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ABSTRACT

A long-term goal of language agents is to learn and improve through their own expe-
rience. However, training agents from experience data with reinforcement learning
remains difficult in many environments, which either lack verifiable rewards (e.g.,
websites) or require inefficient long-horizon rollouts (e.g., multi-turn tool use).
As a result, most current agents rely on supervised fine-tuning on expert data,
which is difficult to scale and generalizes poorly. This limitation stems from the
nature of expert demonstrations: they capture only a narrow range of scenarios, and
expose the agent to limited environment diversity. We address this limitation with
a middle-ground paradigm we call early experience: interaction data generated
by the agent’s own actions, where the resulting future states serve as supervision
without reward signals. Within this paradigm we study two strategies of using such
data: (1) Implicit world modeling, which uses collected states to ground the policy
in environment dynamics; and (2) Self-reflection, where the agent learns from its
suboptimal actions to improve reasoning and decision making. We evaluate across
eight diverse environments and multiple model families. Our approaches consis-
tently improve effectiveness and out-of-domain generalization, highlighting the
value of early experience. Moreover, in environments with verifiable rewards, our
results provide promising signals that early experience offers a strong foundation
for subsequent reinforcement learning, positioning it as a practical bridge between
imitation learning and fully experience-driven agents.

1 INTRODUCTION
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Figure 1: Progression of training paradigms for language agents. Left: The Era of Human Data
relies on expert demonstrations, where supervision comes from human-/expert-curated actions; it is
reward-free (i.e., does not require the environment to provide verifiable reward) but not data-scalable.
Right: The envisioned Era of Experience builds upon environments with verifiable rewards, using
them as the primary supervision for reinforcement learning; however, many environments either lack
such rewards (Xue et al.;,2025) or require inefficient long-horizon rollouts (Xie et al.|[2024a)). Center:
Our Early Experience paradigm enables agents to propose actions and collect the resulting future
states, using them as a scalable and reward-free source of supervision.

Autonomous agents (Russell & Norvigl 1995} [Franklin & Graesser, [1997)) have long been a central
goal of artificial intelligence, aiming to perceive, act, and learn in complex environments to accomplish
goals without human intervention. This vision is becoming increasingly realistic with the emergence
of language agents (Su et al., [2024} |Sumers et al.| |2024), which are built on top of large language
models (LLMs; OpenAl| (2024)). Powered by knowledge obtained from large-scale pretraining and
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the flexibility of the language interface, language agents are now being applied across a wide range
of environments. They can navigate websites and mobile applications (Zheng et al.,|2024a; Deng
et al.l 2023 |Zhou et al., [2024; Trivedi et al., [2024), control diverse tools (Xie et al.,|2024a; Gu et al.,
2024), and assist in scientific research (Chen et al., 2025} [Lou et al., [2025)), showing strong potential
as a foundation for the next generation of intelligent systems.

To build such language agents, one promising solution is reinforcement learning (RL), where agents
are trained by optimizing for long-term rewards returned by the environment. This paradigm has
enabled traditional agents such as AlphaGo (Silver et al.l 2016) to achieve superhuman performance
in domains with well-defined environments and reward structures, such as Atari games (Bellemare
et al.,|2013) and the game of Go, echoing the vision of an emerging era of experience (Silver & Sutton)
2025) for language agents. However, applying RL to real-world language agents remains highly
challenging now. Many environments of interest lack verifiable or dense reward signals, especially
in open-ended settings such as websites where platforms do not expose ground truth feedback. For
example, a form may appear to be submitted successfully, but the agent receives no indication of
whether each piece of information was filled out correctly. In addition, tasks in multi-turn tool-use
environments often involve long interaction sequences (Xie et al., 20244 |Jin et al.| [2025)) with delayed
or ambiguous outcomes, making credit assignment and training inefficient and unstable.

As a workaround, most current language agents are instead trained on expert-curated data with
supervised fine-tuning (SFT; Deng et al.| (2023); Pahuja et al.| (2025); |Prabhakar et al.| (2025)). This
paradigm bypasses the need for reward signals by learning from human demonstrations, where agents
map states to actions using static datasets. While SFT is straightforward and efficient to train, it
has inherent limitations. The agent under this paradigm does not interact with the environment
during training; it does not observe the outcomes of its own actions. This restricts its ability to
learn from failure, refine its decision making, or generalize to unseen situations (Chu et al.,2025).
Furthermore, this approach assumes the data are expert or near-optimal, yet scaling high-quality
human demonstrations is difficult. More critically, it locks the agent into a passive role, bound by the
imagination and coverage of its training data rather than actively learning from its own experience.
Given these limitations and that reliable reward signals are often unavailable aforementioned, how
can we train agents to grow from its own experience, without any external reward signals?

Motivated by these limitations, we introduce the early experience paradigm, a middle ground between
imitation learning and reinforcement learning, as shown in Figure|l| In this setting, agents learn
not only from human-curated data but also from future states driven by their own proposed actions
in the environment. These future states are the agent’s own experience, and can be transformed
into supervision signals that enable it to grow directly from the consequences of its actions without
relying on external reward signals. We explore two strategies to transform these future states as
supervision: (1) Implicit World Modeling: using the collected future states to help the agent build
internal representations of environment dynamics, allowing it to better understand the environment
by predicting the future states. (2) Self-Reflection: guiding the agent to compare its behavior with
expert demonstrations, identify suboptimal decisions, and extract lessons to improve future decision
making. Both strategies share the same principle: in the absence of external rewards, the agent’s
own actions and the resulting future states can still constitute experience that serve as a direct source
of supervision. By turning future states generated from its own actions into learning signals, the
language agent can continually improve without relying on additional human data or external rewards.

We comprehensively evaluate early experience across eight diverse environments, spanning embodied
navigation, web navigation, multi-turn tool-use, long-horizon planning, and multi-domain API
tasks, using multiple base architectures. Across all settings, both methods consistently outperform
purely imitation learning baselines, with average absolute gains of +9.6 in success rate and +9.4 in
out-of-domain generalization. Moreover, in environments where verifiable rewards are available,
initializing RL with checkpoints trained with early experience methods leads to substantially stronger
performance compared to standard imitation-learning warm starts, improving final success rates by
up to +6.4. This shows that the performance gain from early experience stage can carry over to the
final model’s performance after RL. Beyond these empirical gains, our analysis shows that early
experience enables capabilities unattainable through imitation learning alone. It scales effectively,
achieving comparable or superior performance with only half or even less of the expert data. The
paradigm applies seamlessly to larger models, preserving its effectiveness across scales. These
results show that early experience is not merely an alternative to imitation learning, but a practical
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and scalable bridge to reinforcement learning, delivering both immediate gains in effectiveness and
long-term benefits for era of experience training regimes.

Our contributions are summarized as follows: (1) We advocate and formalize the early experience
paradigm as a practical and scalable bridge between imitation learning and reinforcement learning
for building autonomous language agents. It empowers agents to convert their own experience
into learning signals without relying on external rewards and can be seamlessly integrated into
existing training pipelines. (2) We propose and systematically study two training strategies under
this paradigm: implicit world modeling, which enhances decision making by modeling environment
dynamics directly from collected experience, and self-reflection, which distills fine-grained lessons
from the agent’s own actions. (3) We conduct a comprehensive evaluation across eight diverse
environments and multiple model families. Our methods consistently improve task effectiveness,
out-of-domain generalization, and downstream reinforcement learning performance, achieving state-
of-the-art results on several benchmarks and offering actionable insights through detailed analysis.

2 RELATED WORK

We discuss training paradigms for language agents in this section, and we discuss more related work
on supervision from exploration in Appendix [C]

Supervised Fine Tuning (SFT). Most language agents (Yao et al.||2022; Deng et al., 2023];[Hong
et al., 2024} [Furuta et al.| 2024; Pahuja et al.,|2025)) are trained with SFT, also known as imitation
learning or behavior cloning in the RL literature, on expert trajectories, especially in complex settings
such as the web (Zhou et al., 2024)) or operating systems (Xie et al.,|2024b). These trajectories may
be human-annotated (Yao et al.| | 2022; |Deng et al.,2023)) or synthesized by stronger language models
that follow carefully human-designed workflows (Murty et al., 2024; Pahuja et al.,|2025). Although
synthetic demonstrations increase coverage, they offer only incremental gains because the underlying
supervision signal is still static. SFT thus provides dense, reward-free supervision signals but remains
limited by the cost of high-quality demonstrations (Q1 et al., 2025) and leaves agents brittle when
they confront novel states (Chu et al., 2025} [Deng et al.,|2023)).

Reinforcement Learning (RL). RL trains agents through trial and error, optimising for long-term
rewards (Sutton et al.,|[1998)). Although it has achieved impressive results in control, board games,
and Atari (Mnih et al., 2013} [Silver et al.| [2016; [Hafner et al., 2020; Schrittwieser et al., [2020), RL
remains difficult to apply effectively in language-agent settings (Wang et al.| [2025} |Q1 et al., 2025}
Wei et al., 2025a; |[Feng et al., [2025} [Zhou et al., [2025b; Jin et al.| [2025} [Zhou et al., [2025a)). Current
studies are still exploratory: many rely on approximate rewards produced by larger teacher models (Q1
et al., 2025; [Zhou et al. [2025b), or on carefully curated reward functions (Qian et al., 2025) and
hand-tuned training recipes (Jin et al., [2025) to maintain stability. The supporting infrastructure is
also underdeveloped; most real-world language agent environments lack reliable simulators, standard
reset mechanisms, and scalable evaluation platforms (Wang et al.l 2025} [Feng et al.,[2025)), making
large-scale RL training for language agents costly and brittle. Together, these limitations suggest
that scalable RL for language agents is not yet mature, motivating a paradigm that bridges current
imitation-based training and future fully experience-driven learning (RL).

3 PRELIMINARIES

We formalize the language agent decision-making problem as a Markov Decision Process (MDP; Bell+
man|(1957)), which provides the mathematical foundation for our early experience paradigm.

We consider an MDP defined by the tuple M = (S, A, T, R,~, po), where S denotes the state
space and A represents the action space. The transition function 7': S x A — A(S) governs state
dynamics, where A(S) denotes the probability simplex over S. The reward function R: S x A — R
provides feedback signals when available, though in many real-world settings this function may be
unknown or unverifiable during training. v € [0, 1] is the discount factor, and pg € A(S) specifies
the initial state distribution. In language agent environments, states s € S encode the environment
configuration accessible to the agent, such as webpage contents, tool outputs, or textual environment
descriptions. Actions a € A correspond to discrete choices such as clicking elements, invoking tools,
or generating text responses. The agent maintains a policy 7p: S — A(A), parameterized by 6,
which maps states to action distributions (Williams) [1992).
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Figure 2: Overview of the two early experience approaches. Implicit world modeling (left) augments
expert trajectories with alternative actions and predicted next states, training the policy to internalize
transition dynamics before deployment. Self-reflection (right) augments expert actions with self-
generated explanations ¢y, training the policy to reason about and revise its own decisions. Both
methods use alternative actions proposed by the initial policy (LLM). The number of alternatives (K)
is a hyperparameter; for brevity, only one is illustrated.

3.1 LEARNING WITHOUT REWARDS

A key challenge in real-world language agent environments is the absence of reliable reward signals.
Many environments either lack verifiable rewards entirely or provide only sparse, delayed feedback
after long interaction sequences. This motivates learning from alternative supervision sources.

Given a dataset of expert demonstrations Dexpert = { (54, ai)} N |, where a; denotes the expert action
at state s;, imitation learning (Pomerleau, |1991; Schaal, |1996; |Hussein et al.,2017)) aims to minimize
the supervised learning loss:

N
Li(0) == logmg(ai | s:)- €]
=1

However, this approach suffers from distribution shift and lacks awareness of action consequences.
Distribution shift occurs because the agent’s learned policy 7y inevitably deviates from the expert
policy during deployment, leading to states not covered in training data where errors compound (Ross
et al., 2011). The agent lacks awareness of action consequences because it never observes what
happens when it takes non-expert actions; it only sees expert state-action pairs without experiencing
the outcomes of alternative choices. This limits its ability to recover from errors or reason about why
certain actions fail (Ross & Bagnell, 2010).

4 EARLY EXPERIENCE

We introduce the early experience paradigm, where language agents improve through interaction
with the environment using reward-free but informative future states. To build intuition, consider
a language agent learning to book flights on the web. In traditional imitation learning, it only sees
expert demonstrations of successful bookings. With early experience, the agent also explores what
happens when it clicks different buttons or fills forms incorrectly, observing error messages, page
changes, and other outcomes. These observations become learning signals without explicit rewards.
Starting from expert trajectories, the agent proposes its own actions at each visited state to collect
additional environment feedback through exploration (Thrun, |1992).

4.1 NOTATION FOR EARLY EXPERIENCE

For each expert state s; in the dataset Dexperr = {(5;, a;)}Y |, we define a candidate action set
A; = {a}l,d?,...,ak}, where we sample K alternative actions from the initial policy (- | s;). We
also include the expert action a; in our analysis.
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For the expert action a;, executing it leads to the next state s; 1. For each alternative action ag e A,
executing it in the environment leads to a next state s] sampled from the transition function 7'(s;, a; ).

These next states capture the immediate consequences of taking action af at state s;, reflecting
changes in the environment such as updated DOM structures, new tool outputs, error messages, or
task progression. We collect these interactions into a rollout dataset:

Dioltout = {(Sz7a5755) | i€ [N]m7 € [K]}v 2
where each triple represents a state, an alternative action taken at that state, and the resulting next state.
All actions af differ from the expert action a;, allowing the agent to experience diverse state transitions
from its own proposed actions. This rollout dataset D;ojy provides rich supervision signals without
requiring explicit rewards. The next states {s? | j € [K]} encode implicit feedback about action

quality through environment responses, enabling the agent to learn from the consequences of both
expert and non-expert behaviors.

Building on the notation from §3| we leverage the expert dataset Dexpere = { (54, a;)}*; and the roll-
out dataset Dyoniout = {(si,al,s]) | i € [N],j € [K]} to develop two different training approaches

under the same early experience principle. The key insight is that the next states s/ resulting from
non-expert actions provide valuable supervision signals without explicit rewards. We now describe
how this dataset is leveraged by our two early experience methods.

4.2 IMPLICIT WORLD MODELING

We formulate world modeling as an auxiliary prediction task that helps the agent internalize environ-
ment dynamics from its own early experience. In our setting, states are represented entirely in natural
language, allowing us to model next-state prediction as a standard next-token prediction objective.
Inspired by prior work on training LLMs as world models (Gu et al.||[2025)), we use next states from
the rollout set Diopoy as direct training signals for the language agent’s policy 7. For example,
when booking flights on the web, the model may predict the page state after entering an invalid date,
learning from the textual error message as a natural-language representation of the next state. This
design removes the need for a separate module and fits naturally the LLM fine-tuning paradigm.

For each rollout triple (s;, af, sf ) € Dioltout> We construct a prediction task where the model takes

the state-action pair (s;,a]) as input and learns to predict the resulting next state sg . We define the

training objective as a next-token prediction loss:

Lowm=— Y, logpy(s]|si,al), 3)
(51,07 ,57) EDyottont

where py denotes the language model’s output distribution. Note that we use the same model
parameters 6 for both state prediction (during world modeling) and action prediction (during policy
execution), allowing the policy to internalize environment dynamics directly.

This training objective encourages the model to capture regularities in environment behavior, including
common transitions, side effects, and invalid action outcomes. Unlike inference-time world models
used for planning, our implicit formulation integrates predictive signals directly into policy learning,
serving as a lightweight warm-up before supervised learning or downstream optimization. It exposes
the agent to diverse, non-expert behaviors, improving robustness to distribution shifts and reducing
dependence on brittle expert trajectories. In practice, the rollout data are often an order of magnitude
larger than Deyper. We adopt a two-stage pipeline: first train with Lrwy to internalize coarse dynamics,
then fine-tune on Dexper (i€., Li1).

4.3 SELF-REFLECTION

We formulate self-reflection as a mechanism for agents to learn from their own exploratory outcomes.
Rather than relying solely on expert state—action pairs, the agent compares the expert action at
each state with alternatives sampled from its policy, using the resulting next states to generate
natural language explanations of why the expert choice is better. These explanations provide richer,
transferable supervision than expert actions alone, leveraging the LLM’s strength in processing
language to internalize decision principles that generalize across tasks.

Specifically, for each expert state s;, we first execute the expert action a; to obtain the expert next state
si+1. For each alternative action a] (where j € {1, ..., K'}), we obtain the corresponding next state



Under review as a conference paper at ICLR 2026

sf We then prompt a language model to generate a chain-of-thought cf explaining why the expert
action a; is preferable to the alternative a based on the differences between their resulting states
si+1 and s7. This prompt is designed to elicit natural language reasoning that highlights potential

limitations or inefficiencies in af , grounded in the actual state transitions observed.

The resulting triplets (s;, az, cZ ) are collected into a dataset D,.q. We then train the agent to jointly
predict the chain-of-thought and the expert action conditioned on the state s;, using a next-token
prediction loss over the concatenated target sequence ¢’ o a;:

Le=— Y logps(cl,ai|s), @
(Siyaz ,Cz )EDren
where py denotes the language model’s output distribution, aligned with the agent’s policy 7g.

In practice, we mix the self-reflection data D, with the expert dataset Dexpers and train the model
using a standard next-token prediction loss. Chain-of-thought reasoning is generated only for the
self-reflection training data, and we retain the original chain-of-thought reasoning in Deyperr Whenever
provided by the expert trajectories, for all models trained with Dexper:.

Learning from both sources encourages the model to move beyond rote imitation and develop more
generalizable decision criteria. For example, in WebShop, when the expert action is “click on the
$15 blue shirt,” an alternative might be “click on the $30 red shirt.” The generated reflection could be:
“While the red shirt matches the color preference, it exceeds the $20 budget constraint specified in the
query. The blue shirt satisfies both the style requirement and budget limit.” This teaches the model to
prioritize constraints, a lesson that generalizes beyond this specific item. We show the prompt used
across environments in § [E-T]

Both implicit world modeling and self-reflection follow the same principle of turning the agent’s own
actions and resulting future states into scalable supervision, enabling stronger language agents.

5 EXPERIMENTS

We evaluate the early experience paradigm via the proposed two methods under this paradigm
across a diverse suite of language-agent environments, testing its effectiveness (§5.2), out-of-domain
generalization (§5.3)), and compatibility with post-hoc reinforcement learning (§5.4).

5.1 EXPERIMENT SETUP

We train and evaluate instruction-tuned Llama models () L1ama-3.1-8B, () Llama-3.2-3B)
on eight diverse language-agent benchmarks spanning embodied, science, planning, QA, tool-use,
and web navigation tasks (Shridhar et al., 2021} [Wang et al.| [2022; [Yao et al.} 2022} |Zhou et al.,|2024;
Xie et al.| [2024a; [Patil et al.| 2025} [Yao et al.| 2025; |Jin et al.| 2025)). All environments, data sources,
model details, and the full training and evaluation protocols are provided in Appendix

5.2 EFFECTIVENESS

We evaluate across eight environments that span multi-turn tool use, web navigation, and more
(Table [T). All models are trained with the same prompt format and decoding strategy and, per
environment, our methods use exactly the same step budget as imitation learning.

Overall Gains. Early experience improves over imitation learning in nearly all settings and with
both model sizes. Implicit World Modeling (IWM) yields steady gains in structured simulators and
transactional sites (ALFWorld/ScienceWorld +2.3 to +5.5; WebShop +11.3 to +18.4). Self-
Reflection (SR) delivers the largest jumps when tasks require multi-step reasoning and constraint
satisfaction (TravelPlanner +12.8 to +15.0; ScienceWorld +13.3; BFCLv3 +8.0 on the 3B
model). Even on the most challenging settings, the gains are consistent though smaller in absolute
terms (WebArena +1.2 to +3.6; SearchQA +0.6 to +3.3).

Action-Space Perspective. Across our eight environments, the action spaces fall into three regimes.
Closed and finite action sets (e.g., ALFWorld for embodied navigation, ScienceWorld for
scientific procedures, and TravelPlanner for itinerary planning) present a small, fixed list of
admissible actions from the start. Here, IWM helps the policy internalize transition regularities, while
SR adds targeted corrections for long-horizon plans (e.g., large SR gains on TravelPlanner).
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Table 1: Evaluation results on eight benchmarks. All values are task-success rates (%) unless
otherwise noted. Improvements over imitation learning are shown in green. Prompt indicates the
performance of the instruction-tuned model. IWM and SR denote Implicit World Modeling and
Self-Reflection, respectively. See Appendix for complete results for each benchmark.

Benchmark Model | Prompt Imitation Learning | Ours-IWM  Ours-SR
Embodied and Scientific Simulation, and Travel Planning
Y-3.2-3B| 86 78.1 83.6 (+5.5)  85.9 (+7.8)
ALFWorld ()-3.1-88 | 250 80.5 85.9 (+5.4)  85.2 (+4.7)
. Y-3.2-38 | 23 51.6 55.5(+3.9)  56.2 (+4.6)
ScienceWorld § ~3.1-8B | 3.1 54.7 57.0 (+2.3)  68.0 (+13.3)
Y-3.2-38| 00 19.4 283 (+8.9) 322 (+12.8)
TravelPlanner @8 371 g5 | 0.0 17.2 250 (+7.8)  32.2 (+15.0)
Multi-Turn Tool-Use
y-3.2-38 | 1.3 21.3 253 (+4.0)  29.3 (+8.0)
BFCLv3 § ~3.1-88 | 67 16.0 200 (+4.0)  20.0 (+4.0)
9-3.2-3B| 52 24.3 26.1 (+1.8)  28.7 (+4.4)
Tau-Bench :g 3.1-8B| 60 359 40.8 (+4.9) 417 (+5.8)
y-3.2-38 | 13.3 38.0 39.0 (+1.0)  38.6 (+0.6)
SearchQA (FD) ¢ 577 g5 | 210 41.0 443 (+3.3)  41.8 (+0.8)
Web Navigation
-3.2-38| 00 41.8 60.2 (+18.4) 52.7 (+10.9)
WebShop 8 3.1-88 | 00 473 58.6 (+11.3) 582 (+10.9)
~3.2-3B| 12 6.1 8.5(+2.4)  73(+1.2)
WebArena ~3.1-88 | 06 4.9 8.5(+3.6) 7.9 (+3.0)

Structured but large action sets (e.g., BFCLv 3 for terminal tasks and Tau—-Bench for multi-domain
APIs) require selecting from many typed tools with arguments and sequencing them correctly. In this
setting, early experience reduces tool misuse and improves ordering; SR often helps more when policy
errors are logical. Open action sets (e.g., SearchQA with free-form search queries, WebArena with
fine-grained web element interactions) allow a vast number of possible actions, often combinatorial
in nature. These are the hardest regimes; nevertheless, early experience still yields reliable gains by
turning exploratory rollouts into dense training signals without requiring rewards.

Observation-Space Perspective. Our benchmarks span a wide range of observation complexi-
ties. At the low end, ALFWorld provides short, clean textual descriptions of the scene, while
ScienceWorld produces procedural readouts of ongoing experiments. Mid-range settings like
BFCLv3 and Tau-Bench return structured API schemas and tool outputs that must be parsed
and sequenced correctly. At the high end, WebArena presents noisy, fine-grained web states as
accessibility trees, requiring reasoning over hundreds of DOM-like elements. We provide examples
of each environment in Appendix [{ In settings where state transitions are consistent and predictable
(e.g., WebShop), IWM excels by helping the agent internalize environment dynamics and improve
next-state predictions. When failures stem primarily from reasoning errors or the need to repair
long-horizon plans (e.g., TravelPlanner, ScienceWorld), SR delivers larger gains by ex-
plicitly comparing actions to expert trajectories. Overall, regardless of how simple or complex the
environment’s observations are, early experience methods consistently turn the agent’s own actions
and resulting states into effective supervision signals that improve policy learning without rewards.

Takeaway. Early experience reliably converts an agent’s own actions and resulting states into
scalable supervision beyond expert demonstrations. Both methods under this paradigm strengthen
policies across environments that differ substantially in both action spaces and observation complexity.
These effects hold across two model sizes and three environment families, demonstrating strong
generalizable feasibility of our early experience paradigm.

5.3 OUT-OF-DOMAIN GENERALIZATION

To evaluate the robustness of trained policies beyond in-domain performance, we explore early
experience in environments with out-of-domain (OOD) splits, using the same checkpoints evaluated
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Table 2: Out-of-domain evaluation results (%). Improvements over imitation learning are shown
in green. Prompt means the instruct model’s performance. IWM and SR refers to Implicit World
Modeling and Self-Reflection, respectively.

AlfWorld BFCLvV3 SearchQA (F1)
D-3.2-38 (P-3.1-88 (P-3.2-38 (P-3.1-88 (P-3.2-38 (P-3.1-8B
Prompt 55 18.8 1.3 6.2 31.9 40.0
Imitation Learning 74.2 63.3 53 6.7 40.5 474
Ours-IWM 77.3 (+3.1) 78.1 (+14.8) 8.9 (+3.6) 7.6 (+0.9) 45.4 (+4.9) 49.6 (+2.2)
Ours-SR 77.3 (+3.1) 72.7 (+9.4) 13.8 (+8.5) 8.0 (+1.3) 44.0 (+3.5) 50.7 (+3.3)

Imitation Learning +GRPO Implicit World Modeling +GRPO Self-Reflection +GRPO

100 100 % 99.2 98.5 51.0
97.7 97.7 -
92-2 g9 8 91.4 g9 5 50.3 49.8
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Figure 3: Reinforcement learning (GRPO) starting from checkpoints trained with different methods
on three infra-ready environments. Bars show performance before (deeper shade) and after RL
(lighter shade) for three methods. Checkpoints from IWM and SR consistently lead to higher post-RL
ceilings than imitation-only starts, with advantages often maintained or amplified after RL.

in Section[5.2] To setup, for ALFWor1d and SearchQA we follow the OOD splits defined in their
original work. For BECLv 3 the in-domain setting is multi-turn base; OOD settings are averaged over
multi-turn missing function, missing argument, and long context.

The results of our trained models are shown in Table [2] from which we can make the following
observations. OOD scores drop relative to in-domain across all tasks, yet early experience consistently
recovers a substantial portion of the gap. In several cases the relative gains are larger than in-domain
(e.g., SearchQA), indicating that converting one’s own rollouts into supervision prepares the policy
for states not covered by demonstrations. The method-wise pattern mirrors in-domain trends: IWM
helps most where dynamics are stable (e.g., ALFWor1d); SR is strongest when distribution shifts
alter tool availability or arguments (e.g., BECLv 3); both IWM and SR help under retrieval shifts (e.g.,
SearchQAa), for both model sizes.

Takeaway. Early experience improves robustness under diverse OOD regimes: IWM excels when
dynamics are stable, SR when shifts affect tool availability, arguments, or retrieval distributions. In
several benchmarks (e.g., ALFWorld, SearchQA), OOD gains meet or exceed in-domain gains,
reinforcing that an agent’s own experience provides supervision that generalizes.

5.4 REINFORCEMENT LEARNING FOLLOWING EARLY EXPERIENCE

To evaluate the impact of early experience once environments provide verifiable rewards (the defining
condition of the era of experience), we append a reinforcement learning stage to models trained in Sec-
tion[5.2] We focus on three reward-available benchmarks: WebShop, ALFWorld, and SearchQa,
and adopt the widely used GRPO algorithm (Shao et al.l 2024) with identical hyperparameters
and training steps as established recipes (Feng et al., 2025} Jin et al., 2025). The only factor that
changes across runs is the initialization: Imitation Learning (IL), Implicit World Modeling (IWM), or
Self-Reflection (SR).

Results in Figure [3]show a clear pattern: starting from early experience consistently yields higher
post-RL ceilings. In some cases, the performance gap grows during RL training (e.g., ALFWor1d); in
others, it narrows but never reverses. Even when reward optimization is applied for the same number
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of steps, IL starts rarely match the final performance of early-experience starts. For completeness, we
also run GRPO directly from the raw pretrained model without any supervised stage. This performs
worst across all tasks and shows unstable training dynamics, highlighting the necessity of a strong
initialization. The full results with detailed metrics can be found in Appendix [E]

Takeaway. Early experience acts as a mid-training bridge between the era of human data and the era
of experience. It produces policies that already perform strongly without rewards and that amplify
the benefits of subsequent RL. Under identical RL recipes, early-experience starts achieve higher
final performance. These results suggest that once RL setups become available in new environments,
early experience can immediately unlock further gains without retraining from scratch.

6 DISCUSSION

We make several discussions in terms of the data amount (§ [6.1) and branching fact (§[6.2)) in this
section, as well as data synthesis baselines (§ and model scaling (§ [D.2) in the Appendix D]

6.1 IMPACT OF AMOUNT OF HUMAN DATA

.
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(a) Expert Trajectories
Figure 4: Effect of demonstration budget and branching factor. (a): success rate vs. fraction of
expert trajectories; (b): success rate vs. branching factor K (number of alternative actions per state in
Dexper)- Results for WebShop and ALFWorld using Q Llama-3.1-8B-Instruct.

(b) Branching Factor

To examine how performance scales with the amount of expert supervision, we vary the number of
demonstrations used to seed early experience while keeping the total training budget fixed. Figure ]
(a) shows that early experience maintains a consistent lead over imitation learning at every data level.
On WebShop, just 1/8 of the demonstrations already surpasses imitation learning trained on the full
dataset; on ALFWor1d, the same holds with 1/2 of the demonstrations. Both IWM and SR improve
with more expert data, yet the margin over imitation learning remains large, underscoring that early
experience provides additional supervision signals beyond what demonstrations alone can supply.

6.2 IMPACT OF BRANCHING FACTOR

To investigate the impact of branching factor for our methods, we also ablate the branching factor
K, the number of alternative actions rolled out per expert state when generating early experience.
Figure [] (b) shows that IWM improves steadily as K increases, consistent with learning richer
transition regularities. SR improves at small to moderate K and can be non-monotonic at very
large K: comparing many alternatives occasionally includes other success-leading actions, reducing
contrast with the expert, and current models have limited capacity to reason over many alternatives
and outcomes in a single context. Overall, both variants improve most of the time, with IWM favoring
larger K and SR working best with a modest K (e.g., 2-4).

7 CONCLUSION

We advocate and present early experience as a scalable, reward-free paradigm that advances language
agents before reinforcement learning environments are fully ready. By converting an agent’s own
actions and resulting states into supervision, without external reward signals, we achieve consistent
gains across eight diverse environments, spanning embodied navigation, scientific experimentation,
long-horizon planning, multi-turn tool use, and web navigation. The proposed two methods under
this paradigm, implicit world modeling and self-reflection, improve both in-domain effectiveness
and out-of-domain robustness, and retain their advantage when used to warm-start reinforcement
learning, positioning early experience as a practical and general foundation for building more capable
language agents in the upcoming era of experience.
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APPENDICES

OVERVIEW

Our supplementary includes the following sections:

* Section[A} Statement on Large Language Model Usage. We disclose how large language
models were used in this work.

* Section B} Limitation and Future Work. We discuss the Limitations of early experience
and potential future work.

* Section [C; More Related Work. We discuss more related works in terms of our proposed
method such as self-reflection and world modeling.

* Section D} More Discussions on Our Method. We make discussions about other potential
data synthesis baselines and model scaling impact.

* Section |E: Implementation Details. We provide implementation details on the prompt and
experiment setup.

* Section [F}: Full Results. We detail the results of each benchmark and we provide concrete
case studies for each benchmark and our method.

A STATEMENT ON LARGE LANGUAGE MODEL USAGE

Large language models (LLMs) were used solely to polish the text and improve linguistic clarity,
and to generate auxiliary code for rendering figures and other visuals. They did not contribute to the
research methodology, experimental design, data analysis, or interpretation of results.

B LIMITATIONS AND FUTURE WORK

While early experience improves performance across diverse environments, several limitations remain.
Our current approaches, implicit world modeling and self-reflection, focus on short-horizon traces;
extending them to address long-horizon credit assignment without explicit rewards remains an open
challenge. In addition, we have not yet unified training across multiple environments to fully realize
the potential of early experience, partly due to limitations in our current training infrastructure.

Future work will explore combining early experience with richer self-supervised objectives, leveraging
cross-environment transfer, and integrating it with reward-based fine-tuning in a continual learning
setting. Another direction is to investigate other instances of early experience beyond the two
approaches proposed in this paper. We also hope to extend the paradigm to large-scale, real-
world deployments, where interaction data is collected organically and can drive continual policy
improvement.

C MORE RELATED WORKS

C.1 SUPERVISION FROM EXPLORATION

Traditional exploration—exploitation strategies in RL collect trajectories that are later refined through
reward feedback. Methods like experience replay (Andrychowicz et al.,[2017) densify sparse rewards
by retrofitting achieved outcomes as goals, but still require verifiable reward functions unavailable
in many language agent environments. Our setting uses exploration differently: interaction traces
become direct supervision signals, eliminating the need for rewards or manual relabelling entirely.

World Models. World models (Sutton, 19915 [Ha & Schmidhuber, 2018} |Hafner et al., [2020; 2021)
are traditionally trained on observed state transitions to predict future states and rewards, allowing
model-based RL to reduce sample complexity and support speculative planning. Recent work extends
this idea to language agents by using LLMs as world models (Gu et al.l [2025; |Chae et al., [2025}
Hao et al.|[2023)), which improves downstream performance through language-mediated simulations.
Despite the different state representations of world models in different era, most of these systems still
treat the world model as a separate simulator, echoing classical control pipelines. In contrast, we
view the interaction trace itself as an auxiliary prediction task for the agent policy, similar in spirit to
mid-training (Zhang et al.}|2025). By training the policy to predict its own future states, the model
internalizes coarse environment dynamics without a standalone simulator. This implicit world model
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grounds the agent in its operating context, offers a lightweight warm-up for faster adaptation, and
avoids the planning overhead required by explicit simulators.

Self-Reflection. Self-reflection (Shinn et al.| [2023; [Madaan et al.| |2023)) was initially introduced as a
prompting technique that allows LLMs to revise their answers through multi-turn self-dialogues (Snell
et al.,|2024) or curated prompt variants (Madaan et al., 2023)), without updating model parameters.
Subsequent work summarizes lessons over rewarded trajectories in the prompt (e.g., short-term
episodic memory (Xie et al.,[2025)) to guide future inference. However, later studies (Huang et al.|
2024; Valmeekam et al., 2023)) show that such inference-time methods often fail without access
to external feedback (e.g., rewards). A separate line uses LLMs to generate rationales for correct
answers, treating these rationales as training targets to boostrap reasoning (Zelikman et al., 2022
Huang et al., [2023). We extend this view of reflection to the agent setting where explicit rewards
are absent. Our approach trains agents to reflect on their own suboptimal actions and the resulting
trajectories, then uses the reflected rationales as training signals to improve decision-making.

D MORE DISCUSSIONS
D.1 COMPARISON TO BASELINES

Table 3: Comparison of early experience with three representative baselines. All results are based on
(9 Llama-3.1-8B-Instruct.

WebShop ALFWorld

Prompt 0.0 25.0
+Long CoT 1.6 (+1.6) 28.4 (+3.4)
Imitation Learning 47.3 80.5
+Long CoT 0.0(-47.3)  25.8(-54.7)
+STaR 25.0(-22.3) 742 (-6.3)
Ours-IWM 58.6 (+11.3) 859 (+5.4)
Ours-SR 582 (+10.9) 852 (+4.7)

We compare early experience to two alternatives that inject extra supervision or reasoning signals
without executing alternative actions or observing their resulting states. This allows us to test whether
our gains can be matched by simply extending reasoning at inference or by adding ungrounded
rationales during training.

(1) Long CoT (test-time scaling). Inspired by test-time scaling (Snell et al.| |2024), we aim to help
instruction-tuned and imitation-only models trained on expert trajectories, where rationales are often
absent, reason more extensively at inference. The prompt baseline uses the off-the-shelf instruction-
tuned model with the official prompts from prior work, which typically produce short chain-of-
thought (Wei et al.,2022)). Our Long CoT variant forces longer reasoning before action generation by
performing heavier prompt search on the training split and, when a delimiter token marking the end
of reasoning exists (e.g., </think>), truncating it to encourage continued generation. We report the
best results for each model.

(2) STaR-style data (reasoning without alternative actions or resulting states). Following STaR (Ze-
likman et al., |2022), we have the model generate a rationale for the expert action at each state
and retain only cases where the predicted action matches the expert. We then fine-tune on
(state, rationale, action) tuples, as in Equation Since alternative actions and their resulting states
are not used, these rationales remain ungrounded in actual outcomes. We search over prompt variants
for rationale synthesis and keep the strongest configuration. The number of optimization steps is
matched to imitation learning.

Table 3| shows that both early experience methods achieve the largest gains across tasks and model
sizes. For Long CoT, heavier prompt search and reasoning-length control can modestly improve the
imitation-trained prompt baseline, but the gains vanish quickly in harder settings. Once fine-tuned only
on expert trajectories lacking inherent rationales, models lose the ability to sustain coherent long-form
reasoning, so extended chains often drift or collapse into invalid/off-policy actions despite truncation
at the thought—action boundary. For STaR-style data, the match rate between generated and expert
actions is low, leaving little usable training data. The retained rationales are ungrounded—having
never been tested in the environment—and frequently hallucinate tools or facts, so fine-tuning on them
can even degrade performance. In contrast, early experience directly converts the policy’s own off-
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expert rollouts into grounded supervision from observed next states, producing robust improvements

that these alternatives fail to match.

D.2 MODEL SCALING

We study whether the benefits of early experi-
ence persist as models scale. On WebArena
we compare Q -3.2-3B, Q -3.1-8B, and
(D -3.3-70B. Due to limited compute, fine-
tuning for 70B models uses parameter-efficient
LoRA (Hu et al., 2022)) for all methods with the
same rank and update steps; for IWM, the same
adapters are continued in the second stage so that
total tunable parameters and compute match im-
itation learning.

Figure 5] shows that early experience outperforms
imitation learning at every scale, with the gap per-
sisting even for the 70B model. Absolute per-
formance rises with scale, and early-experience
checkpoints consistently occupy the top curve, in-
dicating that the supervision it provides comple-
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Figure 5: Performance of Q Llama with dif-
ferent model sizes trained with imitation learn-
ing and methods under early experience on the
WebArena benchmark.

ments model size rather than substituting for it. Even with LoRA-only updates, both IWM and SR
deliver steady gains, demonstrating that the approach remains effective under constrained compute

budgets.
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E IMPLEMENTATION DETAILS

E.1 SELF-REFLECTION PROMPT TEMPLATE

Self-Reflection Prompt Template

You will be presented with a situation where you need to choose between multiple possible
actions. Your task is to analyze the situation and provide reasoning about why we decide to
take the expert action.

* Situation Description (s;): {Situation Description}

* Expert Action (a;): {Expert Action}

» Expected Outcome (s;;1): {Future State of Expert Action}
* Alternative Actions:

1. Actional: {Alt Action 1}, resulting state s}: {Obs 1}

?

2. Action a?: {Alt Action 2}, resulting state s?: {Obs 2}
3. ...

Provide a detailed self-reflection as an infernal monologue that demonstrates your reasoning
process for the current situation. Your monologue should:

1. Analyze the situation and the goal.
2. Compare the possible actions, explaining why each may be less optimal.
3. Justify why the expert action is most suitable, grounded in the expected outcome.
4. Highlight any relevant clues, constraints, or consequences from the situation.
Guidelines:

* Stay strictly within the provided information.

* Avoid meta-commentary about being an Al

» Use natural, step-by-step reasoning.

* Focus on logical decision-making.

Output: Directly write the self-reflection monologue, no extra headings, disclaimers, or
external notes.

E.2 DETAILED EXPERIMENT SETUP

Environments. We conduct experiments on eight language-agent environments covering a wide
range of domains and task formats: /) ALFWorld (Shridhar et al., 2021): embodied instruction-
following tasks in a simulated household, combining textual descriptions with high-level symbolic
actions. We follow the setting of |[Feng et al.| (2025). 2) ScienceWorld (Wang et al2022): an
interactive science lab simulator rendered in natural language, where agents perform multi-step
experiments using tools and materials. We implement the gym (Brockman et al., 2016) for this
environment. 3) TravelPlanner (Xie et al.,|[2024a)): long-horizon travel planning tasks that
require generating and refining multi-day itineraries using various tools and databases. We focus
on the sole-planning mode and implement the gym for such an environment. 4) SearchQA (Jin
et al 2025)): multi-hop question answering in open-domain settings, where agents issue search
queries and reason over retrieved snippets to answer complex questions. We follow Search-R1 (Jin
et al., [2025) settings. 5) BECLv3 (Patil et al.,|2025): multi-turn tool-use tasks from the Berkeley
Function Call Leaderboard v3, where agents interact with a Python-based API environment that
simulates functional programs. We focus on the multi-turn tool use. 6) Tau-Bench (Yao et al.,
2025): realistic customer-service scenarios requiring agents to interact with LM-simulated users,
perform multi-turn tool use via APIs, and adhere to domain-specific policy documents. We focus
on the Retail subset. 7) WebShop (Yao et al.| [2022): goal-oriented shopping tasks in a simulated
e-commerce site, where agents must navigate, filter, and select the correct product based on natural
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language queries. We follow the setting of [Feng et al.|(2025)). 8) WebArena (Zhou et al.|[2024; |Liu
et al.,2025)): web navigation tasks across domains like e-commerce, forums, and content management,
with embedded tools and knowledge bases. We follow Koh et al.|(2024) to evaluate web arena results
with accessibility tree as observation space.

Models and Expert Trajectories. We evaluate early experience using two instruction-tuned mod-
els from the Llama family: Q Llama-3.1-8B and Q Llama-3.2-3B, each trained using
a fixed number of expert demonstrations with or without early experience augmentation. These
demonstrations are drawn from different sources across environments: /) directly provided optimal
trajectories (ALFWorld and ScienceWorld); 2) successful but potentially suboptimal human-
/model-collected trajectories (WebShop and WebArena); 3) LLM-assisted data synthesis workflows
on the training split, where demonstrations are absent (SearchQA, TravelPlanner, BFCLvV3,
and Tau-Bench);

Training and Evaluation. We use consistent prompt formatting and decoding strategies across
all settings. Because environments differ in data size and horizon, we first explore the number of
optimization steps for the Imitation Learning baseline in each environment and select the checkpoint
by lowest training loss as well as the performance on the validation set. We then fix this step budget
and use it unchanged for our methods to ensure a fair comparison. For Implicit World Modeling,
we begin with one epoch of the WM objective and then continue supervised updates so that the
total updates equal the imitation budget without extra steps. For Self-Reflection, we train for the
same number of epochs as imitation. All experiments use at most § HI00 GPUs for training and
evaluation. In terms of evaluation, we report each benchmark’s main native metric and follow its
official validators. For full evaluation results, please refer to Appendix [E}

F FULL RESULTS

In this section, we provide full results for each environment. For each one, we present tables
containing all available metrics. Also, we show concrete training examples for and synthesized (e.g.,
for self-reflection) by Q Llama—-3.1-8B.

F.1 ALFWORLD

We follow the default split of ALFWor1d (Shridhar et al.l 2021} with the TextWor1d (Coté et al.,
2019) setup under the Verl-Agent (Feng et al., 2025) framework. From the expert trajectories in
ALFWorld, we extract 21,031 state—action pairs to form Deypere These expert trajectories are optimal
given the completeness of task solvability in the dataset.

For implicit world modeling, we augment Dexpere With Dyoliout. At €ach state, we sample 8 non-expert
actions uniformly without replacement from the admissible action list (excluding the expert action)
and include the expert action, yielding 21,031 x 9 = 189,279 triplets for implicit world modeling.

For self-reflection, we construct data by prompting the model to explain its own decisions. For each
state, we use the same policy model with temperature 1.0 to propose up to 3 alternative actions. We
canonicalize proposed actions and keep only unique ones. If a proposed action is not in the admissible
action space for that state, we discard it and instead sample uniformly at random from the remaining
unselected admissible actions. The final prompt asks the model to justify why the expert action is
preferable to the sampled alternatives given the current state and available tools.

During training, we use a batch size of 16 and a learning rate of le—5, and train with
LlamaFactory (Zheng et al.l2024b)) for 2 epochs. For RL training, we adopt the default hyper-
parameters in Verl-Agent and evaluate on the same split reported in their paper. For the evaluation,
we set the maximum prompt length to be 4096, the maximum response length to be 1024, and the
temperature to be 0.4. Below is a data example illustrating the inputs for different methods given the
same task and state (we list three examples for implicit world modeling). Full results are in Table
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Training Example

Task:
Current State:

Expert Action:

Implicit World
Modeling:

Self-Reflection:

— ALFWorld

put two book in bed.

You have taken the action 1: ‘go to desk 1’ You are now at step 2 and your
current observation is: You arrive at desk 1. On the desk 1, you see a book
3, abook 2, abook 1, abowl 1, a cd 1, a cellphone 2, a creditcard 2, a mug
1, a statue 2, and a statue 1.

take book 3 from the desk 1

e examine desk 1 — “Nothing happens.”
e examine drawer 1 — “Nothing happens.”
e inventory — ““You are not carrying anything.”

Let me think through the best course of action. The goal is to put two books
in the bed. I have just arrived at desk 1 and can see three books. Examining
the desk or drawers does not surface new items or constraints, so those
actions are unhelpful at this point. The most direct way to make progress
is to start collecting the required objects. Taking book 3 from desk 1
immediately moves me toward the objective without extra navigation or
redundant examinations. After securing the first book, I can take a second
one from the same location, then navigate to the bed and place both books
there. This sequence minimizes detours and aligns tightly with the task.

Table 4: Performance on ALFWorld. Results of closed-source models are adopted from Feng et al.

(2025)).
ALFWorld

Type Method Pick Look Clean Heat Cool Pick2 All

Base: Closed-Source Model

Prompting GPT-40 75.3 60.8 31.2 56.7 21.6 498 48.0

Prompting Gemini-2.5-Pro 92.8 63.3 62.1 69.0 26.6 58.7 60.3

Base: (’ Llama-3.2-3B-Instruct

Prompting 25.0 0.0 3.7 0.0 0.0 7.7 8.6
+RL (GRPO) 93.3 60.0 94.7 826 783 522 789

Imitation Learning  Behavior Cloning 78.1 71.4 85.2 82.4 89.5 61.5 78.1
+ RL (GRPO) 97.4 71.8 87.5 100.0 88.9 913 922

Early Experience Implicit World Modeling ~ 87.5 85.7 85.2 88.2 89.5 69.2  83.6
+ RL (GRPO) 100.0 100.0 100.0 933 95.0 955 977

Early Experience Self-Reflection 90.6 85.7 81.5 88.2 89.5 80.8 859
+ RL (GRPO) 100.0 100.0 950 100.0 100.0 100.0 99.2

Base: () Llama-3.1-8B-Instruct

Prompting 37.5 28.6 259 11.8 21.1 192 25.0
+RL (GRPO) 97.3 80.0 90.0 85.7 88.2 56.0 83.6

Imitation Learning  Behavior Cloning 90.6 85.7 85.2 82.4 89.5 53.8  80.5
+ RL (GRPO) 95.0 88.9 100.0 100.0 100.0 955 938

Early Experience Implicit World Modeling  87.5 57.1 88.9 82.4 94.7 84.6 859
+ RL (GRPO) 100.0 100.0 100.0 929 1000 920 977

Early Experience Self-Reflection 87.5 71.4 85.2 82.4 94.7 80.8 852
+ RL (GRPO) 100.0 100.0 950 100.0 100.0 955 985
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F.2 WEBSHOP

From the official human demonstrations released by WebShop (Yao et al.,|2022), we extract 1,571
human trajectories and convert them into the Ver1-Agent (Feng et al.,[2025) format, resulting in
15,464 state—action pairs that constitute Deypery for imitation learning.

For implicit world modeling, the data has two components. The first is directly derived from Deypert
by reformatting each step into the world-modeling format, where the input contains the historical
context and the action taken at the current step, and the target is an offline textual summary of the
next state after executing that action (avg. length 345 characters). The second component is obtained
by augmenting each expert state with non-expert actions: we let the same policy propose actions
at temperatures {0.5,0.8,0.9} and additionally sample up to five admissible actions uniformly at
random per state. We then convert the augmented samples into the same world-modeling format as
the first component: for each non-expert action, we execute it in the WebShop environment to obtain
the subsequent observation and derive an offline textual summary of the next state. All candidates
are canonicalized and deduplicated. Merging these with the expert action yields 122,954 triplets for
implicit world modeling.

For self-reflection, we construct prompts that include the expert action together with 3 alternative
actions and ask the model to justify why the expert action is preferable given the current state and the
admissible actions. Because some actions in the raw expert trajectories are suboptimal, we apply a
simple quality filter that retains only actions from trajectories whose tasks can be completed within
fewer than 15 steps, resulting in 6,235 reflection examples. For each such state, the alternatives
are drawn using the same policy as in world modeling by mixing model-proposed actions (at
the temperatures above) with uniformly sampled admissible actions; after canonicalization and
deduplication, we keep 3 distinct alternatives. We intentionally retain a diverse set of alternatives,
including admissible but unhelpful actions, empty responses, and occasional invalid actions, to help
the model learn sharper decision boundaries.

During training, we use a batch size of 4 and a learning rate of le—5, and train with
LlamaFactory (Zheng et al., 2024b). For RL training, we adopt the default hyperparameters in
Verl-Agent and evaluate on the same split reported in their paper. Below is a data example illustrating
the inputs for different methods given the same task and state (we list 3 examples for implicit world
modeling). Full results are in Table [5]
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Training Example — WebShop

Task:
Current State:

Expert Action:

Implicit World
Modeling:

Self-Reflection:

blue wireless bluetooth headphones, and price lower than 130.00 dollars.

you have already taken the action 1: ’search[bluetooth blue headphones]’
and action 2: ’click[b0O82hmmbh1].

You are now at step 3 and your current observation is: 'Back to Search’,
’i Prev’, ’color’, ’black — red’, ’pink’, ’purple’, ’black — orange’,
"blue with ears’, 'n-red’, ’non-ears blue’, 'non-ears pink’, ’pink — teal’,
‘purple — teal’, ’Bluetooth Headphones for Kids, PowerLocus Wire-
less Bluetooth Headphones, Kid Headphones Over-Ear with LED, Fold-
able Headset with Mic,Volume Limited, Wireless/Wired Headphone for
Phones, Tablets,Laptop’, 'Price: $24.99’, 'Rating: N.A.’, ’Description’,
"Features’, ’Reviews’, ’'Buy Now’.

click[non-ears blue]

e click[non-ears blue] — “After clicking on a color option, this page is a
product-details page. The page displays various product attributes such
as color options, size options, and package quantity selections, along with
sections for product description, features, reviews, and a "Buy Now” button.
Navigation controls include a ”Back to Search” link and a ”’j Prev”” button
to return to the previous page.”

o click[; prev] — “After clicking the ““; Prev” button, this page is a search-
results page displaying multiple product listings for Bluetooth headphones
and related accessories. The page includes navigation controls such as
“Back to Search” and “Next ;,” along with a list of product items showing
titles, prices, and product IDs. Each listing is accompanied by a clickable
option to view more details.”

e click[buy now] — “After clicking "Buy Now” on the product details
page, this page is a checkout confirmation or thank-you page. It contains
a message thanking the user for their purchase, a section for entering or
pasting a code, and displays the purchased item’s ASIN along with selected
options such as color. The page also includes a reward score and details,
though the specifics of the reward are not elaborated. Navigation options
are limited to a search function at this stage.”

I will now proceed with step-by-step reasoning. The task constraints are:
select blue wireless Bluetooth headphones priced lower than $130.00. The
current situation is that you are on a product details page for a specific item,
which includes a color selection menu with multiple options, a product
title, price, and rating information, along with tabs for viewing the product
description, features, and reviews, as well as a “Buy Now” button. The
navigation options include returning to the search or going back to the
previous page. Click[non-ears blue] wins because it directly addresses the
color requirement and allows for further evaluation of the product details.
Other actions fail because they either do not address the color requirement
or may lead to irrelevant results, such as selecting a different color, returning
to the search results page without making a color selection, or selecting a
blue color option with ears which may not be the desired style. Therefore,
click[non-ears blue] is optimal.
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Table 5: Performance on WebShop.

Type Method WebShop
score  succ.
Base: (} Llama-3.2-3B-Instruct
Prompting 1.3 0
+RL (GRPO) 17.2 3.9
Imitation Learning Behavior Cloning 55.1 418
+ RL (GRPO) 894  82.0
Early Experience Implicit World Modeling 719  60.2
+ RL (GRPO) 979 922
Early Experience Self-Reflection 67.2 527
+ RL (GRPO) 93.8 89.8
Base: Q Llama-3.1-8B-Instruct
Prompting 0 0
+RL (GRPO) 2.1 0.8
Imitation Learning Behavior Cloning 66.8 473
+ RL (GRPO) 90.9  80.5
Early Experience Implicit World Modeling 727  58.6
+ RL (GRPO) 96.0 914
Early Experience Self-Reflection 72.5 582
+ RL (GRPO) 94.1 89.8
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F.3 BFCLv3

We follow the default multi-turn function call split of the BECLv3 (Patil et al., 2025)) benchmark,
which categorizes tasks into Base, Long-Context, Miss Function, and Miss Parameters. Base contains
foundational yet diverse multi-turn interactions, where all necessary information, including the user
request, execution results from previous turns, and exploratory function outputs, is available to
complete the task without ambiguity. Long-Context evaluates the model’s ability to maintain accuracy
in lengthy, information-dense settings by introducing large amounts of extraneous data (e.g., hundreds
of files or thousands of records), thereby testing its capacity to extract essential details under cognitive
load. Miss Function assesses whether the model can identify when no available function can fulfill
the user request; once this limitation is recognized, the missing functions are provided in later turns,
requiring the model to adapt to newly available capabilities. Miss Parameters examines whether
the model can detect when essential parameters are absent from the user request and cannot be
inferred from the system state, prompting it to request clarification rather than making unwarranted
assumptions.

As the default BFCLv3 benchmark does not provide training split, for constructing the training set, we
exclusively use samples from the Base category. We randomly select 75% of them (125 trajectories)
as the expert trajectories Dexper, for imitation learning. Each trajectory consists of multiple steps and
interactions, which we further split into individual steps to improve training efficacy.

For implicit world modeling, the data has two components. The first is directly derived from Deypert
by reformatting each trajectory into the world-modeling format, where given the historical context
and the action at the previous step, the model predicts the next state. This yields 1,264 training
examples. The second is generated through augmentation: for each state in the expert trajectory, we
let target model sample ten alternative actions in addition to the expert action, producing 11,904
samples, following the same process as in ALFWorld.

For self-reflection, we construct training data by prompting the model to explain its decisions,
emphasizing why the expert action is preferable to other available actions in the current state,
including the set of tools defined earlier. After filtering a small number of low-quality samples where
the concluded action did not match the expert action, we obtain 1,200 training examples.

We train with a batch size of 16, a learning rate of le—5, using LlamaFactory (Zheng et al.,
2024b)). For inference, we adopt the VLLM infrastructure for efficiency. A data example showing
inputs for different methods under the same task and state is given below. Full results are in Table [6]

Training Example — BFCLv3

Task: Go to the ‘workspace’ directory and move one of the ‘log.txt’ files into a
new directory ’archive’.

Current State:  Located at the ‘workspace’ directory with access to the following tools:
‘cat’, ‘cd’, ‘cp’, ‘diff’, ‘du’, ‘echo’, ‘find’, ‘grep’, ‘Is’, ‘mkdir’, ‘mv’, ‘pwd’,
‘rm’, ‘rmdir’, ‘sort’, ‘tail’, ‘touch’, ‘wc’.

Expert Action: Move the ‘log.txt’ file to the ‘archive’ directory.

Implicit World

Modeling: e ‘I’ — “Find that the ‘archive’ folder existed. ”
e ‘mv’ — “ ‘mv’ tool can move the targeted file to the targeted folder
e ‘cat’, ‘cd’, ‘cp’, ‘diff’, ‘du’, ‘echo’, ‘find’, ‘grep’, ‘mkdir’, ‘pwd’, ‘rm’,
‘rmdir’, ‘sort’, ‘tail’, ‘touch’, ‘wc’. — “Cannot help fulfill the user’s task.”

Self-Reflection: Given the user’s request to move the ‘log.txt’ file into a new directory called
‘archive’, the most appropriate action is to use the ‘mv’ command. This
action directly achieves the goal without any unnecessary steps. The ‘rm’
command would remove the file instead of moving it, which is not what the
user wants. Creating a directory using ‘mkdir’ is redundant since ‘archive’
already exists. Sorting the file or listing its contents won’t help in archiving
it. Therefore, moving the file to the ‘archive’ directory is the best course
of action.
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Table 6: Performance on BFCLv3 multi-turn scenarios.

Type Method LD. o0Db Avg.

Base Long Cont. Miss Func. Miss Para.

Base: Q Llama—-3.2-3B-Instruct

Prompting 1.3 1.3 1.3 1.3 1.3

Imitation Learning Behavior Cloning 21.3 9.3 0.0 6.7 9.3

Early Experience Implicit World Modeling  25.3 13.3 1.3 12.0 13.0
Early Experience Self-Reflection 29.3 21.3 53 14.7 17.7
Base: Q Llama-3.1-8B-Instruct

Prompting 6.7 6.7 8.0 4.0 6.8

Imitation Learning Behavior Cloning 16.0 8.0 1.3 10.7 9.0

Early Experience Implicit World Modeling  20.0 8.0 4.0 10.7 10.7
Early Experience Self-Reflection 20.0 17.3 0.0 6.66 11.0
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F.4 TAU-BENCH

We conduct experiment using the retail task from Tau-Bench. In Tau-Bench, the retail task is
divided into a training set and an evaluation set, comprising 495 and 115 tasks, respectively. We
employ a high-performing instruction-tuned LLaMA-family model to collect expert trajectories on
the training set. For each task, the inference temperature is set to 1, and four trajectories are generated.
The trajectory with a final reward of 1 is selected as the expert trajectory; if multiple such trajectories
exist, one is chosen at random, and if none achieves a reward of 1, the task is discarded. This process
yields expert trajectories for 452 tasks, resulting in a total of 5,239 (observation, action) pairs.

For the world model data, we use the target model to propose five action candidates for each
observation in the expert trajectories. To avoid repetitive tool calls and promote exploration, we
remove the tool used in the expert action from the corresponding tool set of each expert observation,
allowing the model to select from the remaining tools. The selected action is then executed in
the environment to obtain the next observation. Each resulting (expert observation, action, next
observation) triplet is included in the training dataset for the world model.

For the self-reflection data, for each (expert observation, expert action) pair, we selecte three
alternative actions from the five corresponding world model datapoints and present them to the model
itself for reflection, prompting it to explain the rationale behind the expert action choice. We filter out
a small number of low-quality reflection samples, resulting in a total of 5,233 training instances.

We adopt LLaMA-Factory as the training codebase. For imitation learning, we train for 6 epochs
with a learning rate of le-5. For implicit world model learning, we train for 1 epoch with a learning
rate of 5e-6. For self-reflection, we conduct 6 epochs of SFT with a learning rate of le-5. In all
training configurations, the batch size is fixed at 16. We report the full table in Table[TJas Tau-Bench
does not contain more fine-grained metrics.

Training Example — Tau-Bench

Task: Act as a retail agent to assist customers in modifying their orders.

Current State:  Sure! My name is Sophia Nguyen, and my zip code is 20171.

LERNEE)

Expert Action:  function_call”: ”find_user_id_by_name_zip”, ”arguments”: “first_name’:
”Sophia”, ”last_ name”: "Nguyen”, "zip”: ”20171”
Implicit World

Modeling: Action: “find_user_id_by_name_and_zip”
Next observation: ”Unknown action find_user_id_by_name_and_zip”

Self-Reflection: The customer has provided their name, Sophia Nguyen, and their zip code,
20171. The goal here is to identify the user based on these details so
we can provide them with the appropriate service or information they’re
seeking. The candidate action, find_user_id_by_name_zip, seems to be the
right approach as it directly uses the name and zip code provided by the
customer to locate their user ID. However, the alternative actions listed all
have the same name, find_user_id_by_name_and_zip, but they result in an
unknown action outcome, indicating that this specific function or command
is not recognized within the system. This suggests that these alternatives
are not valid options for the current system and cannot be used effectively.
Therefore, I would proceed with the candidate action, find_user_id_by_-
name_zip, because it’s the only viable option that matches the customer’s
provided information and has produced a valid user ID outcome, sophia._-
nguyen_2370. This action aligns perfectly with the objective of identifying
the customer based on their name and zip code. The action is: {’arguments’:
*{”first_name”:”’Sophia”,’last_name”:”"Nguyen”,’zip”:"20171”}’, "name’:
’find _user_id_by_name_zip’}
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F.5 SEARCHQA

Expert Trajectories Collection. We selected all 3-hop and 4-hop tasks from the Musique training
dataset, along with 1,438 randomly sampled 2-hop tasks, to fit within scenarios that require multi-step
reasoning for solving complex problems. Finally, we have 7,000 tasks in total. Since the training data
lacks fine-grained reasoning traces like the thinking—search—answer structure as/Jin et al.[(2025), we
used the Search-R1 model to generate expert data. Specifically, we set the temperature to 1.0 and
generated 5 trajectories for each task, retaining only those whose final answers match the ground
truth. To reduce redundancy, we keep at most 2 correct trajectories per task. This process yields
2,082 trajectories containing a total of 7,691 state—action pairs for imitation learning.

World Modeling Data Construction Consistent with the observations of Jin et al.| (2025)), we find
that directly predicting the content of retrieved documents yields suboptimal performance, as many
tokens are not directly relevant to the search query. To address this, we first instruct the model to
summarize the retrieved documents, and then let the model predict these summaries rather than the
full text. For each state in the expert trajectory, we let the model generate 30 alternative actions
with a temperature of 1.0, enabling it to internalize the environment dynamics from its own early
experiences substantially. If a generated action is invalid that the query is not enclosed within the
jsearchy j/search;, tags, we return the feedback: “Format error! You must enclose the search query
within the jsearchy j/searchy tags if external knowledge is required.”

Self-Reflection Data Construction To construct the self-reflection training dataset, we randomly
sample 2 alternative actions for each state. For each instance, the model is prompted to generate
fine-grained reasoning explaining why the expert action is superior to the alternatives, based on the
current state, the expert action, the alternative actions, and the retrieval documents associated with
these actions. This procedure resulted in 7,691 training data containing detailed reasoning processes.

Training Details For Supervised Fine-Tuning (SFT), we adopt LLaMA-Factory as the codebase and
perform full-parameter tuning on 4 H100 GPUs using ZeRO-3. Specifically, for imitation learning
and self-reflection, we train for 3 epochs with a learning rate of 1 x 1075, a context window of
8192 tokens, and a batch size of 2 per GPU, while setting the gradient accumulation steps to 16. For
implicit world model learning, we utilize the world model data from expert trajectories to achieve a
1:1 ratio with the imitation learning dataset and train under the same settings.

For Reinforcement Learning (RL), we employ the Search-R1 codebase and train on 8 H100 GPUs.
All settings are kept consistent with Jin et al|(2025)), except that we use the F1 score as the reward, set
the maximum number of retrieval interactions to 6, configure the context window to 12,280 tokens,
and specify a maximum output length of 2,048 tokens. For the training data, we use all training tasks
from the MuSiQue dataset.

An example illustrating the inputs for different methods is provided below, with the full results
presented in Table
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Training Example — SearchQA

Task:

Current State:

Expert Action:

Implicit World
Modeling:

Self-Reflection:

Who was the ninth governor-general in the country where Boridi is lo-
cated?

<think> I need to find the ninth governor-general in the country where
Boridi is located. I’ll search forit. <search> Boridi <information>
Doc 1 (Title: Boridi) Boridi is a village in the Owen Stanley Range in
Central Province, Papua New Guinea. Boridi is a Koiari village ...

<think> I found out that Boridi is located in Papua New Guinea.
Now I need to find the ninth governor-general in Papua New Guinea.
<search> ninth governor-general in Papua New Guinea

e <search> ninth governor-general in Papua New Guinea — “The ninth
Governor-General of Papua New Guinea was Sir Michael Ogio ...”

e <search> governor-general of Papua New Guinea history — “The
first Governor-General of Papua New Guinea was Sir John Guise ...”

e <search> Papua New Guinea governor-general list — “The Governor-
General of Papua New Guinea is the representative of the monarch ...”

Okay, I’ve found that Boridi is located in Papua New Guinea. Now, I
need to find the ninth governor-general of Papua New Guinea. I’m going
to search for ‘ninth governor-general in Papua New Guinea’. This
query is specific and should return the information I need. I'm hoping
to find a document that mentions the ninth governor-general by name and
provides some information about their background and term in office. I'm
also considering searching for ‘governor-general of Papua New Guinea
history’ or ‘Papua New Guinea governor-general list’, but I think the
first query is more likely to return the information I need.

Table 7: Performance on SearchQA.

Type

SearchQA

Method Musique  HotpotQA  2wiki Bamboogle  All

Base: Q Llama-3.

2-3B-Instruct

Prompting 13.3 243 22.2 35.1 21.1
+RL (GRPO) 25.0 35.0 27.8 354 29.7
Imitation Learning  Behavior Cloning 38.0 46.8 30.6 55.2 39.8
+ RL (GRPO) 43.6 47.8 38.4 63.2 44.8
Early Experience Implicit World Modeling 39.0 49.5 37.8 59.1 43.4
+ RL (GRPO) 44.5 53.1 50.1 63.6 50.3
Early Experience Self-Reflection 38.6 47.3 37.0 58.4 423
+ RL (GRPO) 42.7 50.7 432 57.9 46.5
Base: (’ Llama-3.1-8B-Instruct
Prompting 21.0 39.5 31.3 494 32.1
+RL (GRPO) 33.1 40.1 37.9 54.4 384
Imitation Learning  Behavior Cloning 41.0 49.3 42.6 58.8 45.4
+ RL (GRPO) 47.0 51.0 40.2 59.7 47.1
Early Experience Implicit World Modeling 443 53.1 43.9 58.6 48.0
+ RL (GRPO) 50.6 50.8 45.6 59.7 49.8
Early Experience Self-Reflection 41.8 53.1 46.4 58.3 48.0
+ RL (GRPO) 47.7 52.9 50.2 59.4 51.0

28



Under review as a conference paper at ICLR 2026

F.6 SCIENCEWORLD

We follow the default split of ScienceWorld (Wang et al.||2022) with the AgentGym (Xi et al.,
2024) setup under the Verl-Agent (Feng et al., 2025)) framework. From the expert trajectories in
ScienceWorld, we extract 14,506 state—action pairs to form Deyperr These expert trajectories are
optimal given the completeness of task solvability in the dataset.

For implicit world modeling, we augment Dexpere With Dyoliout. At €ach state, we sample 3 non-expert
actions uniformly without replacement from the admissible action list (excluding the expert action)
and include the expert action for implicit world modeling.

For self-reflection, we construct data by prompting the model to explain its own decisions. For each
state, we use the same policy model with temperature 1.0 to propose up to 3 alternative actions
(2 alternative actions for Q Llama-3.1-8B-Instruct ). We canonicalize proposed actions
and keep only unique ones. If a proposed action is not in the admissible action space for that state,
we discard it and instead sample uniformly at random from the remaining unselected admissible
actions. The final prompt asks the model to justify why the expert action is preferable to the sampled
alternatives given the current state and available tools.

For all the training and evaluations, we use one-shot example, which is shown above. During training,
we use a batch size of 32 and a learning rate of 5e—6, and train with L1amaFactory (Zheng et al.|
2024b) for 1 epoch. For the evaluation, we set the maximum prompt length to be 4096, the maximum
response length to be 1024, and the temperature to be 0.4. Below is a data example illustrating
the inputs for different methods given the same task and state (we list three examples for implicit
world modeling). We report the full table in Table [[]as ScienceWorld does not contain more
fine-grained metrics.
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Training Example — ScienceWorld

Task:

Current State:

Expert Action:

Implicit World
Modeling:

Self-Reflection:

Your task is to determine if aluminum foil is electrically conductive. The
aluminum foil is located around the living room. First, focus on the alu-
minum foil. If it is electrically conductive, place it in the green box. If it is
electrically nonconductive, place it in the blue box.

This room is called the workshop. In it, you see: the agent a substance
called air a table. On the table is: a battery, a black wire, a green light bulb,
which is off, a orange light bulb, which is off, a orange wire, a red light
bulb, which is off, a red wire, a switch, which is off. a ultra low temperature
freezer. The ultra low temperature freezer door is closed. You also see: A
door to the hallway (that is closed).

connect battery cathode to yellow wire terminal 1

e connect inventory to orange — “terminal 1 on inventory is now connected
to terminal 1 on orange.”

e connect black wire terminal 2 to anode in green light bulb — “terminal 2
on black wire is now connected to anode on green light bulb.”

e connect cathode in orange light bulb to freezer — “cathode on orange
light bulb is now connected to terminal 1 on ultra low temperature freezer”

I’'m currently in the workshop, and my task is to determine if the aluminum
foil is electrically conductive. To do this, I need to place it in either the green
box or the blue box, depending on its conductivity. I’ve recently moved
the aluminum foil to the workshop, and now I see it sitting here, along
with various other objects like the electric motor, the ultra low temperature
freezer, and a bunch of wires and light bulbs. Looking at my recent actions,
I connected the anode of the battery to terminal 1 on the green wire. This
was a deliberate step to set up a circuit, but I’'m not sure what the ultimate
goal is yet. I also see that I have the option to connect the cathode of the
battery to terminal 1 on the yellow wire, which would complete the circuit.
However, I’'m not sure if this is relevant to determining the conductivity
of the aluminum foil. I also notice that I have the option to connect the
door to the ultra low temperature freezer, which would result in the door
being connected to the ultra low temperature freezer. This seems like a
strange action, and I’'m not sure what the purpose of this would be. It’s
possible that this action is related to the workshop’s equipment, but it doesn’t
seem directly relevant to my task. Another option I have is to move the
yellow light bulb to the blue box. This would simply move the light bulb
to a different location, but it doesn’t seem to have any bearing on my task.
Considering my goal of determining the conductivity of the aluminum foil,
I need to think about how I can use the available equipment to test its
conductivity. I'm not sure what the properties of the aluminum foil are, but
I know that if it’s conductive, it should allow electricity to flow through
it. Given this, I think the most suitable action would be to connect the
cathode of the battery to terminal 1 on the yellow wire. This would
complete the circuit and allow me to test the conductivity of the aluminum
foil. If the aluminum foil is conductive, it should allow electricity to flow
through it, and I can place it in the green box. If it’s not conductive, it won’t
allow electricity to flow, and I can place it in the blue box. This action
seems like the most logical choice because it directly addresses my task and
allows me to test the conductivity of the aluminum foil. The other actions I
have available don’t seem to be directly relevant to my task, and they might
even be distracting or confusing. By connecting the cathode of the battery
to terminal 1 on the yellow wire, I can focus on my task and make progress
towards determining the conductivity of the aluminum foil.
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F.7 TRAVELPLANNER

We adapt the TravelPlanner (Xie et al.[2024a) benchmark into a gym-based environment for
training language agents. The original benchmark contains 1,225 queries divided into training
(45 queries), validation (180 queries), and test sets. We use the 45 training trajectories that cover
diverse planning scenarios across different difficulty levels based on trip duration (3, 5, or 7 days)
and constraint complexity (Easy, Medium, Hard). Easy queries are primarily budget-constrained
for a single person. Medium queries introduce additional constraints such as cuisine type, room
type, or room rules, with the number of travelers varying between 2 and 8. Hard queries include
transportation preferences along with all medium-level constraints, containing three randomly selected
hard constraints. We evaluate on the validation set of 180 queries.

Environment Implementation. We implement TravelPlanner as a gym environment with discrete ac-
tion spaces and dictionary observation spaces. The state representation includes the current planning
progress formatted in a structured text format: query description, budget tracking (initial/spent/re-
maining), and the current plan status for each day showing transportation, meals, attractions, and
accommodation fields. Actions are JSON objects with fields for action type (e.g., SET_TRANS-
PORTATION, SET_MEAL, SET_ACCOMMODATION), day number, field name, selected value, and
cost. The action space dynamically generates all valid actions based on available data from reference
information, including flights between cities, restaurants with cuisine types and prices, attractions,
and accommodations with room rules and minimum night requirements. The environment tracks
budget spending, validates constraints in real-time, and maintains planning progress through a state
machine that advances through each field sequentially.

Expert Trajectory Collection. We use 45 annotated trajectories from the training set as expert
demonstrations Dexper. Each trajectory contains a complete multi-day travel plan with ground-truth
actions for transportation, accommodation, dining, and attractions. We decompose these trajectories
into 1,395 individual state-action pairs using the SFTConverter, which maps expert plan entries to
valid gym actions while handling city name variations and validating against environment constraints.

Implicit World Modeling. For world modeling data, we generate two types of training examples.
First, we reformat the expert trajectories into state-transition format where the model learns to predict
next states given current state and action. Second, we perform exhaustive augmentation by executing
ALL available valid actions at each state in the expert trajectories (not just sampling), collecting
comprehensive state transitions to maximize coverage of environment dynamics. This process
generates over 70,000 state-transition samples, providing rich supervision for learning environment
dynamics including budget updates, constraint evaluations, and plan progression.

Self-Reflection. We construct self-reflection data by prompting Llama-3.1-8B-Instruct to generate
chain-of-thought reasoning explaining why expert actions are preferable to alternatives. For each of
the 1,395 state-action pairs, we explore up to 30 alternative valid actions and generate reasoning that
considers multiple constraints: budget limits, minimum night stays for accommodations, restaurant di-
versity requirements, and round-trip completion. The reasoning generation uses temperature 0.9 with
8-way tensor parallelism to produce natural explanations while maintaining logical consistency. We
do not apply additional filtering as the reasoning generation already validates constraint satisfaction.

Training Details. We train models using L1amaFactory with full fine-tuning on 8 H100 GPUs
using DeepSpeed ZeRO-3. For imitation learning and implicit world modeling, we train for 5 epochs
with learning rate 1e—5 and cosine scheduler. For self-reflection, we extend the maximum generation
length to 8K tokens to accommodate detailed reasoning. All models use 32K context windows with
batch size 16 per GPU. For evaluation, we use vLLM with tensor parallelism across 8 GPUs and
greedy decoding to ensure reproducibility.

A data example showing inputs for different methods under the same task and state is given below.
Full results are in Table [8]
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Training Example

Task:

Current State:

Expert Action:

Implicit World
Modeling:

Self-Reflection:

— TravelPlanner

Please help me plan a trip from St. Petersburg to Rockford spanning 3 days
from March 16th to March 18th, 2022. The travel should be planned for a
single person with a budget of $1,700.

Total Days: 3, Initial Budget: $1700, Spent: $0, Remaining: $1700 Day 1:
transportation: PENDING, breakfast: PENDING, attraction: PENDING,
lunch: PENDING, dinner: PENDING, accommodation: PENDING Next
action required: Plan day 1 transportation Available: Flight F3573659:
$474, Departure 15:40, Arrival 17:04

{"action_type”: "SET_TRANSPORTATION”, ”day”: 1, "field”: ”trans-
portation”, ”value”: “Flight Number: F3573659, from St. Petersburg to
Rockford, Departure Time: 15:40, Arrival Time: 17:04”, “cost”: 474}

o SET_TRANSPORTATION (F3573659) — “After this action, you’ve spent
$474, leaving $1226 from your $1700 budget (28% used). Good start!
You're traveling to your destination.”

e SKIP_TRANSPORTATION — “After this action, you’ve spent $0, leaving
$1700 from your $1700 budget (0% used).”

Important: Consider all constraints. Flight F3573659 is a valid option at
$474. Tt satisfies all constraints and gets me to my destination efficiently.
The only alternative is skipping transportation, which prevents reaching the
destination. Given all constraints and optimization factors, Flight F3573659
is indeed the best choice as it’s the most cost-effective option that enables
the trip. Therefore, Flight F3573659 is optimal.

Table 8: Performance on TravelPlanner with different training approaches.

Commonsense Constraint ~ Hard Constraint Final
Model Method Micro Macro Micro Macro Pass Rate
Base: Q Llama-3.1-8B
Prompting 36.9 0.0 61.0 46.7 0.0
Imitation Learning  Behavior Cloning 82.6 25.0 54.8 46.7 17.2
Early Experience Implicit World Modeling ~ 84.0 38.9 56.9 42.2 25.0
Early Experience Self-Reflection 84.7 42.2 61.0 51.1 322
Base: (’ Llama-3.2-3B-Instruct
Prompting 342 0.0 58.1 48.9 0.0
Imitation Learning  Behavior Cloning 81.7 27.8 57.1 46.1 19.4
Early Experience Implicit World Modeling ~ 84.7 44.4 56.7 42.8 28.3
Early Experience Self-Reflection 87.0 46.1 61.9 52.2 32.2
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F.8§ WEBARENA

Given that the full evaluation set in WebArena (Zhou et al., [2024) is lengthy and includes many
similar tasks, we follow prior work (Qi et al., [2024; [Wei et al., [2025b) and evaluate our trained
agents on WebArena-Lite (Liu et al., 2024}, a more efficient and balanced subset of 165 high-
quality, challenging tasks, hand-selected from the original 8§12. Therefore, the remaining 647 tasks in
WebArena, excluding those in the evaluation set, are used for agent training.

To obtain expert demonstrations in WebArena, we extract successful trajectories from the highest-
performing agents on the public WebArena leaderboard Specifically, we select those that include
accessibility tree information in their observations, such as IBM CUGA (Marreed et al.| [2025),
ScribeAgent (Shen et al.,|2024)), Learn-by-Interact (Su et al., [2025), and AgentOccam (Yang et al.,
2024). After filtering out the unsuccessful trajectories, we obtain 554 successful ones and 7,044
state-action pairs, forming Dexpert.

To branch out from the expert trajectories for implicit world modeling, we augment Dexper, to form
Diroliout- For each state in Dexpert, We let the target model (to be trained) propose 5 non-expert actions
using free-form generation, excluding any that are identical to the expert action. For each resulting
next state, we apply an additional processing step: using the same model, we generate a concise
summary of the next-state observation conditioned on the task, replacing the raw observation to
reduce noise and emphasize task-relevant information. We then include the expert action together
with the sampled ones to create triplets of the form (current state, action, summarized next state),
resulting in 7,044 x 6 = 42,264 triplets in total for each model.

For self-reflection, we construct Dsg by prompting the model to explain why the expert action is
preferable to the sampled alternatives in the current state. We use the same 5 alternatives from Diqjiout,
canonicalize action strings to avoid duplicates, and replace any invalid actions (e.g., referring to
non-existent Ul elements) with randomly sampled valid ones. The final prompt includes the current
state, the admissible actions, and the expert action, and asks the model to justify the optimality
of the expert choice in terms of task progress, constraint satisfaction, and efficiency. We filter out
low-quality generations where the explanation incorrectly supports a non-expert action, leaving 3,190
high-quality self-reflection examples.

All models are trained for 2 epochs with learning rate 1e—5 and cosine scheduler. We report our full
numbers on WebArena-Lite in Table[d]

1https ://docs.google.com/spreadsheets/d/1M8011EpBbKSNwP-vDBkKC_
pF7LdyGULlf_ufZb_NWNBZQ/edit?usp=sharing
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Training Example — WebArena

Task:
Current State:

Expert Action:

Implicit World
Modeling:

Self-
Reflection:

What are the top-3 best-selling products in January 20237

[1281] RootWebArea ’'Products / Inventory / Catalog /
Magento Admin’
[1334] link ' Magento Admin Panel’
[1343] img ' Magento Admin Panel’
[1286] menubar ’ ’ orientation: horizontal
[1288] link “ue604 DASHBOARD’
[1292] link " ue60b SALES’
[1296] link ' ue 608 CATALOG’
[1300] link * ue603 CUSTOMERS’
[1304] link " ue609 MARKETING’
[1308] link ’ ue602 CONTENT’
[1312] link " ue60a REPORTS’

[2146] button ' ue605Filters’

Click [1312].

e click [1312] — The user clicked on the “REPORTS” link in the horizontal
menubar, which changed the focus to this link. A new vertical menu
expanded below it, showing categories such as Marketing, Reviews, Sales,
Customers, Products, Statistics, and Business Intelligence, each with sub-
links. The main product table remains visible, but the navigation context has
shifted to the reports section, enabling access to detailed reporting options.
o click [2146] — Clicking the “Filters” button shifted focus to the “Search
by keyword” textbox and likely opened the filter/search area. The product
list updated to show different products such as “Sol Active Short-32-Green”
and “Sol Active Short-33-Purple”, indicating that the action updated the
product list via filtering.

e go_back — Navigates from the “Products / Inventory / Catalog” page
to the “Dashboard / Magento Admin” page. The view changes from a
product table to a dashboard with summary information such as revenue,
tax, shipping, and tabs like Bestsellers and Most Viewed Products. This
navigation may reset the page state.

The goal is to find the top-3 best-selling products in January 2023. The
current “Products / Inventory / Catalog” page lists inventory details but not
sales data or best-seller rankings. Clicking on “REPORTS” is the most
logical choice, as it typically contains sales metrics, customer insights, and
product performance reports. From there, it should be possible to select
sales reports, filter by January 2023, and retrieve the ranked list of best
sellers. Alternatives such as filtering or searching products on the catalog
page will not reveal sales statistics, and going back to the dashboard may
only provide limited summary widgets without detailed filtering options.
Therefore, selecting “REPORTS” directly aligns with the task objective
and is the optimal next step to access the necessary data.
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Table 9: Performance on WebArena-Lite. Results of closed-source models are borrowed from Qi
et al.[(2025)).

WebArena-Lite

Type Method Reddit Giflab CMS Map OSS Avg. SR

Base: Closed-Source Model

Prompting GPT-4-Turbo 10.5 16.7 143 367 133 17.6
Prompting GPT-40 10.5 10.0 20.0 200 11.1 13.9
Base: Q Llama-3.2-3B-Instruct

Prompting 0.0 0.0 0.0 1.7 32 1.2

Imitation Learning  Behavior Cloning 0.0 7.7 10.3 0.0 32 6.1

Early Experience Implicit World Modeling 0.0 15.4 24 13.8 9.7 8.5

Early Experience Self-Reflection 11.1 15.4 11.9 3.5 6.5 7.3

Base: (; Llama-3.1-8B-Instruct

Prompting 0.0 0.0 7.1 0.0 0.0 0.6
Imitation Learning  Behavior Cloning 0.0 0.0 0.0 11.9 8.0 4.9
Early Experience Implicit World Modeling 11.1 0.0 7.3 8.6 16.1 8.5

Early Experience Self-Reflection 0.0 15.4 119 103 32 8.5

Base: Q Llama-3.3-70B-Instruct

Prompting 11.1 15.4 17.1 7.1 32 9.1

Imitation Learning  Behavior Cloning 0.0 8.3 143 172 16.1 13.3
Early Experience Implicit World Modeling 8.3 16.7 16.7 190 194 16.4
Early Experience Self-Reflection 0.0 16.7 238 140 194 15.2
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