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ABSTRACT

Scaling inference-time compute for Large Language Models (LLMs) has unlocked
unprecedented reasoning capabilities. However, existing inference-time scaling
methods typically rely on inefficient and suboptimal discrete search algorithms
or trial-and-error prompting to improve the online policy. In this paper, we pro-
pose ∇-Reasoner, an iterative generation framework that integrates differentiable
optimization over token logits into the decoding loop to refine the policy on the
fly. Our core component, Differentiable Textual Optimization (DTO), leverages
gradient signals from both the LLM’s likelihood and a reward model to refine
textual representations. ∇-Reasoner further incorporates rejection sampling and
acceleration design to robustify and speed up decoding. Theoretically, we show
that performing inference-time gradient descent in the sample space to maximize
reward is dual to aligning an LLM policy via KL-regularized reinforcement learn-
ing. Empirically, ∇-Reasoner achieves over 20% accuracy improvement on a
challenging mathematical reasoning benchmark, while reducing number of model
calls by approximately 10-40% compared to strong baselines. Overall, our work
introduces a paradigm shift from zeroth-order search to first-order optimization at
test time, offering a cost-effective path to amplify LLM reasoning.

1 INTRODUCTION

Large Language Models (LLMs) have unlocked remarkable reasoning capabilities (Radford et al.,
2018; 2019; Brown et al., 2020), enabling machines to tackle challenges considered exclusive to
human cognition, such as solving complex mathematical problems (Cobbe et al., 2021; Lewkowycz
et al., 2022; Uesato et al., 2022; Lee et al., 2023; Yang et al., 2024b) and executing long-horizon
planning (Liu et al., 2023a; Valmeekam et al., 2023; Song et al., 2023). Such capabilities arise
through large-scale pre-training on massive datasets, followed by careful post-training alignment
(Wei et al., 2022a; Ouyang et al., 2022; Guo et al., 2025). A prevailing observation has indicated that
scaling both model size and training data leads to continual improvements in LLM reasoning ability
(Kaplan et al., 2020; Hoffmann et al., 2022).

Nevertheless, recent empirical findings increasingly suggest that scaling inference-time computation
can be also crucial and perhaps more cost-effective than expanding pretraining to further enhance
reasoning and problem-solving abilities (Snell et al., 2024). Chain-of-Thought (CoT) (Wei et al.,
2022b) demonstrates that prompting LLMs at the test time to generate longer sequences with
intermediate reasoning steps significantly improves their reasoning accuracy. Built on CoT, Wang
et al. (2022) further scales the inference compute by sampling multiple reasoning chains and selecting
the most consistent one, leading to enhanced performance. More recently, inference-time scaling
has been augmented with reward models to refine reasoning quality. Notable approaches such as
Tree-of-Thought (ToT) (Yao et al., 2024) and Reasoning-as-Planning (RAP) (Hao et al., 2023) cast
LLM reasoning as a decision-making problem and employ strategic sampling algorithms to estimate
the reward-to-go, thereby refining the sequential prediction policy at each decoding step. Underlying
these approaches are extensive prompting-based search procedures that traverse the sequence space,
with the LLM serving as a guiding heuristic. However, such approaches often struggle to adequately
explore the sample space and thus become sensitive to sparse and noisy reward signals as reasoning
chains grow longer and the search space expands exponentially. Consequently, their performance
tends to saturate even when inference-time computation is substantially increased.
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Figure 1: Comparison between zeroth-order and
first-order methods under the landscape of reward.

While existing methods fall into zeroth-order
algorithms that rely solely on reward values, we
note that first-order methods, providing direc-
tional guidance for optimization, can be even
more effective in searching for optimal solutions,
overcoming the sparsity of the reward landscape
(see an intuitive comparison in Fig. 1). In fact,
gradient information is readily available during
the LLM reasoning process, as both the LLM
and reward function can be differentiable. In
this paper, we introduce ∇-Reasoner, a novel
reasoning algorithm that applies inference-time gradient descent in the sample space to refine the
outputs of a base policy prior to next-token prediction. The overall pipeline follows an iterative
decoding process. At each step, the language model first generates a full completion together with its
per-token logits, serving as the initial rollout. The core component, termed Differentiable Textual
Optimization (DTO), then refines these token logits via gradient descent.

DTO formulates the reasoning process as a continuous optimization problem over the reward land-
scape, directly leveraging gradients to refine textual representations. Specifically, DTO applies
gradient descent to optimize the initial logit vectors from the base policy under an objective that
combines the reward function with the sequence-level log-likelihood estimated by the language
model. To enable end-to-end differentiability, we employ the straight-through estimator to map logit
parameters into one-hot token vectors (Bengio et al., 2013). In this formulation, the reward function
provides directional signals that guide tokens toward high-reward regions, while the log-likelihood
term regularizes the tuned sequences to remain fluent and consistent with the pre-trained LLM
distribution (Hoang et al., 2017; Qin et al., 2022; Kumar et al., 2022).

After refining the logits with DTO, ∇-Reasoner treats the optimized logits of the first token as an
improved policy and samples the next-token prediction from this updated distribution. We further
integrate∇-Reasoner with rejection sampling, which accepts the token drawn from the refined policy
only if it can yield continuation with higher reward; otherwise, the method reverts to the initial
choice. Through iteratively interleaving decoding and refinement,∇-Reasoner scales inference-time
reasoning by allocating additional computation to improve the LLM policy via gradient-based updates
on the output space, efficiently backended by the parallel execution of transformer models. To further
increase decoding throughput, we introduce a set of acceleration strategies that selectively skip tokens
unlikely to benefit from DTO and reuse rollouts shared among decoding steps.

Theoretically, we show that DTO enables bidirectional gradient propagation along the sequence,
facilitating global modifications that are crucial for effective reasoning (Bachmann & Nagarajan, 2024;
Hao et al., 2023). Furthermore, we establish a close connection between DTO and RL algorithms
(Schulman et al., 2017; Ouyang et al., 2022; Guo et al., 2025). We prove that sampling from an
optimized LLM trained with RL is equivalent to directly drawing samples from the reference LLM
and subsequently refining them through the gradient flow induced by DTO. This insight provides a
new theoretical perspective for test-time approaches for reasoning.

Empirically,∇-Reasoner significantly enhances the mathematical reasoning capabilities by 10-40%
across multiple models and benchmarks. It consistently outperforms strong inference-time baselines
such as Best-of-N and RAP (Hao et al., 2023), while achieving accuracy on par with more costly
training-based methods (e.g., GRPO). We further show that ∇-Reasoner scales compute more
effectively: by leveraging parallelized execution of attention, it can utilize more compute per model
forward pass. Henceforth, when comparing with sampling-only methods (e.g., BoN),∇-Reasoner
achieves superior results while reducing the number of model calls by up to 40.2%.

2 PRELIMINARIES

In this section, we formulate LLM reasoning as a decision-making problem, introducing the necessary
notations and common approaches to address this problem along the way.

Notations. Let V = {δi ∈ R|V| : i ∈ [|V|]} be the vocabulary set, where δi is the i-th canonical
basis and |V| is the vocabulary size. We denote a sequence over this vocabulary as x = [x1, · · · ,x|x|]
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where xl ∈ V is the l-th token for every i ∈ [|x|] and |x| represents the length of the sequence. We
also denote x≤i as the subsequence up to and including the i-th token, expressed as [x1, · · · ,xi].
The space of all sequences with finite length is given by V∗ =

⋃
l∈N V l.

Language Models and Reward Models. In this paper, we focus on autoregressive language
models (Radford et al., 2018; 2019; Brown et al., 2020), denoted as πLLM : V∗ → [0, 1]. The
language model can characterize the conditional probability of a question-answer pair. Given a pair of
questions and answers x,y ∈ V∗, the model estimates their likelihood by the following factorization:
πLLM (y|x) =

∏|y|
i=1 πLLM (yi|y≤i−1,x). We also denote Cat (πLLM (·|y≤i−1,x)) ∈ [0, 1]|V| as

the categorical distribution of yi given the prefix y≤i−1 and x. In addition, we define a reward model
as the function r : V∗ → R. r(y|x) evaluates the correctness of the response y for question x. In this
work, we mainly focus on outcome reward (Cobbe et al., 2021), which is often a sequence classifier,
offering an overall score for the entire response sequence. Our proposed method can also generalize
to process reward (Lightman et al., 2023).

Reasoning as Decision Making. Reasoning with LLMs can be framed as a search algorithm
that aims to identify a high-rewarding response: argminy∈V∗ −R(y|x). Due to the combinatorial
nature of this optimization, directly finding the optimal solution is intractable, as the search space
grows exponentially with the sequence length, i.e., |V||y|. In autoregressive decoding, this challenge
reduces to making sequential decisions for the next token, each of which must ultimately contribute
to minimizing −R(y|x). This decision process is often formalized via a Bellman equation:

π∗
LLM (·|y≤i−1,x) = argmax

yi∈V
Ey≥i+1∼π∗

LLM (·|yi,y≤i−1,x)[r(y≤i−1,yi,y≥i+1|x)], (1)

where π∗
LLM is a refined version of the original policy πLLM . The expected reward-to-go in Eq.

1 is also known as the Q-function. The recursive structure of this formulation implies that greedy
decoding is not globally optimal, and identifying the optimal next-token prediction inherently requires
look-ahead rollouts and backtracking (Yao et al., 2024; Hao et al., 2023; Besta et al., 2024).

Existing Approaches. Current techniques tackling LLM reasoning via decision making can be
broadly categorized into training-time and inference-time methods. Training-time approaches include
supervised fine-tuning (SFT) as well as model-free policy optimization techniques, such as Schulman
et al. (2017); Guo et al. (2025); Rafailov et al. (2024). Our focus is on inference-time methods, which
aim to improve the decoding process of an LLM without additional training. These methods are
typically model-based and value-based, seeking to refine an existing policy by directly solving the
Bellman equation. For example, Best-of-N (BoN) (Stiennon et al., 2020) tackles Eq. 1 by sampling N
independent full trajectories from a base policy y(1), · · · ,y(N) ∼ πLLM (·|x), and selecting the one
with the highest reward y∗ = argmaxy∈{y(1),··· ,y(N)} r(y|x). More structured approaches, such
as Tree-of-Thoughts (ToT) (Yao et al., 2024) and Reasoning-as-Planning (RAP) (Hao et al., 2023),
explore the solution space and approximate Q-functions stochastically on the fly through rollouts and
recursive evaluation.

3 REASONING WITH GRADIENT-DRIVEN DECODING

Overview. In this section, we introduce ∇-Reasoner, a novel reasoning algorithm that scales
inference-time computation by performing gradient descent in the sample space to refine the outputs
of a base policy. The overall pipeline, as illustrated in Fig. 2, is structured as an iterative decoding
process. Given a prefix x, the model first generates an initial response y(0). ∇-Reasoner then
represents the generated sequence through its per-token pre-softmax logits z(0) and optimizes
these logits via gradient descent to maximize the sequence-level reward r(y|x) (Sec. 3.1). After
optimization, ∇-Reasoner resamples the first token of the generated sequence using the fine-tuned
logits z̃1. If the resampled token differs from the original, the subsequent tokens are regenerated, and
this candidate token is accepted only if its yielded response achieves a higher reward under r(·|x)
(Sec. 3.2). The procedure then proceeds to the next token by incorporating the first generated token
into the prefix, and repeating this optimization-and-resampling loop. ∇-Reasoner scales inference-
time reasoning by allocating additional computation to optimize the policy’s outputs via iterative
gradient descent. To further improve efficiency, we propose a series of system co-design strategies
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Algorithm 1∇-Reasoner: Decoding with DTO

Require: Prompt x, language model πLLM , re-
ward model r, stop criteria StopCriteria(·).

1: repeat
2: y, z ∼ πLLM (·|x)
3: z̃ ← DTO(x,z, πLLM , r).
4: ỹ1 ∼ softmax(z̃1/τ).
5: if ỹ1 ̸= y1 then
6: ỹ, z̃ ∼ πLLM (·|ỹ1,x)
7: if r(ỹ, ỹ1|x) > r(y|x) then
8: x← concat[x, ỹ1]
9: else

10: x← concat[x,y1]
11: end if
12: else
13: x← concat[x,y1]
14: end if
15: until StopCriteria(x)
16: return x

Algorithm 2 Differentiable Textual Optimiza-
tion (DTO)

Require: Prefix x, initial logits z, language
model πLLM , reward model r, and the num-
ber of training steps T .

1: z(1) ← z
2: for t = 1, · · · , T do
3: for every i = 1, · · · , |y| do
4: j∗ ← argmaxj∈[|V|] z

(t)
ij

5: y
(t)
i ← δj∗ + softmax(z

(t)
i /τ) −

StopGrad(softmax(z
(t)
i /τ))

6: end for
7: Lnll = −

∑
i log πLLM (y(t)|y(t)

≤i−1,x)

8: Lreward = −r(y(t)|x).
9: L = Lnll + λLreward.

10: z(t+1) ← z(t) − η∇zL.
11: end for
12: return z(T )

Figure 2: Basic implementation of ∇-Reasoner. ∇-Reasoner is an iterative decoding algorithm
driven by DTO. At each decoding step, DTO applies gradient descent on the logits initialized from
the base model to optimize a reward-informed loss to refine the policy. The updated policy is then
combined with rejection sampling, leading to high-reward responses. The pseudocode for the full
implementation with acceleration techniques (Sec. 3.3) is deferred to Appendix B.

that selectively skip tokens unlikely to benefit from optimization and reuse model outputs and KV
caches to accelerate decoding (Sec. 3.3).

3.1 DIFFERENTIABLE TEXTUAL OPTIMIZATION

The core step of our algorithm is leveraging gradient information to refine an initial response generated
by the base policy. Existing reward-guided decoding methods (Wei et al., 2022b; Wang et al., 2022;
Yao et al., 2024; Hao et al., 2023) can be regarded as zeroth-order approaches, as they rely solely on
reward values. However, reward feedback is often sparse, and searching for improved solutions based
only on scalar reward values can be sample-inefficient, particularly when the base policy is weak. We
note that most reward models are inherently differentiable, as they are typically implemented with
transformer-based sequence classifiers (Stiennon et al., 2020; Ouyang et al., 2022; Dong et al., 2024).
This opens the door to exploiting not just reward values but also reward gradients, which provide
richer directional information to guide samples toward high-reward regions. Motivated by this, we
reformulate the search problem in Eq. 1 as a gradient-based differentiable optimization. We term this
approach Differentiable Textual Optimization (DTO), which differentiates reward over token space
for progressive response improvement.

Objective. Our overall goal is to refine a given sequence of tokens y(0) so as to maximize the reward.
However, directly maximizing r(y|x) risks reward hacking (Pan et al., 2022), as the optimization
trajectory of y may drift away from the distribution under which r(y|x) is well-calibrated – typically
the prior distribution induced by πLLM . To mitigate this, we constrain y to remain within the
high-density region of πLLM . Concretely, we regularize the log-likelihood of y, thereby penalizing
deviations from the distribution represented by the language model. The resulting objective function
to be minimized is given by:

L(y) := −λr(y|x)− log πLLM (y|x), (2)

where λ > 0 is a hyper-parameter to balance the reward value and the regularization term. Intuitively,
Eq. 2 seeks a response y that not only achieves a high reward but also maintains fluency and
faithfulness in natural language (Kumar et al., 2021; Qin et al., 2022; Yuan et al., 2025). To estimate
the log-likelihood log πLLM (x|y), we decompose it sequentially from left to right, which results in
the next-token prediction loss: log πLLM (y|x) =

∑|y|
i=1 y

⊤
i log Cat (πLLM (·|y≤i−1,x)).
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Parameterization. The token space of y is a discrete where gradients cannot directly oper-
ate. Therefore, we propose to parameterize the tokens via the underlying logit vectors used to
sample them. At the initialization stage, we use the LLM-generated logits to initialize z(0) ∈
R|y(0)|×|V|. During optimization, we use Gumbel-softmax straight-through trick to parameterize
y
(t)
i = δ

argmaxj∈|V| z
(t)
ij

+ softmax(z
(t)
i /τ) − StopGrad(softmax(z

(t)
i /τ)) (Bengio et al., 2013;

Jang et al., 2016), where δi denotes the i-th canonical basis and τ > 0 is the temperature coef-
ficient. By this means, gradient descent can be equivalently performed on the space of z(t) as:
z(t+1) = z(t) − η∇zL(z(t)).

As we will demonstrate in Sec. 4, the gradient of L propagates information bidirectionally. Preceding
tokens act as a regularizer on successive tokens, enforcing consistency with the autoregressive
generation process, while trailing tokens propagate outcome-level reward signals and full-sequence
alignment back to earlier tokens through attention. This implements a closed-loop control of earlier
predictions influencing subsequent decoding steps, thereby capturing the key recursive structure of
reasoning characterized in Eq. 1. Furthermore, in Sec. 4, we establish a close connection between
DTO, which optimizes directly in the sample space, and policy-optimization (e.g., PPO) that operate
in the parameter space. We show that DTO provably shifts the drawn samples toward the reward-
maximizing distribution induced by the original policy.

3.2 ITERATIVE DECODING WITH DTO

In this section, we elaborate on the detailed iterative generation process with DTO integrated for
policy improvement. Akin to autoregressive decoding, ∇-Reasoner generates the full response token
by token. The sampling of each token consists of the following two steps:

Policy Improvement via DTO. Starting from a prefix x ∈ V∗, we let the LLM πLLM generate a
continuation sequence y(0) along with its pre-softmax logits z(0). We then apply the DTO algorithm
to optimize z(0) for T steps, yielding refined logits z̃. The logits corresponding to the first token are
treated as the improved policy for predicting the immediate next token, intentionally adjusted to yield
higher reward when used to generate the continuing responses. Accordingly, we resample the next
token from this updated policy: ỹ1 ∼ softmax(z̃1/τ).

Rejection Sampling. Once a new next-token candidate ỹ1 is obtained, we first compare it with
the initial prediction y1. If ỹ1 = y1, no effective policy update occurs, and we proceed directly to
the next token for policy refinement. If ỹ1 ̸= y1, we perform an additional rollout conditioned on
ỹ1 as the next token, yielding a new response ỹ. Both y and ỹ are then evaluated under the reward
function, and the token that yields a full response with the higher reward is retained.

Test-Time Scaling. We scale computation in∇-Reasoner along two axes: (1) increasing the number
of gradient update steps used by DTO to refine the policy, and (2) performing rejection sampling
among rollouts yielded by the original and updated policy. Comparatively, allocating additional
compute to gradient-based optimization is not only more effective in incorporating reward signals
into the policy, but also more efficient than purely autoregressive decoding. This efficiency arises
because computing the full-sequence gradient∇zL leverages the parallel execution of transformers:
a single gradient step propagates updates across all tokens within one model call, whereas a standard
autoregression generates only a single token per model call. As we will show in Sec. 5.4, sampling
from the policy refined by DTO yields a significantly higher chance of reward improvement.

3.3 ACCELERATING ∇-REASONER

The naive implementation of∇-Reasoner is inefficient due to two primary bottlenecks: (1) decoding
each token requires a full optimization procedure, where each step involves backpropagation through
two large models; and (2) generating a single token requires an additional full rollout. In this section,
we demonstrate that ∇-Reasoner is amenable to several strategies that significantly accelerate both
optimization and generation, while adaptively allocating compute to the tokens that matter most.
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Gradient Caching. The gradient backpropagated to the logits z can be decomposed via the chain
rule as: ∇zL = ∂z

∂y
∂L
∂y , wherein the term ∂L

∂y dominates the computational cost, since it requires a
full forward and backward pass through both the language model and the reward model. However,
we observe that y – the one-hot vectors indicating the maximal entries in the soft logits z – changes
infrequently as optimization proceeds. Exploiting this property, we cache the gradient ∂L

∂y once
computed, and reuse it until the maximal entries of z flip. In our implementation, we retain the
cached gradient gi = ∂L

∂yi
for every i ∈ [|y|] whenever y is updated, and otherwise recover it

efficiently using the surrogate loss Lcache =
∑|y|

i=1 y
⊤
i gi to recover the saved gradients {gi}i∈[|y|]

whenever y remains unchanged from the previous iteration. See Algorithm 4 in Appendix B.

Rollout Trajectory Reusing. We further note that the rollout strategy can be improved to reduce
unnecessary computation and better leverage the KV cache. In the naive implementation (Sec. 3.2 or
Algorithm 1),∇-Reasoner generates a sequential rollout to optimize the next-token prediction policy
for every decoding step. However, the rollout trajectory, including both tokens and logits, continuing
from the previously accepted token can be directly reused as the rollout for the subsequent token. In
Algorithm 1, we skip the rollout at the beginning of each step and reuse y≥2 and z≥2 as the rollout
for the next token if the resampled token ỹ is rejected; otherwise, we continue with ỹ and z̃ for the
next step. We also limit the total number of rollouts as Nmax. Once the total number of rollouts
exceeds the Nmax, we terminate the iterative policy refinement and generate the remaining tokens
using standard autoregressive decoding. See more details in Algorithm 3 in Appendix B.

Confidence- and Gradient-Guided Token Selection. Running DTO to optimize the policy at
every decoding step can result in redundant computation. We observe that token logits with either
high confidence (see Appendix C.3) or small gradients are unlikely to be modified under DTO. To
address this, we introduce two selection criteria, entropy-based and gradient-based to determine
which tokens should undergo policy refinement. Specifically, we define two hyperparameters, ϵent
and ϵgrad. DTO is applied only when the entropy of the token logits satisfies H(z1) > ϵent and
the gradient magnitude exceeds ∥∇z1L∥2 > ϵgrad, where H(·) denotes the entropy of a categorical
distribution. We refer readers to Algorithm 4 in Appendix B for more details.

4 THEORETICAL ANALYSIS

Interpretation of Gradient Updates. We analyze the gradient of L to reveal how DTO updates
the response. The derivatives in terms of the l-th token ∂L/∂xl under loss Eq. 2 can be decomposed
as follows:

∂L
∂yi

= − log Cat (πLLM (·|y≤i−1,x))︸ ︷︷ ︸
δprefix

−
|y|∑

j=i+1

∂ log Cat (πLLM (·|y≤j−1,x))

∂yi
x︸ ︷︷ ︸

δpostfix

−λ ∂r(y|x)
∂yi︸ ︷︷ ︸

δreward

.

We defer the derivation to Appendix C.1. The first term, δprefix, updates the token xi based on its
preceding context, aligning the next-token policy with the autoregressive prediction probabilities
produced by the language model. The second term, δpostfix, propagates information from subsequent
tokens through the attention mechanism, encouraging global consistency with respect to its future
context. Finally, the reward gradient δreward provides a sequence-level signal, transmitting information
from later tokens to yi via attention. As highlighted by Bachmann & Nagarajan (2024), the order of
generation plays a crucial role in complex reasoning or algorithmic tasks. Pure left-to-right generation
can fall short of error accumulation, making it insufficient for intricate logical reasoning processes.
An ideal decoding method for reasoning should allow for iterative refinement of the reasoning chain
in both forward and backward directions (Yao et al., 2024; Hao et al., 2023).

Inference-Time Gradient Descent is “Deamortized” PPO. We theoretically establish the connec-
tion between the test-time textual optimization and parametric RL-based training. RLHF (Schulman
et al., 2017; Ouyang et al., 2022) and RLVR (Guo et al., 2025; Shao et al., 2024) have been demon-
strated to be particularly effective for mathematical reasoning tasks (Wang et al., 2023a; Zhao et al.,
2023; Dong et al., 2024; Shao et al., 2024). The primary objective of RL is to fine-tune a pre-trained
LLM using RL algorithms, ensuring that its responses to specific prompts maximize a given reward
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function. Among various RL algorithms, KL-regularized approaches, such as Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017), have been widely adopted in practice. In this section, we
uncover the hidden connection between PPO and our proposed DTO. Formally, let ρ : V∗ → R
represent an LLM to be aligned with the reward function r, initialized from the pre-trained policy
πLLM . PPO optimizes for ρ by minimizing the following functional objective defined over the space
of distributions:

LPPO(ρ) :=− Ey∼ρ[λr(y)] +DKL(ρ∥πLLM ), (3)

where the first expectation term estimates the expected reward, while in the second term, the KL-
divergence regularizes the distributional discrepancy between ρ and πLLM . Assuming LLMs’ input
domain can be extended to the ambient space beyond discrete vocabularies, then we can show the
relation between (stochastic) gradient flow of Eq. 2 and functional solution to PPO:

Theorem 4.1. Suppose {ρt}t≥0 denotes the Wasserstein gradient flow minimizing Eq. 3 in the
distribution space with boundary conditions ρ0 = πLLM and ρ∞ = ρ∗ = argminρ LPPO(ρ). Then
we can draw samples from ρ∗ by first initializing x0 ∼ πLLM and simulating a trajectory {xt}t≥0

following the stochastic gradient flow of Eq. 2: dxt

dt = −∇L(xt)+
√
2ϵt, where {ϵt ∈ N (0, I)}t≥0

are Brownian motions.

Theorem 4.1 is proved in Appendix C.2. Theorem 4.1 shows that instead of optimizing the entire
policy to satisfy the reward function w.r.t. Eq. 3, there exists a trajectory driven by the gradients
of Eq. 2 on the sample space that can directly generate samples from the optimal distribution
minimizing Eq. 3. Pre-training scaling and test-time scaling can be unified and interpreted through
Theorem 4.1 as two complementary forms of statistical inference: parametric and non-parametric
(particle-based) inference (Liu & Wang, 2016; Chen et al., 2018). The pre-training stage corresponds
to parametric inference: a global parameter is optimized to minimize the overall loss across a dataset,
amortizing the cost of individual samples into a shared parameter. Increasing the size of this parameter
space enhances the model’s representational capacity, thereby reducing the average cost per sample.
In contrast, test-time scaling via DTO is analogous to non-parametric inference, which performs
optimization in the sample space, treating each sample as an independent “particle” that minimizes
its own cost. This allows for fine-grained adaptation at the individual sample level. The Wasserstein
gradient flow provides a mathematical framework to describe the relationship between the dynamics
of measures (global distributions) and individual samples, thereby bridging the conceptual gap
between pre-training scaling and test-time scaling.

5 EXPERIMENTS

5.1 RESULTS ON MATH REASONING

Experiment Details. Tab. 1 compares our test-time method, ∇-Reasoner, against a variety of
baselines. We benchmark its performance against other test-time approaches, including greedy
decoding, Self-Consistency (SC) (Xie et al., 2024), Best-of-N (BoN) (Stiennon et al., 2020), tree-
search based methods: Tree-of-Thought (ToT) (Yao et al., 2024) and Reasoning via Planning
(RAP) (Hao et al., 2023), and the iterative refinement approach: TPO (Li et al., 2025). Additionally,
we include training-based methods such as Supervised Fine-Tuning (SFT) and GRPO (Guo et al.,
2025) for a comprehensive comparison. We evaluate two model families, Qwen-2.5-math (Yang
et al., 2024a) and Llama-3.1 (Grattafiori et al., 2024), on four representative mathematical reasoning
benchmarks: MATH-500 (Hendrycks et al., 2021), AIME24, AIME25, and AMC (LI et al., 2024). We
leverage reward models from the Skywork-V2 family (Liu et al., 2025): for Skywork-V2-Qwen-4B
for Qwen-based models and Skywork-V2-Llama-8B for Llama family models. For BoN and SC, we
let N = 8 to match Nmax = 8 used in our methods. For TPO, we set the number of samples per
step as Nsamples = 2 and the number of refinement steps as Nrefine = 2. For ToT and RAP, we
adopt the default hyperparameters in Hao et al. (2024) to yield meaningful results. Please refer to
Appendix D for more experimental details.

Performance Comparison. Our method shows superior performance across all models and bench-
marks on test-time methods. We even reach comparable performance with training-based methods.
Specifically, with the Qwen-2.5-7B base model, our approach achieves the highest scores among
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Table 1: Accuracy (%) on math reasoning datasets compared with baseline methods, including
both test-time and training-time approaches. We skip results on AIME datasets for Llama-3.1-8B
as it is incapable of generating reasonable performance. We mark the best performer in bold and
the runner-up with underline. Our method outperforms all test-time baselines and even achieves
performance on par with the training-based methods (SFT and GRPO), respectively.

Models Methods MATH-500 AMC AIME24 AIME25

Qwen-2.5-7B

Greedy decoding 43.8 33.0 6.7 6.7
SC (Xie et al., 2024) (N = 8) 69.8 49.4 22.5 20.0
BoN (Stiennon et al., 2020) (N = 8) 70.2 50.1 22.5 13.3
ToT (Yao et al., 2024) 57.8 42.4 6.7 10.0
RAP (Hao et al., 2023) 68.6 50.1 18.3 14.2

SFT (Ouyang et al., 2022) 65.8 36.4 6.3 11.7
GRPO (Guo et al., 2025) 70.8 52.8 20.8 16.7
∇-Reasoner (Nmax = 8) 71.0 51.5 23.3 15.0

Qwen-2.5-7B-Instruct

Greedy decoding 71.2 43.0 5.3 7.5
SC (Xie et al., 2024) (N = 8) 76.6 55.5 25.0 22.5
BoN (Stiennon et al., 2020) (N = 8) 77.8 55.9 22.5 18.3
ToT (Yao et al., 2024) 75.4 48.2 20.0 18.3
RAP (Hao et al., 2023) 80.2 54.6 1.6 12.5
TPO (Li et al., 2025) 77.6 55.9 6.7 11.1

∇-Reasoner (Nmax = 8) 80.4 56.8 26.6 20.0

Llama-3.1-8B-Instruct

Greedy decoding 40.6 19.3 - -
SC (Xie et al., 2024) (N = 8) 54.8 25.7 - -
BoN (Stiennon et al., 2020) (N = 8) 52.2 26.1 - -
ToT (Yao et al., 2024) 50.2 25.6 - -
RAP (Hao et al., 2023) 55.4 25.8 - -

SFT (Ouyang et al., 2022) 46.6 20.2 - -

∇-Reasoner (Nmax = 8) 55.8 28.9 - -

test-time methods on MATH-500 (71.0%) and AIME24 (23.3%), and remains highly competitive
with the training-based GRPO method (trained with 35k examples). The advantage is even more
pronounced with the instruction-tuned Qwen-2.5-7B-Instruct and Llama-3.1-8B-Instruct, where our
method again leads all other approaches on all benchmarks. Notably, on Qwen-2.5-7B-Instruct, our
method scores 80.4% on MATH-500 and 56.8% on AMC, and on Llama-3.1-8B-Instruct, our method
achieves 55.8% on MATH-500 and 28.9% on AMC. In the meantime, we also provide an example to
show how ∇-Reasoner works in real-world scenarios in Appendix D.3.

5.2 COST COMPARISON

We note that ∇-Reasoner can exhibit an efficiency advantage by utilizing compute more effectively.
This stems from∇-Reasoner’s ability to leverage parallelized attention execution to compute gradients
and update the decoding-time policy on the fly, which often leads to a small practical runtime. To
capture this advantage, we propose using the number of model calls as a surrogate theoretical
efficiency metric. This metric counts both a single recurrent computation and a parallel forward pass
as one model call. The choice is motivated by the practical observation that, under ideal attention
parallelization, a single model call – regardless of whether it is executed recurrently or in parallel –
can incur comparable wall-clock cost. Thus, it serves as a unifying metric that reflects algorithmic
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Figure 3: A comparison of computational cost, measured by the number of model calls. Our method
reduces costs by up to 40.2% compared to baselines.
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complexity under idealized system-level and hardware optimizations, while mitigating discrepancies
arising from implementation details (e.g., compatibility with serving engines).

Fig. 3 compares the computational cost of our method with several baselines. For fair comparison, we
set the number of generated samples to 8 for all approaches (N = 8 for SC and BoN, and Nmax = 8
for our ∇-Reasoner). Our method delivers superior performance at a significantly lower cost than SC
and BoN. For instruction-tuned models, it reduces the number of model calls by up to 40.2%, while
for base models, it outperforms all baselines using only about 90% of this metric. The reason for the
reduced cost is twofold: (1) with confidence- and gradient-guided selection, rollouts usually start from
the middle of the sequence, instead of from the beginning as BoN and SC do; (2) the optimization cost
with gradient caching remains lightweight while our DTO enables efficient parallelizable execution
of transformers and revision of tokens. These results imply that ∇-Reasoner has stronger prospects
for achieving inference efficiency. Unlike trial-and-error–based test-time scaling methods (e.g., BoN),
which repeatedly resample outputs without guidance, our method updates the decoding policy in a
targeted and strategic fashion.

Table 2: Wall-clock time measurements.
Method BoN (N = 8) SC (N = 8) Ours (Nmax = 8)

AMC 21.9 s 23.5 s 23.6 s
AIME 40.3 s 39.5 s 41.1 s

In the meantime, we measure and compare the
wallclock running time of our methods with
others on AMC and AIME dataset in Tab. 2.
The experiment was conducted on the AIME-
25 dataset using the Qwen-2.5-math-Instruct-7B
model running on eight 80GB NVIDIA A100 GPUs. Note that to mitigate the implementation
discrepancies, we do not exploit dynamic serving engines for LLM inference. Even though our
approach currently demonstrates a similar running time to BoN, we emphasize that ∇-Reasoner
has greater potential to leverage compute more effectively by executing transformers in parallel
mode. While BoN can potentially benefit from highly optimized serving engines, we speculate that
integrating the optimization procedure of ∇-Reasoner better with the generation pipeline would
create a much larger efficiency gap between our method and inference-only approaches.

5.3 TEST-TIME SCALING LAW
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Figure 4: Test-time scaling curves comparing our method with BoN and SC. We change the number
of samples N for BoN and SC and number of rollouts Nmax for our method. The results show
∇-Reasoner achieves superior performance with reduced cost across multiple models.

We present our test-time scaling curves in Fig. 4, comparing our method against Best-of-N (BoN)
and Self-Consistency (SC). The figure plots accuracy against computational cost, showing how
each method’s performance scales as more resources are used. As is evident across all models, our
method’s curve consistently lies above the baselines. This indicates that for any given computational
budget (number of calls), our approach achieves a higher accuracy. These results demonstrate that
∇-Reasoner offers a superior trade-off between performance and computational cost, establishing a
more efficient frontier compared to these sample-heavy techniques.

5.4 ALGORITHM ANALYSIS
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Table 3: Ablation study on reward model choice.
Model Skywork-Qwen3-4B Skywork-Qwen3-8B
MATH-500 80.4 80.8 (+0.4)
AMC 56.8 57.1 (+0.3)

Dependencies on Reward Models. Our
approach relies on the gradient signal from
the reward model to optimize policy at test
time. To study the dependency on the qual-
ity of reward models, we further evaluate
our approach on Qwen2.5-Math-7B-Instruct paired with the larger Skywork-Reward-V2-Qwen3-8B
reward model. We note that our original choice Skywork-Reward-V2-Qwen3-4B is a smaller and
weaker reward model according to the RewardBench (Malik et al., 2025). According to the Tab. 3,
the performance gap between the 4B and 8B variants remains consistently below 1 point across both
MATH-500 and AMC. This indicates that using a smaller reward model does not lead to significant
performance degradation compared with the larger, stronger version. This justifies our original choice
(in Tab. 1) and further suggests that smaller reward models may even be preferable for improving
efficiency.

Table 4: Analysis of rejection rate (%) in rejection
sampling. We set N = 8 for the BoN baseline
and also set Nmax = 8 for our ∇-Reasoner. The
theoretical rejection rate of the baseline is 66.0%.

Model Baseline ∇-Reasoner

Qwen-2.5 65.9 32.8
Qwen-2.5-Instruct 66.5 28.9
Llama-3-Instruct 66.9 40.1

Rejection Rate Analysis. As described in
Sec. 3.2 and Algorithm 1, ∇-Reasoner first ap-
plies DTO to directly optimize the policy in the
logit space, and then compares a continuation ỹ
generated from a resampled token with the origi-
nal rollout sequence y. The token sampled from
the optimized policy is adopted only if it yields
a continuation with a higher reward. Henceforth,
it becomes essential to quantify the acceptance
rate of tokens drawn from the optimized policy
in order to justify the effectiveness of DTO.

To this end, we measure the rejection rate, defined as the percentage of candidates produced by
DTO that are rejected for failing to improve the reward. For comparison, we also evaluate this
metric on a baseline that performs rejection sampling without DTO, which is equivalent to BoN.
Theoretically, performing rejection sampling N times over an identical distribution yields a rejection
rate of 1− (

∑N
k=1 1/k)/N that converges to one as N →∞. For N = 8, the expected rejection rate

is approximately 66.0%. We report our measured rejection rate in Tab. 4. We report the empirical
rejection rates in Tab. 4. The results show that rejection sampling without DTO closely matches the
theoretical prediction, while rejection sampling with DTO significantly reduces the rejection rate (by
up to 30%). This confirms that DTO is effective in improving the next-token policy, producing tokens
that lead to continuations with higher rewards.

6 CONCLUSION AND LIMITATIONS

We presented ∇-Reasoner, an inference-time reasoning framework that introduces Differentiable
Textual Optimization (DTO) to refine token logits via gradient-based optimization. By combining
gradient signals from both the LLM likelihood and a reward model,∇-Reasoner enables more effec-
tive policy improvement than zeroth-order search methods, while incorporating rejection sampling
and speedup techniques to boost effectiveness and efficiency. Theoretically, we show that aligning
with a reward function is equivalent to gradient-based optimization in the sample space. ∇-Reasoner
delivers substantial performance gains over base models while consistently reducing computation
cost, illustrating a sharper and more efficient scaling paradigm for LLM reasoning.

Limitations. In line with previous observations (Yue et al.), the performance of∇-Reasoner appears
to remain bounded by the capabilities of the underlying base model and reward model, particularly
under limited computation. The base and reward models are required to share the same vocabulary
to allow for end-to-end logit optimization. Moreover, integrating ∇-Reasoner into efficient LLM
serving pipelines requires more careful system co-design to incorporate test-time gradient descent.

ETHICS STATEMENT

This research primarily concentrates on developing inference algorithms to enhance reasoning in
large language models (LLMs), with a particular emphasis on mathematical reasoning. It relies solely
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on extant LLMs and does not involve training, fine-tuning model weights, or creating new LLMs. As
a result, the work does not raise any novel domain-specific ethical considerations or societal impacts
beyond those already well-documented in relation to large-scale language models more broadly.

REPRODUCIBILITY STATEMENT

We include pseudocode plus a detailed version in both the main text and Appendix B. Complete
derivations and proofs are provided in Appendix C. Additionally, Appendix D contains the full list of
hyperparameters, datasets, and model checkpoints required to reproduce our experimental results.

THE USE OF LARGE LANGUAGE MODELS

Large language models are used solely for sentence-level proofreading. All research ideation and
paper writing were originally carried out by the authors.
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A OTHER RELATED WORK

Scaling LLM Reasoning at Inference Time. The paradigm of scaling inference-time compute
has emerged as a powerful strategy to amplify the reasoning capabilities of LLMs. Chain-of-thought
(CoT) prompting Wei et al. (2022b) pioneered this direction by eliciting multi-step reasoning explicitly.
Subsequent works scale inference-time compute by sampling more reasoning chains or exploring
larger reasoning spaces. For instance, Best-of-N (BoN) (Stiennon et al., 2020; Nakano et al., 2021)
and Self-consistency (SC-CoT) Wang et al. (2022) repeatedly sample multiple chains and select the
best one using heuristics such as predefined rewards or the consistency. More advanced approaches
have introduced various search algorithms to efficiently explore the reasoning space Yao et al. (2024);
Besta et al. (2024); Hao et al. (2023; 2024). Tree-of-thought (ToT) Yao et al. (2024) formulates
reasoning as a tree search problem, where the LLM generates thoughts while heuristic rewards
guide tree traversal. RAP Hao et al. (2023; 2024) employs Monte Carlo Tree Search (MCTS) to
strategically balance exploration and exploitation in the search space. Recent work by Snell et al.
(2024) further formalizes the empirical benefits of test-time compute scaling. In contrast to these
sampling and search-based methods, our work proposes gradient-based optimization to traverse the
reward landscape more efficiently, bypassing the trial-and-error inefficiencies of sampling approaches.
Notably, our method is orthogonal to recent RL-trained methods for test-time scaling, such as
OpenAI’s o1 and DeepSeek’s R1 – our method can be directly applied to these models to refine their
long CoT inference, though we leave this exploration to future work.

Inference-time Constrained Decoding. Constrained decoding is a traditional problem to study
in text generation, with popular applications including controllable text generation and preference
alignment. Recently, inference-time alignment has been heavily studied to align LLMs with human
values as alignment rewards Li et al. (2023); Huang et al. (2024); Khanov et al. (2024). Most of them
formulate the problem as a reward-guided search process. More relevantly, controllable text generation
has leveraged energy-based models (EBMs) (Kumar et al., 2021; Qin et al., 2022; Kumar et al.,
2022; Mireshghallah et al., 2022; Liu et al., 2023b; Yuan et al., 2025) to relax discrete text sequences
into continuous spaces, which enables gradient-based optimization (e.g., Langevin dynamics) to
steer generation toward objectives defined by arbitrary energy functions. While sharing similar
reward-constrained decoding principles and gradient-based methodologies, end-to-end sequence
optimization is notoriously unstable, often producing broken sequences or failing to converge, which
limits its applicability to reasoning tasks. In contrast, our approach introduces an efficient and novel
gradient-based framework integrated with the iterative decoding, tailored for reasoning tasks.

Prompt Optimization. A distinct but related line of research focuses on optimizing prompts
rather than decoding sequences. Established principles from the above sections apply here as well.
Search-based methods Zhou et al. (2022); Wang et al. (2023b); Pryzant et al. (2023); Yuksekgonul
et al. (2024) iteratively refine the prompts through automated trial-and-error, while gradient-based
approaches include directly optimizing soft prompts Li & Liang (2021); Lester et al. (2021), or
searching for discrete prompts via gradients Shin et al. (2020); Shi et al. (2022); Wen et al. (2024).
Although these techniques share conceptual similarities with our method, esp. the gradient-based
optimization methods, they operate on the input (prompt) space rather than the output (reasoning
chain) space. Our work focuses on optimizing reasoning trajectories directly, complementing rather
than competing with prompt optimization methods – future work could explore synergies between
the two paradigms.

Continuous Latent Space Reasoning. Another line of research explores reasoning in a continuous
latent space, bypassing discrete token-level operations. These approaches typically perform iterative
refinement on the model’s hidden states to solve reasoning problems. For example, some methods
frame reasoning as an energy minimization process (Du et al., 2022) or a fixed-point iteration problem
within the latent space, which can be parallelized for efficiency (Wu et al., 2025). Others propose
increasing test-time compute by applying recurrent updates to latent representations, effectively
deepening the model’s computation on-the-fly (Geiping et al., 2025). This paradigm has also been
supported by specialized pre-training objectives that encourage models to ”ponder” in a continu-
ous space (Zeng et al., 2025) and has received theoretical analysis under the lens of continuous
chain-of-thought (Zhu et al., 2025). While conceptually related in their use of iterative refinement,
these methods are fundamentally different from ours. They operate within the LLM’s latent space,
modifying internal hidden representations. In contrast, our work, ∇-Reasoner, performs optimization
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Algorithm 3 ∇-Reasoner: Decoding with DTO

Require: Prompt x, language model πLLM , reward model r, stop criteria StopCriteria, and the
maximal number of rollouts Nmax.

1: y, z ∼ πLLM (·|x)
2: Nr ← 1
3: repeat
4: if H(z1) ≥ ϵent and ∥∇z1

L∥2 ≥ ϵgrad then ▷ Token selection (Sec. 3.3).
5: z̃ ← DTO(x,z, πLLM , r). ▷ Policy refinement with DTO (Sec. 3.1).
6: end if
7: ỹ1 ∼ softmax(z̃1/τ).
8: if ỹ1 ̸= y1 then
9: ỹ, z̃ ∼ πLLM (·|ỹ1,x)

10: Nr ← Nr + 1
11: if r(ỹ, ỹ1|x) > r(y|x) then ▷ Rejection sampling (Sec. 3.2)
12: x← concat[x, ỹ1]
13: y ← ỹ, z ← z̃ ▷ Rollout reusing (Sec. 3.3)
14: continue
15: end if
16: end if
17: x← concat[x,y1]
18: y ← y≥2, z ← z≥2 ▷ Rollout reusing (Sec. 3.3)
19: if Nr ≥ Nmax then ▷ Early stop (Sec. 3.3).
20: x← concat[x,y]
21: break
22: end if
23: until StopCriteria(x)
24: return x

directly in the output space. We manipulate the token logits, a continuous relaxation of the discrete
vocabulary, guided by reward gradients. This direct textual optimization allows us to refine the
reasoning chain itself at inference time without altering the base model’s internal forward pass or
requiring any specialized training, uniquely positioning our method as a post-hoc, gradient-based
search algorithm over the sequence space.

B IMPLEMENTATION

B.1 PSEUDOCODE

In Algorithms 1 and 2, we present a basic implementation for ∇-Reasoner. Below we give a detailed
pseudocode for a full version with all acceleration techniques integrated (Sec. 3.3). In Alg. 3, we
list the complete version of iterative decoding with confidence- and gradient-guided token selection,
rollout reusing, and early stop techniques. In Alg. 4, we present the full DTO algorithm with gradient
caching. We note that these techniques significantly accelerate the decoding speed of∇-Reasoner, as
demonstrated in Sec. 5.

B.2 GENERALIZATION TO PROGRESS REWARD.

The reward function can take different forms: it may provide an outcome reward (Cobbe et al., 2021),
offering an overall score for the entire response sequence, or a process reward (Lightman et al., 2023),
which assesses individual intermediate steps and assigns a series of scores accordingly. Thus, beyond
a single reward defined over the whole sequence, we denote the total reward as the sum of rewards
obtained from different subsequences: R(y|x) =

∑|y|
l=1 r(y≤l|x). In the case of an outcome reward,

the reward is only assigned at the end of the response sequence, meaning r(y≤l|x) = 0 if l < |y|.
Conversely, when using a process reward, rewards are assigned incrementally, with r(y≤l|x) ̸= 0
only if yl is an end token of a thought (Xiong et al., 2024). Our framework can seamlessly incorporate
a progress reward by replacing r(y|x) with this generalized version R(y|x).
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Algorithm 4 Differentiable Textual Optimization (DTO)

Require: Prefix x, initial logits z, language model πLLM , reward model r, and the number of
training steps T .

1: ŷ ← None
2: g1, g2, · · · ← None
3: while t < T do
4: for every i = 1, · · · , |y| do
5: j∗ ← argmaxj∈[|V|] z

(t)
ij

6: y
(t)
i ← δj∗ + softmax(z

(t)
i /τ)− StopGrad(softmax(z

(t)
i /τ))

7: end for
8: if y ̸= ŷ then
9: Lnll = −

∑|y(t)|
i=1 log πLLM (y(t)|y(t)

≤i−1,x)

10: Lreward = −r(y(t)|x).
11: L = Lnll + λLreward. ▷ Eq. 2
12: ŷ ← y
13: gi ← ∂L

∂y
(t)
i

for every i ∈ [|y(t)|] ▷ Gradient caching (Sec. 3.3)

14: else
15: L =

∑|y(t)|
i=1 g⊤

i y
(t)
i ▷ Surrogate loss with cached gradient (Sec. 3.3)

16: end if
17: z(t+1) ← z(t) − η∇zL.
18: t← t+ 1.
19: end while
20: return z(T )

C DEFERRED THEORY

C.1 GRADIENT DERIVATION OF L

We derive the gradients of Eq. 2 summarized as the following proposition. We consider the
generalized reward function which is written as a summation over rewards defined over different
subsequences (Sec. B.2).

Proposition C.1. The gradient of loss function L(y) = −λ
∑|y|

i=1 r(y≤i|x)− log πLLM (y|x) takes
the form of ∂L(y)

∂yl
= δprefix + δpostfix + λδreward where:

δprefix = − log Cat (πLLM (·|y≤l−1,x)) , (4)

δpostfix = −
|y|∑

i=l+1

∂ log Cat (πLLM (·|y≤i−1,x))

∂yl
y, (5)

δreward = −
|y|∑
i=l

∂r(y≤i|x)
∂yl

. (6)

Proof. The proof is done by elementary derivative calculation. First of all, we write down the
expanded expression of the loss function:

L(y) = −λ
|y|∑
i=1

r(y≤i|x)−
|y|∑
i=1

log πLLM (yi|y≤i−1,x) (7)

= −λ
|y|∑
i=1

r(y≤i|x)−
|y|∑
i=1

∑
v∈[|V|]

yi,v log πLLM (ev|y≤i−1,x) (8)
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For a specific token index l ∈ [|y|], we decompose the loss into five components:

L(y) = −λ
l−1∑
i=1

r(y≤i|x)︸ ︷︷ ︸
Φ1

−λ
|y|∑
i=l

r(y≤i|x)︸ ︷︷ ︸
Φ2

−
l−1∑
i=1

∑
v∈[|V|]

yi,v log πLLM (ev|y≤i−1,x)︸ ︷︷ ︸
Π1

(9)

−
∑

v∈[|V|]

yl,v log πLLM (ev|y≤l−1,x)︸ ︷︷ ︸
Π2

−
|y|∑

i=l+1

∑
v∈[|V|]

yi,v log πLLM (ev|y≤i−1,x)︸ ︷︷ ︸
Π3

, (10)

where ∂Φ1

∂yl
= 0 and ∂Π1

∂yl
= 0 because they do not involve yl. Π2 only depends on yl through the

term yl,v while Π3 only depends on yl via log πLLM (ev|y≤i−1,x). Next, we compute the gradients
for Φ2, Π2, and Π3, respectively.

δreward =
∂Φ2

∂yl
=

|y|∑
i=l

∂r(y≤i|x)
∂yl

, (11)

δprefix =
∂Π2

∂yl
= [− log πLLM (e1|y≤i−1,x), · · · ,− log πLLM (eN |y≤i−1,x)]

⊤ (12)

= − log Cat (πLLM (·|y≤l−1,x)) , (13)

δpostfix =
∂Π3

∂yl
= −

|y|∑
i=l+1

∑
v∈[|V|]

∂ log πLLM (ev|y≤i−1,x)

∂yl
yl,v (14)

= −
|y|∑

i=l+1

∂ log Cat (πLLM (·|y≤i−1,x))

∂yl
yl, (15)

as desired.

Remark C.2. Our proposed DTO fundamentally differs from previous works that utilize gradients for
controlled generation (Qin et al., 2022; Kumar et al., 2021; 2022; Mireshghallah et al., 2022; Liu
et al., 2023b), where δpostfix is often detached from the computational graph, and only prior context
is used to guide subsequent token prediction.

C.2 PROOF OF THEOREM 4.1

Theorem C.3 (Restatement of Theorem 4.1). Suppose {ρt}t≥0 denotes the Wasserstein gradient
flow minimizing Eq. 3 in the distribution space with boundary conditions ρ0 = πLLM and ρ∞ =
ρ∗ = argminρ LPPO(ρ). Then we can draw samples from ρ∗ by first initializing x0 ∼ πLLM and
simulating a trajectory {xt}t≥0 following the stochastic gradient flow of Eq. 2: dxt

dt = −∇L(xt) +√
2ϵt, where {ϵt ∈ N (0, I)}t≥0 are Brownian motions.

Proof. First of all, we derive the Wasserstein gradient flow for ρt on W2(RLx×N ) under the functional
cost LPPO (Chen et al., 2018):

∂tρ
t = −∇WLPPO(ρ

t) ⇒ ∂tρ
t +∇x ·

(
ρt∇x

δLPPO

δρt

)
= 0, (16)

where δLPPO

δρt denotes the first variation of LPPO in terms of ρt, and the∇· is the divergence operator.
We derive the first variation as below:

δLPPO

δρt
=

δ

δρt

[∫
−λr(x) + log

ρt(x)

πLLM (x)
ρt(x)dx

]
(17)

= −λr(x) + log ρt(x)− log πLLM (x) + 1. (18)
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The gradient of δLPPO

δρt can be expressed as:

∇x
δLPPO

δπt
= ∇x

(
−λr(x) + log ρt(x)− log πLLM (x)

)
. (19)

Now we substitute the above equations into Eq. 16 and find the following partial differential equation
of ρt:

∂tρ
t +∇x ·

[
ρt∇x

(
−λr(x) + log ρt(x)− log πLLM (x)

)]
= 0 (20)

∂tρ
t +∇x ·

[
ρt (−λ∇xr(x)−∇x log πLLM (x))

]
+

Lx,N∑
i,j=1

∂

∂xi,j

(
∇x log ρt(x)

)
= 0 (21)

∂tρ
t +∇x ·

[
ρt (−λ∇xr(x)−∇x log πLLM (x))

]
+∆ρt(x) = 0, (22)

where ∆ means the Laplacian operator
∑

ij
∂2

∂x2
ij

. By Fokker-Plank equation (Maoutsa et al., 2020),

we obtain a velocity field for particles xt ∈ RLx×N :

dxt

dt
= −λ∇xr(x)−∇x log πLLM (x) +

√
2ϵt = −∇xL(xt) +

√
2ϵt, (23)

where {ϵt}t≥0 denotes a Brownian motion (Øksendal, 2003)).

Conversely, if xt follows the above dynamics starting from the initial distribution xt ∼ ρ0, then the
density function ρt of xt follows the time evolution in Eq. 16 (see Maoutsa et al. (2020)). Since we
assume the limiting condition ρt → ρ∗, we conclude that xt ∼ ρ∗ in distribution as t→∞.

C.3 JUSTIFICATION OF CONFIDENCE-BASED TOKEN SELECTION

We re-parameterize the policy as a categorical distribution through a softmax function to ensure
differentiability. In Sec. 3.3, we mention that we can skip optimizing tokens whose logits is over-
confident as gradient descent is unlikely to significantly change its resultant distribution. We provide
theoretical evidence for this argument.

Without loss of generality, we consider the scenario where we only optimize a single token x ∈ R|V|

within a vocabulary V . We initialize a logit vector z ∈ RN , then apply the softmax transformation to
obtain the corresponding categorical distribution:

xi =
exp(zi)∑|V|
j=1 exp(zj)

, ∀i ∈ [|V|]. (24)

The loss function is defined over x and by chain rule, we derive the gradient w.r.t zi for i ∈ [|V|]:

∂L
∂zi

=
∂L
∂x

∂x

∂zi
= (diag(x)− xx⊤)i

∂L
∂x

= xi

([
∂L
∂x

]
i

− x⊤ ∂L
∂x

)
, (25)

where we use the fact that the Jacobian matrix of softmax function is diag(x)−xx⊤. The derivation
above indicates that the gradient magnitude for the i-th logit is proportional to its corresponding
post-softmax probability. When xi is small at the initialization, then its underlying representation zi
cannot be updated effectively. This limitation underscores the necessity of skipping tuning x with
high confidence throughout the decoding stage.
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D MORE ON EXPERIMENT

D.1 EXPERIMENT DETAILS

We used a temperature of 0.5 and a top-p of 0.95, and set the maximum generation length to 1024 for
AMC and MATH-500, and 3072 for AIME, for all baselines and our methods. We report the average
performance across 4 independent runs on smaller datasets such as AMC, AIME-24, and AIME-25.
For SFT experiments, we randomly sampled a 10k subset from the Open-thoughts dataset (Guha
et al., 2025). For GRPO experiments, we used a random 35k subset from the Numina math dataset (LI
et al., 2024). Exclusively for ∇-Reasoner, we set ϵent = 0.25, ϵgrad = 8, learning rate to 0.01, and
number of iterations to 20 in all experiments. We use Skywork-Reward-V2-Qwen3-4B (Liu et al.,
2025) as the reward model for Qwen family and Skywork-Reward-V2-Llama-3.1-8B (Liu et al.,
2025) as the reward model for Llama model. Below, we list a more comprehensive summary of the
experiment setups.

Table 5: Summary of Experimental Settings.

Setting Value
Generation Hyperparameters
Temperature 0.5
Top-p 0.95
Max Generation Length (AMC, MATH-500) 1024
Max Generation Length (AIME) 3072

Evaluation
Independent Runs (MATH-500) 1
Independent Runs (AMC, AIME-24, AIME-25) 4

Training Data Subsets
SFT 10k random sample from Open-thoughts (Guha et al., 2025)
GRPO 35k random sample from Numina math (LI et al., 2024)

∇-Reasoner Hyperparameters
ϵent 0.25
ϵgrad 8
Learning Rate 0.01
Number of Iterations 20
Optimizer Adam-W
LR Scheduler Cosine
Min LR 0.001

Reward Models
For Qwen Family Skywork-Reward-V2-Qwen3-4B (Liu et al., 2025)
For Llama Model Skywork-Reward-V2-Llama-3.1-8B (Liu et al., 2025)

D.2 EFFECTIVENESS OF ACCELERATION TECHNIQUES

In Sec. 3.3, we proposed three major techniques to improve the decoding efficiency of∇-Reasoner.
In this section, we quantify the contribution of each technique to the overall speedup. Instead of
ablating them in running time (since removing any one of these components causes the algorithm to
run in an prohibitive amount of time, often more than several hours per sample), we monitor how
each technique reduces the cost of the specific stage to which it is applied. As a result, we find our
gradient-caching mechanism bypasses more than 63.8% of the model calls in parallel forms required
for gradient acquisition, and trajectory reuse eliminates more than 74.1% of autoregressive model
calls. Both techniques exploit the sparsity of token updates. The token-selection strategy further
complements these components by skipping the full optimization procedure when appropriate; we
observe that it effectively avoids 89.2% of token-optimization steps across the sequence.

D.3 A SIMPLIFIED EXAMPLE ON GSM8K

The problem asks:
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Josh buys a house for $80, 000 and then puts in $50, 000 in repairs. This increased
the value of the house by 150%. How much profit did he make?

Greedy Decoding Baseline (Failure Analysis)

The original output reads:

Josh buys a house for $80,000 and then puts in $50,000 in repairs.
The value of the house increased by 150%, so the new value of the
house is 80,000 * 1.5 = $120,000. Josh sold the house for 120,000,
so he made a profit of 120,000 - 80,000 - 50,000 = -10,000. The
answer is -10,000.

This greedy decoding baseline fails by interpreting ”increased by” as simple multiplication (80, 000×
1.5), resulting in:

Incorrect New Value = $80, 000× 1.5 = $120, 000

and an incorrect profit of:

Incorrect Profit = $120, 000− $80, 000− $50, 000 = −$10, 000

Iterative Token Revision Process (Correction)

Our method corrects this error through an iterative token revision process.

Initial Input and Refinement Round 1 (Operator Correction)

• Initial Output Segment: “. . . , so the new value of the house is 80, 000× 1.5 = $120, 000.”

• The algorithm performs refinement at the multiplication token “×”.
• Through gradient descent, the model updates the multiplication to-

ken “×” to the addition symbol “+”, revising the logical structure to:
“. . . , so the new value of the house is 80, 000 + . . . ”

Refinement Round 2 (Calculation Correction)

• Subsequently, when calculating the increment, the model initially outputs 80, 000× 1.5 =
$120, 000. The calculation is incorrect because the model ignores the preceding 80, 000+.

• The algorithm flags the token 120 (representing $120, 000) due to a low score.
• Gradient optimization identifies 200 as the top replacement, correcting the calculation for

the new value:

Correct New Value = $80, 000 + ($80, 000× 1.5) = $80, 000 + $120, 000 = $200, 000

Final Correct Derivation

The model completes the string to form “$200, 000”, allowing it to derive the correct profit:

Correct Profit = $200, 000− $80, 000− $50, 000 = $70, 000

Conclusion

In conclusion, after two rounds of iterative refinement, the final output becomes:

Josh buys a house for $80,000 and then puts in $50,000 in repairs.
The value of the house increased by 150%, so the new value of the
house is 80,000 + 80,000 * 1.5 = $200,000. Josh sold the house for
200,000, so he made a profit of 200,000 - 80,000 - 50,000 = 70,000.
The answer is 70,000.
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