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Abstract

Multimodal Large Language Models (MLLMs)
are increasingly used in Personalized Image
Aesthetic Assessment (PIAA), offering a scal-
able alternative to expert evaluation. How-
ever, their outputs may reflect subtle biases
shaped by demographic cues such as gen-
der, age, or education. In this work, we
introduce AesBiasBench, a benchmark de-
signed to evaluate MLLMs along two com-
plementary axes: (1) the presence of stereo-
type bias, measured by how aesthetic evalu-
ations vary across demographic groups; and
(2) the alignment between model outputs and
real human aesthetic preferences. Our bench-
mark spans three subtasks, Aesthetic Percep-
tion, Assessment, and Empathy, and introduces
structured metrics (IFD, NRD, AAS) to quan-
tify both bias and alignment. We evaluate 19
MLLMs, including proprietary models (e.g.,
GPT-40, Claude-3.5-Sonnet) and open-source
models (e.g., InternVL-2.5, Qwen2.5-VL). Re-
sults show that smaller models exhibit stronger
stereotype bias, while larger models better align
with human preferences. Adding identity infor-
mation often amplifies bias, particularly in emo-
tional judgment. These findings highlight the
need for identity-aware evaluation frameworks
for subjective vision-language tasks.

1 Introduction

Multimodal Large Language Models (MLLMs)
have demonstrated impressive capabilities in
vision-language tasks such as image recogni-
tion (Alayrac et al., 2022; Zhu et al., 2023), visual
reasoning (Achiam et al., 2023; Wei et al., 2022),
and visual question answering (Wu et al., 2023).
Recently, these models have also been applied to
Personalized Image Aesthetic Assessment (PIAA),
which estimates the photographic or artistic quality
of images based on individual preferences (Yang
et al., 2022). PIAA applications include image
retrieval, photo ranking, and creative recommenda-
tion (Ren et al., 2017).
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Figure 1: Examples illustrate bias in the image aesthetic
empathy task. (a) and (b) show stereotypical bias in
model outputs that arise from inherited cognitive priors.
(c) presents human preferences for the image, which
serve as a reference for evaluating the alignment of
model predictions with human judgments.

Despite their promise, MLLMs may exhibit aes-
thetic bias, systematic differences in output driven
by demographic attributes such as gender, age, or
education. Prior work has shown that even sub-
tle biases in subjective tasks can lead to skewed
outcomes (Zangwill, 2003; Dhamala et al., 2021;
Tamkin et al., 2023). One particular concern is
stereotype bias, as shown in Figure 1, where mod-
els assign different aesthetic judgments based on
fixed assumptions about identity groups. Despite
ongoing efforts to audit and debias deployed mod-
els for greater fairness (Guo et al., 2022; Smith
et al., 2023; Dige et al., 2024; Li et al., 2024a,b),
implicit and often-overlooked aesthetic biases con-
tinue to persist. Moreover, bias detection alone
does not explain whether these deviations are prob-
lematic. Some output variation may simply reflect
valid preference alignment with real human judg-
ments. To address this, we complement bias mea-
surement with an explicit evaluation of alignment,
how closely model outputs match the aesthetic pref-
erences of human users from corresponding demo-
graphic groups.

To support this dual analysis, we introduce Aes-
BiasBench, a benchmark for assessing both stereo-



type bias and preference alignment in MLLMs ap-
plied to PIAA. Our benchmark covers three sub-
tasks. The first, Aesthetic Perception, concerns the
evaluation of low-level technical properties such
as sharpness, lighting, and color. The second, Aes-
thetic Assessment, captures subjective evaluations
of overall visual appeal and composition. The third,
Aesthetic Empathy, targets the emotional impact
conveyed or evoked by an image. For each subtask,
we define dedicated metrics to quantify both bias
and alignment, including Identity Frequency Dis-
parity (IFD), Normalized Representation Disparity
(NRD) and Aesthetic Alignment Score (AAS).

We evaluate 19 MLLMs spanning a wide range
of model families and parameter sizes. The results
show that smaller models tend to exhibit stronger
stereotype bias, while larger models demonstrate
both improved fairness and closer alignment with
human preferences. In perception and assessment
tasks, model outputs often align most closely with
the preferences of female users aged 22 to 25 with
a university education. In the empathy task, model
responses align with female preferences by default,
but shift toward male preferences when gender in-
formation is made explicit. This shift highlights
strong sensitivity to identity cues rather than neu-
trality. By analyzing both bias and alignment, Aes-
BiasBench enables a more complete understanding
of fairness and demographic sensitivity in MLLMs.
It provides a foundation for future work on socially
aware and user-aligned multimodal systems.

The contributions of this work are threefold:

* Revealing stereotype biases in MLLMs for
PIAA using tailored metrics that quantify
group-specific deviations.

* Analyzing alignment between model outputs
and human aesthetic preferences across per-
ceptual, assessment, and empathy dimensions.

* Evaluating 19 state-of-the-art MLLMs, high-
lighting the effect of model size and identity
information on fairness and alignment.

2 Related Work

2.1 Personalized Image Aesthetic Assessment

Image aesthetic assessment (IAA) aims at compu-
tationally evaluating image quality based on pho-
tographic rules(Deng et al., 2017). Due to signifi-
cant variations in aesthetic preferences among in-
dividuals, image aesthetics can be categorized into

Generic Image Aesthetic Assessment (GIAA) and
Personalized Image Aesthetic Assessment (PIAA).
Regarding GIAA, early studies focused on design-
ing and extracting image features, mapping them
to annotated aesthetic labels. As a result, numerous
TAA datasets have emerged to support research in
this field (Dhar et al., 2011; Murray et al., 2012; Yi
et al., 2023).

Personalized Image Aesthetic Assessment aims
to capture the unique aesthetic preferences of in-
dividuals (Yang et al., 2022). Existing methods
typically rely on generic image aesthetic assess-
ment (GIAA), incorporating rich attributes to facil-
itate specific aesthetic predictions (Li et al., 2020).
Ren et al. (2017) found that individual aesthetic
preferences have a strong correlation with image
content and aesthetic attribute, and proposed resid-
ual scores to modify generic aesthetic scores into
personalized aesthetic scores. Zhu et al. (2020)
trained PTAA models by fine-tuning a pretrained
GIAA model on personal rating data, while Cui
et al. (2020) utilized GIAA model as feature extrac-
tor to capture deep feature representing aesthetic
preferences. Instead based on priorledge of GIAA,
Hou et al. (2022) directly estimated personalized
aesthetic experiences by analyzing interaction ma-
trices, which represents interaction between image
content and user preferences. At the same time,
the Q-instruct (Wu et al., 2024a) framework has
improved MLLMs’ low-level visual capabilities
across multiple base models, and Q-align (Wu et al.,
2023) leveraged the visual power of MLLMs to pro-
pose a new scoring method. These advances have
laid the groundwork for using MLLMs in PIAA
tasks.

2.2 Biases in MLLMs

The recent success of large language mod-
els (LLMs) has fueled exploration into vision-
language interaction, leading to the emergence
of multimodal large language models (MLLMs).
These models have demonstrated strong capabil-
ities in dialogue based on visual inputs. Given
their advanced visual understanding, MLLMs can
be leveraged to tackle various multimodal tasks re-
lated to high-level vision, including image aesthetic
assessment(Zhou et al., 2024). However, the inher-
ent biases in MLLMs may introduce systematic
distortions in image evaluations, leading to biased
aesthetic assessments.

Recent studies have explored the response biases
in LLMs, which often influenced by various con-
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Figure 2: AesBiasBench framework for stereotype bias measurement and aesthetic alignment evaluation. The
model’s default prompt includes an image < img > and task ¢, while the personalized prompt adds a demographic
group g. After obtaining model responses for all images, [IFD and NRD detect stereotype bias, while AAS identifies
alignment, revealing the demographic group the model’s aesthetic preferences align with.

textual and cultural factors(Gallegos et al., 2024;
Tjuatja et al., 2023). Such biases also appear in
MLLMs, where visual and textual modalities can
interact in ways that reinforce existing societal bi-
ases(Chen et al., 2024a). These biases are com-
monly detected and analyzed through its manifes-
tations in models outputs(Lin et al., 2024; Kumar
et al., 2024; Naous et al., 2023). Specifically, Jiang
et al. (2024) revealed differences in occupations,
descriptions, and personality traits due to social
gender and racial biases across both visual and lan-
guage modalities. Building on this line of work,
we focus on aesthetic biases that emerge when
MLLMs evaluate images conditioned on identity in-
formation. We first examine stereotype bias, where
models produce systematically different aesthetic
judgments across demographic groups. We then
evaluate whether these biased outputs align with
the aesthetic preferences of corresponding human
groups, highlighting how model behavior may re-
flect or distort real-world preferences.

3 Methodology

3.1 Preliminaries

This section introduces our definition and design
of bias quantification when MLLMs applied to per-
sonalized image aesthetic assessment labeling. The
bias quantification problem includes four compo-
nents: the image needed to be assessed < img >,
the specific assess task ¢, the identity group GG and
the MLLM used for quality assessment M (-). We
can collect the response from the MLLM as fol-
lows:

M(< img > |G = g) (1)

where M(-) € A and A denotes the output for-
mat. Following (Huang et al., 2024), we focus on
three assessment tasks ¢, including Aesthetic Per-
ception which representing the perceived technical
quality of the image, Aesthetic Assessment which
representing the subjective aesthetic appeal of the
image, and Aesthetic Empathy which capturing the
emotional response evoked by the image.

For identity group, we evaluate the bias across
three different group categories, including age, gen-
der and education group. We divide the individuals
to different identities in each group category. For
age group, we divide individuals into five different
identities: 18 to 21, 22 to 25, 26 to 29, 30 to 34,
and 35 to 40. For education group, we classify
them into five education levels: junior high school,
technical secondary school, senior high school, uni-
versity, and junior college. For gender category, we
consider male and female.

We define the output format A for each of the
three tasks. For Aesthetic Perception and Aesthetic
Assessment, A {positive, normal, negative }.
For Aesthetic Empathy, A = {amusement,
excitement, contentment, awe, disgust, sadness,
fear, neutral }.

3.2 Quantifying Bias

To analyze stereotype bias, we propose two met-
rics: Identity Frequency Disparity (IFD) and Nor-
malized Representation Disparity (NRD). Identity
Frequency Disparity (IFD) measures differences in
how often the model assigns specific aesthetic eval-
uations A to various identity groups. This metric
quantifies disparities in frequency, revealing poten-
tial biases in how different identities are assessed.



Normalized Representation Disparity (NRD) ex-
amines the model’s preferences and emotional re-
sponses toward different types of images across
identities. By normalizing for baseline differences
in representation, NRD captures variations in the
model’s perceptions and affective reactions that
may indicate bias. Together, these metrics provide
a structured approach to identifying and quantify-
ing stereotype bias in the model’s behavior. They
are defined as:

IFD(t)
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where p, 1, represents the proportion of choice
k made by identity group g, ng is the number of
identity groups in category G, ® is the set of all
group categories and na is the number of the out-
put choice.

The Normalized Representation Disparity
(NRD) measures the disparities in the model’s
output M (-) between different identity groups g
for a given task ¢, normalized by the total sentiment
for each output M (-) across all identity groups. It
is defined as:
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where Sg}k is the number of times the outputs
M(-) = k for identity group g and task ¢ within
image type m and 2 is the set of all image types.

3.3 Alignment Evaluation

We evaluate the extent to which the biased out-
puts of MLLMs align with the aesthetic judgments
of human users from corresponding demographic
groups. This analysis focuses on measuring how
closely model outputs reflect real human prefer-
ences, providing a complementary perspective on
the effects of stereotype bias. We conduct this eval-
uation from two perspectives:

* We examine which demographic groups the
model’s aesthetic judgments are more aligned
with its default or pre-trained aesthetic prefer-
ences. This focuses on identifying whether the

model shows a stronger bias towards certain
groups when no specific identity is specified.

* We explore which demographic groups the
model’s aesthetic judgments align more
closely with human aesthetic preferences,
when given the identity information explic-
itly. This helps identify whether the model’s
outputs reflect the actual preferences of differ-
ent identity groups.

To measure the similarity between two outputs,
we compute the similarity score using the Jensen-
Shannon Divergence. Let O,4 and O}, represent the
model’s outputs for images from groups g and h
where Oy, Oy, € A. To compute the JS divergence,
we first map the discrete aesthetic choices in A to
probability distributions using a one-hot encoding
scheme, obtaining E,; and Ej,. The JS divergence
between I, and E}, can then be calculated as:

IS(Ey | B) = 5 [Dku(By | M)+ Dy (B | M),

®

where M is the average distribution of £, and
Ep, M = ZoPr - And Dy is the Kullback-
Leibler (KL) Divergence, given by:

2P0 <(<j§)>>' ©

To evaluate the alignment, we define the similar-
ity score as:

DgiL(E || M) =

S(g) =1 -IS(Ey || En), @)

and the Aesthetic Alignment Score (AAS) is
defined as follows:

AAS(9) = Si(g) — Si, ®)

where S;(g) is the similarity score of the current
identity in task ¢ and S, is the mean similarity score
of the category G in task .

This metric is designed to compare the rela-
tive accuracy across different demographic groups,
highlighting potential disparities in the model’s
ability to align with human aesthetic evaluations.

4 Experiments and Results

4.1 Experimental Setup

Dataset. In our experiments, we investigate bias
in three identity dimensions: gender, age, and ed-
ucation. Each dimension is specifically chosen to
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Figure 3: Left: IFD scores heatmap across diverse set of models. Right: Radar chart of IFD scores for InternVL-2.5
series models, showing variations by model size. A higher IFD indicates a greater degree of stereotype bias.

investigate societal biases in aesthetic perceptions
toward the respective groups. We perform exten-
sive testing on a well-established dataset for per-
sonalized image aesthetic assessment (Yang et al.,
2022), the Personalized Image Aesthetics Database
with Rich Attributes (PARA). PARA comprises
31,220 images annotated by 438 human raters with
rich feature annotations. Built upon it, we gener-
ate three types of task evaluations for the 31,220
images: aesthetic perception, aesthetic assessment,
and emotional perception. The three tasks are eval-
uated by IFD, NRD, AAS, and similarity score to
examine both stereotype bias and aesthetic align-
ment bias.

To align with human raters, who typically judge
based on discrete text-defined levels, we convert
continuous scores in the PARA dataset into dis-
crete rating levels. In AesBiasBench (ABB), this
ensures consistency with the output formats A and
facilitates fair comparisons between model outputs
and human judgments. We adopt equidistant in-
tervals to convert scores into rating levels as Wu
et al. (2023), which is to uniformly divide the range
between the highest score (M) and lowest score (m)
into three distinct intervals.

L(s) =1; )

where m—+ S x (M —m) <s<m+4x (M-

Models. In this work, we investigate a diverse
set of models, including InternVL2.5 (1B, 2B, 4B,
8B, 26B, 38B) (Chen et al., 2024b,c,d), Qwen2.5-
VL (3B, 7B) (Yang et al., 2024), LLaVA (v1.5-7B,

v1.6-vicuna-7B) (Liu et al., 2023a,b), LLaMA-
3.2 (11B-vision-instruct) (Grattafiori et al., 2024),
mPLUG-OwI3 (7B) (Ye et al.,, 2024), Mono-
InternVL (2B) (Luo et al., 2024), Phi-3.6-
Vision (Abdin et al., 2024), GLM-4V (9B) (GLM
et al.,, 2024), and DeepSeek (VL2) (Wu et al.,
2024b). We also include closed-source models
such as Claude-3.5-Sonnet, Gemini-2.0-flash and
GPT-4o in our analysis. This comprehensive se-
lection enables a systematic evaluation of biases
across a wide range of architectures and scales.
With this setup, we can compare bias variations
within the same model series across different sizes,
as well as across models of similar sizes. Such com-
parisons provide deeper insights into how model
architecture, scale, and training paradigms influ-
ence bias.

4.2 Stereotype Bias Analysis
4.2.1 Ecxistence of Bias in MLLMs

We quantify stereotype bias in MLLMs performing
PIAA using two metrics: Identity Fairness Devi-
ation (IFD) and Normalized Response Deviation
(NRD). The heatmap in Figure 3 shows the IFD
scores across multiple models, indicating substan-
tial identity-related biases, where higher IFD values
reflect stronger bias. Among these, the InternVL2.5
model series consistently shows lower IFD values,
suggesting better fairness across demographic iden-
tities.

Additionally, Figure 4 (left) illustrates NRD
scores, confirming strong biases, particularly evi-
dent in empathy-driven aesthetic tasks. Gender is
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Figure 4: Left: NRD scores for age, gender, and education across three tasks. Right: F"} scores of fear emotion
from different groups for aesthetic empathy task in Claude-3.5-Sonnet, illustrating stereotype bias.

consistently identified as a major influencing factor,
with notably higher NRD scores across all evalu-
ated models. This emphasizes significant differ-
ences in the emotional perception of images among
different demographic groups.

To further illustrate this, Figure 4 right provides
a detailed example using Claude-3.5-Sonnet in the
empathy task. The model predicts that younger
individuals, those with lower education levels, and
females are more likely to exhibit fear responses.
These results suggest that advanced models encode
systematic differences in emotional aesthetic judg-
ment across demographic groups in emotional aes-
thetic judgment, reinforcing the presence of subtle
but persistent stereotypical biases in MLLMs.

4.2.2 Impact of Model Size on Bias

The radar chart in Figure 3 right shows the IFD
scores across the InternVL?2.5 series. The results
reveal a clear inverse relationship between model
size and stereotype bias: as the model size increases
from 1B to 38B, the IFD scores consistently de-

crease. InternVL2.5-1B shows the highest level of
bias, followed by 2B, 4B, and 8B, with each larger
model displaying progressively lower bias. The
largest models, 26B and 38B, yield the most stable
and fair outputs. This trend indicates that identity-
related bias decreases consistently with increasing
model size.

This pattern is not limited to the InternVL2.5
series. Similar trends are observed in other model
families, where smaller variants consistently ex-
hibit higher IFD scores than their larger counter-
parts, indicating stronger stereotype bias. While
this may appear to reflect the effect of model ca-
pacity alone, it is likely influenced by differences
in training data scale and diversity as well. Larger
models are often trained on broader and more bal-
anced datasets, which may provide better coverage
of identity-related variations and contribute to more
equitable outputs.
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4.3 Aesthetic Alignment Analysis
4.3.1 Default Aesthetic Preferences of Models

We begin by analyzing the default aesthetic align-
ment of MLLMs when no identity information is
provided in the prompt. Using the Aesthetic Align-
ment Score (AAS), we measure the similarity be-
tween model outputs and the aesthetic preferences
of different demographic groups across the three
tasks.

The heatmap and radar plots in Figure 5 and
summary statistics in Table 1 reveal clear and con-
sistent demographic biases across tasks. All three
tasks show a strong alignment with female aes-
thetic preferences, with 17 out of 19 models ex-
hibiting this pattern. In terms of age, the 22-25
group dominates in Perception and Assessment,
while Empathy shows a shift toward the younger
18-21 group. Educational alignment is more task-
specific. The most consistent pattern appears in
the Assessment task, where nearly all models align
with the same group: female, aged 22-25, with a
university education.

Task-specific patterns also emerge. As shown in
Figure 5, the points in the radar plot for the Empa-
thy task are more tightly clustered, indicating that
the AAS values are generally lower compared to
the other tasks. This aligns with the observation

Perception Assessment Empathy
Gender female (17) female (17) female (17)
Age 22_25(12) 22 25 (17) 18_21(8)
Education Tech (7) University (17) Junior (7)

Table 1: The number of models exhibiting the highest
AAS with different demographic groups across three
tasks. The table summarizes results from 19 models.

in Figure 3, where the Empathy task also exhibits
lower IFD values. Together, these results show
that the default models are more fair in the Empa-
thy task and exhibit weaker alignment with human
aesthetic preferences.

4.3.2 Sensitivity to Identity in Aesthetic
Preferences

To further examine how identity information in-
fluences aesthetic alignment, we analyze the con-
sistency of identity patterns across tasks after ex-
plicitly including demographic attributes in the
prompts.

As shown in Figure 6 and summary statistics
in Table 2, adding explicit identity information re-
duces the number of models that share the same
dominant aesthetic pattern. This shift reflects that
model outputs are sensitive to demographic descrip-
tors, indicating the absence of neutral or identity-
invariant behavior. It indicates that aesthetic out-
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Perception Assessment Empathy Model ASEM) ASg(F) A
Gender female (15)  female (14) male (17) DeepSeek-VL2 20.0535 -0.0749 0.0214
Age 22_25(10) 22_25(15) 30_34 (8) Llama-3.2-11B-Vision 0.0074 -0.0021 0.0095
Education  Junior (7) University (10)  University (6) GPT-40 0.0395 -0.0748 0.1143
Phi-3.5-Vision -0.0113  -0.0293 0.0180
. it . Claude-3.5-Sonnet 0.1180 -0.1166 0.2346
Table 2.. Thg number of models.exhlbltmg the highest Gemini-2.0-Flash 00274  -0.3780 104054
AAS with different demographic groups across three GLM-4V-9B 200743 -0.1015 0.0272
tasks when explicit identity attributes are provided. The mPLUG_Owl3 -0.0047 -0.0226 0.0179
table summarizes results from 19 models. Qwen2.5-VL-3B 0.0330 0.0196 0.0134
Qwen2.5-VL-7B 0.0287 0.0198 0.0089
InternVL2.5-1B 0.0220 -0.0244 0.0464
. . . . InternVL2.5-2B 0.0187 -0.1971 0.2158
puts are systematically influenced by identity de- IgthVLz.s- 4B 00085 -00022 00107
scriptors, revealing latent social biases in the mod- InternVL2.5-8B -0.0007 -0.0126 0.0119
InternVL2.5-26B -0.0160 -0.0324 0.0164

els.

In particular, Table 2 shows a striking shift in the
Empathy task: 17 models align with male identi-
ties, which is a complete reversal from the identity-
agnostic setting, where 17 models had aligned
with female. Table 3 illustrates this bias sensi-
tivity, showing increased alignment with male pref-
erences when gender is added.

As shown in Table 3, most models show a greater
increase in similarity to male preferences after gen-
der is specified, indicating higher sensitivity to
male identity. Instead of exposing more balanced
behavior, the inclusion of gender information re-
veals stronger model bias, with responses becom-
ing more aligned to male-associated aesthetic pat-
terns—a deviation possibly reflecting differences in
training data composition or architectural design.

5 Conclusion

This paper introduced AesBiasBench, a bench-
mark for evaluating biases in MLLMs on PIAA
tasks. To quantify stereotype bias, we proposed
two metrics: IFD and NRD. In addition, we used
the AAS to measure how model outputs correspond
to human aesthetic preferences across demographic
groups. Key findings include: (1) Stereotype bias
is prevalent across models, with smaller models
showing more pronounced deviations and larger

Table 3: ASE(M) and ASE(F) denote the changes in
similarity scores to male and female aesthetic prefer-
ences, respectively, after adding gender identity to the
prompt in the empathy task. A represents the incre-
mental gain of male over female, computed as ASg(M)
— ASE(F). The top 3 highest and lowest A values are
highlighted using soft red and blue gradients.

models exhibiting lower IFD and NRD scores, in-
dicating increased fairness with scale. (2) Model
outputs align disproportionately with certain demo-
graphic groups, notably, female individuals aged
22-25 with university education—even when iden-
tity information is not provided. (3) Adding iden-
tity descriptors amplifies existing biases, as shown
in the empathy task where alignment shifts more
strongly toward male preferences, revealing height-
ened sensitivity to demographic cues rather than
neutrality. These results highlight the importance
of identity-aware evaluation and point to the need
for fairness-oriented design in future MLLMs used
for subjective and socially-influenced tasks.



limitations

Our AesBiasBench evluates existing MLLMs
along two complementary axes: (1) stereotype bias
and (2) human preference alignment. To make the
results more reliable, we indentify two possible
limitations:

First, the analysis is restricted to three identity
attributes: age, gender, and education. While these
dimensions capture important aspects of demo-
graphic variation, other factors, such as culture,
race, and religion, may also influence aesthetic
preferences and model behavior. Incorporating
a broader range of identity dimensions could en-
able a more comprehensive understanding of de-
mographic bias in MLLMs.

Second, we evaluate 19 MLLMs, including pro-
prietary models (e.g., GPT-40, Claude-3.5-Sonnet)
and open-source models (e.g., InternVL2.5 and
Qwen2.5-VL series). While this selection spans
a range of model families and sizes, future work
could explore a broader set of architectures, train-
ing strategies, and deployment contexts, which may
reveal additional forms of bias or alternative align-
ment.

Ethics

In this study, we constructed AesBiasBench using
the publicly accessible Personalized Image Aes-
thetics Database with Rich Attributes (PARA). No
original data collection was conducted; all analyses
relied solely on pre-existing dataset resources. To
the best of our knowledge, the PARA dataset was
developed in strict adherence to academic and sci-
entific data collection protocols, ensuring compli-
ance with ethical standards for research involving
human subjects.

Our research does not involve any person-
ally identifiable information (PII) or process pri-
vate/sensitive user data. The demographic at-
tributes utilized (e.g., age groups, gender, edu-
cation levels) are provided in the PARA dataset
as anonymized and aggregated metadata, with
no individual-level data accessible. This design
ensures that no participant can be re-identified
through the study’s analyses.

The core objective of this research is to system-
atically uncover and characterize biased behaviors
of multimodal large language models (MLLMs) in
personalized aesthetic judgment tasks. By quanti-
fying demographic disparities in model outputs, we
aim to foster greater awareness within the research

community and contribute to the development of
more equitable, transparent, and socially account-
able Al systems. Our work aligns with the broader
ethical imperative to promote fairness in machine
learning, particularly in applications impacting hu-
man values and societal norms.
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