
Reliability Engineering and System Safety 251 (2024) 110392

A
0

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

Fourier-MIONet: Fourier-enhanced multiple-input neural operators for
multiphase modeling of geological carbon sequestration
Zhongyi Jiang a, Min Zhu a, Lu Lu a,b,∗

a Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA
b Wu Tsai Institute, Yale University, New Haven, CT 06510, USA

A R T I C L E I N F O

Keywords:
Geological carbon sequestration
Multiphase flow in porous media
Deep neural operator
Fourier-MIONet
Computational cost
Out-of-distribution

A B S T R A C T

Geologic carbon sequestration (GCS) is a safety-critical technology that aims to reduce the amount of carbon
dioxide in the atmosphere, which also places high demands on reliability. Multiphase flow in porous media
is essential to understand CO2 migration and pressure fields in the subsurface associated with GCS. However,
numerical simulation for such problems in 4D is computationally challenging and expensive, due to the
multiphysics and multiscale nature of the highly nonlinear governing partial differential equations (PDEs).
It prevents us from considering multiple subsurface scenarios and conducting real-time optimization. Here, we
develop a Fourier-enhanced multiple-input neural operator (Fourier-MIONet) to learn the solution operator of
the problem of multiphase flow in porous media. Fourier-MIONet utilizes the recently developed framework of
the multiple-input deep neural operators (MIONet) and incorporates the Fourier neural operator (FNO) in the
network architecture. Once Fourier-MIONet is trained, it can predict the evolution of saturation and pressure
of the multiphase flow under various reservoir conditions, such as permeability and porosity heterogeneity,
anisotropy, injection configurations, and multiphase flow properties. Compared to the enhanced FNO (U-FNO),
the proposed Fourier-MIONet has 90% fewer unknown parameters, and it can be trained in significantly less
time (about 3.5 times faster) with much lower CPU memory (< 15%) and GPU memory (< 35%) requirements,
to achieve similar prediction accuracy. In addition to the lower computational cost, Fourier-MIONet can be
trained with only 6 snapshots of time to predict the PDE solutions for 30 years. Furthermore, we observed
that Fourier-MIONet can maintain good accuracy when predicting out-of-distribution (OOD) data. The excellent
generalizability of Fourier-MIONet is enabled by its adherence to the physical principle that the solution to a
PDE is continuous over time. Moreover, the developed Fourier-MIONet makes it possible to solve the long-time
evolution of geological carbon sequestration in a large-scale three-dimensional space accurately and efficiently.
1. Introduction

Multiphase flow in porous media is crucial in various industry and
natural processes, such as geologic carbon sequestration (GCS) [1],
enhanced oil recovery [2], hydrogen production [2,3], and nuclear
waste geological repositories [4], which have high requirements for en-
suring utmost reliability and safety. Numerical simulation is primarily
used to solve the material and energy balances of the multiphase flow
system [5,6], which involves highly nonlinear partial differential equa-
tions [7] and requires high-resolution grids [8,9] and multiscale and
multiphysics modeling [10,11]. Large-scale geological carbon seques-
tration projects involve optimization and decision-making tasks under
subsurface uncertainties [12–15], where a large number of forward
simulations need to be conducted under various subsurface scenarios
and realizations. For this purpose, conventional reservoir simulators

∗ Corresponding author at: Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA.
E-mail address: lu.lu@yale.edu (L. Lu).

are inefficient due to their high computational cost, whereas (physics-
informed and/or data-driven) surrogate modeling has the potential to
enable real-time predictions once trained on a reasonable amount of
data from full-physics simulations [16–19].

Surrogate modeling based on deep neural networks that can learn
solutions of PDEs is a promising alternative to traditional numerical
simulation [20–25]. Deep learning techniques have recently been used
to solve subsurface flow and transport problems in carbon storage
[23,26,27]. The two most common deep learning techniques are data-
driven learning [20–22,28–34] and physics-informed learning
[35–39]. The former has achieved accurate predictions even for high-
dimensional multiphase flow problems [23,40–42]. However, data-
driven learning requires a large amount of data for training. Physics-
informed neural networks (PINNs) [43] and their extensions [44–46]
vailable online 27 July 2024
951-8320/© 2024 Elsevier Ltd. All rights are reserved, including those for text and

https://doi.org/10.1016/j.ress.2024.110392
data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/ress
https://www.elsevier.com/locate/ress
mailto:lu.lu@yale.edu
https://doi.org/10.1016/j.ress.2024.110392
https://doi.org/10.1016/j.ress.2024.110392
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2024.110392&domain=pdf


Reliability Engineering and System Safety 251 (2024) 110392Z. Jiang et al.

f
m
a
m

p
a
p
M
r
s
a

2

m
s
i
p
i

H

𝐮

w
p
a
f

𝑃

w

2

g
g
r
r
C
r
o
n
f

r
o
c
(
m
(
M
i
a
a
a
d
m
m
w

t
l
t
W

have shown promising applications in computational science and engi-
neering [47–52]. The physics-informed learning is usually implemented
using artificial neural networks (ANNs) [53,54], thus requiring separate
training if any new parameters or coefficients change [35]. Similar
to traditional numerical simulations, physics-informed learning for
solving geologic carbon storage problems can be computationally in-
efficient. In some cases, additional physical constraints or observations
are needed to guarantee convergence [55–57].

In recent years, deep neural operators [58–63] have shown promis-
ing potential for many applications in computational science and en-
gineering. Unlike traditional deep learning methods, deep neural op-
erators are designed to learn operators between infinite-dimensional
function spaces. Several numerical experiments have demonstrated the
promise of deep neural operators, such as Fourier neural operator
(FNO) [26], for real-time prediction of reservoir simulation. Very re-
cently, an extension of FNO, U-FNO, has achieved the state-of-the-art
performance in highly heterogeneous geological formations for carbon
sequestration problems [26]. However, U-FNO requires a couple of days
for training in one GPU with about 16 GiB GPU memory and more than
100 GiB CPU memory, and it also needs a large training dataset and
performs poorly on out-of-distribution (OOD) data.

In this work, we overcome these challenges of high computational
cost and data efficiency. We propose a novel deep neural operator,
Fourier-MIONet, based on the multiple-input deep neural operators
(MIONet) [64]. MIONet is an extension of the deep neural opera-
tor (DeepONet) [58,61] and it enables several input functions de-
fined on different domains. We further incorporate U-FNO in MIONet.
Fourier-MIONet requires much less GPU and CPU memory and sig-
nificantly reduces the computational cost without compromising pre-
diction accuracy. Moreover, to simulate geological carbon sequestra-
tion for 30 years, the required number of time snapshots can be
reduced from 24 to only 6. Additionally, Fourier-MIONet achieves
better generalization for OOD scenarios. This finding could have very
important implications for reducing monitoring costs and safety-critical
applications.

This study presents a significant contribution to the field of GCS
through the development of the Fourier-MIONet. By integrating MIONet
and U-FNO, Fourier-MIONet offers an efficient and accurate method for
simulating multiphase flow in porous media. The model substantially
reduces computational costs, using 85% less CPU memory and 64%
less GPU memory, and accelerates training by 3.5 times compared
to U-FNO. Additionally, its ability to generalize from limited data
ensures accurate long-term predictions of CO2 migration and pressure
ields. This contribution benefits real-time optimization and decision-
aking in GCS, a safety-critical technology, improving the feasibility

nd effectiveness of large-scale carbon sequestration projects aimed at
itigating climate change.

The paper is organized as follows. In Section 2, we introduce the
roblem setup, including the governing equations of multiphase flow
nd the dataset generated by numerical simulation. In Section 3, after
roviding a brief overview of MIONet and U-FNO, we propose Fourier-
IONet. In Section 4, we demonstrate the accuracy, efficiency, and

eliability of Fourier-MIONet on multiphase flow prediction for gas
aturation and pressure. We conclude the paper in Section 5 and give
brief discussion of the 4D problem.

. Problem setup

In this study, we consider the problem of multiphase flow in porous
edia. Specifically, we consider the application of underground carbon

torage (also called geological carbon sequestration), which involves
njecting supercritical CO2 into underground geological formations for
ermanent storage. Geological carbon sequestration is one of the most
mportant technologies for mitigating CO emissions [65,66].
2

2 i
2.1. Multiphase flow

The problem we are considering is multiphase, multicomponent
(CO2, brine) flow in porous media. Each component 𝛼 satisfies the mass
conservation equation:
𝜕𝑀𝛼

𝜕𝑡
= −𝛁 ⋅

(

𝐅𝛼
|𝑎𝑑𝑣 + 𝐅𝛼

|𝑑𝑖𝑓
)

+ 𝑞𝛼 ,

where 𝐅𝛼
|𝑎𝑑𝑣 is the advective mass flux, 𝐅𝛼

|𝑑𝑖𝑓 is the diffusive mass
flux, 𝑞𝛼 is the volumetric flow rate of the injection source, and 𝑀𝛼 is
the accumulation of mass given by

𝑀𝛼 = 𝜙
∑

𝑝
𝑆𝑝𝜌𝑝𝑋

𝛼
𝑝 .

Here, 𝜙 is the porosity, 𝑆𝑝 is the saturation of phase 𝑝, 𝑋𝛼
𝑝 is the mass

fraction of component 𝛼 in phase 𝑝, and 𝜌𝑝 is the density of phase 𝑝.
For simplicity, we do not consider molecular diffusion and hydro-

dynamic dispersion, and thus 𝐅𝛼
|𝑑𝑖𝑓 = 0. The advective mass flux of

component 𝛼 is

𝐅𝛼
|𝑎𝑑𝑣 =

∑

𝑝
𝑋𝛼

𝑝 𝜌𝑝𝐮𝑝.

ere, 𝐮𝑝 is the Darcy velocity of phase 𝑝 as follows:

𝑝 = −𝑘
(

∇𝑃𝑝 − 𝜌𝑝𝐠
)

𝑘𝑟𝑝∕𝜇𝑝,

here 𝑘 is the absolute permeability tensor, 𝑃𝑝 is the fluid pressure of
hase 𝑝, 𝐠 is the gravitational acceleration, 𝑘𝑟𝑝 is the relative perme-
bility of phase 𝑝, and 𝜇𝑝 is the viscosity of phase 𝑝. The fluid pressure
or wetting phase 𝑃𝑤 or non-wetting phase 𝑃𝑛 is

𝑛 = 𝑃𝑤 + 𝑃𝑐 ,

here 𝑃𝑐 is the capillary pressure.

.2. Dataset

In this study, we use the open-source dataset from Wen et al. [26],
enerated for the purpose of testing surrogate modeling algorithms. To
enerate the dataset, we consider that CO2 is injected at a constant
ate into a radially symmetrical system. The thickness of the reservoir
anges from 12.5 to 200 m and the radius of the reservoir is 100,000 m.
losed boundary condition is applied at the top and bottom of the
eservoir, meaning the flux normal to the boundary is zero. To mimic an
pen reservoir condition, a very large simulation domain was used with
o flow boundary condition. The system is solved numerically with the
inite difference method by the simulator ECLIPSE (e300) for 30 years.

In the dataset, several PDE parameters (i.e., network inputs) are
andomly sampled to generate different PDE solutions (i.e., network
utputs): gas saturation (SG) and pressure buildup (dP). These inputs
an be categorized into two types (Table 1): space-dependent inputs
field inputs) and scalar inputs. Field inputs include the horizontal per-
eability map (𝑘𝑥), vertical permeability map (𝑘𝑦), and porosity map
𝜙). Permeability maps 𝑘𝑥 are produced by the Stanford Geostatistical
odeling Software (SGeMS) [67] based on different parameters, includ-

ng correlation lengths in the vertical and radial directions, medium
ppearances, permeability mean and standard deviation. The perme-
bility value ranges widely from 0.001 mD to 10,000 mD. Values of 𝑘𝑥
re binned into 𝑛aniso tropic materials, where each bin is assigned a ran-
omly sampled anisotropy ratio (𝑘𝑥∕𝑘𝑦). Then the vertical permeability
ap 𝑘𝑦 is computed by multiplication between 𝑘𝑥 and the anisotropy
ap. Porosity (𝜙) is calculated by loosely correlated permeability map
ith a random Gaussian noise  (0, 0.001).

The scalar inputs include the initial reservoir pressure at the top of
he reservoir (𝑃init), reservoir temperature (𝑇 ), injection rate (𝑄), capil-
ary pressure scaling factor (𝜆), irreducible water saturation (𝑆𝑤𝑖), and
he top and bottom locations of the perforation (𝑝𝑒𝑟𝑓𝑡𝑜𝑝 and 𝑝𝑒𝑟𝑓𝑏𝑜𝑡𝑡𝑜𝑚).

e note that the reservoir thickness 𝑏 is a variable randomly sampled

n each case and determines the size of the field inputs, ranging from



Reliability Engineering and System Safety 251 (2024) 110392Z. Jiang et al.
Table 1
Summary of the branch network inputs.The size of the field inputs is (96, 200). [𝑎, 𝑏] means that the input value ranges from 𝑎 to 𝑏.

Parameter Notation Distribution Unit

Field Horizontal permeability field
Material anisotropy ratio
Porosity

𝑘𝑥
𝑘𝑥∕𝑘𝑦
𝜙

[0.001, 10000]
[1, 150]
–

mD
–
–

Scalar Injection rate
Initial pressure
Iso-thermal reservoir temperature
Irreducible water saturation
Van Genuchten scaling factor
Perforation top location
Perforation bottom location

𝑄
𝑃init
𝑇
𝑆𝑤𝑖
𝜆
𝑝𝑒𝑟𝑓𝑡𝑜𝑝
𝑝𝑒𝑟𝑓𝑏𝑜𝑡𝑡𝑜𝑚

[0.2, 2]
[100, 300]
[35, 170]
[0.1, 0.3]
[0.3, 0.7]
[0, 200]
[0, 200]

MT/y
bar
◦C
–
–
m
m

Fig. 1. An example of inputs and outputs. (A) Example of field inputs. (B) Example of scalar inputs. (C) Gas saturation evolution at 6 out of 24 time snapshots. (D) Pressure
buildup evolution at 6 out of 24 time snapshots.
12.5 to 200 m. When 𝑏 is thinner than 200 m, zero padding is used for
the domain outside of the actual reservoir such that all inputs have the
same shape. Then, 𝑝𝑒𝑟𝑓𝑡𝑜𝑝 and 𝑝𝑒𝑟𝑓𝑏𝑜𝑡𝑡𝑜𝑚 are randomly sampled within
the range from 0 to 𝑏 of each case.

All the input and output fields in the dataset are saved in a resolu-
tion of (96, 200). The outputs are saved at 24 time snapshots from 1 day
to 30 years: {1 day, 2 days, 4 days, … ,14.8 years, 21.1 years, 30 years}.
The training dataset includes 4500 cases, and the test dataset includes
500 cases. We show an example of inputs and outputs in Fig. 1.

3. Methods

U-FNO has been developed to build a surrogate model for such
dataset, and has shown great prediction accuracy. However, there are
still some challenges remaining: the computational cost is high, as we
have discussed in the introduction. Moreover, these existing methods
always use different channels to predict the solutions at different
times, which do not guarantee the continuity of solution over time.
The recently developed framework of the multiple-input deep neural
operators (MIONet) overcomes the challenges of computational cost
and data efficiency, but MIONet by itself cannot easily provide highly
accurate predictions. In this section, we first briefly introduce MIONet
and U-FNO. Next, we propose Fourier-enhanced multiple-input neural
3

operator (Fourier-MIONet) by combining the advantages of MIONet
and U-FNO together for learning physical systems more effectively.

3.1. MIONet

MIONet was proposed by Jin et al. [64] for learning nonlinear
operators mapping between function spaces. Based on the universal
approximation theorem of Chen & Chen [68], the vanilla DeepONet is
defined for input functions on a single Banach space. MIONet extends
the capability of DeepONet [58] both theoretically and numerically
from a single Banach space to multiple Banach spaces. MIONet can
be understood as a multivariable regression method in the statistical
regression area, but MIONet is different from other special regression
models [69,70] which were designed to exploit the relationships among
multiple variables.

We denote 𝑛 input functions by 𝑣𝑖 for 𝑖 = {1,… , 𝑛} with each defined
on the domain 𝐷𝑖 ⊂ R𝑑𝑖 :

𝑣𝑖 ∶ 𝐷𝑖 → R,

and the output function by 𝑢 defined on the domain 𝐷′ ∈ R𝑑′ :

𝑢 ∶ 𝐷′ ∋ 𝜉 ↦ 𝑢(𝜉) ∈ R.



Reliability Engineering and System Safety 251 (2024) 110392Z. Jiang et al.
Fig. 2. Architecture of MIONet. All the branch nets and the trunk net have the same number of outputs, which are merged together via the element-wise product.
Then, the operator mapping from the input functions to the output
function is

 ∶ (𝑣1,… , 𝑣𝑛) ↦ 𝑢.

MIONet is developed to learn the operator  by using 𝑛 independent
branch nets and one trunk net (Fig. 2). The 𝑖th branch net encodes the
input function 𝑣𝑖, and the trunk net encodes the coordinates input 𝜉.
The output of MIONet is computed as

(𝑣1, 𝑣2,… , 𝑣𝑛)(𝜉) =
𝑝
∑

𝑗=1
𝑏1𝑗 (𝑣1)
⏟⏟⏟
branch1

× 𝑏2𝑗 (𝑣2)
⏟⏟⏟
branch2

⋯ × 𝑏𝑛𝑗 (𝑣𝑛)
⏟⏟⏟
branch𝑛

× 𝑡𝑗 (𝜉)
⏟⏟⏟

trunk

+𝑏0,

where 𝑏0 ∈ R is a bias,
{

𝑏𝑖1, 𝑏
𝑖
2,… , 𝑏𝑖𝑝

}

are the 𝑝 outputs of the branch
net 𝑖, and

{

𝑡1, 𝑡2,… , 𝑡𝑝
}

are the 𝑝 outputs of the trunk net. The choice
of the branch nets and trunk net is problem dependent. For example, if
the discretization of 𝑣𝑖 is on an equispaced 2D grid, then a convolution
neural network can be used as the branch net 𝑖; if the discretization of
𝑣𝑖 is on an unstructured mesh, then a graph neural network can be used
as the branch net 𝑖.

3.2. U-FNO

U-FNO [26] is an extension of Fourier neural operator (FNO) [59],
which computes convolutions in the Fourier space rather than physical
space. U-FNO uses additional U-Net blocks [71] in FNO. Different from
DeepONet, U-FNO requires the input function 𝑣(𝑥) and output function
𝑢(𝜉) defined on the same equispaced mesh grid of the same domain. A
schematic diagram of U-FNO is shown in Fig. 3.

First, the input function 𝑣(𝑥) is lifted to a higher dimensional
representation 𝑧𝑙0 (𝑥) by

𝑧𝑙0 (𝑥) = 𝑃 (𝑣(𝑥)),

where 𝑃 is a linear transformation, which is often parameterized by
a linear layer or a shallow fully-connected neural network. Then, 𝐿
Fourier layers and 𝑀 U-Fourier layers are applied iteratively to 𝑧𝑙0 and
the final output is 𝑧𝑚𝑀

. In the end, a local linear transformation 𝑄 is
applied by employing a shallow neural network to convert the 𝑧𝑚𝑀

to
the output by

𝑢(𝑥) = 𝑄
(

𝑧𝑚𝑀
(𝑥)

)

.

Each Fourier layer is defined by using the Fast Fourier Transform
(FFT). For the output of the 𝑗th Fourier layer 𝑧𝑙𝑗 , we compute the
following transform by 3D FFT  and inverse 3D FFT −1:

−1
(

 ⋅ 
(

𝑧
))

,

4

𝑙𝑗 𝑙𝑗
where  is a weight matrix. Moreover, a residual connection with a
weight matrix 𝑊𝑗 is used to compute the output of the (𝑗+1)th Fourier
layer 𝑧𝑙𝑗+1 as

𝑧𝑙𝑗+1 = 𝜎
(

−1
(

𝑙𝑗 ⋅ 
(

𝑧𝑙𝑗
))

+𝑊𝑗 ⋅ 𝑧𝑙𝑗 + 𝑏𝑙𝑗
)

,

where 𝜎 is a nonlinear activation and 𝑏𝑙𝑗 is a bias.
U-Fourier layer is defined based on the Fourier layer and 3D U-Net

block:

𝑧𝑚𝑘+1
= 𝜎

(

−1
(

𝑚𝑘
⋅ 

(

𝑧𝑚𝑘

))

+ 𝑈𝑚𝑘

(

𝑧𝑚𝑘

)

+𝑊𝑚𝑘
⋅ 𝑧𝑚𝑘

+ 𝒃𝑚𝑘

)

where 𝑈𝑚𝑘
is an U-Net block.

3.3. Fourier-MIONet

Motivated by the discussion at the beginning of this section, here
we develop a new version of MIONet, Fourier-MIONet, by leveraging
MIONet and U-FNO. As we have discussed in Section 2, we split the
inputs into two parts: for all the field parameters denoted by 𝐯𝟏 and for
all the scalar parameters denoted by 𝐯𝟐 (Fig. 4). The coordinates of the
output function 𝑢 are 𝑥, 𝑦, and 𝑡, while 𝑥 and 𝑦 are space coordinates
and 𝑡 is time. If we apply MIONet, the trunk net input includes 𝑥, 𝑦, and
𝑡, and the output is 𝑢(𝑥, 𝑦, 𝑡) ∈ R, while for U-FNO, the network output is
𝑢(⋅, ⋅, ⋅) ∈ R96×200×24. In our developed Fourier-MIONet, we treat spatial
and temporal coordinates separately. Specifically, the trunk input is
only 𝑡, and the network output is 𝑢(⋅, ⋅, 𝑡) ∈ R96×200.

In Fourier-MIONet, there are two branch nets to encode field inputs
and scalar inputs, respectively (Fig. 4A). Let 𝐛1 and 𝐛2 be the outputs
of the two branch nets, and 𝐜 be the output of the trunk net. Two
merger operations are used here: one to merge the two branch outputs
(Branch merger operation) and one to merge the branch and trunk
net outputs (Branch-Trunk merger operation). We choose the Branch
merger operation as a point-wise summation:

𝐛 = 𝐛1 + 𝐛2,

where 𝐛 is the output of the branch merger operation. We choose the
Branch-Trunk merger operation as a point-wise multiplication used in
vanilla MIONet:

𝑧 = 𝐛⊙ 𝐜,

where 𝑧 is the output of the merger operation. We note that there are
other choices of the merger operations, which will be studied in the

future.



Reliability Engineering and System Safety 251 (2024) 110392Z. Jiang et al.
Fig. 3. Architecture of U-FNO. (A) 𝑣(𝑥) is the input function, 𝑃 and 𝑄 are fully connected neural networks, and 𝑢(𝑥) is the output function. (B) Inside each Fourier layer,  denotes
the Fourier transform,  is a weight matrix, −1 is the inverse Fourier transform, 𝑊 is an another weight matrix, and 𝜎 is the activation function. (C) Inside each U-Fourier layer,
𝑈 denotes a U-Net block.
Source: Figure is adapted from [26].
Fig. 4. Fourier-MIONet architecture. (A) 𝐯1 is field input and 𝐯2 is scalar input. (B) The input 𝑡 is time. (C) Fourier layer. (D) U-Fourier layer.
Next, we use U-FNO as a decoder to map from the hidden vector 𝑧 to
the output 𝑢 by applying Fourier layers and U-Fourier layers iteratively
(Fig. 4C and D). We note that we use 2D FFT and 2D U-Net in this U-
FNO, rather than the 3D FFT and 3D U-Net used in the original U-FNO.
In the end, a fully connected neural network 𝑄 is applied to project the
output of the last U-Fourier layer to the output.

3.4. Training and evaluation

As mentioned in Section 2, our dataset contains reservoirs with
various thicknesses, and the domain outside of the reservoir is padded
with zeros for both input and output. To accommodate for the variable
reservoir thicknesses, we construct a mask for each data sample and
only calculate the loss within the mask during training. In addition to
5

the input variables described in Table 1, we also supply the spatial grid
information to the training as additional two field inputs.

Same as U-FNO [26], we use 𝑙𝑝-loss function:

𝐿(𝑦, �̂�) =
‖𝑦 − �̂�‖𝑝
‖𝑦‖𝑝

+ 𝛽
‖d𝑦∕d𝑟 − d�̂�∕d𝑟‖𝑝

‖ d𝑦∕d𝑟‖𝑝
,

where 𝑦 is the true solution and �̂� is the prediction. 𝑝 is the order of
norm, and 𝛽 is a hyper-parameter. We choose 𝑝 = 2 and 𝛽 = 0.5. During
training, the initial learning rate is specified to be 0.001, same as [26],
the learning rate gradually decreases with a constant rate.

U-FNO directly outputs gas saturation and pressure fields at all
the 24 time steps during training and testing, i.e., the output size is
(96, 200, 24). In each training step, we choose different cases and the
number of cases (i.e., batch size) is denoted by 𝑏𝑎𝑡𝑐ℎ𝑐𝑎𝑠𝑒. For Fourier-
MIONet, in addition to 𝑏𝑎𝑡𝑐ℎ , we can also choose different number
𝑐𝑎𝑠𝑒



Reliability Engineering and System Safety 251 (2024) 110392Z. Jiang et al.

t

e
g
s

Table 2
Fourier-MIONet architecture. In order to provide a fair comparison, we adopt a similar structure for U-FNO as in [26]. The ‘‘Padding’’ denotes a
padding operation. ‘‘Linear’’ denotes a linear transformation. ‘‘Fourier2d’’ denotes the 2D Fourier transform. ‘‘Conv1d’’ denotes 1D convolution.
‘‘UNet2d’’ denotes a 2D U-Net. 𝐶 represents 𝑏𝑎𝑡𝑐ℎ𝑐𝑎𝑠𝑒. 𝑇 represents 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒. In this model, the number of total parameters is 3,685,325.

Operation Output shape

Branch net Branch net 1
Branch net 2

Padding/Linear
FNN

(𝐶, 104, 208, 36)
(𝐶, 36)

Branch merger
operation

Point-wise summation (𝐶, 104, 208, 36)

Trunk net FNN (𝑇 , 36)

Branch-Trunk
merger operation

Point-wise multiplication (𝐶 × 𝑇 , 104, 208, 36)

Merger net Fourier 1
Fourier 2
Fourier 3
U-Fourier 1
U-Fourier 2
U-Fourier 3
Projection 1
Projection 2
De-padding
Reshape

Fourier2d/Conv1d/Add/ReLU
Fourier2d/Conv1d/Add/ReLU
Fourier2d/Conv1d/Add/ReLU
Fourier2d/Conv1d/UNet2d/Add/ReLU
Fourier2d/Conv1d/UNet2d/Add/ReLU
Fourier2d/Conv1d/UNet2d/Add/ReLU
Linear/ReLU
Linear
−
−

(𝐶 × 𝑇 , 104, 208, 36)
(𝐶 × 𝑇 , 104, 208, 36)
(𝐶 × 𝑇 , 104, 208, 36)
(𝐶 × 𝑇 , 104, 208, 36)
(𝐶 × 𝑇 , 104, 208, 36)
(𝐶 × 𝑇 , 104, 208, 36)
(𝐶 ×𝑇 , 104, 208, 128)
(𝐶 × 𝑇 , 104, 208, 1)
(𝐶 × 𝑇 , 96, 200, 1)
(𝐶, 𝑇 , 96, 200)
1

of time snapshots of the trunk net input for training, and we denote this
batch size as 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒. Hence, when training Fourier-MIONet model,
he output size is (96, 200, 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒).

To evaluate the performance of the trained network, we use 𝑅2 and
mean absolute error (MAE) as the metrics.

4. Results

We demonstrate the accuracy, reliability, training efficiency, and
data efficiency of the proposed Fourier-MIONet in this section. The
network architecture for the Fourier-MIONet model is shown in Table 2.
All experiments are performed on a workstation with an AMD Thread-
ripper Pro 5955WX CPU and an NVIDIA GeForce RTX 3090 GPU. We
implement the experiments by using the library DeepXDE [37] and
the code is available in GitHub at https://github.com/lu-group/fourier-
mionet-gcs.

4.1. Gas saturation

We apply Fourier-MIONet to learn gas saturation. As we have
discussed in Section 3.4, in Fourier-MIONet, we have the flexibility to
select different values of the 𝑏𝑎𝑡𝑐ℎ𝑐𝑎𝑠𝑒 and 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒, while U-FNO only
allows for 𝑏𝑎𝑡𝑐ℎ𝑐𝑎𝑠𝑒 (i.e., 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒 can only be chosen as 24). Then,
we first select 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒 as 24 (i.e., full batch for the time input). The
comparison between Fourier-MIONet and U-FNO is shown in the first
two rows of Table 3. First of all, the prediction accuracy between U-
FNO and Fourier-MIONet is almost the same in terms of 𝑅2 and MAE.
Compared with U-FNO, Fourier-MIONet only has 1% lower in the 𝑅2.
Compared to U-FNO with 33 million parameters, Fourier-MIONet only
has 10% trainable parameters (about 3 million). During training, U-
FNO requires 103 GiB CPU memory and 15.9 GiB GPU memory, but
Fourier-MIONet only needs 15 GiB CPU memory and 12.8 GiB GPU
memory. Moreover, Fourier-MIONet is much faster to train, and the
training time per epoch of Fourier-MIONet is 50% less than U-FNO.

As Fourier-MIONet has the flexibility of using different values of
𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒, here we investigate the effect of 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒 and determine the
optimal choice of 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒. The range of 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒 is from 24 to 1. First,
the 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒 has little effect on the final accuracy (Fig. 5A and B), unless
the 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒 is very small (e.g., smaller than 4). In terms of compu-
tational cost, the GPU memory requirement decreases approximately
linearly with respect to 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒 (Fig. 5C). However, training time per
poch of the Fourier-MIONet increases when 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒 decreases. In
eneral, fewer epochs are needed for training neural networks when
6

maller batch size is used, which is also observed in Fourier-MIONet.
Hence, for smaller batch size, less epochs are needed for the training to
converge. In Fig. 5E, we show the minimum epoch needed for different
𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒. Since training time per epoch and minimum epoch needed
have the opposite trend, the total training time has an approximate U-
shaped curve (Fig. 5F). The minimum training time occurs at 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒
equal to 8. Therefore, to achieve the fastest training, we use 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒
as 8 in the following study.

The accuracy between Fourier-MIONet (with 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒 as 8) and U-
FNO is almost the same and 4 testing examples of Fourier-MIONet
are shown in Fig. 6. GPU memory of Fourier-MIONet is 5.69 GiB
(Table 3) which only accounts for 35% of the U-FNO. Total training
time of Fourier-MIONet is 12.3 h (less than 30% of U-FNO). Hence,
Fourier-MIONet is much more computationally efficient.

In addition to the training cost, we also summarize the computa-
tional cost during testing (Table 4). Compared with U-FNO, Fourier-
MIONet needs much less CPU memory (33.3%) and GPU memory
(50%) during the testing. For each case, Fourier-MIONet requires 0.041
s, while U-FNO requires 0.075 s, so Fourier-MIONet is about 1.8 times
faster.

4.2. Inference for unseen time

We also test the generalizability of Fourier-MIONet at unseen train-
ing time, i.e., only partial time snapshots are used for training. We
recall that in the dataset for each case, there are 24 time snapshots.
Here, we choose to test three cases with different amounts of training
dataset: 50%, 33%, and 25%.

In the first case, we use 50% of the time snapshots: {1, 3, 5, 7, 9, 11,
3, 15, 17, 19, 21, 23}. As shown in Fig. 7A and B, Fourier-MIONet has

good performance at both seen time index and the unseen time index,
and there is nearly no accuracy loss for the unseen time. However, U-
FNO only performs well at seen time index, and a significant accuracy
drop can be seen at the unseen time index.

The same phenomenon has also been observed for the other two
cases of 33% and 25% training data (Fig. 7C, D, E and F). We note
that the behavior of U-FNO is typical for deep learning models, because
it is usually difficult to generalize to unseen times by training with
extremely sparse time snapshots. However, Fourier-MIONet shows good
performance in both interpolation and extrapolation. For example in
Fig. 7E and F, the training time snapshots are 1 day, 11 day, 53
day, 226 day, 2.6 year, and 10.4 year, and the testing time snapshots
include both interpolation (from 2 day to 7.3 year) and extrapolation
(14.8 year, 21.1 year, and 30.0 year). The 𝑅2 and MAE at 30.0 years
are 0.9616 and 0.0179. Here, Fourier-MIONet can generalize well

https://github.com/lu-group/fourier-mionet-gcs
https://github.com/lu-group/fourier-mionet-gcs
https://github.com/lu-group/fourier-mionet-gcs


Reliability Engineering and System Safety 251 (2024) 110392Z. Jiang et al.
Fig. 5. Effect of 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒 for Fourier-MIONet. (A) 𝑅2. (B) MAE. (C) GPU memory usage. (D) Training time per epoch. (E) Minimum number of training epochs needed. (F) Total
training time. The solid blue curves and shaded regions represent the mean and one standard deviation of 3 runs of Fourier-MIONet. The precise values in this figure can be found
in Table 3. U-FNO does not have time batch size.
Table 3
Comparison between Fourier-MIONet and U-FNO. We choose 𝑏𝑎𝑡𝑐ℎ𝑐𝑎𝑠𝑒 as 4 for all the experiments. U-FNO uses all 24 time snapshots during training.

𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒 No. of
parameters

CPU
memory
(GiB)

GPU
memory
(GiB)

Training time
per epoch
(second)

Minimum
epochs
needed

Training
time
(hour)

𝑅2 MAE

U-FNO – 33,097,829 103 15.9 1535 100 42.6 0.992 ± 0.001 0.0031 ± 0.0002

24 (Full) 3,685,325 15 12.8 730 77 ± 13 15.7 ± 2.7 0.982 ± 0.002 0.0050 ± 0.0002
20 3,685,325 15 11.0 742 66 ± 8 13.7 ± 1.5 0.979 ± 0.002 0.0054 ± 0.0004
16 3,685,325 15 9.1 757 68 ± 13 14.2 ± 2.8 0.984 ± 0.001 0.0046 ± 0.0002
12 3,685,325 15 7.3 808 56 ± 6 12.6 ± 0.7 0.984 ± 0.001 0.0047 ± 0.0005

FMIONet 8 3,685,325 15 5.6 928 48 ± 5 12.3 ± 1.2 0.985 ± 0.001 0.0040 ± 0.0004
4 3,685,325 15 3.8 1339 73 ± 9 27.2 ± 3.4 0.987 ± 0.001 0.0036 ± 0.0002
3 3,685,325 15 3.4 1609 54 ± 8 24.1 ± 4.0 0.987 ± 0.002 0.0037 ± 0.0002
2 3,685,325 15 3.0 2195 44 ± 4 27.0 ± 2.7 0.988 ± 0.001 0.0035 ± 0.0001
1 3,685,325 15 2.6 3832 39 ± 5 41.8 ± 4.2 0.987 ± 0.001 0.0033 ± 0.0003
Table 4
Computational cost of Fourier-MIONet and U-FNO during testing. The inference time
is computed by taking the average of 500 test cases.

CPU memory (GiB) GPU memory (GiB) Inference time (s)

U-FNO 15.3 7.1 0.075
FMIONet 5.1 3.5 0.041

because we use time as the input of the trunk net, which guarantees
that the prediction of gas saturation is continuous with respect to
time, i.e., Fourier-MIONet obeys the physics law that gas saturation is
continuous over, showcasing a crucial advance in ensuring the relia-
bility of our model under varied conditions. In contrast, U-FNO uses
different channels to predict gas saturation at different time, which
does not guarantee the continuity of solution over time, weakening
generalization ability for out-of-distribution (OOD) scenarios.

4.3. Nonuniform sampling of training data

To further improve the accuracy of using 25% training data (i.e., six
time snapshots) in the previous section, we propose to train the network
using nonuniform time snapshots. The 24 time snapshots in the datasets
7

Table 5
Six nonuniform sampling cases.

Case Seen time snapshots 𝑅2

A {1d, 7d, 53d, 323d, 5.2y, 30y} 0.9793 ± 0.0247
B {1d, 4d, 53d, 323d, 5.2y, 30y} 0.9809 ± 0.0049
C {1d, 4d, 37d, 226d, 5.2y, 30y} 0.9821 ± 0.0063
D {1d, 4d, 37d, 226d, 3.6y, 30y} 0.9807 ± 0.0092
E {1d, 4d, 37d, 323d, 5.2y, 30y} 0.9793 ± 0.0040
F {1d, 4d, 37d, 323d, 7.3y, 30y} 0.9773 ± 0.0048

corresponds to 1 day, 2 day, 4 day, 7 day, 11 day, 17 day, 25 day, 37
day, 53 day, 77 day, 111 day, 158 day, 226 day, 323 day, 1.3 year,
1.8 year, 2.6 year, 3.6 year, 5.2 year, 7.3 year, 10.4 year, 14.8 year,
21.1 year, and 30.0 year. Specifically, we design 6 different nonuniform
sampling cases as listed in Table 5. The 𝑅2 for each case can be found
in Table 5.

For all these 6 cases, the 𝑅2 of all time snapshots is shown in Fig. 8.
Since the dynamics of gas saturation changes fast at the beginning,
more data need to be chosen at the very first few time snapshots,
otherwise, predictions will become worse. For example, if we choose
the second time snapshots at 7 day (Fig. 8A), the accuracy at the
time 2 day will drop significantly. For later time, we need to choose



Reliability Engineering and System Safety 251 (2024) 110392Z. Jiang et al.
Fig. 6. Four testing examples of gas saturation. For each example, we show the reference solution and the predictions and errors of Fourier-MIONet and U-FNO at 7.3 year and
30 year. The 𝑅2 and MAE error are also computed for each prediction and shown in the figure.
time snapshots relatively uniformly. As shown in Fig. 8D, there are
5 unseen time snapshots between the last two points, which makes
the prediction of the unseen time with much lower accuracy. Hence,
by choosing dense time snapshots at the beginning and relatively
uniform snapshots between later times, Fourier-MIONet can achieve
good prediction accuracy at both seen time and unseen time with only
6 time snapshots for training (Fig. 8B, C, E and F).

4.4. Pressure buildup

When it comes to the prediction of pressure buildup, Fourier-
MIONet also achieves good accuracy. We follow the same setup as
U-FNO and use a smaller network for pressure buildup. Specifically,
we only apply one Fourier layer and one U-Fourier layer in the merge
net, and other parts of the network architecture are the same as the
one in the gas saturation problem. Based on Section 4.1, we choose
𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒 as 8. The testing 𝑅2 of Fourier-MIONet is 0.986. We show 4
examples of the prediction and absolute error with the corresponding
𝑅2 and MAE in Fig. 9.

4.5. Discussions about baseline network architectures

In this study, we have demonstrated good performance of Fourier-
MIONet, and in this section, we show the necessity of using Fourier and
U-Fourier layers as the merger net by studying two baseline networks.
One baseline is the vanilla MIONet, which uses an inner product
to construct the output (Section 3.1). Another baseline is MIONet-
FNN, where the dot product in the vanilla MIONet is replaced by a
fully-connected neural network (FNN) as the merger net [72,73]. The
network architectures of the vanilla MIONet and MIONet-FNN are in
Tables 8 and 9, respectively.
8

Table 6
Accuracy of vanilla MIONet, MIONet-FNN and Fourier-MIONet.

𝑅2

Gas saturation Vanilla MIONet 0.948
MIONet-FNN 0.971
Fourier-MIONet 0.985

Pressure buildup Vanilla MIONet 0.961
MIONet-FNN 0.979
Fourier-MIONet 0.986

The testing 𝑅2 of vanilla MIONet for both gas saturation and pres-
sure buildup is the worst among these three models (Table 6) due to the
simple dot product in merger operation. By using FNN as the merger
net, MIONet-FNN performs better than vanilla MIONet. Fourier-MIONet
achieves the best accuracy by employing Fourier and U-Fourier layers
as a decoder. Fourier layers with truncated modes can effectively cap-
ture low-frequency components in the data, while U-Nets are designed
to capture both local and global features.

We also show 4 examples of the gas saturation prediction and
absolute error with the corresponding 𝑅2 and MAE in Fig. 10. Vanilla
MIONet and MIONet-FNN have good predictions in the case with
smooth solutions (Fig. 10A). However, when dealing with cases with
non-smooth solutions, these two methods result in blurred outputs
of interface structures (Fig. 10B, C, and D). In contrast, Fourier-
MIONet generates accurate predictions no matter whether the solution
is smooth or not (Fig. 6).

5. Conclusions

In this paper, we propose a novel deep neural operator, a Fourier-
enhanced multiple-input neural operator (Fourier-MIONet), which com-
bines the advantages of data and computational efficiency from MIONet



Reliability Engineering and System Safety 251 (2024) 110392Z. Jiang et al.
Fig. 7. Three different test cases for unseen time. (A and B) Training at time index {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23}. (C and D) Training at time index {1, 4, 7, 10, 13, 16, 19, 22}.
(E and F) Training at time index {1, 5, 9, 13, 17, 21}.
and good accuracy from U-FNO. We show that Fourier-MIONet is both
accurate and efficient for solving the problem of multiphase flow in
porous media while ensuring reliability, for safety-critical applications
including geological carbon sequestration. Compared with U-FNO,
Fourier-MIONet saves 85% CPU memory and 64% GPU memory, and
can be trained 3.5 times faster.

Fourier-MIONet also provides much more accurate predictions at
unseen time snapshots with only six time snapshots in each case for
training. This good generalizability is due to that Fourier-MIONet obeys
the physics that the PDE solution is continuous over time, which pro-
vides an interpretable basis for maintaining reliability when handling
diverse and complex OOD data. We also consider the nonuniform
sampling method to further improve the generalizability.

Here, we give a brief discussion of the time-dependent 3D problem
(i.e., 4D problem), since the heterogeneity in a geologic formation is
9

beyond the radially symmetric models. As we do not have a 4D dataset
available, we generate a synthetic dataset with the mesh size (100, 100,
18, 24), which means the 𝑥-axis resolution is 100, 𝑦-axis resolution is
100, 𝑧-axis resolution is 18, and there are in total 24 time snapshots.
We find that U-FNO is too big to be trained in a GPU with 24 GiB
memory, even if the 𝑏𝑎𝑡𝑐ℎ𝑐𝑎𝑠𝑒 is chosen as 1, and thus we use FNO for
the comparison. Fourier-MIONet also uses FNO as the decoder merge
net. We have two choices for Fourier-MIONet. First, we only time as
the trunk net input and then the merge net should be FNO with 3D
FFT. Compared with FNO, Fourier-MIONet (3D FFT) with 𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒 as
8 only has 10% the number of parameters and needs much less GPU
memory (<30%) (Table 7). Second, we can further use 𝑧-coordinates
combined with time as the trunk net input, and then we only need 2D
FFT in the merge net. In this case, the number of parameters and GPU
memory can be further decreased. The Fourier-MIONet with 2D FFT



Reliability Engineering and System Safety 251 (2024) 110392Z. Jiang et al.
Fig. 8. Six nonuniform sampling of time. (A) Training at time snapshots: {1d, 7d, 53d, 323d, 5.2y, 30y}. (B) Training at time snapshots: {1d, 4d, 53d, 323d, 5.2y, 30y}. (C)
Training at time snapshots: {1d, 4d, 37d, 226d, 5.2y, 30y}. (D) Training at time snapshots: {1d, 4d, 37d, 226d, 3.6y, 30y}. (E) Training at time snapshots: {1d, 4d, 37d, 323d,
5.2y, 30y}. (F) Training at time snapshots: {1d, 4d, 37d, 323d, 7.3y, 30y}.
Fig. 9. Four testing examples of pressure buildup. The reference solution and the predictions and errors of Fourier-MIONet and U-FNO at 7.3 year and 30 year. The 𝑅2 and MAE
error are also computed for each prediction and shown in the figure.
has 3.3% number of trainable parameters and 14.7% GPU memory.
The advantages of our architecture show more potential possibilities
10
for 4D multiphase problems, though more work is required to evaluate
the performance with 4D datasets in the future.



Reliability Engineering and System Safety 251 (2024) 110392Z. Jiang et al.
Fig. 10. Four testing examples of vanilla MIONet and MIONet-FNN for gas saturation. For each example, we show the reference solution and the predictions and errors of vanilla
MIONet and MIONet-FNN at 7.3 and 30 years. The 𝑅2 and MAE error are also computed for each prediction.
Table 7
Comparison between Fourier-MIONet and FNO on time-dependent 3D problems. We
use 𝑏𝑎𝑡𝑐ℎ𝑐𝑎𝑠𝑒 as 1 for all the experiments.

𝑏𝑎𝑡𝑐ℎ𝑡𝑖𝑚𝑒 𝑏𝑎𝑡𝑐ℎ𝑧 No. of parameters GPU memory (GiB)

FNO (4D FFT) – – 46,665,329 23.2

FMIONet (3D
FFT)

24 (Full)
8

–
–

4,679,033
4,679,033

16.3
6.7

FMIONet (2D
FFT)

8 6 1,568,669 3.4

One limitation of the proposed Fourier-MIONet is that it cannot be
directly applied to irregular geometry because Fourier and U-Fourier
layers require the input to be a regular geometry. There are two
possible solutions to this issue. One solution is mapping the irregular
geometry to a regular geometry such as gFNO+ [60]. Another solution
is using other networks as a merger net, such as MIONet-FNN. Another
limitation of U-FNO and the proposed Fourier-MIONet is that they
cannot provide accurate predictions of the CO2 saturation plume front
(Fig. 6). One possible solution is adding more Fourier and U-Fourier
layers in the decoder merge net, but it will also cost more computing
resources. How to improve the prediction of CO2 plume front will be
investigated in future studies.

CRediT authorship contribution statement

Zhongyi Jiang: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software, Methodology, Investigation,
Formal analysis, Data curation. Min Zhu: Writing – review & editing,
11
Writing – original draft, Visualization, Validation, Software, Methodol-
ogy, Investigation, Formal analysis, Data curation. Lu Lu: Writing – re-
view & editing, Writing – original draft, Supervision, Resources, Project
administration, Methodology, Funding acquisition, Formal analysis,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by ExxonMobil Technology and Engineer-
ing Company and U.S. Department of Energy [DE-SC0022953]. The
authors gratefully acknowledge Yanhua O. Yuan, Dongzhuo Li, Qiuzi
Li, and Alex Gk Lee from ExxonMobil for helpful suggestions. We thank
Gege Wen et al. for making the dataset public.

Appendix. Network architectures

The network architectures of the vanilla MIONet and MIONet-FNN
in Section 4.5 are shown in Tables 8 and 9, respectively, while the
‘‘CNN’’ denotes a convolutional neural network in Table 10.



Reliability Engineering and System Safety 251 (2024) 110392Z. Jiang et al.
Table 8
Vanilla MIONet architecture.

Operation Output shape

Branch net Branch net 1
Branch net 2

CNN
FNN

(𝐶, 512)
(𝐶, 512)

Branch merger
operation

Point-wise
multiplication

(𝐶, 512)

Trunk net FNN (𝑇 × 96 × 200, 512)

Branch-Trunk
merger operation

Dot product
Reshape

(𝐶, 𝑇 × 96 × 200)
(𝐶, 𝑇 , 96, 200)

Table 9
MIONet-FNN architecture.

Operation Output shape

Branch net Branch net 1
Branch net 2

CNN
FNN

(𝐶, 512)
(𝐶, 512)

Branch merger
operation

Point-wise
multiplication

(𝐶, 512)

Trunk net FNN (𝑇 × 96 × 200, 512)

Branch-Trunk
merger operation

Point-wise
multiplication

(𝐶 × 𝑇 × 96 × 200, 512)

Merger net FNN/Reshape (𝐶, 𝑇 , 96, 200)

Table 10
CNN architecture. The ‘‘Conv3d’’ denotes 3D convolution. ‘‘LeakyReLU’’ denotes a leaky
rectified linear unit with the negative slope as 0.2.

Layer Operation Output shape

1 Conv3D/LeakyReLU (𝐶, 32, 96, 100)
2 Conv3D/LeakyReLU (𝐶, 64, 48, 50)
3 Conv3D/LeakyReLU (𝐶, 64, 48, 50)
4 Conv3D/LeakyReLU (𝐶, 64, 24, 25)
5 Conv3D/LeakyReLU (𝐶, 64, 24, 25)
6 Conv3D/LeakyReLU (𝐶, 128, 12, 13)
7 Conv3D/LeakyReLU (𝐶, 128, 12, 13)
8 Conv3D/LeakyReLU (𝐶, 256, 6, 7)
9 Conv3D/LeakyReLU (𝐶, 256, 6, 7)
10 Conv3D/LeakyReLU/Flatten (𝐶, 512)
11 Linear/LeakyReLU (𝐶, 2048)
12 Linear (𝐶, 512)

References

[1] Pachauri RK, Meyer LA. Climate change 2014: Synthesis report. Contribu-
tion of working groups I, II and III to the fifth assessment report of the
intergovernmental panel on climate change, 2014.

[2] Aziz K. Petroleum reservoir simulation. 476, Applied Science Publishers; 1979.
[3] Hashemi L, Blunt M, Hajibeygi H. Pore-scale modelling and sensitivity anal-

yses of hydrogen-brine multiphase flow in geological porous media. Sci Rep
2021;11(1):1–13.

[4] Amaziane B, El Ossmani M, Jurak M. Numerical simulation of gas migration
through engineered and geological barriers for a deep repository for radioactive
waste. Comput Vis Sci 2012;15(1):3–20.

[5] Prosperetti A, Tryggvason G. Computational methods for multiphase flow.
Cambridge University Press; 2009.

[6] Balachandar S, Eaton JK. Turbulent dispersed multiphase flow. Annu Rev Fluid
Mech 2010;42:111–33.

[7] Orr FM, et al. Theory of gas injection processes, vol. 5, Tie-Line Publications
Copenhagen; 2007.

[8] Doughty C. Investigation of CO2 plume behavior for a large-scale pilot
test of geologic carbon storage in a saline formation. Transp Porous Media
2010;82(1):49–76.

[9] Wen G, Benson SM. CO2 plume migration and dissolution in layered reservoirs.
Int J Greenh Gas Control 2019;87:66–79.

[10] Khebzegga O, Iranshahr A, Tchelepi H. Continuous relative permeability model
for compositional simulation. Transp Porous Media 2020;134(1):139–72.

[11] Meng X, Guo Z. Localized lattice Boltzmann equation model for simulating
miscible viscous displacement in porous media. Int J Heat Mass Transfer
2016;100:767–78.

[12] Strandli CW, Mehnert E, Benson SM. CO2 plume tracking and history matching
using multilevel pressure monitoring at the illinois basin – decatur project.
Energy Procedia 2014;63:4473–84, 12th International Conference on Greenhouse
Gas Control Technologies, GHGT-12.
12
[13] Kitanidis PK. Persistent questions of heterogeneity, uncertainty, and scale in
subsurface flow and transport. Water Resour Res 2015;51(8):5888–904.

[14] Kröker I, Oladyshkin S. Arbitrary multi-resolution multi-wavelet-based polyno-
mial chaos expansion for data-driven uncertainty quantification. Reliab Eng Syst
Saf 2022;222:108376.

[15] Rehme MF, Franzelin F, Pflüger D. B-splines on sparse grids for surrogates in
uncertainty quantification. Reliab Eng Syst Saf 2021;209:107430.

[16] Tahmasebi P, Kamrava S, Bai T, Sahimi M. Machine learning in geo-
and environmental sciences: From small to large scale. Adv Water Resour
2020;142:103619.

[17] Cardoso MA, Durlofsky LJ, Sarma P. Development and application of reduced-
order modeling procedures for subsurface flow simulation. Internat J Numer
Methods Engrg 2009;77(9):1322–50.

[18] Razavi S, Tolson BA, Burn DH. Review of surrogate modeling in water resources.
Water Resour Res 2012;48(7).

[19] Bazargan H, Christie M, Elsheikh AH, Ahmadi M. Surrogate accelerated sampling
of reservoir models with complex structures using sparse polynomial chaos
expansion. Adv Water Resour 2015;86:385–99.

[20] Zhu Y, Zabaras N. Bayesian deep convolutional encoder–decoder networks
for surrogate modeling and uncertainty quantification. J Comput Phys
2018;366:415–47.

[21] Mo S, Zhu Y, Zabaras N, Shi X, Wu J. Deep convolutional encoder-
decoder networks for uncertainty quantification of dynamic multiphase flow in
heterogeneous media. Water Resour Res 2019;55(1):703–28.

[22] Tang M, Liu Y, Durlofsky LJ. A deep-learning-based surrogate model for
data assimilation in dynamic subsurface flow problems. J Comput Phys
2020;413:109456.

[23] Wen G, Hay C, Benson SM. CCSNet: A deep learning modeling suite for CO2
storage. Adv Water Resour 2021;155:104009.

[24] Liu Y, Wang D, Sun X, Dinh N, Hu R. Uncertainty quantification for Multiphase-
CFD simulations of bubbly flows: a machine learning-based Bayesian approach
supported by high-resolution experiments. Reliab Eng Syst Saf 2021;212:107636.

[25] Wu H, Xu Y, Liu Z, Li Y, Wang P. Adaptive machine learning with physics-based
simulations for mean time to failure prediction of engineering systems. Reliab
Eng Syst Saf 2023;240:109553.

[26] Wen G, Li Z, Azizzadenesheli K, Anandkumar A, Benson SM. U-FNO—An
enhanced Fourier neural operator-based deep-learning model for multiphase
flow. Adv Water Resour 2022;163:104180.

[27] Wen G, Li Z, Long Q, Azizzadenesheli K, Anandkumar A, Benson SM. Accelerating
carbon capture and storage modeling using Fourier neural operators. 2022, arXiv
preprint arXiv:2210.17051.

[28] Zhong Z, Sun AY, Jeong H. Predicting CO2 plume migration in heterogeneous
formations using conditional deep convolutional generative Adversarial Network.
Water Resour Res 2019;55(7):5830–51.

[29] Wen G, Tang M, Benson SM. Towards a predictor for CO2 plume migration
using deep neural networks. International Journal of Greenhouse Gas Control
2021;105:103223.

[30] Zhu M, Feng S, Lin Y, Lu L. Fourier-DeepONet: Fourier-enhanced deep operator
networks for full waveform inversion with improved accuracy, generalizability,
and robustness. Comput Methods Appl Mech Engrg 2023;416:116300.

[31] Jiao A, He H, Ranade R, Pathak J, Lu L. One-shot learning for solution operators
of partial differential equations. 2021, arXiv preprint arXiv:2104.05512.

[32] Liu X-Y, Sun H, Zhu M, Lu L, Wang J-X. Predicting parametric spatiotemporal
dynamics by multi-resolution PDE structure-preserved deep learning. 2022, arXiv
preprint arXiv:2205.03990.

[33] Fan S, Yang Z. Accident data-driven human fatigue analysis in maritime transport
using machine learning. Reliab Eng Syst Saf 2024;241:109675.

[34] Kandel R, Baroud H. A data-driven risk assessment of Arctic maritime incidents:
Using machine learning to predict incident types and identify risk factors. Reliab
Eng Syst Saf 2024;243:109779.

[35] Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. J Comput Phys 2019;378:686–707.

[36] Zhu Y, Zabaras N, Koutsourelakis P-S, Perdikaris P. Physics-constrained deep
learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. J Comput Phys 2019;394:56–81.

[37] Lu L, Meng X, Mao Z, Karniadakis GE. DeepXDE: A deep learning library for
solving differential equations. SIAM Rev 2021;63(1):208–28.

[38] Cai S, Mao Z, Wang Z, Yin M, Karniadakis GE. Physics-informed neural networks
(PINNs) for fluid mechanics: A review. Acta Mech Sin 2021;37(12):1727–38.

[39] Fan B, Qiao E, Jiao A, Gu Z, Li W, Lu L. Deep learning for solving and estimating
dynamic macro-finance models. 2023, arXiv preprint arXiv:2305.09783.

[40] Jiang Z, Tahmasebi P, Mao Z. Deep residual U-net convolution neural networks
with autoregressive strategy for fluid flow predictions in large-scale geosystems.
Adv Water Resour 2021;150:103878.

[41] Tang M, Liu Y, Durlofsky LJ. Deep-learning-based surrogate flow modeling and
geological parameterization for data assimilation in 3D subsurface flow. Comput
Methods Appl Mech Engrg 2021;376:113636.

[42] Wu H, Qiao R. Physics-constrained deep learning for data assimilation of
subsurface transport. Energy AI 2021;3:100044.

http://refhub.elsevier.com/S0951-8320(24)00464-2/sb1
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb1
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb1
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb1
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb1
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb2
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb3
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb3
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb3
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb3
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb3
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb4
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb4
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb4
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb4
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb4
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb5
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb5
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb5
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb6
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb6
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb6
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb7
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb7
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb7
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb8
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb8
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb8
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb8
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb8
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb9
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb9
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb9
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb10
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb10
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb10
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb11
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb11
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb11
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb11
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb11
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb12
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb12
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb12
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb12
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb12
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb12
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb12
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb13
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb13
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb13
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb14
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb14
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb14
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb14
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb14
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb15
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb15
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb15
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb16
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb16
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb16
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb16
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb16
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb17
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb17
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb17
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb17
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb17
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb18
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb18
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb18
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb19
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb19
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb19
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb19
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb19
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb20
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb20
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb20
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb20
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb20
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb21
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb21
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb21
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb21
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb21
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb22
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb22
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb22
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb22
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb22
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb23
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb23
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb23
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb24
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb24
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb24
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb24
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb24
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb25
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb25
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb25
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb25
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb25
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb26
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb26
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb26
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb26
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb26
http://arxiv.org/abs/2210.17051
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb28
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb28
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb28
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb28
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb28
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb29
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb29
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb29
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb29
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb29
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb30
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb30
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb30
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb30
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb30
http://arxiv.org/abs/2104.05512
http://arxiv.org/abs/2205.03990
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb33
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb33
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb33
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb34
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb34
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb34
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb34
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb34
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb35
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb35
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb35
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb35
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb35
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb36
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb36
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb36
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb36
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb36
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb37
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb37
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb37
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb38
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb38
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb38
http://arxiv.org/abs/2305.09783
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb40
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb40
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb40
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb40
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb40
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb41
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb41
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb41
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb41
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb41
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb42
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb42
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb42


Reliability Engineering and System Safety 251 (2024) 110392Z. Jiang et al.
[43] Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L.
Physics-informed machine learning. Nat Rev Phys 2021;3(6):422–40.

[44] Pang G, Lu L, Karniadakis GE. fPINNs: Fractional physics-informed neural
networks. SIAM J Sci Comput 2019;41(4):A2603–26.

[45] Yu J, Lu L, Meng X, Karniadakis GE. Gradient-enhanced physics-informed neural
networks for forward and inverse PDE problems. Comput Methods Appl Mech
Engrg 2022;393:114823.

[46] Wu C, Zhu M, Tan Q, Kartha Y, Lu L. A comprehensive study of non-adaptive and
residual-based adaptive sampling for physics-informed neural networks. Comput
Methods Appl Mech Engrg 2023;403:115671.

[47] Chen Y, Lu L, Karniadakis GE, Dal Negro L. Physics-informed neural net-
works for inverse problems in nano-optics and metamaterials. Opt Express
2020;28(8):11618–33.

[48] Lu L, Pestourie R, Yao W, Wang Z, Verdugo F, Johnson SG. Physics-informed
neural networks with hard constraints for inverse design. SIAM J Sci Comput
2021;43(6):B1105–32.

[49] Yazdani A, Lu L, Raissi M, Karniadakis GE. Systems biology informed deep
learning for inferring parameters and hidden dynamics. PLoS Comput Biol
2020;16(11):e1007575.

[50] Daneker M, Zhang Z, Karniadakis GE, Lu L. Systems Biology: Identifiability anal-
ysis and parameter identification via systems-biology informed neural networks.
2022, arXiv preprint arXiv:2202.01723.

[51] Song C, Xiao R, Zhang C, Zhao X, Sun B. Simulation-free reliability analy-
sis with importance sampling-based adaptive training physics-informed neural
networks: Method and application to chloride penetration. Reliab Eng Syst Saf
2024;246:110083.

[52] Das S, Tesfamariam S. Reliability assessment of stochastic dynamical systems
using physics informed neural network based PDEM. Reliab Eng Syst Saf
2024;243:109849.

[53] Kamrava S, Sahimi M, Tahmasebi P. Simulating fluid flow in complex porous
materials by integrating the governing equations with deep-layered machines.
npj Comput Mater 2021;7(1).

[54] Wang K, Chen Y, Mehana M, Lubbers N, Bennett KC, Kang Q, Viswanathan HS,
Germann TC. A physics-informed and hierarchically regularized data-driven
model for predicting fluid flow through porous media. J Comput Phys
2021;443:110526.

[55] Fuks O, Tchelepi H. Physics based deep learning for nonlinear two-phase flow
in porous media. In: ECMOR XVII. 2020.

[56] Almajid MM, Abu-Al-Saud MO. Prediction of porous media fluid flow using
physics informed neural networks. J Pet Sci Eng 2022;208:109205.

[57] Fraces CG, Tchelepi H. Physics informed deep learning for flow and transport in
porous media. In: SPE reservoir simulation conference. OnePetro; 2021.
13
[58] Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE. Learning nonlinear operators via
DeepONet based on the universal approximation theorem of operators. Nat Mach
Intell 2021;3(3):218–29.

[59] Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A, Anand-
kumar A. Fourier neural operator for parametric partial differential equations.
2020, arXiv preprint arXiv:2010.08895.

[60] Lu L, Meng X, Cai S, Mao Z, Goswami S, Zhang Z, Karniadakis GE. A compre-
hensive and fair comparison of two neural operators (with practical extensions)
based on FAIR data. Comput Methods Appl Mech Engrg 2022;393:114778.

[61] Zhu M, Zhang H, Jiao A, Karniadakis GE, Lu L. Reliable extrapolation of deep
neural operators informed by physics or sparse observations. Comput Methods
Appl Mech Engrg 2023;412:116064.

[62] Yin M, Zhang E, Yu Y, Karniadakis GE. Interfacing finite elements with deep
neural operators for fast multiscale modeling of mechanics problems. Comput
Methods Appl Mech Engrg 2022;402:115027.

[63] Goswami S, Yin M, Yu Y, Karniadakis GE. A physics-informed variational
DeepONet for predicting crack path in quasi-brittle materials. Comput Methods
Appl Mech Engrg 2022;391:114587.

[64] Jin P, Meng S, Lu L. MIONet: Learning multiple-input operators via tensor
product. 2022, arXiv preprint arXiv:2202.06137.

[65] Benson SM, Cole DR. CO2 sequestration in deep sedimentary formations.
Elements 2008;4(5):325–31.

[66] Zhang D, Song J. Mechanisms for geological carbon sequestration. Procedia
IUTAm 2014;10:319–27.

[67] Remy N, Boucher A, Wu J. Applied geostatistics with SGeMS: A user’s guide.
Cambridge University Press; 2009.

[68] Chen T, Chen H. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical
systems. IEEE Trans Neural Netw 1995;6(4):911–7.

[69] Chen Y, Rao M, Feng K, Niu G. Modified varying index coefficient autoregression
model for representation of the nonstationary vibration from a planetary gearbox.
IEEE Trans Instrum Meas 2023;72:1–12.

[70] Ma S, Song PX-K. Varying index coefficient models. J Amer Statist Assoc
2015;110(509):341–56.

[71] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical
image segmentation. In: International conference on medical image computing
and computer-assisted intervention. Springer; 2015, p. 234–41.

[72] Mao S, Dong R, Lu L, Yi KM, Wang S, Perdikaris P. PPDONet: Deep operator
networks for fast prediction of steady-state solutions in disk–planet systems.
Astrophys J Lett 2023;950(2):L12.

[73] Seidman J, Kissas G, Perdikaris P, Pappas GJ. NOMAD: Nonlinear manifold
decoders for operator learning. Adv Neural Inf Process Syst 2022;35:5601–13.

http://refhub.elsevier.com/S0951-8320(24)00464-2/sb43
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb43
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb43
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb44
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb44
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb44
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb45
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb45
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb45
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb45
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb45
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb46
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb46
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb46
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb46
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb46
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb47
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb47
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb47
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb47
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb47
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb48
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb48
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb48
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb48
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb48
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb49
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb49
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb49
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb49
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb49
http://arxiv.org/abs/2202.01723
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb51
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb51
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb51
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb51
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb51
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb51
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb51
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb52
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb52
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb52
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb52
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb52
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb53
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb53
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb53
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb53
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb53
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb54
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb54
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb54
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb54
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb54
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb54
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb54
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb55
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb55
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb55
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb56
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb56
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb56
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb57
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb57
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb57
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb58
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb58
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb58
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb58
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb58
http://arxiv.org/abs/2010.08895
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb60
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb60
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb60
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb60
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb60
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb61
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb61
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb61
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb61
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb61
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb62
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb62
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb62
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb62
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb62
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb63
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb63
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb63
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb63
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb63
http://arxiv.org/abs/2202.06137
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb65
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb65
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb65
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb66
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb66
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb66
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb67
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb67
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb67
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb68
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb68
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb68
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb68
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb68
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb69
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb69
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb69
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb69
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb69
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb70
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb70
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb70
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb71
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb71
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb71
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb71
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb71
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb72
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb72
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb72
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb72
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb72
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb73
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb73
http://refhub.elsevier.com/S0951-8320(24)00464-2/sb73

	Fourier-MIONet: Fourier-enhanced multiple-input neural operators for multiphase modeling of geological carbon sequestration
	Introduction
	Problem setup
	Multiphase flow
	Dataset

	Methods
	MIONet
	U-FNO
	Fourier-MIONet
	Training and evaluation

	Results
	Gas saturation
	Inference for unseen time
	Nonuniform sampling of training data
	Pressure buildup
	Discussions about baseline network architectures

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Network architectures
	References


