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Abstract

Large Language Models (LLMs) have demonstrated impressive capabilities as
intelligent agents capable of solving complex problems. However, effective plan-
ning in scenarios involving dependencies between API or tool calls-particularly
in multi-turn conversations-remains a significant challenge. To address this, we
introduce T1, a tool-augmented, multi-domain, multi-turn conversational dataset
specifically designed to capture and manage inter-tool dependencies across diverse
domains. T1 enables rigorous evaluation of agents’ ability to coordinate tool
use across nine distinct domains (4 single domain and 5 multi-domain) with the
help of an integrated caching mechanism for both short- and long-term memory,
while supporting dynamic replanning-such as deciding whether to recompute or
reuse cached results. Beyond facilitating research on tool use and planning, T1
also serves as a benchmark for evaluating the performance of open-weight and
proprietary large language models. We present results powered by T1-AGENT,
highlighting their ability to plan and reason in complex, tool-dependent scenarios.

1 Introduction

Leveraging external tools through Large Language Models (LLMs) to solve diverse conversational
tasks has emerged as a promising direction in the development of intelligent agents [15]. Despite
recent progress, task-oriented LLM-based dialogue systems continue to struggle with long conver-
sational contexts [3]. Moreover, there remains a lack of comprehensive resources for training and
evaluating multi-turn, multi-domain conversational agents that address complex user needs. Existing
datasets primarily focus on single-turn interactions for planning tasks, such as executing APIs or
code [12, 20], and fail to capture realistic multi-turn scenarios that require reasoning over extended
contexts, coordination across multiple tools, and adherence to intricate constraints. In real-world
settings, tool use often involves interdependent tools, where the correctness and efficiency of task
completion rely heavily on the context and the order in which tools are invoked. An effective agent
must therefore be capable of understanding when to call a tool, which tool to use, and in what
sequence, in order to successfully complete complex tasks.

To address this gap, we introduce T1, a new dataset and evaluation framework for assessing agent
performance in multi-turn dialogues, with a particular focus on tool usage and reasoning about
inter-tool dependencies. The dataset spans multiple domains and features complex, goal-oriented
interactions between users and a travel assistant. Alongside the dataset, we propose T1-AGENT, an
agent designed to interpret nuanced user intents and generate executable code using a predefined
set of tools. T1 is specifically designed to evaluate the ability of LLM-based agents to plan tool use
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Figure 1: Illustrative example from the T1 dataset. This example showcases a multi-domain scenario
involving both flights and hotels, where the user is planning a trip and attempting to book relevant
services. The dialogue is constructed by retrieving entities from a knowledge base, and tool calls are
executed using a predefined toolbox, simulating realistic, tool-augmented agent behavior.

effectively and leverage a caching mechanism to efficiently reuse previously retrieved information.
To support this, we incorporate dedicated tools for accessing and managing the cache.

Our contributions can be summarized as follows:

• We introduce T1, a comprehensive multi-turn dataset consisting of 13.5k dialogues designed
to evaluate tool-using, LLM-based agents across nine key domains—comprising four single-
domain and five multi-domain settings. The dataset covers a wide range of interaction
scenarios, including single-domain, mixed-domain, and fully multi-domain conversations.
It incorporates 14 distinct tools, enabling realistic and fine-grained assessment of agent
capabilities in complex, tool-driven dialogue tasks.

• To enhance the complexity and realism of the evaluation, the dataset includes cross-domain
tasks and interdependent tool calls, requiring agents to reason about tool selection and
execution order within context. This evaluation framework assesses the ability of LLM-
based agents to think critically, reason effectively, and make context-aware decisions.

• We evaluate our dataset using an LLM-based agent, T1-AGENT, a code-generation system
built on open-weight language models and equipped with a caching mechanism for improved
performance. This architecture enables scalable evaluation and provides a robust, efficient
framework for tool-using agents.

2 T1 Dataset

T1 is a dataset specifically designed to evaluate LLM-based agents on tool usage and complex
planning tasks over multi-turn conversational context. This dataset simulates multi-turn conversa-
tions spanning both four single-domain and five multi-domain settings: flights, restaurants, hotels,
attractions, flights-hotels, hotels-restaurants, hotels-attractions, flights-hotels-attractions, and flights-
hotels-restaurants. Planning tasks are formulated as code, where function calls to external tools are
used to accomplish specific goals.

2.1 Tasks and Notations

We define a dialogue D as an alternating sequence of assistant and user turns:

D = {A1, U1, A2, U2, . . . , An}, (1)
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Figure 2: T1 generates data by populating delexicalized entities with corresponding entries from the
knowledge base.

where each Ai represents an assistant turn and Ui a user turn. The dialogue always starts with an
assistant turn and proceeds in a strictly alternating order. We provide a set of tools T , where each tool
t ∈ T encapsulates logic to perform a specific function. These tools can be categorized as follows:

• Domain-specific tools: Designed to handle operations tied to a particular application
domain.

• Interdependent tools: Used to identify or reason about dependencies across domains.

• Generic tools: Domain-independent or auxiliary utilities applicable across tasks.

2.2 Dataset Construction

We construct our dataset by manually collecting data from Wikipedia to gather entities and metadata.
For this task, we define four domains: flights, hotels, restaurants, and attractions. Additionally,
we compile a list of 128 airports and 321 cities within the United States, along with up to 15
neighborhoods for each city. Some information—such as airline names, hotel names, and hotel star
ratings—is synthesized to avoid inaccuracies and to prevent the LLMs from relying on its internal
knowledge of real-world named entities.

Dataset Deployed Human Annotated Execution Result Multi-turn Context Multi-Domain
Tools Tool Planning Evaluation Planning Tool Planning

APIBank [4] ✓ ✓ ✓ ✓
APIBench [8] ✓
GAIA [6] ✓ ✓
GTA [18] ✓ ✓ ✓ ✓
m&m’s [5] ✓ ✓ ✓ ✓
ToolBench [11] ✓ ✓
Toolformer [12] ✓ ✓ ✓
TravelPlanner [20] ✓ ✓ ✓ ✓

T1 ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of datasets for the LLM-based agent systems.

2.2.1 Ontology

We have a total of 5 ontologies, one for each of the four defined domains and another one for city.
For each ontology, we curated a list of key attributes that would be relevant such as the airline or
number of layovers for a flight, the cuisine of a restaurant or the number of stars or customer rating
for a hotel. For each of these attributes, we defined the possible values and then used the ontology to
generate synthetic data for flights, hotels and restaurants which would subsequently be used by the
tools we defined.
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Single-domain Multi-domain Common Total
Flights Hotels Restaurants Attractions 2 Domains 3 Domains

# Attributes 35 43 21 7 N/A N/A N/A 106
# Tools 2 2 2 2 1 N/A 5 14
# Dialogues 1.5k 1.5k 1.5k 1.5k 4.5k 3k N/A 13.5k
Avg. # turns 8.2 8.0 9.0 6.0 11.3 9.7 N/A N/A

Table 2: Dataset statistics detailing the number of attributes, tools, dialogues, and the average number
of turns, categorized by each individual domain, multi-domain, and common categories. “N/A”
indicates that the metric is not applicable in the given context.

Flights. The ontology includes the airline, flight class (economy, business and first), num-
ber of layovers ranging between 0-2 stops, the duration of a layover ranging from 1-6 hours and
a list of the possible airports to depart from and arrive to. To see the full table, go to Table 37.

Hotels. The ontology includes the number of stars ranging between 1 to 5 stars, the customer rating
of the hotel ranging from 1.0 to 5.0, the cost of the hotel as well as whether or not the hotel includes
a number of amenities such as the presence of a gym or pool. To see the full table, go to Table 38.

Restaurants. The ontology includes the type of cuisine, the customer rating of the hotel ranging
from 1.0 to 5.0, the price per person and whether or not the restaurant served any particular dietary
options such as vegetarian, vegan, or halal. To see a full list of dietary restrictions, taken into
consideration, go to Table 39.

Attractions. The ontology includes the type of attraction which is one of the following: touristy,
culinary, historical, scenic, social, art, cultural, guided, and sporting.

Cities. The ontology includes a list of cities in the United States of America (US) that was collected
through Wikipedia. For each city, we then extracted up to 15 neighborhoods as well as the approximate
geographical coordinates of each neighborhood.

2.2.2 Knowledge Bases

Attractions. From the list of 321 cities, we collect up to 15 attractions for 85 cities through
the usage of Llama-3.3 70B Instruct and conduct quality assurance by human annotators to
ensure the data correctness. We also collect the city neighborhood for each attraction as well as the
geographical coordinates. In total, there are 728 attractions that were collected from the 85 cities for
this dataset.

Flights. The flight dataset includes a total of 128 airports used for data generation. Each flight is
associated with an airline, randomly selected from the provided ontology. The departure and arrival
airports are also randomly chosen from the list of airports in the ontology. While the departure time
is randomly generated, the arrival time is calculated based on the geographical distance between the
two airports, assuming an average flight speed of 450 miles per hour. In total, 480,410 synthetic
flights were generated for this dataset.

Hotels. Hotels are generated for all 321 cities in the ontology. For a particular city, a neighborhood
is assigned and additionally, synthetic latitude and longitude coordinates are generated for each
hotel in a city as the coordinates would be used for distance computing purposes. Each hotel is also
provided a star and a synthetic customer rating that would be correlated to the amenities offered by
the establishment as well as the price per night. 47,589 hotels were generated as part of this dataset.

Restaurants. Restaurants are generated for all 321 cities in the ontology. Just like for hotels,
in a particular city, a neighborhood is assigned to a restaurant and additionally, synthetic latitude
and longitude coordinates are generated. Each restaurant also is given a user rating which was
synthetically generated, a cuisine provided by the ontology as well as whether particular dietary
options are supported and the average cost per person. 17,975 restaurants are generated as part of this
dataset.
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2.2.3 Data Annotation and Quality Assurance

To ensure high-quality and natural data, we employ five human annotators, with each data sample
reviewed by both an annotator and a quality assurance (QA) reviewer. The annotators were selected
to represent a diverse set of background and perspectives, while maintaining a high technical bar.
All annotators have at least a Master’s degree in Computer Science and demonstrated proficiency in
Python, enabling them to handle complex annotation tasks requiring logical reasoning and scripting.
The QA specialist also has a strong background in programming. Annotators are assigned a category
of templates and are responsible for writing the appropriate code using the tools defined for this
project. Afterward, the QA reviewer evaluates the annotated code and provides feedback, which is
used to make necessary corrections and improvements.

2.2.4 Dialogue Generation

We create a total of nine data categories, as discussed in Section 4.1. The data construction follows
a three-step process: first, we generate templates with placeholder values; second, we annotate the
templates with code using the provided tools; and third, we programmatically fill in the placeholder
values for each template.

Generating Dialogue Templates. For each of the 9 dialogue categories, we generate 60 dialogue
templates using Llama-3.3 70B Instruct. These templates are then reviewed and refined by
human annotators to ensure accurate dialogue flow, as well as high coherence and fluency. The
model is prompted to generate synthetic dialogues for both single and multi-domain. Each template
consists of a conversation between the assistant and user. To learn more about the prompt used, go
to Appendix H and I. Additionally, the templates consist of placeholders for attributes such as a
city or neighborhood name, cuisine of a restaurant, rating of a hotel or the type of an attraction. As
the dataset is related to the area of travel, some placeholder values are tied to a particular city such
as the neighborhood (<CITY_x_NEIGHBORHOOD_x>, airport name (<CITY_x_AIRPORT_x>), hotel
name (<CITY_x_HOTEL_NAME_x>) and restaurant name (<CITY_x_RESTAURANT_NAME_x>).

Template Lexicalization. Within each dialogue category, 25 dialogues are generated with the
placeholder values filled with the actual values present within the ontology. In addition to the
dialogues, the ground-truth code which is part of the annotation has the placeholder values replaced
with actual values. The dataset is split into three partitions: training, validation and test. To limit data
contamination among these three partitions, the cities that are to be used for filling in the placeholder
are also assigned to a particular partition only to be used there. Hence, for example if the city of
Boston is assigned to the training partition, it will never be present in any of the validation or test
dialogue conversations. Additionally, for fields such as the check-in and checkout dates for hotels
or departure and return flight dates, particular methods are taken to ensure that any dates or times
follow chronological order and there is no instance where a check-in date at a hotel would be after
the checkout date.

Generated Dialogue and Ground Truth Validation. Once the placeholders are filled for both the
dialogues and ground truth code samples, each block of code is executed to identify any potential
errors in annotation including an improper use of a placeholder or a syntax error. The validation
assists the team in correcting any annotations and ensures that the resulting code is runnable.

3 T1-Agent

We build an LLM powered T1-AGENT to evaluate and simulate our T1 agentic dataset and measure
its performance across three tasks: information seeking, parameter extraction, and tool calling.

3.1 Information Seeking

Each tool has a mandatory set of parameters that must be provided before running the tool successfully.
Information seeking is the task of gathering this mandatory set of parameters for any of the respective
tools. We want to evaluate the capability of the agent to understand both the intent of the user’s
query and which parameters to ask the user about as a follow-up. Figure 1 shows an example of how
information seeking is used by the agent. When the user inquires about a flight from New York to
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San Jose and a hotel in San Jose, the agent understands that the user would like to search for flights
but needs to provide the departure date of the flight and the check-in date of the hotel. Thus, the agent
infers that in followup discussion, it needs to ask for these details from the user.

3.2 Parameter Extraction

After the agent understands the tools to call and the necessary parameters to collect, it works to
extract those parameters from the user dialogue. From Figure 1, when the user mentions that they
want a flight from New York to San Jose for 3 nights, the agent is able to extract the starting and
ending airport city for the flight as well as the number of nights to stay at the hotel. However, neither
search_flights or search_hotels can be called yet since the departure date of the flight and the
check-in and check-out date of the hotel have not yet been provided.

3.3 Tool Calling

Once the agent determines which tools to invoke and receives the necessary parameters for each, it
proceeds to make the appropriate calls. As shown in Figure 1, when the user provides the departure
date for a flight to San Jose, the agent first calls the search_flights tool using the departure city,
arrival city, and the specified departure date. Before it can proceed with booking accommodations,
the agent must compute the check-out date for the hotel stay. To accomplish this, it calls the
adjust_date tool. With both the check-in and check-out dates determined, along with the hotel
location, the agent then calls the search_hotels tool. Finally, the results from both the flight and
hotel searches are stored in the cache for potential future use.

3.4 Data Caching

We introduce a data caching mechanism that enables T1-AGENT to reuse the outputs of earlier tool
calls when handling subsequent user requests. This reduces redundant computation and improves
response efficiency in multi-turn interactions. After each user turn, any search results retrieved
by a tool are cached for potential reuse in later turns. The save_to_cache tool is used to store
these results. As illustrated in Figure 1, after the user provides the departure date for a flight to San
Jose, the agent calls both search_flights and search_hotels, and then stores the results using
the save_to_cache tool. Later, when the user requests flights from a specific airline, the agent
retrieves the cached flight results using the get_results_from_cache tool and filters them using
the filter_flights tool based on the user’s airline preference. This caching approach helps avoid
unnecessary API calls by reusing existing search results and applying filtering when appropriate.

Example: Refining a Flight Search. Suppose a previous user query fetched flights from NYC to
Boston, and the result was cached with the key "flights_nyc_bos". Later, the user asks to see
only flights priced under $500. The LLM, using the cache summary, generates the following plan:

flights = get_results_from_cache(key="flights_nyc_bos")
affordable_flights = filter_flights(prior_result=flights, budget=500)

This illustrates how the LLM composes new logic by combining previously retrieved results with
downstream tools, without repeating expensive API operations. Our approach enables more efficient,
coherent, and stateful plan generation in realistic, multi-turn assistant conversations.

4 Experimental Setup

4.1 Datasets

Each category contains 60 dialogue templates and a pool of 54 cities used to populate placeholder
values. We create 15 training templates, 5 validation templates, and 40 test templates per category.
Similarly, 13 cities are allocated for training, 4 for validation, and 37 for testing. Dialogues are
randomly sampled within each partition. After partitioning, a script fills all placeholders in each
template using the corresponding cities from the assigned split, ensuring no data leakage or overlap
of templates and entities between the training and test sets. Each template is instantiated into 25
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unique dialogues after substituting the placeholders in the dialogue templates with entities defined in
the ontology, yielding a total of 1,500 fully generated dialogues.

For our experiments, we prepare two different test dataset splits: (1) small; (2) large. The small
split is built for efficient and cost-effective evaluation and consists of 40 templates per domain and a
total of 40 dialogues per domain. The large split is built using all 40 templates with a total of 1,000
dialogues for each domain.

4.2 Domain Adaptation Using SFT

We perform a simple instruction tuning with the train dataset in order to showcase that the performance
on such complex conversational tool calling can be improved over zero or few-shot prompting. For
this experiment, we train a Llama 3.1 8B Instruct model for one epoch on the training dataset.
The training dataset is structured as a list of (prompt, completions) pairs. The SFT thereafter
follows standard next token prediction with cross-entropy loss. We use LoRA [2] on 8 A100 SXM
GPUs instead of full finetuning. For reproducibility, we use the widely adopted Huggingface TRL
library [17] and include the exact command to replicate the training in Section E.

4.3 Inference Procedure

During inference, for each user turn in a dialogue, the T1-AGENT generates executable Python code
that fulfills the user request at that point in the conversation. Before generating any code, the agent
will check an execution cache to determine if a similar request has been previously resolved. If
a cached result is available, the agent will write code that fetches and reuses the cached object to
prevent redundant computation and tool invocation.

To do this, the agent constructs a prompt that includes the conversation history along with the current
user turn. Instead of including the full execution cache, which can be large and token-intensive,
the prompt incorporates a summary of the cached results. These summaries are generated using a
deterministic, rule-based function that transforms each cached result into a concise representation.
This approach significantly reduces the token load in the prompt, making it feasible to include relevant
past results without exceeding model input limits.

This design enables the agent to consider past outcomes and reuse relevant information during code
generation. Even in cases where the user’s current query differs slightly from earlier queries, the
agent is able to fetch a prior result from the cache and use that as a starting point for the current user
turn. By introducing summarization at the planning stage, we shift caching responsibilities from
the tool-execution layer to the agent’s decision-making process. Our approach allows the agent to
selectively reuse and adapt cached outputs, leading to improved latency and broader generalization.

The generated code is executed in a sandboxed environment, and the cache is updated with the
new results on each user turn. Our dataset also includes the corresponding ground truth code and
post-execution cache, which are used for performance evaluation.

5 Results and Analysis

In this section, we present the performance of various LLMs on both single-domain and multi-domain
tasks. Single-domain tasks involve conversations focused exclusively on one domain, such as flights,
hotels, restaurants, or attractions. In contrast, multi-domain tasks involve interactions spanning
multiple domains, such as a user requesting both flight bookings and nearby hotel recommendations
within the same dialogue.

5.1 Overall Results

We conduct evaluation on both the small and large dataset splits. For the large dataset, we
compute the metrics averaged among all the domains for these models, all of which are open weight:
Llama 3.1 8B Instruct, Llama 3.1 8B Instruct SFT, Llama 3.3 70B Instruct, s1.1
32B, and Phi-4-reasoning-plus. For the small dataset, we ran experiments for all of the models
that are leveraged for the large dataset results with some additional open weight and proprietary
models to provide additional insight.
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As shown in Table 3, on the large dataset, the Llama 3.1 8B Instruct SFT model outperforms
all other models across most evaluation metrics. However, it is surpassed in recall within both Tool
Calling and Parameter Matching by the Llama 3.3 70B Instruct, and in Code Execution
Rate accuracy by both the Phi-4-reasoning-plus and Llama 3.3 70B Instruct models.

In Table 4, for the small dataset, we evaluate the same set of models along with several addi-
tional open-weight and proprietary models to enable a more comprehensive comparison. While
the Llama 3.1 8B SFT model achieves the highest overall performance across all metrics, it is
outperformed in Tool Calling and Parameter Matching by all proprietary models, except GPT
4.1-nano, within the open-weight model category. For Code Execution Rate, the Llama 3.3
70B Instruct model achieves accuracy comparable to proprietary models, although it still trails
behind Gemini 2.5 Pro, OpenAI o3, and GPT 5. In the Cache Summary task, all proprietary mod-
els except GPT 4.1-nano outperform the open-weight models. Interestingly, for the Information
Seeking metrics, there is minimal performance difference between proprietary and open-weight
models. In fact, the Llama 3.1 8B Instruct SFT achieves the highest scores on both SacreBLEU
and BERTScore across all evaluated models.

Domain Tool Call Parameter Matching Code Exec. Rate Information Seeking Cache Summary
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Phi-4-reasoning-plus 53.65 75.20 63.68 68.58 35.51 60.45 48.04 51.31 86.37 27.49 81.03 40.59
s1.1 32B 72.06 79.66 88.08 83.38 55.56 63.72 80.42 70.95 60.76 17.85 79.90 54.29
Llama 3.1 8B Instruct 35.68 44.30 64.39 52.11 19.14 24.21 49.32 31.79 41.83 27.37 80.96 29.56
Llama 3.1 8B Instruct SFT 77.58 86.85 87.65 87.17 61.21 73.23 79.10 75.76 84.29 41.58 85.61 63.95
Llama 3.3 70B Instruct 67.39 76.63 88.17 79.72 53.75 61.83 83.17 67.74 91.43 30.64 82.66 57.83

Table 3: Overall results for LLMs using large dataset with few-shot in-context learning (k = 13).

Domain Tool Call Parameter Matching Code Exec. Rate Information Seeking Cache Summary
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Open Weight

Phi-4-reasoning-plus 54.27 75.45 64.45 69.14 35.98 60.20 48.84 51.84 86.45 27.26 80.91 40.91
s1.1 1.5B 5.93 5.93 11.11 7.73 0.00 0.00 0.00 0.00 3.95 0.00 0.00 26.98
s1.1 3B 28.05 37.36 48.05 41.28 13.99 16.95 39.34 23.16 5.98 0.00 0.00 26.78
s1.1 7B 30.45 46.03 52.66 40.09 19.39 32.48 37.98 27.78 5.37 12.74 69.32 27.18
s1.1 32B 71.15 79.04 87.41 82.72 54.60 62.83 79.78 70.01 60.65 17.65 79.72 52.75
Llama 3.1 8B Instruct 35.87 44.63 64.33 52.25 19.45 24.71 49.91 32.25 42.35 27.12 81.41 29.45
Llama 3.1 8B Instruct SFT 77.48 86.87 87.41 87.07 60.68 73.16 78.35 75.39 83.77 42.39 85.77 63.79
Llama 3.1 70B Instruct 72.28 80.06 87.49 83.49 59.16 68.79 80.61 73.59 77.62 32.46 83.20 53.94
Llama 3.3 70B Instruct 67.02 76.20 83.03 79.14 53.65 62.11 76.74 67.54 91.44 31.38 82.87 57.17

Proprietary

Gemini 2.5 Pro 89.32 93.49 95.18 94.28 73.68 82.49 87.04 84.63 94.46 7.11 74.44 76.11
OpenAI o3 85.41 89.60 94.76 91.91 75.18 83.77 87.88 85.64 93.51 22.52 82.26 73.53
OpenAI o4-mini 86.47 91.88 93.44 92.59 77.31 86.91 87.32 87.05 89.00 22.93 81.52 72.43
GPT 4.1 86.00 92.02 92.68 92.32 75.01 84.49 86.79 85.53 91.20 29.37 83.54 73.80
GPT 4.1-mini 83.99 93.77 88.64 91.09 72.96 83.92 84.70 84.20 87.29 20.83 81.12 67.27
GPT 4.1-nano 63.14 75.38 78.13 76.46 39.60 52.63 61.31 56.26 77.90 19.79 79.16 40.65
GPT 5 87.52 90.92 95.76 93.14 76.54 84.63 88.71 86.51 94.45 28.15 81.94 76.25

Table 4: Overall results for LLMs using small dataset with few-shot in-context learning (k = 13).

5.2 Analysis

The Impact of Domain Adaptation on Performance. Figure 3 presents the Tool Call F1 and
Parameter Matching F1 scores on the large dataset. We observe that SFT significantly improves
domain adaptation for the smaller 8B model, enabling it to outperform its base version and even
exceed the performance of the much larger 70B model by a considerable margin across all domains.
This underscores the effectiveness of SFT in building robust and capable small models. Notably, while
the 70B and non-fine-tuned 8B models were prompted to generate answers with explicit reasoning,
the fine-tuned 8B variant, despite not being instructed to provide reasoning, achieved performance
comparable to the 70B Instruct model. This highlights the strong potential of task-specific fine-tuning
in enhancing model capabilities, even without explicit prompting.

Few-Shot Evaluation. As shown in Figure 4, we evaluate model performance on the flights domain
under 0-shot, 5-shot, and 13-shot settings. Performance is notably poor in the 0-shot setting, with
improvements observed in 5-shot and 13-shot configurations—though the gains plateau beyond 5
shots. Qualitative analysis suggests that without sufficient context, models continue to struggle with
generalization in complex, multi-domain scenarios.

Need for Complex Evaluation. Llama 3.3 70B Instruct performs well on standard code
generation tasks, we observe that it continues to struggle in complex, multi-turn scenarios involving
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Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Flights 25.12 30.90 57.34 40.16 15.57 17.34 60.30 26.94 26.24 14.41 82.36 36.63
Hotels 42.86 49.89 75.25 60.00 17.57 23.59 40.80 29.89 48.13 47.01 80.38 33.70
Restaurants 40.40 52.97 63.00 57.55 31.47 36.07 71.12 47.87 56.99 28.91 75.68 35.49
Attractions 33.03 48.49 50.90 49.66 14.11 25.11 24.36 24.73 40.40 N/A N/A 43.87
Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

F-H 33.09 40.89 63.44 49.73 16.11 19.28 49.48 27.75 38.43 26.54 82.00 21.85
H-R 51.06 59.21 78.77 67.61 26.62 33.52 56.37 42.05 51.82 28.60 84.07 9.95
H-A 38.75 45.46 72.39 55.85 16.11 20.02 45.12 27.74 48.88 26.03 81.77 32.75
F-H-A 27.76 36.24 54.24 43.45 16.21 21.18 40.88 27.90 28.76 14.15 78.58 24.37
F-H-R 29.04 34.65 64.19 45.00 18.53 21.77 55.44 31.26 36.79 33.28 82.84 27.47

Table 5: Overall results using Llama 3.1 8B Instruct with few-shot in-context learning (k = 13)
on large dataset.

Figure 3: Left: Tool Call F1 and Right: Parameter Matching F1 on large dataset.

advanced planning. The T1 dataset is designed to fill this gap by serving as a benchmark for
evaluating model performance in such challenging settings.

Open-weight vs. Proprietary Models. With the small dataset, we experiment with both
open-weight and proprietary models. From Figure 5, among open-weight models, we ob-
serve that the Llama 3.1 8B Instruct SFT model performs the best based on the tool calling
F1 score however it is still out-performed by almost all of the proprietary models except for GPT
4.1-nano. This indicates that while fine-tuning an open-weight model does improve the performance
significantly, there is a limit in the amount of improvement possible that cannot match the results
from the top proprietary models.

6 Related Work

6.1 Large Language Model Agents

LLM-based agents have emerged as foundational components in AI systems, capable of performing
complex, multi-step tasks through reasoning, memory integration, and tool use. These agents
often combine a pre-trained LLM with structured modules such as long-term memory, tool calling
capabilities, and self-reflective feedback loops. Frameworks such as AutoGPT [21], and AgentGPT
allow LLMs to autonomously decompose user goals into subgoals and execute them sequentially
using external APIs. More structured systems like HuggingGPT [13], CrewAI, and AutoGen [19]
facilitate collaboration between multiple LLM agents, each specializing in roles such as planning,
execution, or critique.

Despite significant progress, planning within task-oriented dialogue systems—particularly over long
horizons—remains a fundamental challenge. Previous paradigms such as plan-observe-execute (e.g.,
ReAct [22], ADaPT [10]) enable the model to interleave tool calls with reasoning steps. However,
most frameworks focus on linear execution paths where each step invokes a single tool. These
approaches often lack the ability to manage inter-tool dependencies, reuse intermediate results, or
revise plans based on partial tool failures. Further, a lot of these systems performs single turn planning,
i.e., the user of the system submits a request with all the information in the first turn. Multi-turn
conversational planning is a nascent field. For example, in multi-turn workflows like conversational
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Figure 4: Few-shot performance on flight using Llama 3.3 70B Instruct on large dataset.

Figure 5: Tool Calling F1 score between open weight and proprietary models on small dataset.

trip planning, agents need to collect information across multiple steps, then plan and coordinate
across tools like flight search, visa information, and calendar APIs—something most current systems
struggle to handle.

6.2 Tool-Based Agents and Benchmarks

Tool usage extends the scope of LLM capabilities beyond language modeling [16, 12] to real-world
actionability, enabling interactions with APIs, web tools, and external software. To evaluate this
ability, several benchmarks have been proposed, including APIBank [4], Tau-Bench [23], GAIA [6],
ALFWorld [14], GTA [18], TravelPlanner [20], and ToolBench [11]. Although these benchmarks
each emphasize different strengths, such as breadth of API coverage, realism, or reasoning complexity,
they often treat tool use as a series of isolated atomic actions without requiring coordinated planning
between multiple tools.

In contrast, our work introduces T1, a tool-driven benchmark designed to evaluate LLM agents in
multi-turn, multi-domain dialogue settings with inter-tool dependencies. T1 features an integrated
caching mechanism that supports both short- and long-term memory of tool call results, allowing
agents to make intelligent decisions about whether to replan or reuse cached outputs. Unlike prior
benchmarks, it tests an agent’s ability to perform dynamic replanning, handle branching workflows,
and compose tools in a realistic, dialog-driven environment. Thus, T1 not only challenges existing
tool-use agents but also provides a diagnostic sandbox for evaluating the reasoning capabilities of
open-weight LLMs under realistic constraints.

7 Conclusion

We introduce T1, a dataset for evaluating planning, reasoning, and tool use in LLM-based agents
through complex, multi-turn dialogues. By incorporating inter-tool dependencies, dynamic replanning,
and caching, it supports rigorous evaluation across single- and multi-domain tasks. Experiments with
T1-AGENT show that fine-tuned models often outperform much larger untuned ones, underscoring
the value of task-specific adaptation. We also find that stronger reasoning leads to more effective tool
use. We hope T1 will serve as a valuable resource for developing more capable, tool-augmented
language agents.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claim is supported by the abstract and introduction and aligns with the
contributions outlined throughout the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the limitations are pointed out clearly and reflect the scope of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed description of the hyperparameters and training proce-
dure.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-weight dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provided the link to the resources including the data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-weight
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we specify all the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Computing error bars for our use cases would be computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We disclose the compute workers and GPU used in the training.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we have reviewed the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work does not have direct societal impact that may have potential malicious
or unintended uses.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not pose any risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, we well documented the new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes] ,

Justification: We declared during the submission.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Limitations

In this work, we focus on constructing and introducing a new dataset as a benchmark for evaluating
agentic workflows in multi-turn conversational dialogue settings, with an emphasis on tool calling for
planning. Our evaluations are limited to open-weight models, as proprietary models are not included
due to resource constraints. We use Llama 3.1 8B Instruct, Llama 3.3 70B Instruct, s1.1
32B, and Phi-4-reasoning-plus. We will release T1 dataset publicly and hope it will encourage
future research that includes evaluations on proprietary models as well.

B Evaluation Protocol

We evaluate the model’s performance at every user turn by comparing the model’s output with the
ground truth across the following facets.

Tool Call. We evaluate the correctness of each tool call from the generated code against the ground
truth code by comparing the number of times each tool is called using four metrics: accuracy,
precision, recall, and F1.

Parameter Matching. For each tool call in the ground truth, we identify the corresponding tool
call in the generated code with the same name and the highest parameter overlap. We then calculate
the accuracy, precision, recall, and F1 for the identified match. Parameter values are standardized to
enable robust comparison; for example, lists are treated as sets to make them insensitive to ordering.
Certain tool calls such as save_to_cache, get_results_from_cache, and seek_information
are excluded from this evaluation, as they depend on external artifacts (e.g., intermediate dataframes)
and variable keys or identifiers that cannot be reliably matched. Similarly, certain parameter names
(e.g., prior_results) are also excluded.

Code Execution Success Rate. We calculate the percentage of instances in which the model gener-
ates a code when expected and the code is executable without any errors in a sandbox environment.

Handling Information Seeking. If both the model output and the ground truth include
seek_information, we evaluate the similarity of the strings inside the function using Sacre-
BLEU [9] and BERTScore F1 [24], capturing both sub-word overlap and semantic similarity of the
requested information.

Cache Summary. To assess how well the model serves complete requests, we compare the exe-
cution cache summary results of the generated code and ground truth using exact match (EM) to
determine if the model-generated solution is functionally equivalent to the ground truth.
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C Additional Results

C.1 Results on the cache usage across domains and models

Table 6 shows the average success rate of the cache hit. We define a cache hit is when the plan requires
a cache read, and the cache indeed has the required results. We evaluate the same set of models
along with several additional open-weight and proprietary models to enable a more comprehensive
comparison on the small dataset. Here clearly the domain adapted Llama 3.1 8B Instruct SFT
models has the highest average overall. The large proprietary models are also highly performant,
however this suggests the even small domain adapted models can beat large general purpose LLMs.

In Table 7, we further show some statistics of the cache usage. We have the ground truth statistics as
Reference. We show the average tool call per turn of conversation, average times we save in the
cache and average number of times we retrieve from the cache every turn across all the domains. We
observe that the performance of the SFT model is the closest to the ground truth with the OpenAI
o4-mini coming in close.

Model Flights Hotels Restaurants Attractions F-H H-R H-A F-H-A F-H-R Avg.
Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

Open Weight

Phi-4-reasoning-plus 17.93 98.90 97.43 31.02 54.93 61.86 88.17 29.13 47.89 58.58
s1.1 32B 54.75 53.53 49.70 49.47 59.52 56.73 47.79 63.04 64.14 55.41
Llama 3.1 8B Instruct 1.36 30.12 7.12 0.28 17.30 55.25 52.00 17.03 22.71 22.57
Llama 3.1 8B Instruct SFT 82.04 98.90 96.63 98.53 88.23 75.58 81.39 92.28 86.07 88.85
Llama 3.3 70B Instruct 31.87 94.70 96.54 28.32 40.03 78.84 90.54 46.22 46.54 61.51

Proprietary

Gemini 2.5 Pro 86.29 97.23 97.23 41.60 87.27 88.68 96.79 99.84 94.27 87.58
OpenAI o4-mini 81.13 92.11 97.43 55.45 81.53 94.47 96.61 92.14 94.92 87.31

Table 6: Average Success Rate on get_results_from_cache.

Model Success Rate (Retrieve Cache) Avg. Tool Call Avg. Save Cache Avg. Retrieve Cache
Reference 100 2.03 0.70 0.43

Open Weight

Phi-4-reasoning-plus 58.58 1.57 0.49 0.36
s1.1 32B 55.41 1.66 0.59 0.35
Llama 3.1 8B Instruct 22.57 1.876 0.61 0.24
Llama 3.1 8B Instruct SFT 88.85 2.11 0.77 0.47
Llama 3.3 70B Instruct 61.51 2.18 0.80 0.38

Proprietary

Gemini 2.5 Pro 87.58 2.05 0.73 0.40
OpenAI o4-mini 87.31 2.03 0.70 0.44

Table 7: Statistics of cache usage.
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C.2 Detailed Results on Large Dataset

In this section, we show the detailed results on the large dataset. Table 8 shows the results for
Llama 3.1 8B Instruct with Domain Adaptation and Table 9 shows the results for Llama 3.3
70B Instruct.

Additionally, we also experiment with medium-sized reasoning models to see how they perform.
We work with s1.1 32B [7] and Phi-4-reasoning-plus 14B [1]. As shown in Table 10 and
Table 11, the s1.1 32B model mostly outperforms the Phi-4-reasoning-plus model when it
comes to Tool Call and Parameter Matching metrics.

Domain Tool Call Parameter Matching Code Exec. Rate Information Seeking Cache Summary
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Flights 83.51 89.98 92.08 91.02 58.02 66.38 82.18 73.44 85.26 39.19 86.44 62.07
Hotels 78.18 84.87 90.84 87.75 60.40 67.29 85.53 75.32 72.13 48.30 80.91 71.35
Restaurants 72.76 80.40 88.44 84.23 57.49 66.69 80.64 73.00 95.16 95.14 98.63 65.32
Attractions 90.50 97.87 92.33 95.02 75.54 91.34 81.37 86.07 98.15 N/A N/A 83.00
Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

F-H 80.27 91.31 86.91 89.05 57.76 74.51 71.99 73.23 89.25 24.04 80.63 57.01
H-R 82.02 91.03 89.23 90.12 68.44 77.95 84.86 81.26 83.67 29.12 87.58 64.42
H-A 62.30 72.67 81.35 76.77 59.22 68.73 81.05 74.39 71.41 27.87 82.80 65.70
F-H-A 77.19 87.50 86.76 87.13 59.63 74.16 75.27 74.71 81.15 22.65 83.45 52.76
F-H-R 71.53 86.05 80.91 83.40 54.39 71.99 68.99 70.45 82.47 46.32 84.40 53.88

Table 8: Overall results using Llama 3.1 8B Instruct SFT. on large dataset.

Domain Tool Call Parameter Matching Code Exec. Rate Information Seeking Cache Summary
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Flights 58.42 78.26 69.75 73.76 32.11 40.51 60.76 48.61 83.32 20.25 82.90 53.80
Hotels 92.42 96.03 96.10 96.07 75.33 80.85 91.69 85.93 98.55 46.98 80.27 75.00
Restaurants 94.23 96.63 97.43 97.03 85.51 93.62 90.80 92.19 99.54 37.90 79.95 90.78
Attractions 79.14 92.16 84.86 88.36 71.17 87.04 79.60 83.16 63.70 N/A N/A 78.59

Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

F-H 43.48 53.73 69.52 60.61 22.28 25.94 61.24 36.44 95.02 27.39 83.42 37.15
H-R 60.50 70.91 80.46 78.29 50.94 60.08 76.99 67.50 99.60 22.97 84.11 38.43
H-A 64.91 68.93 91.75 78.72 59.24 66.59 84.29 74.40 97.01 30.02 82.71 57.03
F-H-A 60.46 70.77 80.59 75.36 44.27 51.19 76.58 61.37 94.81 19.16 82.27 44.29
F-H-R 52.97 62.22 78.07 69.25 42.93 50.66 73.76 60.07 91.30 40.45 85.62 45.37

Table 9: Overall results using Llama 3.3 70B Instruct with few-shot in-context learning (k =
13) on large dataset.

Domain Tool Call Parameter Matching Code Exec. Rate Information Seeking Cache Summary
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Flights 77.59 87.87 86.90 87.38 49.53 58.04 77.15 66.25 57.20 29.65 83.12 57.46
Hotels 89.33 95.33 93.41 94.36 65.27 70.52 89.77 78.99 63.95 18.07 79.56 57.23
Restaurants 87.77 92.65 94.35 93.49 71.59 77.69 90.11 83.44 69.82 7.16 69.91 69.22
Attractions 65.76 80.16 78.54 79.34 44.92 53.04 74.59 62.00 72.57 N/A N/A 63.87

Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

F-H 69.87 78.42 86.51 82.27 42.38 50.39 72.71 59.53 66.89 9.72 78.43 47.49
H-R 59.10 65.62 85.60 74.29 51.91 58.54 82.10 68.35 49.72 19.69 85.40 32.55
H-A 63.46 67.81 90.83 77.65 65.22 72.53 86.60 78.95 44.39 21.41 81.95 56.64
F-H-A 68.41 75.27 88.25 81.24 50.21 61.04 73.88 66.85 60.86 27.00 82.48 50.42
F-H-R 67.22 73.80 88.30 80.40 58.97 71.66 76.91 74.19 61.47 10.08 78.32 53.74

Table 10: Overall results using s1.1 32B with few-shot in-context learning (k = 13) on large
dataset.
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Domain Tool Call Parameter Matching Code Exec. Rate Information Seeking Cache Summary
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Flights 36.66 67.30 44.61 53.66 15.74 56.10 17.95 27.20 72.76 13.91 81.60 39.73
Hotels 83.96 91.74 90.82 91.28 53.22 63.09 77.30 69.47 93.05 46.95 80.47 46.52
Restaurants 64.13 83.60 73.36 78.14 47.10 61.89 66.34 64.04 93.49 28.27 69.74 50.53
Attractions 35.78 61.67 46.02 52.71 22.90 66.92 25.82 37.27 66.25 N/A N/A 50.79

Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

F-H 57.79 88.12 62.67 73.25 29.91 59.20 37.68 46.05 83.37 27.96 83.02 32.53
H-R 54.07 70.71 69.67 70.18 35.42 50.91 53.79 52.31 96.04 23.19 84.83 21.72
H-A 65.81 78.69 80.08 79.38 48.58 61.78 69.45 65.39 96.04 27.92 82.97 53.52
F-H-A 37.83 62.18 49.14 54.90 32.73 64.59 39.89 49.32 84.49 15.42 81.00 32.33
F-H-R 46.79 72.75 56.74 63.75 33.99 59.56 44.18 50.73 91.86 36.30 84.63 37.65

Table 11: Overall results using Phi-4-reasoning-plus with few-shot in-context learning (k = 13)
on large dataset.

Figure 6: Above: Tool Call F1 performance and Below: Parameter Matching F1 performance on
large dataset.

C.3 Detailed Results on Small Dataset

In this section, we present detailed results on the small dataset. Tables 12 through 27 report the perfor-
mance of various models, including Gemini 2.5 Pro (Table 12), GPT-5 (Table 13), GPT-4.1-nano
(Table 14), OpenAI o3 (Table 15), GPT-4.1-mini (Table 16), OpenAI o4-mini (Table 17), and
GPT-4.1 (Table 18). s1.1 32B (Table 19), s1.1 7B (Table 20), s1.1 3B (Table 21), s1.1 1.5B
(Table 22), Phi-4-reasoning-plus (Table 23), Llama 3.1 8B Instruct (Table 24), Llama
3.1 8B Instruct SFT (Table 25), Llama 3.1 70B Instruct (Table 26), and Llama 3.3 70B
Instruct (Table 27) .

Figures 7 through 9 illustrate the comparative performance of open-weight and proprietary models
under few-shot in-context learning (k = 13). Specifically, Figure 7 reports the Parameter Matching
F1 score, Figure 8 presents Code Execution Rate Accuracy, and Figure 9 shows the Cache Summary
Exact Match score.
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Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Attractions 85.05 91.67 92.18 91.92 68.15 79.31 82.88 81.06 73.95 N/A N/A 81.51
Flights 91.24 94.74 96.12 95.42 69.52 78.96 85.31 82.02 82.93 6.29 76.07 76.22
Hotels 97.58 99.18 98.37 98.78 79.55 84.84 92.73 88.61 98.75 9.13 73.90 80.00
Restaurants 95.87 98.37 97.42 97.89 84.69 92.74 90.71 91.71 100.00 4.34 63.70 91.77
Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

FH 85.90 91.67 93.17 92.41 65.92 73.91 85.92 79.46 98.29 6.57 75.84 67.95
FHA 92.47 94.35 97.89 96.09 73.07 81.41 87.71 84.44 98.97 7.43 76.16 71.28
FHR 86.12 95.15 90.07 92.54 68.25 83.48 78.90 81.13 97.67 6.81 75.76 73.84
HA 88.87 89.69 98.98 94.11 87.09 90.93 95.37 93.10 99.54 10.27 76.92 80.73
HR 80.82 86.56 92.41 89.39 66.87 76.81 83.78 80.15 100.00 6.02 77.21 61.64

Table 12: Overall results using Gemini 2.5 Pro with few-shot in-context learning (k = 13) on
small dataset.

Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Attractions 95.88 98.19 97.60 97.90 84.30 89.47 93.58 91.48 67.23 N/A N/A 89.92
Flights 94.70 97.28 97.28 97.28 72.04 83.75 83.75 83.75 85.98 51.61 89.11 73.78
Hotels 97.59 99.18 98.38 98.78 79.85 82.87 95.64 88.80 100.00 41.85 80.43 76.88
Restaurants 97.78 98.40 99.35 98.88 86.73 92.90 92.90 92.90 100.00 12.59 75.28 91.77
Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

FH 80.36 88.45 89.79 89.11 60.86 72.05 79.68 75.67 99.57 11.74 78.24 70.51
FHA 84.58 89.60 93.80 91.65 73.28 83.49 85.69 84.58 99.49 31.32 85.93 69.23
FHR 78.48 86.30 89.65 87.94 73.71 89.48 80.70 84.86 98.26 15.74 78.89 70.93
HA 80.40 80.93 99.19 89.13 82.29 86.56 94.34 90.28 99.54 28.84 82.82 73.39
HR 77.91 79.95 96.83 87.59 75.83 81.12 92.08 86.26 100.00 31.48 84.80 69.86

Table 13: Overall results using GPT-5 with few-shot in-context learning (k = 13) on small dataset.

Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Attractions 80.00 88.64 89.14 88.89 41.73 59.79 58.00 58.88 80.67 N/A N/A 54.62
Flights 66.67 90.03 71.98 80.00 36.41 53.09 53.68 53.38 75.61 12.31 80.23 43.29
Hotels 89.63 94.13 94.93 94.53 53.16 61.27 80.06 69.41 82.50 30.30 80.73 43.75
Restaurants 73.81 84.35 85.52 84.93 51.13 58.62 80.00 67.66 79.75 10.54 66.15 61.39
Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

FH 55.04 66.79 75.77 71.00 32.29 45.59 52.54 48.82 70.94 17.62 77.74 30.34
FHA 44.23 62.01 60.67 61.33 29.44 49.82 41.84 45.48 77.44 13.51 80.02 30.77
FHR 47.81 58.50 72.35 64.69 40.18 54.43 60.54 57.33 76.74 26.22 79.97 36.63
HA 58.63 69.05 79.54 73.92 42.10 52.49 68.01 59.25 80.73 22.96 82.53 48.17
HR 52.48 64.88 73.30 68.84 29.93 38.60 57.14 46.08 76.71 24.85 85.93 16.89

Table 14: Overall results using GPT-4.1-nano with few-shot in-context learning (k = 13) on small
dataset.

Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Attractions 86.67 92.86 92.86 92.86 69.12 77.05 87.04 81.74 77.31 N/A N/A 83.19
Flights 93.36 96.57 96.57 96.57 70.90 82.08 83.88 82.97 82.32 50.83 89.74 73.78
Hotels 97.33 99.18 98.11 98.64 81.19 84.54 95.35 89.62 100.00 18.29 80.08 76.88
Restaurants 97.09 98.36 98.68 98.52 86.01 93.26 91.71 92.48 98.73 8.41 70.71 91.77
Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

FH 81.20 89.16 90.09 89.62 62.20 73.60 80.06 76.69 95.73 9.54 79.67 68.80
FHA 85.71 88.48 96.48 92.31 78.61 86.81 89.27 88.02 96.92 36.93 87.83 67.69
FHR 74.59 86.10 84.80 85.44 70.52 88.39 77.72 82.71 96.51 11.45 79.77 69.19
HA 77.65 79.79 96.65 87.42 78.45 85.46 90.54 87.93 97.25 22.83 83.33 70.64
HR 75.08 75.90 98.58 85.77 79.60 82.78 95.39 88.64 96.80 21.84 86.98 59.82

Table 15: Overall results using OpenAI o3 with few-shot in-context learning (k = 13) on small
dataset.
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Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Attractions 86.90 94.81 91.25 92.99 71.77 80.91 86.41 83.57 71.43 N/A N/A 77.31
Flights 87.11 93.58 92.64 93.11 70.36 78.26 87.45 82.60 72.56 32.75 84.82 60.98
Hotels 96.75 99.09 97.61 98.35 81.28 86.61 92.97 89.68 91.25 20.32 79.39 68.12
Restaurants 94.88 97.54 97.20 97.37 82.14 88.46 92.00 90.20 94.94 13.72 71.47 88.61

Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

FH 76.56 89.39 84.22 86.73 62.16 76.11 77.22 76.66 81.20 12.35 80.54 53.85
FHA 81.28 94.94 84.96 89.67 71.74 86.20 81.05 83.55 87.69 30.40 84.29 61.54
FHR 75.62 92.19 80.80 86.12 68.43 87.45 75.88 81.26 94.77 12.87 80.33 64.53
HA 85.04 96.29 87.92 91.92 81.29 90.16 89.21 89.68 94.95 22.13 82.39 78.90
HR 71.75 86.08 81.17 83.55 67.50 81.08 80.12 80.59 96.80 22.08 85.77 51.60

Table 16: Overall results using GPT-4.1-mini with few-shot in-context learning (k = 13) on small
dataset.

Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Attractions 32.43 42.86 57.14 48.98 20.83 23.81 62.50 34.48 14.29 N/A N/A 39.50
Flights 7.69 14.29 14.29 14.29 0.00 0.00 0.00 0.00 6.10 N/A N/A 37.20
Hotels 73.08 82.61 86.36 84.44 25.00 35.29 46.15 40.00 3.12 N/A N/A 26.25
Restaurants 26.23 39.02 44.44 41.56 32.05 35.71 75.76 48.54 17.72 N/A N/A 34.18

Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

FH 22.22 26.67 57.14 36.36 1.96 2.44 9.09 3.85 0.00 N/A N/A 20.94
FHA 15.79 20.00 42.86 27.27 17.65 20.00 60.00 30.00 5.13 N/A N/A 24.62
FHR 25.00 42.31 37.93 40.00 6.35 8.51 20.00 11.94 2.91 N/A N/A 24.42
HA 16.67 24.44 34.38 28.57 9.09 10.39 42.11 16.67 4.13 N/A N/A 29.36
HR 33.33 44.00 57.89 50.00 12.99 16.39 38.46 22.99 0.46 N/A N/A 4.57

Table 17: Overall results using OpenAI o4-mini with few-shot in-context learning (k = 13).

Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Attractions 86.39 94.19 91.25 92.70 72.36 83.18 84.76 83.96 68.07 N/A N/A 82.35
Flights 89.66 94.79 94.30 94.55 71.08 81.10 85.20 83.10 79.27 59.27 91.02 71.95
Hotels 96.76 98.62 98.08 98.35 80.75 84.33 95.00 89.35 99.38 42.68 81.48 76.88
Restaurants 98.70 99.02 99.67 99.34 90.43 96.05 93.92 94.97 98.73 9.80 72.88 93.67
Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

FH 81.93 90.69 89.45 90.07 62.80 72.56 82.37 77.15 89.74 13.31 81.60 64.10
FHA 83.46 91.94 90.05 90.98 74.47 86.48 84.28 85.37 95.38 39.21 88.14 69.74
FHR 77.85 87.88 87.22 87.55 73.71 88.99 81.10 84.86 97.09 17.98 82.25 70.93
HA 81.45 87.50 92.18 89.78 78.44 87.47 88.37 87.92 97.25 27.25 83.51 76.61
HR 77.85 83.57 91.91 87.54 71.08 80.26 86.14 83.09 95.89 25.43 87.48 57.99

Table 18: Overall results using GPT-4.1 with few-shot in-context learning (k = 13).

Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Attractions 59.28 73.72 75.16 74.43 36.48 42.96 70.73 53.46 75.63 N/A N/A 59.66
Flights 80.42 88.12 90.21 89.15 55.31 63.46 81.15 71.22 60.98 26.68 82.58 58.54
Hotels 85.29 94.31 89.92 92.06 58.20 63.04 88.35 73.58 63.75 15.67 78.89 51.25
Restaurants 88.83 94.33 93.85 94.09 75.30 82.78 89.29 85.91 67.09 7.39 69.89 68.35
Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

FH 68.49 78.44 84.37 81.30 42.73 52.34 69.95 59.88 64.53 10.63 79.05 47.86
FHA 67.57 74.67 87.67 80.65 50.57 61.81 73.55 67.17 57.95 30.03 83.18 48.21
FHR 68.33 75.38 87.95 81.18 59.25 72.39 76.55 74.41 61.63 9.97 77.20 55.23
HA 62.06 66.15 90.94 76.59 63.03 69.40 87.29 77.32 45.87 22.72 82.66 55.96
HR 60.05 66.21 86.59 75.04 50.57 57.30 81.15 67.17 48.40 18.10 84.31 29.68

Table 19: Overall results using s1.1 32B with few-shot in-context learning (k = 13) on small
dataset.
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Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Attractions 40.00 100.00 40.00 57.14 66.67 100.00 66.67 80.00 10.08 N/A N/A 40.34
Flights 9.80 10.42 62.50 17.86 8.62 8.93 71.43 15.87 8.54 30.91 71.39 37.80
Hotels 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.25 N/A N/A 25.62
Restaurants 52.94 52.94 100.00 69.23 40.00 40.00 100.00 57.14 14.56 7.35 68.78 36.08

Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

FH 18.87 27.78 37.04 31.75 16.28 25.93 30.43 28.00 0.85 N/A N/A 20.94
FHA 9.23 9.52 75.00 16.90 30.00 37.50 60.00 46.15 5.64 353.69 56.04 24.62
FHR 9.84 13.64 26.09 17.91 12.90 80.00 13.33 22.86 4.65 647.95 56.10 24.42
HA 100.00 100.00 100.00 100.00 0.00 0.00 0.00 0.00 1.83 1232.03 79.41 30.28
HR 33.33 100.00 33.33 50.00 0.00 0.00 0.00 0.00 0.91 1585.06 84.21 4.57

Table 20: Overall results using s1.1 7B with few-shot in-context learning (k = 13) on small dataset.

Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Attractions 32.43 42.86 57.14 48.98 20.83 23.81 62.50 34.48 14.29 N/A N/A 39.50
Flights 7.69 14.29 14.29 14.29 0.00 0.00 0.00 0.00 6.10 N/A N/A 37.20
Hotels 73.08 82.61 86.36 84.44 25.00 35.29 46.15 40.00 3.12 N/A N/A 26.25
Restaurants 26.23 39.02 44.44 41.56 32.05 35.71 75.76 48.54 17.72 N/A N/A 34.18

Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

FH 22.22 26.67 57.14 36.36 1.96 2.44 9.09 3.85 0.00 N/A N/A 20.94
FHA 15.79 20.00 42.86 27.27 17.65 20.00 60.00 30.00 5.13 N/A N/A 24.62
FHR 25.00 42.31 37.93 40.00 6.35 8.51 20.00 11.94 2.91 N/A N/A 24.42
HA 16.67 24.44 34.38 28.57 9.09 10.39 42.11 16.67 4.13 N/A N/A 29.36
HR 33.33 44.00 57.89 50.00 12.99 16.39 38.46 22.99 0.46 N/A N/A 4.57

Table 21: Overall results using s1.1 3B with few-shot in-context learning (k = 13) on small dataset.

Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Attractions 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.24 N/A N/A 40.34
Flights 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.10 N/A N/A 37.20
Hotels 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 N/A N/A 25.62
Restaurants 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.03 N/A N/A 34.81

Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

FH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N/A N/A 20.94
FHA 53.33 53.33 100.00 69.57 0.00 0.00 0.00 0.00 5.64 N/A N/A 24.62
FHR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58 N/A N/A 24.42
HA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.38 N/A N/A 30.28
HR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N/A N/A 4.57

Table 22: Overall results using s1.1 1.5B with few-shot in-context learning (k = 13) on small
dataset.

Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Attractions 37.85 63.21 48.55 54.92 25.00 67.50 28.42 40.00 66.39 N/A N/A 52.94
Flights 35.76 66.67 43.54 52.68 15.38 52.50 17.87 26.67 73.17 13.84 81.46 39.02
Hotels 84.16 91.15 91.64 91.40 54.60 63.64 79.36 70.63 95.00 47.08 80.50 46.25
Restaurants 65.91 84.67 74.84 79.45 47.08 62.05 66.12 64.02 94.30 26.35 68.83 50.00

Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

FH 58.54 88.54 63.34 73.85 31.36 60.00 39.65 47.75 83.76 28.66 83.25 32.48
FHA 39.13 64.12 50.10 56.25 33.33 68.25 39.45 50.00 83.08 16.01 81.02 33.33
FHR 47.84 71.76 58.94 64.72 33.04 55.32 45.07 49.67 90.12 35.20 84.51 39.53
HA 65.71 78.59 80.04 79.31 48.30 61.09 69.77 65.14 96.33 28.02 82.89 52.75
HR 53.53 70.37 69.10 69.73 35.72 51.48 53.86 52.64 95.89 22.93 84.85 21.92

Table 23: Overall results using Phi-4-reasoning-plus with few-shot in-context learning (k = 13)
on small dataset.
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Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Attractions 28.76 44.44 44.90 44.67 12.61 24.59 20.55 22.39 38.66 N/A N/A 44.54
Flights 26.19 31.88 59.46 41.51 16.07 17.85 61.73 27.69 24.39 14.61 82.50 34.76
Hotels 43.01 49.10 77.62 60.15 19.10 25.65 42.79 32.08 50.62 47.16 80.53 35.62
Restaurants 38.89 53.03 59.32 56.00 27.78 31.75 68.97 43.48 56.96 28.28 76.97 32.91

Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

FH 33.30 42.52 60.56 49.96 17.47 21.15 50.10 29.75 41.03 26.02 82.63 19.66
FHA 29.22 37.52 56.90 45.22 17.44 22.17 45.01 29.70 30.77 14.73 79.65 24.62
FHR 28.43 33.84 63.98 44.27 18.11 21.20 55.44 30.67 32.56 30.97 83.02 28.49
HA 41.72 48.18 75.68 58.88 16.64 21.23 43.51 28.54 52.75 27.26 82.20 33.03
HR 53.33 61.18 80.60 69.56 29.81 36.79 61.10 45.92 53.42 27.95 83.77 11.42

Table 24: Overall results using Llama 3.1 8B Instruct with few-shot in-context learning (k =
13) on small dataset.

Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Attractions 91.08 97.98 92.82 95.33 71.67 90.53 77.48 83.50 99.16 N/A N/A 79.83
Flights 83.52 91.35 90.69 91.02 57.44 66.67 80.58 72.96 86.59 40.20 86.39 64.63
Hotels 79.63 85.86 91.64 88.66 60.42 68.08 84.30 75.32 72.50 48.25 80.74 71.25
Restaurants 73.07 80.83 88.39 84.44 56.64 66.51 79.23 72.32 96.20 95.72 98.82 63.92

Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

FH 79.81 91.89 85.86 88.77 57.57 75.62 70.68 73.07 88.03 24.26 80.38 57.69
FHA 78.97 86.90 89.64 88.25 62.55 74.90 79.14 76.96 80.00 23.37 83.95 55.90
FHR 69.43 84.01 80.00 81.95 53.50 70.00 69.42 69.71 81.40 47.69 84.77 54.07
HA 61.03 72.63 79.27 75.80 58.57 68.65 79.95 73.87 69.27 29.67 83.19 64.68
HR 80.83 90.41 88.41 89.40 67.75 77.48 84.36 80.78 80.82 29.94 87.88 62.10

Table 25: Overall results using Llama 3.1 8B Instruct SFT with few-shot in-context learning
(k = 13) on small dataset.

Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Attractions 91.08 97.98 92.82 95.33 71.67 90.53 77.48 83.50 99.16 N/A N/A 79.83
Attractions 77.10 88.60 85.59 87.07 74.74 93.42 78.89 85.54 53.78 N/A N/A 73.95
Flights 72.80 81.29 87.46 84.26 52.25 59.52 81.07 68.64 70.73 21.50 82.30 52.44
Hotels 88.29 93.93 93.63 93.78 72.03 80.53 87.22 83.74 82.50 45.83 80.23 64.38
Restaurants 89.42 92.38 96.54 94.42 72.30 80.63 87.50 83.92 88.61 53.50 84.86 82.91
Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

FH 59.47 68.55 81.79 74.59 34.27 39.85 71.01 51.05 75.64 26.27 82.61 33.76
FHA 73.44 78.57 91.84 84.69 59.36 65.19 86.92 74.50 79.49 18.17 81.41 45.13
FHR 61.48 70.32 83.01 76.14 55.79 65.05 79.68 71.62 78.49 42.93 86.68 43.60
HA 64.54 72.65 85.25 78.45 55.17 64.76 78.83 71.11 78.90 29.06 83.20 61.93
HR 64.01 74.20 82.34 78.06 56.51 70.18 74.38 72.22 90.41 22.39 84.33 27.40

Table 26: Overall results using Llama 3.1 70B Instruct with few-shot in-context learning (k =
13) on small dataset.
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Domain Tool Call Parameter Matching Code Exec. Information Seeking Cache
Rate Summary

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. SacreBLEU BERTScore EM

Single-Domain

Attractions 91.08 97.98 92.82 95.33 71.67 90.53 77.48 83.50 99.16 N/A N/A 79.83
Attractions 76.73 90.37 83.56 86.83 70.00 89.53 76.24 82.35 62.18 N/A N/A 77.31
Flights 56.86 75.86 69.42 72.50 29.81 36.61 61.62 45.93 83.54 20.11 82.87 50.61
Hotels 92.95 95.96 96.74 96.35 74.94 80.99 90.94 85.67 97.50 46.98 80.32 73.75
Restaurants 92.57 95.83 96.45 96.14 84.77 92.27 91.26 91.76 99.37 41.56 80.99 91.14
Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

FH 42.34 53.03 67.74 59.49 21.39 24.89 60.33 35.24 96.15 27.79 83.65 37.61
FHA 63.00 72.56 82.70 77.30 45.53 52.91 76.54 62.57 94.36 20.28 82.16 45.13
FHR 53.69 62.20 79.71 69.87 44.83 53.28 73.88 61.91 91.28 40.87 85.90 44.19
HA 66.62 70.58 92.23 79.96 64.59 72.49 85.57 78.49 98.62 30.43 82.82 57.34
HR 58.44 69.38 78.76 73.77 46.95 56.04 74.32 63.90 100.00 23.04 84.22 37.44

Table 27: Overall results using Llama 3.3 70B Instruct with few-shot in-context learning (k =
13) on small dataset.

Figure 7: Parameter Matching F1 score between open weight and proprietary models with few-shot
in-context learning (k=13).

Figure 8: Code Execution Rate Accuracy between open weight and proprietary models with few-shot
in-context learning (k=13).
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Figure 9: Cache Summary Exact Match between open weight and proprietary models with few-shot
in-context learning (k=13).
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D Error Analysis on large dataset results

Upon closer examination of the errors observed during inference on the large dataset, we categorize
them into four main types:

• Validation Error: Errors related to improper arguments being passed to the defined tools.
• Variable Not Defined: Error indicating code uses an underfined variable.
• Index Out Of Range: Error indicating generated code involves an index out of range,

usually corresponding to the list data structure in Python.
• Other: Other errors present within the generated code.

Overall, we notice that validation errors are consistently present within the results of all of the models
we evaluated.

D.1 Llama 3.3 70B Instruct

The Llama 3.3 70B Instruct model contains the fewest number of overall errors among the five
models evaluated with a total of 1,466. This supports the idea that the larger number of parameters
helps the model better understand the task as well passing in the proper parameters to the tools to
generate high quality code.

Domain # Turns # Validation Error # Variable Not Defined # Index Out Of Range # Other
Single-Domain

Flights 8,200 518 2 30 0
Hotels 8,000 41 0 0 0
Restaurants 7,900 29 0 0 0
Attractions 5,975 4 2 0 1

Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

F-H 11,700 158 28 0 0
H-R 10,950 14 2 0 1
H-A 11,000 48 33 0 48
F-H-A 9,775 148 6 7 3
F-H-R 8,575 330 5 1 7

Total - 1290 78 38 60

Table 28: Overall error analysis results using Llama 3.3 70B Instruct.

D.2 Llama 3.1 8B Instruct

The Llama 3.1 8B Instruct model consists of the most number of total errors among all 4
categories which were tracked. The only category it performs well in was the Index Out Of Range
error where there are only 5 instances.

29



Domain # Turns # Validation Error # Variable Not Defined # Index Out Of Range # Other
Single-Domain

Flights 8,200 737 830 0 468
Hotels 8,000 417 218 0 820
Restaurants 7,900 513 14 1 183
Attractions 5,975 507 1 0 243

Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

F-H 11,700 834 1087 0 408
H-R 10,950 1532 18 1 522
H-A 11,000 1024 167 0 308
F-H-A 9,775 1163 990 0 575
F-H-R 8,575 812 761 3 495

Total - 7539 4086 5 4022

Table 29: Overall error analysis results using Llama 3.1 8B Instruct.

D.3 Llama 3.1 8B Instruct SFT

The Llama 3.1 8B Instruct SFT does drastically improve on the number of Validation,
Variable Not Defined and Other categorized errors compared to the original model. This
indicates that the model is able to better learn about calling the tools and writing higher quality code
than the original model.

Domain # Turns # Validation Error # Variable Not Defined # Index Out Of Range # Other
Single-Domain

Flights 8,200 408 176 42 26
Hotels 8,000 1,099 16 0 0
Restaurants 7,900 209 5 0 2
Attractions 5,975 18 9 0 8

Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

F-H 11,700 454 149 0 22
H-R 10,950 692 185 0 17
H-A 11,000 1248 315 0 1
F-H-A 9,775 789 124 9 27
F-H-R 8,575 541 109 0 101

Total - 5458 1088 51 204

Table 30: Overall error analysis results using Llama 3.1 8B SFT Instruct.
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D.4 s1.1 32B

Overall, the s1.1 32B model performs the best when it comes to Validation errors with a total of
937 errors. However, it also consists of the highest amount of Index Out of Range errors and the
2nd highest amount of Variable Not Defined errors.

Domain # Turns # Validation Error # Variable Not Defined # Index Out Of Range # Other
Single-Domain

Flights 8,200 559 16 3 40
Hotels 8,000 92 1 39 27
Restaurants 7,900 20 7 0 28
Attractions 5,975 11 27 0 76

Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

F-H 11,700 24 34 114 63
H-R 10,950 54 895 102 34
H-A 11,000 3 1071 43 23
F-H-A 9,775 89 579 25 49
F-H-R 8,575 85 241 7 28

Total - 937 2871 333 368

Table 31: Overall error analysis results using s1.1.

D.5 Phi-4-reasoning-plus

The Phi-4-reasoning-plus has 1,498 validation errors which is the third most among the 5
models. The model does perform reasonably well with the other error categories and has the fewest
number of Index Out Of Range and Variable Not Defined errors with 1 and 16 respectively.

Domain # Turns # Validation Error # Variable Not Defined # Index Out Of Range # Other
Single-Domain

Flights 8,200 103 7 1 1
Hotels 8,000 277 0 0 1
Restaurants 7,900 259 0 0 19
Attractions 5,975 0 0 0 0

Multi-Domain. F: Flights, H: Hotels, R: Restaurants, A: Attractions

F-H 11,700 212 2 0 7
H-R 10,950 212 0 0 1
H-A 11,000 162 0 0 6
F-H-A 9,775 120 3 0 5
F-H-R 8,575 153 4 0 32

Total - 1498 16 1 72

Table 32: Overall error analysis results using Phi-4-reasoning-plus.
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E Model and Prompt Configuration

We evaluate a diverse set of models on two dataset splits: a small dataset and a large dataset.

• On the large dataset, we evaluate the open-weight models: Phi-4-reasoning-plus, s1.1
32B, Llama 3.1 8B Instruct, Llama 3.3 70B Instruct, and a fine-tuned Llama
3.1 8B Instruct SFT (detailed below).

• On the small dataset, we evaluate a broader set including proprietary models:
Phi-4-reasoning-plus, s1.1 1.5B, s1.1 3B, s1.1 7B, s1.1 32B, Llama 3.1 8B
Instruct, Llama 3.1 8B Instruct SFT, Llama 3.1 70B Instruct, Llama 3.3
70B Instruct, Gemini 2.5 Pro, OpenAI o3, OpenAI o4-mini, GPT 4.1, GPT
4.1-mini, GPT 4.1-nano, and GPT 5.

All model evaluations are conducted in a few-shot setting, using k = 13 example turns included in
the prompt to guide model behavior. The full prompts used for inference are provided in Appendix L
and Appendix M. For decoding, we use a temperature of 0.1, top-k sampling of 10, and a maximum
new token limit of 4,000. We host our open-weight models using vLLM on a node with 8x A100
40GB GPUs.

To evaluate the effectiveness of domain adaptation, we fine-tune Llama 3.1 8B Instruct on the
T1 dataset. The following script, which uses the TRL library (v0.17.0), can be used to replicate this
Supervised Fine-Tuning (SFT):

>> git clone https://github.com/huggingface/trl.git
>> cd trl
>> git checkout v0.17.0 # We use TRL version 0.17.0
>> pip install -e .
>> accelerate launch --config_file trl/examples/accelerate_configs/multi_gpu.yaml \

trl/scripts/sft.py \
--model_name_or_path <YOUR PATH TO A Meta-Llama-3.1-8B-Instruct LOCALLY> \
--dataset_name <TRAIN SET OF THE TOOL CALLING IN HUGGINGFACE DATASET FORMAT> \
--learning_rate 2.0e-5 \
--num_train_epochs 1 \
--packing \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 8 \
--gradient_checkpointing \
--logging_steps 25 \
--eval_strategy steps \
--eval_steps 100 \
--use_peft \
--lora_r 32 \
--lora_alpha 32 \
--lora_target_modules q_proj k_proj v_proj o_proj gate_proj up_proj down_proj \
--output_dir <SOME OUTPUT DIRECTORY> \
--report_to tensorboard \
--torch_dtype bfloat16

To assess output quality and stability, we computed performance metrics for Llama 3.3 70B
Instruct and Gemini 2.5 Pro on the small dataset across three different random seeds. Both
models exhibited consistent performance, with standard deviations below one percentage point,
indicating high stability. Table 33 shows the results for Tool Call Parameter Matching and Code
Execution Rate metrics. Table 34 shows the results for Information Seeking metrics.

F More Information on T1 Dataset

Table 35 shows the attributes for each domain. Table 36 shows the tools used for each domain.
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Model Task Acc. Prec. Rec. F1

Gemini 2.5 Pro Tool Call Parameter Matching 88.93± 0.35 93.26± 0.20 94.92± 0.26 94.04± 0.21
Code Execution Rate 73.07± 0.54 81.97± 0.45 86.69± 0.33 84.19± 0.39

Llama-3.3 70B Instruct Tool Call Parameter Matching 66.98± 0.12 76.51± 0.38 82.77± 0.42 79.15± 0.04
Code Execution Rate 53.40± 0.22 61.91± 0.39 76.81± 0.06 67.48± 0.20

Table 33: Model performance on Tool Call Parameter Matching and Code Execution Rate tasks cross
different seeds.

Model Acc. SacreBLEU BERTScore EM
Gemini 2.5 Pro 94.23± 0.24 7.56± 0.40 74.54± 0.13 75.44± 0.77
Llama-3.3 70B Instruct 91.65± 0.64 31.04± 0.30 82.73± 0.12 57.55± 0.33

Table 34: Model performance on the Information Seeking task cross different seeds.

Domain Attributes
Flight airline, flight_id, start_airport, start_airport_latitude, start_airport_longitude,

start_airport_code, end_airport, end_airport_latitude, end_airport_longitude,
end_airport_code, economy_class_option_present, business_class_option_present,
first_class_option_present, distance_miles, duration_minutes,
departure_time, arrival_time, number_of_layovers, first_layover_airport,

Hotel hotel_name, city, state, neighborhood, latitude, longitude, rating,
stars, max_occupancy, gym_present, pool_present, price_per_night, num_rooms_available,
breakfast_included, smoking_allowed, air_conditioning_present,
heating_present, free_wifi_included, airport_shuttle_present,
is_pet_friendly, has_spa_services, has_room_service,
has_beach_access, has_fitness_class, has_laundry_service,
has_valet_parking, has_balcony, has_rooftop_bar, has_inroom_Kitchen,
has_kids_club, has_meeting_rooms, has_electric_vehicle_charging,
has_hot_tub, has_sauna, has_free_parking, is_wheelchair_accessible,
has_skiing_lodging, has_ocean_view_rooms_present, has_city_view_rooms_present,
start_date_available, end_date_available

Attraction city, state, name, type, latitude, longitude, neighborhood
Restaurant restaurant_name, city, state, neighborhood,

latitude, longitude, rating, price, price_per_person, has_nut_allergy_options, has_dairy_allergy_options, has_shell_fish_allergy_options,
has_tomato_allergy_options, has_nightshade_allergy_options,
has_gluten_free_options, has_vegetarian_options, has_vegan_options,
has_kosher_options, has_halal_options, cuisine

Table 35: Domains and attributes.

Domain Tools
Flights search_flights, filter_flights
Hotels search_hotels, filter_hotels
Restaurants search_restaurants, filter_restaurants
Attractions search_attractions, filter_attractions
Multi-domain search_nearest
Common save_to_cache, get_results_from_cache, sort_results, seek_information, adjust_date

Table 36: List of tools.

G Sample Conversation from T1 Dataset

Attribute Type Description
airline string Airline of the flight,
flight_classes string Classes for the flight (economy, business, first)
num_layovers integer Number of layovers for the flight, between 0 and 2
layover_duration_amount integer Duration of a layover flight. Between 1 and 6 hours
airports list Airport information for each flight including the city, state, airport code and airport name.

Table 37: Flight ontology attributes.
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Attribute Type Description
city string City that the hotel is in
state string State that the hotel is in
neighborhood string Neighborhood within the city that the hotel is in
stars integer Star rating of the hotel between 1 and 5
rating float Customer rating of the hotel between 1.0 and 5.0, incremented by 0.1
price_per_night integer Price per night of the hotel ranging between 20 to 2000 dollars
max_occupancy integer Maximum occupancy per room ranging between 1 and 7
gym_present boolean Whether or not the hotel has a gym
pool_present boolean Whether or not the hotel has a pool
breakfast_included boolean Whether or not the hotel has breakfast included
smoking_allowed boolean Whether or not the hotel allows smoking
air_conditioning_present boolean Whether or not the hotel has air conditioning
heating_present boolean Whether or not the hotel has heating
free_wifi_included boolean Whether or not the hotel includes free WiFi
airport_shuttle_present boolean Whether or not the hotel has an airport shuffle
is_pet_friendly boolean Whether or not the hotel allows pets
has_spa_services boolean Whether or not the hotel has spa services
has_room_service boolean Whether or not the hotel has room service
has_beach_access boolean Whether or not the hotel has access to a beach
has_business_center boolean Whether or not the hotel has a business center
has_fitness_classes boolean Whether or not the hotel has fitness classes
has_laundry_service boolean Whether or not the hotel has laundry services
has_valet_parking boolean Whether or not the hotel has valet parking
has_balcony boolean Whether or not the hotel has a balcony
has_rooftop_bar boolean Whether or not the hotel has a rooftop bar
has_inroom_kitchen boolean Whether or not the hotel has an inroom kitchen
has_kids_club boolean Whether or not the hotel has a kids club
has_meeting_rooms boolean Whether or not the hotel has meeting rooms
has_electric_vehicle_charging boolean Whether or not the hotel has electric vehicle charging
has_hot_tub boolean Whether or not the hotel has a hot tub
has_sauna boolean Whether or not the hotel has a sauna
has_free_parking boolean Whether or not the hotel has free parking
is_wheelchair_accessible boolean Whether or not the hotel is wheelchair accessible
has_skiing_lodging boolean Whether or not the hotel has skiing and lodging
ocean_view_rooms_present boolean Whether or not the hotel has rooms with a view of the ocean
city_view_rooms_present boolean Whether or not the hotel has rooms with views of the city

Table 38: Hotel ontology attributes.

Attribute Type Description
city string City that the restaurant is in
state string State that the restaurant is in
neighborhood string Neighborhood within the city that the restaurant is in
rating float Customer rating of the restaurant between 1.0 and 5.0, incremented by 0.1
price_per_person integer Average price per person at the restaurant
cuisine string Cuisine of the restaurant
has_nut_allergy_options boolean Whether or not the restaurant has any options for individuals with an allergy to nuts
has_dairy_allergy_options boolean Whether or not restaurant has any options for individuals with an allergy to dairy products
has_shell_fish_allergy_options boolean Whether or not the restaurant has any options for individuals with an allergy to shell fish
has_tomato_allergy_options boolean Whether or not the restaurant has options for individuals with an allergy to tomatoes
has_nightshade_allergy_options boolean Whether or not the restaurant has options for individuals with an allergy to nightshades
has_gluten_free_options boolean Whether or not the restaurant has gluten free options
has_vegetarian_options boolean Whether or not the restaurant has vegetarian options
has_vegan_options boolean Whether or not the restaurant has vegan options
has_halal_options boolean Whether or not the restaurant has halal options
has_kosher_options boolean Whether or not the hotel has kosher options

Table 39: Restaurant ontology attributes.

Attribute Type Description
city string City that the attraction is in
state string State that the attraction is in
neighborhood string Neighborhood within the city that the attraction is in
type string Type of the attraction

Table 40: Attraction ontology attributes.
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Box 1. Sample conversation for attractions

assistant: Hello! Are you looking for something to do in your free time?

user: Yeah, I am thinking of visiting some scenic attractions in San Antonio.

assistant: San Antonio has a lot of great Scenic spots. Have you considered Down-
town San Antonio?

user: Actually, I haven’t. What’s there?

assistant: It’s a great area with a lot of Scenic attractions. I can give you some rec-
ommendations.

user: Okay, that sounds good.

Box 2. Sample conversation for flights

assistant: Welcome! What can I help you with today?

user: I need to book a flight from Colorado Springs to San Antonio for my anniver-
sary, and I’m looking for something special.

assistant: Happy anniversary! What date are you planning to travel?

user: We’re thinking of May 21, 2025.

assistant: That’s great! What kind of flight experience are you looking for? Lux-
ury, perhaps?

user: Yes, something luxurious. And we’d like to depart from COS.

assistant: I’ll look into that. What’s your budget for the flight?

user: We’re looking to spend around 1100.

Box 3. Sample conversation for hotels

assistant: Hello, what brings you here today?

user: I’m looking for a hotel in St. Louis for my anniversary, can you help me?

assistant: Congratulations on your anniversary! What are your check-in and check-
out dates?

user: We’re planning to check-in on May 18, 2025 and check-out on May 29, 2025.

assistant: That’s great! How many rooms do you need and what’s your budget per
night?

user: We need 3 room and our budget is around 550 per night.

assistant: I see. What kind of amenities are you looking for in a hotel?

user: We’d like a hotel with a gym, pool, and air conditioning.

assistant: Got it. Would you prefer a hotel in a specific neighborhood in St. Louis?
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user: Yes, we’d like to stay in Downtown St. Louis.

Box 4. Sample conversation for restaurants

assistant: Welcome, what brings you here today?

user: I’m gluten-free and I’m looking for a restaurant that can accommodate my di-
etary needs.

assistant: Don’t worry, I’m here to help. What kind of cuisine are you interested
in?

user: I’m really craving Livonian.

assistant: There are some great Livonian places that offer gluten-free options. Are
you looking for something in a specific neighborhood?

user: Yeah, I’d love something in Las Vegas somewhere in Summerlin.

assistant: I can check what’s available in Summerlin. What’s your budget for this
meal?

user: I’m looking to spend around 120 per person.

assistant: That helps. Would you like me to recommend a few places that fit your
criteria?

user: Please do.

Box 5. Sample conversation for flight and hotels

assistant: Hello, how can I assist you today?

user: I’m looking for a flight from Atlanta to Memphis and a hotel in Memphis

assistant: What are your travel dates?

user: My departure date is May 18, 2025 and I’d like to return on June 1, 2025

assistant: What class of flight are you interested in?

user: I’d prefer business

assistant: And for your hotel, what star rating are you looking for?

user: I’d like a 2 star hotel in Downtown Memphis

Box 6. Sample conversation for hotel and restaurant

assistant: Hello! How can I assist you today?

user: I’m looking for a hotel in San Antonio and a restaurant that serves Turkish.

assistant: That sounds like a great plan! Can you tell me a bit more about your ho-
tel preferences, such as the number of rooms and check-in date?
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user: I need 3 rooms for 5 people, checking in on May 22, 2025 and checking out
on May 27, 2025.

assistant: I’d be happy to help you with that. What’s your budget per night for the
hotel?

user: I’m looking to spend around 50 per night.

assistant: That’s helpful to know. For the restaurant, are you looking for some-
thing with a specific rating or price range?

user: Yes, I’d like a restaurant with a rating of at least 3.5 and a price range of
around 85.

assistant: I’ll keep that in mind. Would you like the hotel to have any specific
amenities, such as a gym or pool?

user: Yes, a pool would be great. And can you recommend a restaurant with Turk-
ish near the hotel?

Box 7. Sample conversation for hotel and attraction

assistant: Hi there! What brings you here today?

user: I’m planning a last-minute trip to Portland for 2 people.

assistant: Last-minute trips can be exciting! What’s your budget for the hotel?

user: We’re looking to spend around 55 per night.

assistant: Okay, that helps. What’s your check-in and check-out date?

user: We’re checking in on June 28, 2025 and checking out on July 10, 2025.

assistant: Are you interested in any specific attractions in Portland?

user: Yes, we want to visit Pittock Mansion, which is a Social attraction.

assistant: That sounds like a great choice! I can help you find a hotel near Pittock
Mansion. What kind of amenities are you look for in the hotel?

user: We need a hotel with a gym and wifi.

Box 8. Sample conversation for flight-hotel-attraction

assistant: Hello, I’d be happy to help you plan your trip. What’s on your mind?

user: I’m thinking of going to Las Vegas for my birthday and I need a business
flight from Tucson.

assistant: Happy birthday in advance. When are you thinking of traveling?

user: We’re looking at May 19, 2025 to May 27, 2025.

assistant: That’s a great time. How many people are traveling?
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user: Just 2 of us.

assistant: Lovely. For your stay, what kind of hotel are you envisioning?

user: A 2 star hotel with a spa and room service would be perfect. And we’d love
to stay near Fountains of Bellagio with a beautiful view.

assistant: That sounds like a great choice! I can help you find a hotel near Pittock
Mansion. What kind of amenities are you look for in the hotel?

Box 9. Sample conversation for flight-hotel-restaurant

assistant: Welcome to our travel assistant. How can I help you today?

user: I’m looking to travel from Tucson to St. Louis for a business trip.

assistant: What are your preferred travel dates?

user: I’d like to fly out on May 18, 2025 and come back on June 1, 2025

assistant: What class would you like to fly in?

user: I prefer first.

assistant: Great, I can look into that. Where would you like to stay in St. Louis?

user: I’d like a hotel in Downtown St. Louis with a 3 star rating.

assistant: And what kind of restaurant are you looking for?

user: I’d like a restaurant in Downtown St. Louis with a rating of at least 3.5.

H System Prompt Design for Single-Domain Template Generation

This section details the unified system prompt and its domain-specific customizations used for
generating diverse, realistic multi-turn conversations for four domains: Flights, Hotels, Attractions,
and Restaurants.

H.1 Unified Prompt Instructions (Common Across Domains)

The following design principles apply across all domains to ensure consistency, diversity, and realism
in the generated templates:

• Conversation Format:
– Each template contains 6–8 dialogue turns (3–4 exchanges).
– Each template starts with an assistant turn and ends with a user turn.
– Turns alternate between assistant: and user:.

• Placeholder Handling:
– Use numbered placeholders like <CITY_1>, <PRICE_2>.
– Numbering resets at the start of each new template.

• Assistant Behavior Diversity:
– Vary personality: formal/informal, concise/verbose.
– Ask both open-ended and specific questions.
– Do not assume user intent or provide options in the first message.
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– Correct misunderstandings if needed.

• User Behavior Diversity:
– Include verbose, terse, indecisive, and overly specific users.
– Some users provide minimal context; others give excess information.
– Include questions that revisit or skip steps.

• Flow Diversity:
– Avoid fixed dialogue patterns (e.g., greet → date → options).
– Allow nonlinear flow: backtracking, parallel requests, etc.

• Language Diversity:
– Vary greetings, transitions, sentence structure, and phrasings.
– No repeated phrasing across templates.

• Output Requirements:
– Output format is strict JSON with keys like "template_1" through "template_30".
– Each value is a newline-separated conversation string.
– No preambles or postambles allowed.

H.2 Domain-Specific Customization

Figure 41 presents the domain-specific customization we use for T1.

Domain Placeholders Used Required Scenarios
Flight <CITY_x>, <CLASS_x>,

<DEPARTURE_DATE_x>,
<DEPARTURE_TIME_x>,
<ARRIVAL_DATE_x>, <ARRIVAL_TIME_x>,
<AIRLINE_x>, <PRICE_x>, <AIRPORT_x>,
<NUM_TRAVELERS_x>

Round trip (with 2 departure dates), one-way, multi-city,
strict arrival time, flexible dates, large group bookings,
solo/business/family travel, weekend getaways, budget con-
straints, special occasions (e.g., birthdays)

Hotel <CHECK_IN_DATE_x>,
<CHECK_OUT_DATE_x>, <CITY_x>,
<CITY_x_NEIGHBORHOOD_y>,
<STAR_x>, <RATING_x>, <PRICE_x>,
<NUM_ROOMS_x>, <NUM_TRAVELERS_x>

Multi-city trips, multiple hotels in one city, specific neighbor-
hoods, special occasions, last-minute reservations, business
vs. leisure, extended stays, view/accessibility/pet-friendly
requests, family and group accommodations

Attraction <ATTRACTION_TYPE_x>, <CITY_x>,
<STATE_x>, <CITY_x_NEIGHBORHOOD_y>

Multi-type attraction queries, across cities/states,
neighborhood-specific exploration, curiosity about
state-level offerings. Assistant must ask open-ended
questions and only mention placeholders if user provides
them.

Restaurant <RESTAURANT_RATING_x>,
<RESTAURANT_PRICE_x>,
<RESTAURANT_CUISINE_x>, <CITY_x>,
<CITY_x_NEIGHBORHOOD_y>

Multi-city dining, cuisine preferences, dietary restrictions
(e.g., nut-free, vegan, halal), budget vs. premium, special
occasion dining, rating-focused or casual vs. upscale prefer-
ences

Table 41: Domain-specific customization for template generation. Each domain builds on the shared
prompt instructions with unique placeholders and required conversation scenarios.

I System Prompt Design for Multi-Domain Template Generation

This section outlines the system prompt instructions used for generating multi-turn conversations that
span multiple domains. These prompts are tailored to create realistic, nonlinear interactions involving
combinations of Flights, Hotels, Attractions, and Restaurants.

I.1 Unified Prompt Instructions (Shared Across Multi-Domain Prompts)

• Conversation Format:
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– Each template includes at least 8–10 dialogue turns (4–5 exchanges).
– Each template begins with an assistant turn and ends with a user turn.
– Turns alternate between assistant: and user:.

• Placeholder Handling:
– Use only predefined placeholders (e.g., <CITY_1>, <DEPARTURE_DATE_1>).
– Numbering restarts from 1 in every template.
– Assistant must never mention a placeholder until the user provides it.

• Assistant Behavior:
– Vary personality (formal, informal), verbosity, and strategies (direct vs. open-ended ques-

tions).
– Must not assume user intent or combine domain-specific questions unless user initiates.
– Must correct misunderstandings and adapt to user behavior.

• User Behavior:
– Include users who are indecisive, impatient, verbose, overly specific, or vague.
– Users may change their mind, skip steps, or backtrack in conversation.

• Conversation Flow:
– Avoid rigid order (e.g., flight → hotel → attraction).
– Encourage nonlinear scenarios: jumping between domains, multiple questions at once.

• Language and Style:
– Vary greetings, transitions, sentence structures, and terminology across templates.
– Avoid repeated phrasings.

• Output Requirements:
– Format is strict JSON: "template_1" through "template_30".
– Each value is a newline-separated string of alternating assistant/user dialogue.
– No preamble, postamble, or markdown allowed.

I.2 Multi-Domain Scenario Requirements
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Domains Placeholders Used Required Scenarios
Flight + Hotel <CITY_x>, <CLASS_x>,

<DEPARTURE_DATE_x>,
<CHECK_IN_DATE_x>,
<CHECK_OUT_DATE_x>,
<NUM_TRAVELERS_x>

Trip planning involving both air
travel and accommodation. In-
cludes round-trip and one-way
flights, hotel stays across one or
more cities, budget and luxury trav-
elers, group vs. solo travel, flexible
dates, specific preferences like non-
stop flights or hotels with amenities
(e.g., pool, gym, pet-friendly).

Flight + Hotel + Attraction All flight, hotel, and at-
traction placeholders (e.g.,
<CITY_x>, <CHECK_IN_DATE_x>,
<ATTRACTION_TYPE_x>)

User planning a full trip involv-
ing flights, hotel stays, and sight-
seeing. Must include: round-
trip and one-way flights, multi-city
stays, hotels near attractions, flex-
ible schedules, user-provided at-
traction types or specific attrac-
tion names (only when linking to
hotel proximity), and special con-
straints (e.g., group travel, business
trips, anniversaries). Assistant must
never use placeholder names be-
fore user introduces them. Includes
amenity discussions and attraction-
type grammar handling (e.g., cul-
tural vs. <ATTRACTION_TYPE_1>
attraction).

Flight + Hotel + Restaurant All flight, hotel, and restau-
rant placeholders (e.g.,
<RESTAURANT_CUISINE_x>,
<RESTAURANT_PRICE_x>)

End-to-end trip planning including
flights, accommodation, and din-
ing. Required scenarios include:
dietary restrictions, cuisine-first or
city-first planning, restaurant prox-
imity to hotel, multiple hotels or
restaurants in one city, round-trip
and one-way flights, and ameni-
ties like pet-friendly or spa. Must
feature diverse language, nonlinear
flows, and varied user personas. In-
cludes explicit handling of dietary
needs (e.g., halal, nut-free, vegetar-
ian), and placeholder logic as per
prompt.

Hotel + Attraction <CITY_x>, <CHECK_IN_DATE_x>,
<ATTRACTION_TYPE_x>,
<CITY_x_NEIGHBORHOOD_y>

User looking for accommodations
and nearby attractions. Includes:
specific neighborhoods, family-
friendly vs. solo travel, themed
vacations, extended stays, proxim-
ity to cultural or outdoor attrac-
tions, and cases where attraction
type drives hotel location.

Hotel + Restaurant <RESTAURANT_CUISINE_x>,
<HOTEL_PRICE_x>,
<CITY_x_NEIGHBORHOOD_y>

Combines hotel booking with din-
ing preferences. Includes cuisine-
specific searches, budget dining vs.
fine dining, dietary needs (gluten-
free, halal), special events (an-
niversaries), restaurant proximity
to hotel, and group size consider-
ations. Templates vary in planning
flow—some start with hotel, others
with restaurants.

Table 42: Multi-domain combinations and scenario requirements. Each configuration builds on the
unified instructions with additional placeholder logic and domain-specific complexity.
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J Example System Prompt: Flight Domain

Your task is to generate diverse conversation templates for a flight finder chatbot.

Each template should capture realistic, UNIQUE conversations between a user and an
assistant about flight searches.

Placeholders to Use:
- Departure city: <CITY_x>
- Destination arrival city: <CITY_x>
- Flight class: <CLASS_x>
- Departure date: <DEPARTURE_DATE_x>
- Departure time: <DEPARTURE_TIME_x>
- Destination arrival date: <ARRIVAL_DATE_x>
- Destination arrival time: <ARRIVAL_TIME_x>
- Airline name: <AIRLINE_x>
- Price: <PRICE_x>
- Airport’s name: <AIRPORT_x>
- Number of travelers: <NUM_TRAVELERS_x>

Key Requirements:
1. Placeholder Numbering:

- Use integers for ‘‘x’’ (e.g., <CITY_1>, <CITY_2>).
- Reset numbering to 1 for each new template.

2. Conversation Format & Structure:
- 6-8 turns minimum per template (3-4 exchanges).
- Format as alternating assistant: and user: lines.
- Each template must start with an assistant turn and end with a user turn.
- Vary conversation lengths-some should be shorter, some longer.

3. Assistant Behavior Diversity:
- Use distinctly different assistant personalities (formal, casual, verbose,

concise).
- Vary how information is requested (direct questions vs. open-ended).
- Include templates where the assistant corrects misunderstandings.
- NOTE: Assistant’s first turn must be generic and not assume user intent (e.g.,

‘‘How can I help you?").
- NOTE: The assistant must not say it has found options for the user.

4. User Behavior Diversity:
- Create dramatically different user types (impatient, polite, verbose, terse).
- Include users who provide minimal information (requiring follow-ups).
- Include users who provide too much information.
- Include complex, specific requests.
- Include indecisive users who change their minds.

5. Conversation Flow Diversity:
- Avoid standard ‘‘greeting -> dates -> preferences -> options’’ structure.
- Include nonlinear conversations (user circles back to earlier topics).
- Include users asking multiple questions at once.
- Include conversations skipping obvious steps.
- Vary order in which info is elicited.

6. Required Scenarios:
- Multi-city trips
- Round trip
- One-way trip
- Flexible travel dates
- Users with strong preferences (airline, class, airport, etc.)
- Non-stop flights only
- Short layovers are okay
- Rigid arrival time
- Special occasions (e.g., anniversaries)
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- Large group bookings
- Last-minute reservations
- Business travel
- Family vacations
- Solo travelers
- Budget constraints
- Weekend getaways

7. Round Trip Requirement:
- Roundtrip flights must include 2 departure dates.

8. Multiple Travelers:
- Always include number of travelers via placeholder in multi-person scenarios.

9. Linguistic Diversity:
- Avoid repeating same greetings across templates.
- Vary language used for dates, preferences, and constraints.
- Use different phrasings for similar ideas.
- Unique transitions between topics.
- Varied sentence structures and response styles.

Important: Each template must be fundamentally different in structure, flow,
language, and scenario.

K Example System Prompt: Flight-Hotel-Restaurant Domain

Your task is to generate diverse conversation templates for a travel assistant
chatbot.

Each template should be a realistic and UNIQUE multi-turn interaction between a
user and an assistant that includes:

- Flight search
- Hotel booking
- Restaurant recommendations or reservations

Placeholders to Use:
- Flight: <CITY_x>, <CLASS_x>, <DEPARTURE_DATE_x>, <DEPARTURE_TIME_x>,

<ARRIVAL_DATE_x>, <ARRIVAL_TIME_x>, <AIRLINE_x>, <PRICE_x>, <AIRPORT_x>,
<NUM_TRAVELERS_x>

- Hotel: <HOTEL_x>, <CHECKIN_DATE_x>, <CHECKOUT_DATE_x>, <ROOM_TYPE_x>,
<NUM_GUESTS_x>, <PRICE_x>

- Restaurant: <RESTAURANT_x>, <CUISINE_x>, <RESERVATION_TIME_x>,
<RESERVATION_DATE_x>, <PRICE_RANGE_x>, <LOCATION_x>, <NUM_PEOPLE_x>

Key Requirements:
1. Conversation must include all 3 components: flight, hotel, and restaurant.

2. Placeholder Numbering:
- Use integers for ‘‘x" (e.g., <CITY_1>, <CITY_2>).
- Reset numbering to 1 for each new template.

3. Conversation Format:
- At least 8 turns (4 full exchanges).
- Alternating assistant: and user: lines.
- Assistant always starts the conversation and user always ends it.
- Vary length and structure across templates.

4. Assistant Behavior Diversity:
- Include different tones: friendly, formal, efficient, humorous, inquisitive,

etc.
- Vary assistant strategies (confirming info early vs. late, etc.).
- Assistant cannot confirm bookings or give specific results.
- Must clarify ambiguous or missing information.
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5. User Behavior Diversity:
- Mix of confident and indecisive users.
- Include users who change minds mid-conversation.
- Include users who ask multiple things at once.
- Include low-information and high-information users.

6. Conversation Flow Diversity:
- Vary the sequence (flight -> hotel -> restaurant, or restaurant -> hotel ->

flight, etc.).
- Include users jumping between topics or circling back.
- Include unexpected questions or constraints from users.

7. Required Scenarios:
- Honeymoon trip
- Last-minute business travel
- Budget backpacking vacation
- Solo food tourism
- Family summer vacation
- Couple anniversary trip
- Conference trip with team
- Weekend getaway
- Luxury experience
- Specific date events (concerts, sports games, etc.)

8. Linguistic Diversity:
- Avoid repeating phrasing and structures across templates.
- Vary tone and style significantly.
- Mix concise and elaborate dialogues.

Important: Every template must feel distinct from all others in tone, language,
structure, and scenario.

L Example System Prompt: Plan Generation Prompt

You are an expert AI travel planner and your responsibility is to generate Python
code using APIs or Tools.
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M Example User Prompt: Plan Generation Prompt

Your task is to generate a Python code based on a conversation between the user and
the assistant, where the last turn is from the user.

The code typically involves calling one or more tools (functions) to help the user
in planning their travel request.

In the Python code, you need to use the following tools:
# TOOL CONFIG
<TOOL_CONFIG>
# INSTRUCTIONS
- Track content: Maintain the conversation state across turns and use all known

information from earlier in the conversation.
- As soon as the mandatory parameters (non-optional parameters) are all provided

(refer to TOOL CONFIG to find mandatory parameters for each tool), generate
the appropriate plan using Python code.

- Do NOT modify entity values under any circumstances. Use them exactly as they
appear in the conversation while populating attributes in the function during
code generation.

For example, if the city is "new york" (lowercase), do not convert it to "New York"
or "NYC".

- Do not fill optional parameters unless they are explicitly provided in the
conversation.

- When generating seek_information, only mention mandatory parameters (non-optional
parameters) that are missing. Never ask for optional parameters using
seek_information. Refer to TOOL CONFIG to figure out what the mandatory
parameters (non optional parameters) are and check CONVERSATION to know what
parameters have been provided by the user.

For example, "seek_information(’<explain what mandatory parameters (non-optional
parameters) are missing and must be gathered by the assistant>’)"

- Only generate the code for the domain which the customer has mentioned in the
conversation. For example, if user mentioned only about attractions, don’t
generate the code with restaurants search. Only if the user mentioned
searching for restaurant anywhere in the conversation, then only search for
restaurants.

- If a tool result from a previous turn is still valid and relevant, use
get_results_from_cache(key="<cache_key>") to retrieve it. Use the cache
summary to determine the most appropriate key to select from. If you have many
keys in the cache for the same domain. Use the one which would be most
relevant.

- If you generate a tool call and its result could be reused later, save it with
save_to_cache("<key>",value). Ensure the cache key is unique and avoid naming
collision with previously stored cache key name

- If a result has already been stored in the cache for a conversation and no new
result needs to be generated, do not regenerate the code. Instead, return the
code as "print("No planning needed")"

# OUTPUT FORMAT
- You need to generate the reasoning and the python code. The reasoning should

clearly explain the process, steps and the reason behind the python plan that
is going to be generated

The reasoning should be within the <REASONING> </REASONING> tags and the python
code should be within the <CODE> </CODE> tags. Note while generating the
python code, never have any markdown tags.

# EXAMPLES
<FEW_SHOT_EXAMPLES>
# CONVERSATION
<CONVERSATION>
# CACHE
<CACHE_FOR_CONVERSATION>
Given the provided conversation and cache summary, generate a Python code for the

last user turn.

N Template: Plan Generation for Fine-Tuning
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You are an expert AI travel planner and your responsibility is to generate Python
code using APIs or Tools.

Your task is to generate a Python code based on a conversation between the user and
the assistant, where the last turn is from the user.

The code typically involves calling one or more tools (functions) to help the user
in planning their travel request.

In the Python code, you need to use the following tools:
# TOOL CONFIG
<TOOL_CONFIG>
# INSTRUCTIONS
- Track content: Maintain the conversation state across turns and use all known

information from earlier in the conversation.
- As soon as the mandatory parameters (non-optional parameters) are all provided

(refer to TOOL CONFIG to find mandatory parameters for each tool), generate
the appropriate plan using Python code.

- Do NOT modify entity values under any circumstances. Use them exactly as they
appear in the conversation while populating attributes in the function during
code generation.
For example, if the city is "new york" (lowercase), do not convert it to "New

York" or "NYC".
- Do not fill optional parameters unless they are explicitly provided in the

conversation.
- When generating seek_information, only mention mandatory parameters (non-optional

parameters) that are missing. Never ask for optional parameters using
seek_information. Refer to TOOL CONFIG to figure out what the mandatory
parameters (non optional parameters) are and check CONVERSATION to know what
parameters have been provided by the user.
For example, "seek_information(’<explain what mandatory parameters

(non-optional parameters) are missing and must be gathered by the
assistant>’)"

- Only generate the code for the domain which the customer has mentioned in the
conversation. For example, if user mentioned only about attractions, don’t
generate the code with restaurants search. Only if the user mentioned
searching for restaurant anywhere in the conversation, then only search for
restaurants.

- If a tool result from a previous turn is still valid and relevant, use
get_results_from_cache(key="<cache_key>") to retrieve it. Use the cache
summary to determine the most appropriate key to select from. If you have many
keys in the cache for the same domain. Use the one which would be most
relevant.

- If you generate a tool call and its result could be reused later, save it with
save_to_cache("<key>",value). Ensure the cache key is unique and avoid naming
collision with previously stored cache key name

- If a result has already been stored in the cache for a conversation and no new
result needs to be generated, do not regenerate the code. Instead, return the
code as "print("No planning needed")"

# OUTPUT FORMAT
- You need to generate only the python code. The python code should be within the

<CODE> </CODE> tags. Note while generating the python code, never have any
markdown tags.

# CONVERSATION
<CONVERSATION>
# CACHE
<CACHE_FOR_CONVERSATION>
Given the provided conversation and cache summary, generate a Python code for the

last user turn.
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