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Abstract
Articulatory data is extremely limited, and particularly so

when compared to acoustic speech data. We propose three
transfer learning techniques to noticeably improve articulatory-
to-acoustic synthesis performance in these low-resource set-
tings: (1) pre-trained weight initialization, (2) pre-training part
of the model, and (3) multimodal pre-training. On single-
speaker MRI-, EMG-, and EMA-to-speech tasks, the intelligi-
bility of synthesized outputs improves noticeably. For example,
compared to prior work, utilizing our proposed transfer learn-
ing methods improves the MRI-to-speech performance by 57%
word error rate (WER). We also propose a deep speech repre-
sentation that outperforms self-supervised learning features and
spectrums as an intermediate for articulatory synthesis.
Index Terms: articulatory synthesis, articulatory speech pro-
cessing

1. Introduction
Articulatory synthesis aims to incorporate information about the
vocal tract into speech synthesizers to improve interpretability,
generalizability, and efficiency [1, 2, 3, 4, 5, 6]. Additionally,
these models can be applied to decoding speech from biosig-
nals for health technology applications [7, 8, 9, 10, 11, 12]. Ar-
ticulatory data is limited compared to other types of language
data like acoustics and text [13, 14, 15]. Thus, to improve gen-
eralizability, deep articulatory synthesizers could utilize trans-
fer learning from other datasets and modalities, a methodol-
ogy successful in a variety of deep learning tasks [16]. In this
paper, we propose three transfer learning methods: (1) pre-
trained weight initialization, (2) pre-training part of the model,
and (3) multimodal pre-training. Through single-speaker mag-
netic resonance imaging (MRI), electromyography (EMG), and
electromagnetic articulography (EMA) to speech tasks, we find
these transfer techniques effective for improving synthesized
speech quality. With less than 10 minutes of single-speaker
training data, our MRI-to-speech model achieves a test-set au-
tomatic speech recognition (ASR) word error rate (WER) of
33%, compared to 90% from the previous model [6]. Our
EMA- and EMG-to-speech models similarly noticeably outper-
form the baseline, and human listening tests results match our
ASR trends.

2. Deep Articulatory Synthesis
Deep articulatory synthesis involves synthesizing acoustics
from articulatory features using a deep learning model [8, 9,
10, 5, 6, 11]. Current approaches can generally be described
as either direct or involving an intermediate representation. Di-
rect synthesis maps articulatory inputs to acoustics with a sin-

gle end-to-end model, whereas synthesis with intermediates
maps inputs to intermediate features, which are then mapped
to acoustics.

To map articulatory or intermediate features to waveforms,
we use HiFi-CAR, an auto-regressive temporal convolutional
network optimized with adversarial training [5, 17, 18]. To
map articulatory inputs to intermediate features, we build on
the EMG-to-spectrum model proposed by [10]. Specifically, we
map articulatory representations to the intermediate representa-
tions using a six-layer Transformer [19] prepended with three
residual convolution blocks.

3. Articulatory Datasets

3.1. EMA Dataset

EMA data is comprised of the midsagittal x-y coordinates of 6
articulatory positions: lower incisor, upper lip, lower lip, tongue
tip, tongue body, tongue dorsum [20, 5]. We use MNGU0, a
single-speaker dataset containing 67 minutes of 16 kHz speech
and 200 Hz EMA [13]. Another dataset we use is the Haskins
Production Rate Comparison database (HPRC), an 8-speaker
dataset containing 7.9 hours of 44.1 kHz speech and 100 Hz
EMA [14]. To maintain consistency with prior work [5, 21, 22],
we focused only on the midsagittal plane and discarded the pro-
vided mouth left and jaw left data in HPRC. We utilize HPRC in
our multi-modal pre-training approach, detailed in Section 4.3.
For all of our EMA data, we concatenate the 6 x-y coordinates
to form a 12-dimensional vector at each time step.

3.2. Magnetic Resonance Imaging (MRI)

Another articulatory modality that we experiments with is real-
time magnetic resonance imaging (MRI), which provides a
more comprehensive feature set of the human vocal tract than
EMA [23, 24, 6, 25]. In addition to the six locations described
by EMA, midsagittal MRI images contain locations of the hard
palate, pharynx, epiglottis, velum, and larynx, all of which are
useful for speech synthesis [6]. In this work, we used the same
11-minute, single-speaker real-time MRI dataset as [6]. This
dataset is comprised of 20 kHz speech and 83.3̄ Hz midsagittal
MRI data, with 170 x-y points annotated for each MRI frame.
Following [6], we applied the same speech enhancement tech-
nique to denoise target audio and used the same 200-11-25
train-dev-test split on the 236 utterances. We normalize each
MRI dimension to have a range of [−1, 1]. Additionally, we
discarded the annotated points on the back, reducing the num-
ber of points from 170 to 155, which we observed to improve
MRI-to-speech performance. Figure 2 depicts these 155 points.



Figure 1: Three transfer learning approaches for articulatory synthesis.

3.3. Electromyography (EMG)

Surface electromyography (EMG) measures electrical poten-
tials caused by nearby muscle activity using electrodes placed
on top of the skin [26]. When placed near articulators,
EMG provides another low-dimensional manifold of articula-
tory movements [26, 27, 10, 11]. In this work, we use the EMG
dataset in [10], which consists of EMG data and speech for vo-
calized utterances. We use the 3.9-hour vocalized speech sub-
set, denoted “Parallel Vocalized Speech” in [10]. Our train-dev-
test data split contains 195 minutes, 12 minutes, and 23 minutes
of speech, respectively. Speech waveforms have a sampling rate
of 16 kHz, and EMG 1000 Hz.

4. Transfer Learning
4.1. Pre-Trained Weight Initialization

Initializing model weights with those of a pre-trained model
is an effective method to improve fine-tuning performance in
limited-data settings [6], visualized in Figure 1 approach (1).
We demonstrate that this method can improve intelligibility by
5% absolute WER compared to prior EMA-to-speech models,
measured with an automatic speech recognizer. Moreover, this
approach noticeably improves data efficiency, with details in
Section 5.1.

4.2. Pre-Training Part of the Model

Pre-training part of the model is another effective method for
improving performance in low-resource settings. For exam-
ple, many text-to-speech (TTS) models pre-train their vocoder
[28], and many classifiers pre-train their encoder [29]. Pop-
ular vocoder input representations include spectrums, high-
dimensional self-supervised features, learnt representations,
and units [28, 30, 31, 32]. This pre-training method has also
shown success with ultrasound-speech tasks [33]. We extend
these results to MRI and EMG datasets that contain significantly
less and noisier data. Additionally, we propose a vocoder in-
put dimensionality reduction approach that noticeably improves
MRI- and EMG-to-speech performance.

Specifically, we reduce the dimensionality of the HuBERT
[34] self-supervised representation in order to reduce the com-
plexity of mapping to this intermediate feature, visualized as
(2a) in Figure 1. We choose HuBERT given its success with
other synthesis tasks [35, 36], and note our dimensionality re-
duction methodology can be applied to any representation. We
experiment with three methods: (1) linear projection, (2) low-
pass filtering, and (3) neural ordinary differential equations
(ODE) [37]. Intuitively, methods 2 and 3 encourage the result-
ing feature to be smoother across time than the original feature.
All three approaches linearly project HuBERT from 1024 to 256
dimensions. Our second method adds a differentiable low-pass

filter along the time dimension with an arbitarily chosen cutoff
frequency of 0.4 after the linear layer.1 For our third method,
we use a neural ODE to map each 256-dimensional frame to
the next one and add a mean squared error (MSE) loss minimiz-
ing the distance between mapped and original frames. We use
a linear layer as our ODE function. This encourages each next
frame to equal the output of iteratively applying a fixed linear
transformation to the current frame, reducing the complexity of
the representation space. Our three approaches are denoted as
MLP, Low-Pass, and NODE, respectively, in the tables below.

To train each of these three representations, we linearly
project the 256-dimensional vector outputs back to 1024 dimen-
sions and compute an MSE loss between this final output and
the ground truth HuBERT features (step 2a in Figure 1). Thus,
the final loss function is computed by adding this reconstruction
loss with any additional losses mentioned for each approach.
We discard the 256-to-1024 projection layer during inference
and use the learnt 256-dimensional feature as an alternative to
HuBERT. Then, we train an intermediate-to-acoustic HiFi-CAR
(Section 2), visualized as step (2b) in Figure 1. Thirdly, in step
(2c), we train an articulatory-to-intermediate Transformer (Sec-
tion 2), Finally, we prepend this model to HiFi-CAR to form our
articulatory-to-intermediate-to-acoustic model (step 2d). Steps
(2a) and (2b) do not require articulatory data, allowing us to
train these steps on a large speech corpus. Since HuBERT
accepts 16 kHz speech as input, we downsample waveforms
to match this sampling rate. We find pre-training part of the
model to noticeably improve speech synthesis quality for MRI-
to-Speech and voiced EMG-to-Speech tasks, detailed in Section
5.2.

4.3. Multimodal Pre-Training

Multi-modal pre-training involves training a model with multi-
ple modalities jointly, with the resulting model able to perform
better in downstream tasks compared to models trained with
fewer modalities [38, 39]. We extend this strategy to articu-
latory synthesis by pre-training with more than one articulatory
modality as input and fine-tuning the resulting model with only
the target articulatory modality, visualized in Figure 1 approach
(3).

Specifically, we pre-train our MRI-to-speech model with
both EMA and MRI, where EMA is inferred from the ground
truth speech data using a fixed speech-to-EMA model (Wu et
al., 2023) [21]. We linearly interpolate the estimated EMA to
match the sampling rate of the MRI data. We prepend a linear
layer to the model for each modality, where the output of these
layers are 128-dimensional inputs to the same network. We
train this multimodal model using the same hyperparameters as
the models with single-modality inputs, and fine-tune the result-

1https://github.com/adefossez/julius
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Figure 2: Extracted MRI-features for the utterance ”apa.”
Lighter is earlier in time. Each point is colored with the highest-
correlation EMA feature. Points with maximum correlation
magnitude below 0.3 are omitted for readability.

ing model on the target modality dataset with the same hyper-
parameters. Models utilizing multi-modal pre-training contain
“Multi” in the tables below, and detailed optimization choices
and results are in Section 5.3.

To provide more intuition on multimodal pre-training, Fig-
ure 2 illustrates the average Pearson correlation between in-
ferred EMA and ground-truth MRI. We visualized correlation
by coloring each MRI point in the midsagittal plane with the
highest-correlation EMA point, where MRI points with max-
imum correlation magnitude below 0.3 are omitted for read-
ability. The noticeable overlap between these modalities spa-
tially suggests that information learned from one modality can
be transferred to the other.

5. Results
For all HiFi-CAR experiments, we trained this model with an
autoregressive feature extractor hidden dimension of 256, a
batch size of 32, and the Adam optimizer with {0.5, 0.9} for
beta values [40]. Transformer layers have a hidden dimension
of 1024 and a dropout of 0.2. We trained the Transformer us-
ing the L1 loss function, the Adam optimizer [40] with betas
{0.5, 0.9}, and a batch size of 16. During training, we ran-
domly crop a 0.5 seconds to 2 seconds window from each sam-
ple in the batch, with the window length fixed within the batch.
Since EMA datasets have much less noise than other articula-
tory modalities [6, 10], for EMA tasks, we do not do multi-
modal pre-training and find pre-training part of the model un-
necessary. For MRI and EMG tasks, we use all three transfer
learning methods, with pre-trained weight intialization applied
to the baseline and intermediate-to-acoustic models.

5.1. Pre-Trained Weight Initialization Results

To check the usefulness of pre-trained weight initialization,
we train EMA-to-speech models with and without such initial-

Table 1: EMA-to-speech ASR results with and without pre-
trained weight initialization on 5-minute and entire training set,
with 95% confidence intervals in parentheses.

Model 5 Min. WER (%) ↓ All WER (%) ↓

No Pre-Train 22.6 (13.8-33.1) 9.4 (4.9-14.3)
Pre-Train 17.7 (11.1-24.5) 9.3 (4.9-14.6)

Table 2: ASR character and word error rates on MRI-to-speech
synthesis outputs, with 95% confidence intervals in parentheses.
Proposed intermediates in top 3 rows (Section 4.2).

Model CER (%) ↓ WER (%) ↓

Low-Pass 28.2 (19.4-37.4) 42.4 (30.1-55.9)
MLP 36.0 (22.7-49.5) 57.2 (36.7-78.4)
NODE 43.8 (25.-66.2) 62.0 (37.8-88.2)

HuBERT 31.1 (21.9-41.8) 53.2 (36.4-72.5)
Spectrogram 42.7 (33.3-52.5) 65.7 (52.2-80.3)
Direct 66.7 (55.4-74.3) 89.5 (74.4-100.0)

ization on MNGU0, described in Section 3.1. Our EMA-to-
speech model here is HiFi-CAR, described in Section 2, with
upsample scales [5, 4, 2, 2] to upsample the 200 Hz EMA in-
put to the 16000 Hz waveform. For pre-trained weights, we
use the LibriTTS [15] HiFi-GAN mel-spectrogram to speech
vocoder weights in [17, 6]. Since these scales are different
than those of the pre-trained vocoder, we only load the weights
with matching dimensions. In addition to the 12-dimensional
EMA data, we concatenate loudness and pitch to the input, each
one-dimensional, forming a 14-dimensional vector input at each
time step. Inspired by [41], We compute pitch using CREPE
[42, 43] and loudness by taking the absolute maximum of an
80-frame window, both using the EMA data sampling rate and
a hop size of 80. For our train-validation-set split, we match
the 1069-60-60 utterance split in [5]. We also train only on
a 5-minute subset randomly sampled from the train set in or-
der to study data efficiency. To evaluate these EMA-to-speech
synthesizers, we compute WER with the Whisper Large au-
tomatic speech recognition (ASR) model [44], with WER re-
sults in Table 1. WER using the entire train set is compara-
ble betwen models, suggesting that pre-trained weight initial-
ization yields at least as good performance compared to the de-
fault initializaiton. Notably, when training on only 5 minutes of
data, the model with pre-trained weight initialization performed
much better than the other one, suggesting that this initialization
method improves data efficiency.

5.2. Results when Pre-Training Part of the Model

We pre-train part of the model as in Section 4.2 for single-
speaker MRI-to-speech and voiced EMG-to-speech tasks, with
datasets described in Sections 3.2 and 3.3, respectively. Our
256-dimensional intermediate features are learnt with VCTK,
which has 110 English speakers and a total of 44 hours of 44.1
kHz speech, randomly dividing speakers into an 85%-5%-10%
train-validation-test split [45].

Our baseline for MRI-to-speech is [6], labeled Direct in Ta-
bles 2 and 3. Specifically, this is the HiFi-CAR model described
in Section 2 with upsample scales [8, 5, 3, 2] to map 83.3̄ Hz
MRI to 20 kHz acoustics. Since our voiced EMG task does not



Table 3: Human evaluation scores for MRI-to-speech (mean ±
standard deviation, ∈ [0, 1]). Proposed intermediates in top 3
rows (Section 4.2).

Model MRI Score ↑ EMG Score ↑

Low-Pass 0.81 ± 0.04 0.94 ± 0.08
MLP 0.89 ± 0.10 0.64 ± 0.20
NODE 0.63 ± 0.09 0.61 ± 0.10

HuBERT 0.44 ± 0.10 0.61 ± 0.14
Spectrogram 0.00 ± 0.00 0.14 ± 0.02
Direct 0.17 ± 0.00 0.06 ± 0.05

Table 4: ASR character and word error rates on voiced EMG-
to-speech synthesis outputs, with 95% confidence intervals in
parentheses. Proposed intermediates in top 3 rows (Section
4.2).

Model CER (%) ↓ WER (%) ↓

Low-Pass 14.2 (10.8-18.6) 23.1 (19.5-26.8)
MLP 13.2 (10.2-16.9) 22.2 (18.8-25.8)
NODE 17.6 (15.0-20.3) 29.1 (25.4-33.3)

HuBERT 15.7 (12.5-19.7) 24.6 (20.8-28.5)
Spectrogram 30.2 (26.9-33.5) 47.3 (42.4-51.8)
Direct 113.8 (100.3-129.2) 145.1 (124.5-167.7)

have a baseline to our knowledge [10], we also use HiFi-CAR,
here with upsample scales [2, 2, 2, 2] to map 1 kHz EMG to
16 kHz acoustics. This baseline is labeled Direct in Tables 4
and 3. For partially pre-trained models, we map inputs to inter-
mediates (Section 4.2) using the Transformer in Section 2, and
intermediates to waveforms using HiFi-CARs with the same ar-
chitectures as the baselines. We linearly interpolate the 50 Hz
intermediate features to match the sampling rates of the inputs.

To evaluate these models, we use the ASR metric in Sec-
tion 5.1 and human evaluation. As shown in Tables 2 and
4, pre-training part of the model results in much better ASR
performance than the baseline for both MRI-to-speech and
voiced EMG-to-speech. Also, our low-pass-filtered representa-
tion (Low-Pass) described in Section 4.2 outperforms HuBERT
on both tasks. We also do human evaluation with 3 listeners,
each listening to 30 samples, composed of 2 utterances per pair-
wise comparison between 6 models. For each pair of utterances,
if one is preferred, that model receives a score of 1 and the
other model 0, and otherwise both receive 0.5. Scores are av-
eraged per model, so that each score is in [0, 1], with 1 being
the highest possible score. Table 3 summarizes these results for
MRI-to-speech and EMG-to-speech. All of our proposed 256-
dimensional features noticeably outperform the other methods,
highlighting the suitability of these features for synthesizing
natural speech.

5.3. Multi-Modal Pre-Training Results

As motivated in Section 4.3, we apply our multi-modal pre-
training method to single-speaker MRI-to-speech synthesis.
Our MRI dataset and model architectures are the same as those
in Section 5.2, with the model being modified during the multi-
modal pre-training step as described in Section 4.3. We pre-
train our model with: (1) all of the EMA data in the HPRC
dataset described in Section 3.1, and (2) the training set of our

Table 5: ASR word error rates on multimodal and non-
multimodal MRI-to-speech synthesis outputs, with 95% confi-
dence intervals in parentheses. Low-Pass is a proposed inter-
mediate (Section 4.2).

Model Multi. WER (%) ↓ Non-multi. WER (%) ↓

Low-Pass 33.3 (19.0-52.0) 42.4 (30.1-55.9)
HuBERT 34.4 (19.8-52.9) 53.2 (36.4-72.5)

Table 6: Human evaluation scores for multimodal versus
non-multimodal MRI-to-speech (mean ± standard deviation,
∈ [0, 1]). Low-Pass is a proposed intermediate (Section 4.2).

Model Multi. Score ↑ Non-multi. Score ↑

Low-Pass 0.67 ± 0.12 0.34 ± 0.12
HuBERT 0.84 ± 0.24 0.17 ± 0.24

MRI dataset described in Section 3.2. The pre-training and fine-
tuning steps both use the Adam optimizer with a learning rate of
10−4 [40]. To avoid redundancy, we report results for our best
proposed representation (Low-Pass) and HuBERT. We observe
similar results for all of the other models, with details and code
being available in the supplementary codebase post-anonymity.

We evaluate these models with the same ASR metric as
Section 5.2. Table 5 summarizes the ASR WER and charac-
ter errror rates (CER) on the MRI test set. The models utilizing
multi-modal pre-training all outperform their non-multi-modal
counterparts, suggesting that multi-modal pre-training notice-
ably improves MRI-to-speech performance. We note that our
best WER, 33%, is noticeably better than the 90% WER from
the previous model [6]. We also perform a preliminary human
evaluation study, comparing with and without multi-modal pre-
training for each model. 3 listeners participated, each listening
to 10 samples, 2 for each model pair. Listeners can select ei-
ther model or neither for their naturalness preference. For each
model, we add 1 to its score if it was selected and 0.5 if it was in-
volved in a neither choice. Like Section 5.2, we average scores
for each model to give a number between 0 and 1, with 1 being
the best possible score. Table 6 summarizes these results, with
means and standard deviations taken across listeners. Matching
the ASR result, the multimodal models received higher scores,
reinforcing the benefits of multi-modal pre-training.

6. Conclusion
In this work, we devise three transfer learning techniques for
improving the performance of articulatory synthesizers: (1) pre-
trained weight initialization, (2) pre-training part of the model,
and (3) multimodal pre-training. Through EMA-, MRI-, and
EMG-to-speech experiments, we validate the effectiveness of
these approaches. Additionally, we propose a deep speech rep-
resentation that outperforms self-supervised speech representa-
tions and spectrums as an intermediate for articulatory synthe-
sis. Training on less than 10 minutes of single-speaker data,
our MRI-to-speech model achieves a test-set automatic speech
recognition (ASR) word error rate (WER) of 33%, which is
much better than the 90% WER from the previous model [6].
Our EMG-to-speech model similarly noticeably outperforms
the baseline, and both ASR results match our human listening
tests. In the future, we are interested in extending these results
to multi-speaker tasks.
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