugitive methane gas emission from natural gas pads, in International Electronic Packaging
Technical Conference and Exhibition, vol. 58097, American Society of Mechanical Engi-
neers, 2017, p. V001T03A006.

[23] K. A. Klise, B. L. Nicholson, and C. D. Laird, Sensor placement optimization using chama,
tech. report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2017.

[24] A. Krause, A. Singh, and C. Guestrin, Near-optimal sensor placements in gaussian pro-
cesses: Theory, efficient algorithms and empirical studies., Journal of Machine Learning
Research, 9 (2008).

[25] S. Liu and L. N. Vicente, The stochastic multi-gradient algorithm for multi-objective op-
timization and its application to supervised machine learning, Annals of Operations Re-
search, (2021), pp. 1–30.

[26] X. Liu and K. Yeo, Inverse models for estimating the initial condition of spatio-temporal
advection-diffusion processes, Technometrics, (2023), pp. 1–14.

[27] X. Liu, K. Yeo, L. Klein, Y. Hwang, D. Phan, and X. Liu, Optimal sensor placement for
atmospheric inverse modelling, in 2022 IEEE International Conference on Big Data (Big
Data), IEEE, 2022, pp. 4848–4853.

[28] K. Manohar, B. W. Brunton, J. N. Kutz, and S. L. Brunton, Data-driven sparse sensor
placement for reconstruction: Demonstrating the benefits of exploiting known patterns,
IEEE Control Systems Magazine, 38 (2018), pp. 63–86.

[29] K. Manohar, J. N. Kutz, and S. L. Brunton, Optimal sensor and actuator selection using
balanced model reduction, IEEE Transactions on Automatic Control, 67 (2021), pp. 2108–
2115.

[30] M. Meng and X. Li, Aug-pdg: Linear convergence of convex optimization with inequality
constraints, arXiv preprint arXiv:2011.08569, (2020).

[31] L. Mustonen, X. Gao, A. Santana, R. Mitchell, Y. Vigfusson, and L. Ruthotto, A
bayesian framework for molecular strain identification from mixed diagnostic samples,
Inverse Problems, 34 (2018), p. 105009.

[32] S. D. Narayanan, Z. B. Patel, A. Agnihotri, and N. Batra, A toolkit for spatial interpola-
tion and sensor placement, in Proceedings of the 18th Conference on Embedded Networked
Sensor Systems, 2020, pp. 653–654.

[33] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation
approach to stochastic programming, SIAM Journal on optimization, 19 (2009), pp. 1574–
1609.

[34] F. Parise and A. Ozdaglar, Sensitivity analysis for network aggregative games, in 2017 IEEE
56th Annual Conference on Decision and Control (CDC), IEEE, 2017, pp. 3200–3205.

[35] J. Ranieri, A. Chebira, and M. Vetterli, Near-optimal sensor placement for linear inverse
problems, IEEE Transactions on signal processing, 62 (2014), pp. 1135–1146.

[36] L. Ruthotto, J. Chung, and M. Chung, Optimal experimental design for inverse problems
with state constraints, SIAM Journal on Scientific Computing, 40 (2018), pp. B1080–B1100.

[37] K. Schmidt, R. C. Smith, J. Hite, J. Mattingly, Y. Azmy, D. Rajan, and R. Gold-
hahn, Sequential optimal positioning of mobile sensors using mutual information, Statis-
tical Analysis and Data Mining: The ASA Data Science Journal, 12 (2019), pp. 465–478.

[38] A. Shapiro and A. Philpott, A tutorial on stochastic programming, Manuscript. Available
at www2. isye. gatech. edu/ashapiro/publications. html, 17 (2007).

[39] L. Sharrock and N. Kantas, Joint online parameter estimation and optimal sensor placement
for the partially observed stochastic advection-diffusion equation, SIAM/ASA Journal on
Uncertainty Quantification, 10 (2022), pp. 55–95.

[40] J. Shen and T. F. Chan, Mathematical models for local nontexture inpaintings, SIAM Journal
on Applied Mathematics, 62 (2002), pp. 1019–1043.

[41] M. Sinsbeck and W. Nowak, Sequential design of computer experiments for the solution of
bayesian inverse problems, SIAM/ASA Journal on Uncertainty Quantification, 5 (2017),
pp. 640–664.

[42] A. Spantini, T. Cui, K. Willcox, L. Tenorio, and Y. Marzouk, Goal-oriented optimal ap-
proximations of bayesian linear inverse problems, SIAM Journal on Scientific Computing,
39 (2017), pp. S167–S196.

[43] J. M. Stockie, The mathematics of atmospheric dispersion modeling, Siam Review, 53 (2011),
pp. 349–372.

[44] A. Tarantola, Inverse problem theory and methods for model parameter estimation, SIAM,
2005.

[45] I. Tsaknakis, P. Khanduri, and M. Hong, An implicit gradient-type method for linearly con-
strained bilevel problems, in ICASSP 2022-2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), IEEE, 2022, pp. 5438–5442.

23



[46] Z. Wang, J. M. Bardsley, A. Solonen, T. Cui, and Y. M. Marzouk, Bayesian inverse
problems with l 1 priors: a randomize-then-optimize approach, SIAM Journal on Scientific
Computing, 39 (2017), pp. S140–S166.

[47] R. A. Willoughby, Solutions of ill-posed problems (an tikhonov and vy arsenin), SIAM Re-
view, 21 (1979), p. 266.

[48] K. Wu, P. Chen, and O. Ghattas, An offline-online decomposition method for efficient
linear bayesian goal-oriented optimal experimental design: Application to optimal sensor
placement, SIAM Journal on Scientific Computing, 45 (2023), pp. B57–B77.

[49] K. Yeo, Y. Hwang, X. Liu, and J. Kalagnanam, Development of hp-inverse model by using
generalized polynomial chaos, Computer Methods in Applied Mechanics and Engineering,
347 (2019), pp. 1–20.

[50] J. Yu, V. M. Zavala, and M. Anitescu, A scalable design of experiments framework for
optimal sensor placement, Journal of Process Control, 67 (2018), pp. 44–55.

[51] X. Zhao, K. Cheng, W. Zhou, Y. Cao, S.-h. Yang, and J. Chen, Source term estimation
with deficient sensors: A temporal augment approach, Process Safety and Environmental
Protection, 157 (2022), pp. 131–139.

[52] H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of
the Royal Statistical Society Series B: Statistical Methodology, 67 (2005), pp. 301–320.

24



6. Appendix.

6.1. Appendix I. Proof of Proposition 3.1:
Consider an observation model as follows,

(6.1) Φ(β, s) = F(β, s)θ + ϵ, ϵ ∼ N (0,Γϵ(s))

where ϵ is the additive Gaussian noise, and F : RNp 7→ Rd is a linear parameter-to-
observation mapping. Let θ ∼ N (µpr,Γpr) be the prior distribution of θ, we obtain
the posterior distribution θpost(β, s) ∼ N (µpost(β, s),Γpost(β, s)), and

µpost(β, s) = Γpost(F∗(β, s)Γ−1
ϵ (s)Φ(β, s) + Γ−1

pr µpr)

Γpost(β, s) = (F∗(β, s)Γ−1
ϵ (s)F(β, s) + Γ−1

pr )
−1

(6.2)

where F ∗(β, s) is the adjoint of F , e.g., by solving the adjoint PDE model. It is noted
that F ∗(β, s) = FT (β, s) because of its linear operator property.

Then, the Bayesian risk is defined as,

Ψrisk, linear, Gaussian(s) = Eθ,β

{
EΦ|θ,β

{∥∥∥θ̂MAP (Φ,β, s)− θ
∥∥∥2
2

}}

= Eβ

{
Eθ|β

{
EΦ|θ,β

{∥∥∥θ̂MAP (Φ,β, s)− θ
∥∥∥2
2

}}}(6.3)

For convenience, we respectively denote F(β, s), F∗(β, s), Φ(β, s), Γpost(β, s)
and Γ−1

ϵ (s) by F , F∗, Φ, Γpost, and Γ−1
ϵ . Then, we expand the L2 loss function as

∥∥∥θ̂MAP (Φ,β, s)− θ
∥∥∥2
2
=

∥∥∥(ΓpostF∗Γ−1
ϵ F − I)θ + Γpost(F∗Γ−1

ϵ ϵ+LTLµpr)
∥∥∥2
2

(6.4)

where LTL = Γ−1
pr .

Denote M(s) = ΓpostF∗Γ−1
ϵ F − I, we can further obtain∥∥∥θ̂MAP (Φ,β, s)− θ
∥∥∥2
2
=

∥∥∥M(s)θ + Γpost(F∗Γ−1
ϵ ϵ+LTLµpr)

∥∥∥2
2

(6.5)

Then, plugging (6.5) into the expectation over θ|β yields

Eθ|β

{
EΦ|θ,β

{∥∥∥θ̂MAP (Φ,β, s)− θ
∥∥∥2
2

}}

= Eθ|β

{
EΦ|θ,β

{
θTMT (s)M(s)θ

}}
+ Eθ|β

{
EΦ|θ,β

{
2θTMT (s)Γpost(F∗Γ−1

ϵ ϵ+LTLµpr)
}}

+ Eθ|β

{
EΦ|θ,β

{
(F∗Γ−1

ϵ ϵ+LTLµpr)
TΓT

postΓpost(F∗Γ−1
ϵ ϵ+LTLµpr)

}}

(6.6)
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Recall that ϵ ∼ N (0,Γϵ(s)), θ ∼ N (µpr,Γpr), and θ ∼ N (µpr,Γpr), we obtain

Eθ|β

{
EΦ|θ,β

{∥∥∥θ̂MAP (Φ,β, s)− θ
∥∥∥2
2

}}

= Eθ|β

{
EΦ|θ,β

{
θTMT (s)M(s)θ

}}
+ 2µT

prM
T (s)ΓpostL

TLµpr

+ Eθ|β

{
EΦ|θ,β

{
ϵTΓ−T

ϵ FΓT
postΓpostF∗Γ−1

ϵ ϵ
}}

µT
prL

TLΓT
postΓpostL

TLµpr.

(6.7)

Because E(δTΛδ) = µT
δ Λµδ + tr(ΛΓδ), where δ ∼ N (µδ,Γδ), it follows from

(6.7) that

Eθ|β

{
EΦ|θ,β

{∥∥∥θ̂MAP (Φ,β, s)− θ
∥∥∥2
2

}}
= µT

prM
T (s)M(s)µpr + tr(MT (s)M(s)Γpr) + 2µT

prM
T (s)ΓpostL

TLµpr + tr(Γ−T
ϵ FΓT

postΓpostF∗)

+ µT
prL

TLΓT
postΓpostL

TLµpr

(6.8)

where the first, third and fifth terms on the right hand side can be written as
∥M(s)µpr + ΓpostL

TLµpr∥22, which turns out to be zero as follows

∥M(s)µpr + ΓpostL
TLµpr∥22

= ∥(M(s) + ΓpostL
TL)µpr∥22

= ∥(ΓpostF∗Γ−1
ϵ F − I + ΓpostL

TL)µpr∥22
= ∥(Γpost(F∗Γ−1

ϵ F +LTL)− I)µpr∥22
= 0

(6.9)

Then we can rewrite (6.8) as

Eθ|β

{
EΦ|θ,β

{∥∥∥θ̂MAP (Φ,β, s)− θ
∥∥∥2
2

}}
= tr(MT (s)M(s)Γpr) + tr(Γ−T

ϵ FΓT
postΓpostF∗)

(6.10)

where the first term on the right hand side can be further transformed according to
M(s)L−1 = −ΓpostL

T given by (6.9),

tr(MT (s)M(s)Γpr) =
∥∥∥ΓpostL

T
∥∥∥2
F

(6.11)

For the second term on the right hand side of (6.10), we further transform it by
defining Γ−1

ϵ = UTU as follows

tr(Γ−T
ϵ FΓT

postΓpostF∗) =
∥∥∥ΓpostF∗UT

∥∥∥2
F

(6.12)
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After plugging (6.11)(6.12) into (6.10), we achieve

Eθ|β

{
EΦ|θ,β

{∥∥∥θ̂MAP (Φ,β, s)− θ
∥∥∥2
2

}}
=

∥∥∥ΓpostL
T
∥∥∥2
F
+
∥∥∥ΓpostF∗UT

∥∥∥2
F

(6.13)

Finally, we plug (6.13) into (6.3) to obtain the closed-form optimization objective

Ψ̂risk, linear, Gaussian(s) = Eβ

{∥∥∥ΓpostL
T
∥∥∥2
F
+
∥∥∥ΓpostF∗UT

∥∥∥2
F

}
.(6.14)

6.2. Appendix II. To compute ∇s

(
C(β(i), s)θ(i) + dT (β(i),Φ(i), s)

)
, we need

the gradients

(6.15)
∂AmAn

∂si,1
,
∂AmAn

∂si,2
,
∂Am

∂si,1
,
∂Am

∂si,2

Below are the derivations of these gradients:
Given the Gaussian plume kernel [43]

(6.16) Aj(si) =
1

2πK∥(si − xj) · β∥∥
exp

(
−

u
(
∥(si − xj) · β⊥∥2 +H2

)
4K∥(si − xj) · β∥∥

)
,

let r
(j)
∥ = (si − xj) · β∥ and r

(j)
⊥ = (si − xj) · β⊥ for simplicity, we denote

(6.17) Aj =
1

2πK|r(j)∥ |
exp

(
−

u
(
|r(j)⊥ |2 +H2

)
4K|r(j)∥ |

)
.

Then, we can get

(6.18) AmAn =
1

4π2K2|r(m)
∥ | · |r(n)∥ |

exp
(−u(|r(m)

⊥ |2 +H2
)

4K|r(m)
∥ |

+
−u

(
|r(n)⊥ |2 +H2

)
4K|r(n)∥ |

)
.

By denoting w = (w1, w2) = β
|β| , si = (si,1, si,2), xj = (xj,1, xj,2), and r(j) =

(si,1 − xj,1, si,2 − xj,2), we can derive r
(j)
∥ , |r(j)∥ |, r

(j)
⊥ , |r(j)⊥ | as,

r
(j)
∥ = (w1(si,1 − xj,1) + w2(si,2 − xj,2)) · (w1, w2)

|r(j)∥ | = w1(si,1 − xj,1) + w2(si,2 − xj,2)

r
(j)
⊥ = r(j) − r

(j)
∥

=
(
si,1 − xj,1 − w1[w1(si,1 − xj,1) + w2(si,2 − xj,2)], si,2 − xj,2 − w2[w1(si,1 − xj,1) + w2(si,2 − xj,2)]

)
=

(
(1− w2

1)(si,1 − xj,1)− w1w2(si,2 − xj,2),−w1w2(si,1 − xj,1) + (1− w2
2)(si,2 − xj,2)

)
|r(j)⊥ | =

√([
(1− w2

1)(si,1 − xj,1)− w1w2(si,2 − xj,2)
]2

+
[
− w1w2(si,1 − xj,1) + (1− w2

2)(si,2 − xj,2)
]2)
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Then we can derive the gradients of AmAn w.r.t si,1 and si,2,

∂AmAn

∂si,1
=

−1[
4π2K2|r(m)

∥ | · |r(n)∥ |
]2 4π2K2w1

[
|rm∥ |+ |r

n
∥ |
]
· exp

(−u(|r(m)
⊥ |2 +H2

)
4K|r(m)

∥ |
+
−u

(
|r(n)⊥ |2 +H2

)
4K|r(n)∥ |

)
+

1

4π2K2|r(m)
∥ | · |r(n)∥ |

· exp
(−u(|r(m)

⊥ |2 +H2
)

4K|r(m)
∥ |

+
−u

(
|r(n)⊥ |2 +H2

)
4K|r(n)∥ |

)
·
( ∂ 1○
∂si,1

+
∂ 2○
∂si,1

)

(6.19)

and similarly, we can obtain the gradients of Am w.r.t si,1,
(6.20)

∂Am

∂si,1
=
−1 · 2πKw1

(2πK|r(m)
∥ |)2

exp
(−u(|r(m)

⊥ |2 +H2
)

4K|r(m)
∥ |

)
+

1

2πK|r(m)
∥ |

exp
(−u(|r(m)

⊥ |2 +H2
)

4K|r(m)
∥ |

)
· ∂

1○
∂si,1

where

∂ 1○
∂si,1

=
−u

[
2 · 3○ · (1− w2

1) + 2 · 4○ · (−w1w2)
]
4K|r(m)

∥ | −
(
− u

(
|r(m)

⊥ |2 +H2
)
4Kw1

)
(4K|r(m)

∥ |)2

∂ 2○
∂si,1

=
−u

[
2 · 5○ · (1− w2

1) + 2 · 6○ · (−w1w2)
]
4K|r(n)∥ | −

(
− u

(
|r(n)⊥ |2 +H2

)
4Kw1

)
(4K|r(n)∥ |)2

with 3○ = [(1 − w2
1)(si,1 − xm,1) − w1w2(si,2 − xm,2)], 4○ = [−w1w2(si,1 − xm,1) +

(1 − w2
2)(si,2 − xm,2)], 5○ = [(1 − w2

1)(si,1 − xn,1) − w1w2(si,2 − xn,2)] and 6○ =
[−w1w2(si,1 − xn,1) + (1− w2

2)(si,2 − xn,2)].
Next,

∂AmAn

∂si,2
=

−1[
4π2K2|r(m)

∥ | · |r(n)∥ |
]2 4π2K2w2

[
|rm∥ |+ |r

n
∥ |
]
· exp

(−u(|r(m)
⊥ |2 +H2

)
4K|r(m)

∥ |
+
−u

(
|r(n)⊥ |2 +H2

)
4K|r(n)∥ |

)
+

1

4π2K2|r(m)
∥ | · |r(n)∥ |

· exp
(−u(|r(m)

⊥ |2 +H2
)

4K|r(m)
∥ |

+
−u

(
|r(n)⊥ |2 +H2

)
4K|r(n)∥ |

)
·
( ∂ 1○
∂si,2

+
∂ 2○
∂si,2

)

(6.21)

and similarly, we obtain the gradients of Am w.r.t si,2,
(6.22)

∂Am

∂si,2
=
−1 · 2πKw2

(2πK|r(m)
∥ |)2

exp
(−u(|r(m)

⊥ |2 +H2
)

4K|r(m)
∥ |

)
+

1

2πK|r(m)
∥ |

exp
(−u(|r(m)

⊥ |2 +H2
)

4K|r(m)
∥ |

)
· ∂

1○
∂si,2
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where

∂ 1○
∂si,2

=
−u

[
2 · 3○ · (1− w2

2) + 2 · 4○ · (−w1w2)
]
4K|r(m)

∥ | −
(
− u

(
|r(m)

⊥ |2 +H2
)
4Kw2

)
(4K|r(m)

∥ |)2

∂ 2○
∂si,2

=
−u

[
2 · 5○ · (1− w2

2) + 2 · 6○ · (−w1w2)
]
4K|r(n)∥ | −

(
− u

(
|r(n)⊥ |2 +H2

)
4Kw2

)
(4K|r(n)∥ |)2

with 3○ = [(1 − w2
1)(si,1 − xm,1) − w1w2(si,2 − xm,2)], 4○ = [−w1w2(si,1 − xm,1) +

(1 − w2
2)(si,2 − xm,2)], 5○ = [(1 − w2

1)(si,1 − xn,1) − w1w2(si,2 − xn,2)] and 6○ =
[−w1w2(si,1 − xn,1) + (1− w2

2)(si,2 − xn,2)].

6.3. Appendix III.

6.3.1. Proof of Lemma 3.2 a). We first introduce the following assumption,

Assumption 4. For any i-th sample, we assume the following bounds for different
gradients,

∥θ − θ(i)∥ ≤ Cθ,
∥∇sθ∥ ≤ C∇θ,

∥(C(i))−1∥ ≤ C∇θθL,

∥∇s(C
(i))θ +∇s(d

(i))T ∥ ≤ C∇θsL,

∥∇s(C
(i))∥ ≤ C∇sC

(6.23)

where Cθ, C∇θ, C∇θθL, C∇θsL and C∇sC are some constants; ∥θ − θ(i)∥ = 1
2∇θΨ̂

(i);

C(i) = ∇θθL; ∇s(C
(i))θ +∇s(d

(i))T = ∇θsL.

Assumption 5. Following the similar idea by [21], we assume

(6.24)
∥∥ĪT

(
Ī(C(i))−1ĪT

)−1
Ī − Ī∗T (Ī∗(C(i))−1Ī∗T )−1

Ī∗∥∥ ≤ LC · δ

where Ī∗ denotes the active rows of the identity matrix for true solutions; LC is a
constant.

Proof. To prove Lemma 1(a), we define ∇sΨ̂(s; {θ̂(i)}Ñi=1) =
2
Ñ

∑Ñ
i=1(∇sθ̂

(i))T (θ̂(i) − θ(i)), and ∇sΨ̂(s; {θ̂∗(i)}Ñi=1) = 2
Ñ

∑Ñ
i=1(∇sθ̂

∗(i))T (θ̂∗(i) −
θ(i)). For simplicity, we denote∇sΨ̂(s; {θ̂(i)}Ñi=1) and∇sΨ̂(s; {θ̂∗(i)}Ñi=1) as∇sΨ̂Ñ (s)

and ∇sΨ̂
∗
Ñ
(s) respectively.
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Then, we have

∥∇sΨ̂Ñ (s)−∇sΨ̂
∗
Ñ
(s)∥ =

∥∥ 2

Ñ

Ñ∑
i=1

(
(∇sθ̂

(i))T (θ̂(i) − θ(i))− (∇sθ̂
∗(i))T (θ̂∗(i) − θ(i))

)∥∥
≤ 2

Ñ

Ñ∑
i=1

∥∥(∇sθ̂
(i))T (θ̂(i) − θ(i))− (∇sθ̂

∗(i))T (θ̂∗(i) − θ(i))
∥∥

≤ 2

Ñ

Ñ∑
i=1

∥∥(∇sθ̂
(i))T (θ̂(i) − θ(i))− (∇sθ̂

∗(i))T (θ̂(i) − θ(i))
∥∥

+
2

Ñ

Ñ∑
i=1

∥∥(∇sθ̂
∗(i))T (θ̂(i) − θ(i))− (∇sθ̂

∗(i))T (θ̂∗(i) − θ(i))
∥∥

≤ 2

Ñ

Ñ∑
i=1

∥∇sθ̂
(i) −∇sθ̂

∗(i)∥∥θ̂(i) − θ(i)∥+ 2

Ñ

Ñ∑
i=1

∥∇sθ̂
∗(i)∥∥θ̂(i) − θ̂∗(i)∥

≤ 2

Ñ

Ñ∑
i=1

∥∇sθ̂
(i) −∇sθ̂

∗(i)∥Cθ + C∇θδ

(6.25)

where the upper bound of ∥θ̂(i) − θ̂∗(i)∥ is shown in Assumption 3; ∥θ̂(i) − θ(i)∥
and ∥∇sθ̂

∗(i)∥ have bounds defined in assumption 4. The upper bound of ∥∇sθ̂
(i) −

∇sθ̂
∗(i)∥ is derived as follows

∥∇sθ̂
(i) −∇sθ̂

∗(i)∥ =
∥∥(C(i))−1

(
−∇s(C

(i))θ̂(i) −∇s(d
(i))T + ĪT∇sη̄

(i)
)

− (C(i))−1
(
−∇s(C

(i)) ˆθ∗(i) −∇s(d
(i))T + Ī∗T∇sη̄

∗(i))∥∥
= ∥(C(i))−1

(
−∇s(C

(i))(θ̂(i) − θ̂∗(i)) + (ĪT∇sη̄
(i) − Ī∗T∇sη̄

∗(i))
)
∥

≤ ∥(C(i))−1∇s(C
(i))(θ̂(i) − θ̂∗(i))∥+ ∥(C(i))−1(ĪT∇sη̄

(i) − Ī∗T∇sη̄
∗(i))∥

≤ ∥(C(i))−1∥∥∇s(C
(i))∥∥θ̂(i) − θ̂∗(i)∥+ ∥(C(i))−1∥∥ĪT∇sη̄

(i) − Ī∗T∇sη̄
∗(i)∥

≤ C∇θθLC∇sCδ + C∇θθL∥ĪT∇sη̄
(i) − Ī∗T∇sη̄

∗(i)∥

(6.26)

where the last inequality is based on Assumption 4.
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The upper bound of ∥ĪT∇sη̄
(i) − Ī∗T∇sη̄

∗(i)∥ is derived as

∥ĪT∇sη̄
(i) − Ī∗T∇sη̄

∗(i)∥ =
∥∥ĪT

(
Ī(C(i))−1ĪT

)−1
Ī(C(i))−1

(
∇s(C

(i))θ̂(i) +∇s(d
(i))T

)
− Ī∗T (Ī∗(C(i))−1Ī∗T )−1

Ī∗(C(i))−1
(
∇s(C

(i))θ̂∗(i) +∇s(d
(i))T

)∥∥
=

∥∥ĪT
(
Ī(C(i))−1ĪT

)−1
Ī(C(i))−1

(
∇s(C

(i))θ̂(i) +∇s(d
(i))T

)
− ĪT

(
Ī(C(i))−1ĪT

)−1
Ī(C(i))−1

(
∇s(C

(i))θ̂∗(i) +∇s(d
(i))T

)
+ ĪT

(
Ī(C(i))−1ĪT

)−1
Ī(C(i))−1

(
∇s(C

(i))θ̂∗(i) +∇s(d
(i))T

)
− Ī∗T (Ī∗(C(i))−1Ī∗T )−1

Ī∗(C(i))−1
(
∇s(C

(i))θ̂∗(i) +∇s(d
(i))T

)∥∥
≤

∥∥ĪT
(
Ī(C(i))−1ĪT

)−1
Ī(C(i))−1∇s(C

(i))(θ̂(i) − θ̂∗(i))

+
(
ĪT

(
Ī(C(i))−1ĪT

)−1
Ī − Ī∗T (Ī∗(C(i))−1Ī∗T )−1

Ī∗)(∇s(C
(i))θ̂∗(i) +∇s(d

(i))T
)∥∥

≤
∥∥ĪT

(
Ī(C(i))−1ĪT

)−1
Ī
∥∥∥∥(C(i))−1

∥∥∥∥∇s(C
(i))

∥∥∥∥θ̂(i) − θ̂∗(i)∥∥
+
∥∥ĪT

(
Ī(C(i))−1ĪT

)−1
Ī − Ī∗T (Ī∗(C(i))−1Ī∗T )−1

Ī∗∥∥∥∥∇s(C
(i))θ̂∗(i) +∇s(d

(i))T
∥∥

≤ C2∇θθL
C∇sCδ + LCδC∇θsL

(6.27)

where the last inequality is based on Assumptions 4 and 5. Plugging inequality (6.27)
into (6.26) yields

(6.28) ∥∇sθ̂
(i) −∇sθ̂

∗(i)∥ ≤ C∇θθLC∇sCδ + C∇θθL(C2∇θθL
C∇sCδ + LCδC∇θsL)

Plugging inequality (6.28) into inequality (6.25), we obtain
(6.29)
∥∇sΨ̂Ñ (s)−∇sΨ̂

∗
Ñ
(s)∥ ≤

(
C∇θθLC∇sCδ+C∇θθL(C2∇θθL

C∇sCδ+LCδC∇θsL)
)
Cθ+C∇θδ

where the RHS can be rewritten as
(
C∇θθL(C∇sC+C2∇θθL

C∇sC+LCC∇θsL)Cθ+C∇θ

)
δ.

By letting LΨ := C∇θθL(C∇sC + C2∇θθL
C∇sC + LCC∇θsL)Cθ + C∇θ, Lemma 1(a) is

proved.

6.3.2. Proof of Lemma 3.2 b) and c). We introduce the assumption following
the idea in [10],

Assumption 6.

(6.30)
∥∥∇sΨ̂(s; θ̂(ξ), ξ)−∇sΨ̂(s; θ̂)

∥∥ ≤ LD

∥∥D(s, θ̂(ξ), η̂(ξ))−D(s, θ̂, η̂)
∥∥

where there is a difference from [10] that we are not approximating the calcula-
tion of any gradients, Hessians and Jacobians; ξ denotes the combination of ran-
dom samples of uncertain parameters and θ̂(ξ) denotes the inversion estimates θ̂ for
the corresponding samples; LD is a constant; D(·) denotes the data used to eval-

uate ∇sΨ̂(·); we assume D(s, θ̂(ξ(i)), η̂(ξ(i))) ∈ Rncov is normally distributed with

mean D(s, θ̂, η̂) and covariance σ2Incov
, where {ξ(i)}Ñ−1

i=0 are realizations of ξ and

D(s, θ̂(ξ), η̂(ξ)) = 1
Ñ

∑Ñ
i=1 D(s, θ̂(ξ(i)), η̂(ξ(i))) for each outer iteration step in the
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SGD algorithm. According to [10, 25], we have

E
(
∥D(s, θ̂(ξ), η̂(ξ))−D(s, θ̂, η̂)∥2

)
≤ σ2

Ñ

E
(
∥D(s, θ̂(ξ), η̂(ξ))−D(s, θ̂, η̂)∥

)
≤

σ
√
ncov√
Ñ

(6.31)

Proof. For Lemma(b), we have

E
(
∥∇sΨ̂(s; θ̂(ξ), ξ)−∇sΨ̂(s; θ̂∗)∥

)
≤ E

(
∥∇sΨ̂(s; θ̂(ξ), ξ)−∇sΨ̂(s; θ̂)∥

)︸ ︷︷ ︸
1○

+E
(
∥∇sΨ̂(s; θ̂)−∇sΨ̂(s; θ̂∗)∥

)︸ ︷︷ ︸
2○

(6.32)

where 1○ ≤ LD
σ
√
ncov√
Ñ

according to assumption 6 and inequality (6.31), and 2○ ≤ LΨδ

according to lemma 1 a) when Ñ goes to infinity. Lemma (b) is proved.
For Lemma (c), we have

E
(
∥∇sΨ̂(s; θ̂(ξ), ξ)−∇sΨ̂(s; θ̂∗)∥2

)
≤ 2E

(
∥∇sΨ̂(s; θ̂(ξ), ξ)−∇sΨ̂(s; θ̂)∥2

)︸ ︷︷ ︸
3○

+2E
(
∥∇sΨ̂(s; θ̂)−∇sΨ̂(s; θ̂∗)∥2

)︸ ︷︷ ︸
4○

(6.33)

where 3○ ≤ L2
D

σ2

Ñ
according to assumption 6 and inequality (6.31), and 4○ ≤ L2

Ψδ
2

according to Lemma 1(a) when Ñ goes to infinity. Hence, Lemma 1(c) is proved.

6.3.3. Proof of Theorem 3.3.

Assumption 7. We assume the bounded gradients,

(6.34) ∥∇sΨ̂(s; {θ̂∗(i)(s)}Ñi=1)∥ ≤ C∇Ψ

(6.35) ∥∇sΨ̂(s; {θ̂(i)(s)}Ñi=1)∥ ≤ C∇Ψ

According to the smoothness assumption (Assumption 2) and Taylor’s formula,
we have

Ψ̂(sm+1; {θ̂∗(i)(sm+1)}Ñi=1)− Ψ̂(sm; {θ̂∗(i)(sm)}Ñi=1) ≤
[
∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)

]T
(sm+1 − sm)

+
1

2
L∇Ψ∥sm+1 − sm∥2.

(6.36)

Recall that our algorithm has sm+1 = PΩs(sm−ρm∇sΨ̂(sm; {θ̂(i)(sm)}Ñi=1)) and

we assume Ωs is Rn×2, we have sm+1 − sm = −ρm∇sΨ̂(sm; {θ̂(i)(sm)}Ñi=1), which
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can be plugged into the Eq. (6.36),

Ψ̂(sm+1; {θ̂∗(i)(sm+1)}Ñi=1)− Ψ̂(sm; {θ̂∗(i)(sm)}Ñi=1)

≤ −ρm
[
∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)

]T
∇sΨ̂(sm; {θ̂(i)(sm)}Ñi=1)

+
1

2
ρ2mL∇Ψ∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2.

(6.37)

Adding and subtracting ρm[∇sΨ(sm; {θ̂∗(i)(sm)}Ñi=1)]
T∇sΨ(sm; {θ̂∗(i)(sm)}Ñi=1),

we get

Ψ̂(sm+1; {θ̂∗(i)(sm+1)}Ñi=1)− Ψ̂(sm; {θ̂∗(i)(sm)}Ñi=1)

≤ ρm

[
∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)

]T (
∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)−∇sΨ̂(sm; {θ̂(i)(sm)}Ñi=1)

)
− ρm∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2 +

1

2
ρ2mL∇Ψ∥∇sΨ̂(sm; {θ̂(i)(sm)}Ñi=1)∥2.

(6.38)

According to the Cauchy-Schwarz inequality, we have

Ψ̂(sm+1; {θ̂∗(i)(sm+1)}Ñi=1)− Ψ̂(sm; {θ̂∗(i)(sm)}Ñi=1)

≤ ρm∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥ · ∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)−∇sΨ̂(sm; {θ̂(i)(sm)}Ñi=1)∥

− ρm∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2 +
1

2
ρ2mL∇Ψ∥∇sΨ̂(sm; {θ̂(i)(sm)}Ñi=1)∥2.

(6.39)

Following Lemma 1 and (6.34) of Assumption 5, we get

Ψ̂(sm+1; {θ̂∗(i)(sm+1)}Ñi=1)− Ψ̂(sm; {θ̂∗(i)(sm)}Ñi=1)

≤ ρmC∇ΨLΨδ − ρm∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2 +
1

2
ρ2mL∇Ψ∥∇sΨ̂(sm; {θ̂(i)(sm)}Ñi=1)∥2

(6.40)
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Next, we can transform the last term of the RHS to

1

2
ρ2mL∇Ψ∥∇sΨ̂(sm; {θ̂(i)(sm)}Ñi=1)∥2

=
1

2
ρ2mL∇Ψ∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)

+ (∇sΨ̂(sm; {θ̂(i)(sm)}Ñi=1)−∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1))∥2

=
1

2
ρ2mL∇Ψ∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2

+
1

2
ρ2mL∇Ψ∥∇sΨ̂(sm; {θ̂(i)(sm)}Ñi=1)−∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2

+ ρ2mL∇Ψ(∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1))
T (∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)−∇sΨ̂(sm; {θ̂(i)(sm)}Ñi=1))

≤ 1

2
ρ2mL∇Ψ∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2

+
1

2
ρ2mL∇Ψ∥∇sΨ̂(sm; {θ̂(i)(sm)}Ñi=1)−∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2

+ ρ2mL∇Ψ∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥ · ∥∇sΨ̂(sm; {θ̂(i)(sm)}Ñi=1)−∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥

≤ 1

2
ρ2mL∇Ψ∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2 +

1

2
ρ2mL∇ΨL2

Ψδ
2 + ρ2mL∇ΨC∇ΨLΨδ.

(6.41)

After plugging (6.41) into (6.40), we get

Ψ̂(sm+1; {θ̂∗(i)(sm+1)}Ñi=1)− Ψ̂(sm; {θ̂∗(i)(sm)}Ñi=1)

≤ ρmC∇ΨLΨδ +
1

2
ρ2mL∇ΨL2

Ψδ
2 + ρ2mL∇ΨC∇ΨLΨδ − (ρm −

1

2
ρ2mL∇Ψ)∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2.

(6.42)

Rearrange (6.42) yields the following

(ρm −
1

2
ρ2mL∇Ψ)∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2

≤ Ψ̂(sm; {θ̂∗(i)(sm)}Ñi=1)− Ψ̂(sm+1; {θ̂∗(i)(sm+1)}Ñi=1)

+ (C∇Ψ +
1

2
ρmL∇ΨLΨδ + ρmL∇ΨC∇Ψ)ρmLΨδ.

(6.43)

Take the sum of (6.43) from m = 0 to m = M − 1, we have

M−1∑
m=0

(ρm −
1

2
ρ2mL∇Ψ)∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2

≤ Ψ̂(s0; {θ̂∗(i)(s0)}Ñi=1)− Ψ̂(sM ; {θ̂∗(i)(sM )}Ñi=1)

+

M−1∑
m=0

(C∇Ψ +
1

2
ρmL∇ΨLΨδ + ρmL∇ΨC∇Ψ)ρmLΨδ.

(6.44)

Suppose that Ψ∗ is the global minimum objective value, and due to the fact that Ψ
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is always positive, and we divide both sides by M to obtain

1

M

M−1∑
m=0

(ρm −
1

2
ρ2mL∇Ψ)∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2

≤ Ψ̂(s0; {θ̂∗(i)(s0)}Ñi=1)−Ψ∗

M
+

1

M

M−1∑
m=0

(C∇Ψ +
1

2
ρmL∇ΨLΨδ + ρmL∇ΨC∇Ψ)ρmLΨδ.

(6.45)

If ρm is a constant, i.e., ρm = ρ, and 0 < ρ < 2
L∇Ψ

, then we have,

1

M

M−1∑
m=0

∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2

≤
C∇Ψ + 1

2ρL∇ΨLΨδ + ρL∇ΨC∇Ψ

1− 1
2ρL∇Ψ

LΨδ +
Ψ̂(s0; {θ̂∗(i)(s0)}Ñi=1)−Ψ∗

M(ρ− 1
2ρ

2L∇Ψ)

(6.46)

To prove the second part of Theorem 1, it follow from (6.35) of Assumption 7
that

Ψ̂(sm+1; {θ̂∗(i)(sm+1)}Ñi=1)− Ψ̂(sm; {θ̂∗(i)(sm)}Ñi=1)

≤ ρmC∇ΨLΨδ − ρm∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2 +
1

2
ρ2mL∇ΨC2∇Ψ

(6.47)

Rearrange (6.47) and take the sum from m = 0 to m = M − 1, we get

M−1∑
m=0

ρm∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2

≤ Ψ̂(s0; {θ̂∗(i)(s0)}Ñi=1)− Ψ̂(sM ; {θ̂∗(i)(sM )}Ñi=1) +

M−1∑
m=0

ρmC∇ΨLΨδ +

M−1∑
m=0

1

2
ρ2mL∇ΨC2∇Ψ.

(6.48)

Suppose Ψ∗ is the globally minimum objective value, and Ψ is always positive, we get

M−1∑
m=0

ρm∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2

≤ Ψ̂(s0; {θ̂∗(i)(s0)}Ñi=1)−Ψ∗ +

M−1∑
m=0

ρmC∇ΨLΨδ +

M−1∑
m=0

1

2
ρ2mL∇ΨC2∇Ψ.

(6.49)
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Define that AM =
∑M−1

m=0
1

m+1 , and then divide both sides of Eq. (6.49) with AM ,

1

AM

M−1∑
m=0

ρm∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2

≤ Ψ̂(s0; {θ̂∗(i)(s0)}Ñi=1)−Ψ∗

AM
+ C∇ΨLΨδ

∑M−1
m=0 ρm
AM

+
1

2
L∇ΨC2∇Ψ

∑M−1
m=0 ρ2m
AM

,

≤ Ψ̂(s0; {θ̂∗(i)(s0)}Ñi=1)−Ψ∗

AM
+ C∇ΨLΨδρ0 +

1

2
L∇ΨC2∇Ψ

∑M−1
m=0 ρ2m

.
AM .

(6.50)

Because of the fact that
∑∞

m=0 ρm = ∞,
∑∞

m=0 ρ
2
m < ∞, and

∑∞
m=0

1
m+1 = ∞, we

can tame the limit of both sides of (6.50) and obtain,

lim
M→∞

[ 1

AM

M−1∑
m=0

ρm∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2
]

≤ lim
M→∞

Ψ̂(s0; {θ̂∗(i)(s0)}Ñi=1)−Ψ∗

AM
+ C∇ΨLΨδρ0 +

1

2
L∇ΨC2∇Ψ · lim

M→∞

∑M−1
m=0 ρ2m
AM

(6.51)

where the first term and the thrid term on RHS go to 0, then,

lim
M→∞

[ 1

AM

M−1∑
m=0

ρm∥∇sΨ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2
]
≤ C∇ΨLΨδρ0.(6.52)

Let sM = sm with probability 1
AM (m+1) , we have

EsM
∥∇Ψ̂(sM ; {θ̂∗(i)(sM )}Ñi=1)∥2 =

M−1∑
m=0

P (sM = sm) · ∥∇Ψ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2

=

M−1∑
m=0

1

AM (m+ 1)
· ∥∇Ψ̂(sm; {θ̂∗(i)(sm)}Ñi=1)∥2

(6.53)

Combining (6.52) and (6.53) yields

(6.54) lim
M→∞

EsM
∥∇Ψ̂(sM ; {θ̂∗(i)(sM )}Ñi=1)∥2 ≤ C∇ΨLΨδ.

6.3.4. Proof of Theorem 3.4. To prove the first part of Theorem 2, we adopt
the smoothness assumption and the similar steps in the proof of Theorem 1 to obtain

Ψ̂(sm+1; θ̂
∗)− Ψ̂(sm; θ̂∗) ≤ρm

[
∇sΨ̂(sm; θ̂∗)

]T(
∇sΨ̂(sm; θ̂∗)−∇sΨ̂(sm; θ̂(ξ), ξ)

)
− ρm∥∇sΨ̂(sm; θ̂∗)∥2 + 1

2
ρ2mL∇Ψ∥∇sΨ̂(s; θ̂(ξ), ξ)∥2.

(6.55)
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Then, according to Cauchy-Schwarz inequality, we have

Ψ̂(sm+1; θ̂
∗)− Ψ̂(sm; θ̂∗) ≤ρm∥∇sΨ̂(sm; θ̂∗)∥ · ∥∇sΨ̂(sm; θ̂∗)−∇sΨ̂(sm; θ̂(ξ), ξ)∥

− ρm∥∇sΨ̂(sm; θ̂∗)∥2 + 1

2
ρ2mL∇Ψ∥∇sΨ̂(s; θ̂(ξ), ξ)∥2.

(6.56)

By expanding the last term on the RHS, we get

Ψ̂(sm+1; θ̂
∗)−Ψ̂(sm; θ̂∗) ≤ (ρm + ρ2mL∇Ψ)∥∇sΨ̂(sm; θ̂∗)∥ · ∥∇sΨ̂(sm; θ̂∗)−∇sΨ̂(sm; θ̂(ξ), ξ)∥

− (ρm −
1

2
ρ2mL∇Ψ)∥∇sΨ̂(sm; θ̂∗)∥2 + 1

2
ρ2mL∇Ψ∥∇sΨ̂(sm; θ̂∗)−∇sΨ̂(sm; θ̂(ξ), ξ)∥2.

(6.57)

Because the distribution of ξ is known, we obtain the expectation

E
[
Ψ̂(sm+1; θ̂

∗)
]
−Ψ̂(sm; θ̂∗) ≤ (ρm + ρ2mL∇Ψ)∥∇sΨ̂(sm; θ̂∗)∥ · E

[
∥∇sΨ̂(sm; θ̂∗)−∇sΨ̂(sm; θ̂(ξ), ξ)∥

]
−(ρm −

1

2
ρ2mL∇Ψ)∥∇sΨ̂(sm; θ̂∗)∥2 + 1

2
ρ2mL∇Ψ · E

[
∥∇sΨ̂(sm; θ̂∗)−∇sΨ̂(sm; θ̂(ξ), ξ)∥2

]
(6.58)

According to Lemma 1 and Assumption 7, we have

E
[
Ψ̂(sm+1; θ̂

∗)
]
−Ψ̂(sm; θ̂∗) ≤ (ρm + ρ2mL∇Ψ)C∇Ψ(LΨδ + LD

σ
√
ncov√
Ñ

)

− (ρm −
1

2
ρ2mL∇Ψ)∥∇sΨ̂(sm; θ̂∗)∥2 + 1

2
ρ2mL∇Ψ(L2

Ψδ
2 + L2

D

σ2

Ñ
).

(6.59)

and

E
[
Ψ̂(sm+1; θ̂

∗)
]
−E

[
Ψ̂(sm; θ̂∗)

]
≤ (ρm + ρ2mL∇Ψ)C∇Ψ(LΨδ + LD

σ
√
ncov√
Ñ

)

− (ρm −
1

2
ρ2mL∇Ψ)E

[
∥∇sΨ̂(sm; θ̂∗)∥2

]
+

1

2
ρ2mL∇Ψ(L2

Ψδ
2 + L2

D

σ2

Ñ
)

(6.60)

By taking the sum of this inequality from m = 0 to m = M − 1, we have

M−1∑
m=0

(ρm −
1

2
ρ2mL∇Ψ)E

[
∥∇sΨ̂(sm; θ̂∗)∥2

]
≤ E

[
Ψ̂(s0; θ̂

∗)
]
− E

[
Ψ̂(sM ; θ̂∗)

]
+ C∇Ψ(LΨδ + LD

σ
√
ncov√
Ñ

)

M−1∑
m=0

(ρm + ρ2mL∇Ψ) +
1

2
L∇Ψ(L2

Ψδ
2 + L2

D

σ2

Ñ
)

M−1∑
m=0

ρ2m.

(6.61)

If ρm is a constant, i.e., ρm = ρ, 0 < ρ < 2
L∇Ψ

, and according to the fact that E[Ψ̂(·)]
is always positive, we can achieve the final inequality after divide both sides with M .

Next, we prove the second part of Theorem 2. We start from (6.56). According
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to Lemma 1, we have

M−1∑
m=0

E
[
∥∇sΨ̂(sm; θ̂∗)∥2

]
≤ E

[
Ψ̂(s0; θ̂

∗)
]
− E

[
Ψ̂(sM ; θ̂∗)

]
+ C∇Ψ(LΨδ + LD

σ
√
ncov√
Ñ

)

M−1∑
m=0

ρm +
1

2
L∇ΨC2∇Ψ

M−1∑
m=0

ρ2m.

(6.62)

Define AM =
∑M−1

m=0
1

m+1 and divide the both sides with AM ,

1

AM

M−1∑
m=0

E
[
∥∇sΨ̂(sm; θ̂∗)∥2

]
≤

E
[
Ψ̂(s0; θ̂

∗)
]
− E

[
Ψ̂(sM ; θ̂∗)

]
AM

+ C∇Ψ(LΨδ + LD
σ
√
ncov√
Ñ

)

∑M−1
m=0 ρm
AM

+
1

2
L∇ΨC2∇Ψ

∑M−1
m=0 ρ2m
AM

.

(6.63)

Then, it is easy to see that

lim
M→∞

[
1

AM

M−1∑
m=0

E
[
∥∇sΨ̂(sm; θ̂∗)∥2

]]
≤ C∇Ψ(LΨδ + LD

σ
√
ncov√
Ñ

)ρ0(6.64)

Let sM = sm with probability 1
AM (m+1) , the second part of Theorem is proved.

6.4. Appendix IV. Following the investigations in Example II, we present ad-
ditional results on different scenarios of the number of sensors, number of emission
sources, initial sensor locations, and inner problem iteration limit J .
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(b) objective value along iterations, J = 2000

Fig. 19: Allocation of 8 sensors for 10 emission sources (ρm = 0.00005)
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(a) update of sensor locations, J = 2000
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(b) objective value along iterations, J = 2000

Fig. 20: Allocation of 9 sensors for 10 emission sources (ρm = 0.00005)
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(a) update of sensor locations, J = 200
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(b) objective value along iterations, J = 200

Fig. 21: Allocation of 7 sensors for 10 emission sources (ρm = 0.00005).
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(a) update of sensor locations, J = 1
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(b) objective value along iterations, J = 1

Fig. 22: Allocation of 9 sensors for 10 emission sources (ρm = 0.000001).
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(a) J = 2000, ρm = 0.00005, M = 300
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(b) J = 200, ρm = 0.00005, M = 300
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(c) J = 1, ρm = 0.0000005, M = 2000
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(d) J = 1, ρm = 0.000001, M = 3000

Fig. 23: Comparison of final designs between different hyperparameters (10 emission
sources and 7 sensors, N ′ = 20)
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(a) update of sensor locations, J = 2000
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(b) objective value along iterations, J = 2000
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(c) update of sensor locations, J = 2000
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(d) objective value along iterations, J = 2000

Fig. 24: Initial sensor locations by random guess (10 emission sources and 7 sensors)
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