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Abstract001

Multimodal Large Language Models (MLLMs)002
are increasingly used in Personalized Image003
Aesthetic Assessment (PIAA), offering a scal-004
able alternative to expert evaluation. How-005
ever, their outputs may reflect subtle biases006
shaped by demographic cues such as gen-007
der, age, or education. In this work, we008
introduce AesBiasBench, a benchmark de-009
signed to evaluate MLLMs along two com-010
plementary axes: (1) the presence of stereo-011
type bias, measured by how aesthetic evalu-012
ations vary across demographic groups; and013
(2) the alignment between model outputs and014
real human aesthetic preferences. Our bench-015
mark spans three subtasks, Aesthetic Percep-016
tion, Assessment, and Empathy, and introduces017
structured metrics (IFD, NRD, AAS) to quan-018
tify both bias and alignment. We evaluate 19019
MLLMs, including proprietary models (e.g.,020
GPT-4o, Claude-3.5-Sonnet) and open-source021
models (e.g., InternVL-2.5, Qwen2.5-VL). Re-022
sults show that smaller models exhibit stronger023
stereotype bias, while larger models better align024
with human preferences. Adding identity infor-025
mation often amplifies bias, particularly in emo-026
tional judgment. These findings highlight the027
need for identity-aware evaluation frameworks028
for subjective vision-language tasks.029

1 Introduction030

Multimodal Large Language Models (MLLMs)031

have demonstrated impressive capabilities in032

vision-language tasks such as image recogni-033

tion (Alayrac et al., 2022; Zhu et al., 2023), visual034

reasoning (Achiam et al., 2023; Wei et al., 2022),035

and visual question answering (Wu et al., 2023).036

Recently, these models have also been applied to037

Personalized Image Aesthetic Assessment (PIAA),038

which estimates the photographic or artistic quality039

of images based on individual preferences (Yang040

et al., 2022). PIAA applications include image041

retrieval, photo ranking, and creative recommenda-042

tion (Ren et al., 2017).043
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likely to feel excitement…

sadness

excitement
Prompt

𝑃 = {	 , , 	 }male𝑡< 𝑖𝑚𝑔 >

Prompt

𝑃 = {	 , , 	 }female𝑡< 𝑖𝑚𝑔 >

Image aesthetic empathy: 
Analyze the emotion the image 
evokes or conveys to you. The 
available choices are: amusement, 
excitement, contentment, awe, 
disgust, sadness, fear, and neutral.
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Figure 1: Examples illustrate bias in the image aesthetic
empathy task. (a) and (b) show stereotypical bias in
model outputs that arise from inherited cognitive priors.
(c) presents human preferences for the image, which
serve as a reference for evaluating the alignment of
model predictions with human judgments.

Despite their promise, MLLMs may exhibit aes- 044

thetic bias, systematic differences in output driven 045

by demographic attributes such as gender, age, or 046

education. Prior work has shown that even sub- 047

tle biases in subjective tasks can lead to skewed 048

outcomes (Zangwill, 2003; Dhamala et al., 2021; 049

Tamkin et al., 2023). One particular concern is 050

stereotype bias, as shown in Figure 1, where mod- 051

els assign different aesthetic judgments based on 052

fixed assumptions about identity groups. Despite 053

ongoing efforts to audit and debias deployed mod- 054

els for greater fairness (Guo et al., 2022; Smith 055

et al., 2023; Dige et al., 2024; Li et al., 2024a,b), 056

implicit and often-overlooked aesthetic biases con- 057

tinue to persist. Moreover, bias detection alone 058

does not explain whether these deviations are prob- 059

lematic. Some output variation may simply reflect 060

valid preference alignment with real human judg- 061

ments. To address this, we complement bias mea- 062

surement with an explicit evaluation of alignment, 063

how closely model outputs match the aesthetic pref- 064

erences of human users from corresponding demo- 065

graphic groups. 066

To support this dual analysis, we introduce Aes- 067

BiasBench, a benchmark for assessing both stereo- 068
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type bias and preference alignment in MLLMs ap-069

plied to PIAA. Our benchmark covers three sub-070

tasks. The first, Aesthetic Perception, concerns the071

evaluation of low-level technical properties such072

as sharpness, lighting, and color. The second, Aes-073

thetic Assessment, captures subjective evaluations074

of overall visual appeal and composition. The third,075

Aesthetic Empathy, targets the emotional impact076

conveyed or evoked by an image. For each subtask,077

we define dedicated metrics to quantify both bias078

and alignment, including Identity Frequency Dis-079

parity (IFD), Normalized Representation Disparity080

(NRD) and Aesthetic Alignment Score (AAS).081

We evaluate 19 MLLMs spanning a wide range082

of model families and parameter sizes. The results083

show that smaller models tend to exhibit stronger084

stereotype bias, while larger models demonstrate085

both improved fairness and closer alignment with086

human preferences. In perception and assessment087

tasks, model outputs often align most closely with088

the preferences of female users aged 22 to 25 with089

a university education. In the empathy task, model090

responses align with female preferences by default,091

but shift toward male preferences when gender in-092

formation is made explicit. This shift highlights093

strong sensitivity to identity cues rather than neu-094

trality. By analyzing both bias and alignment, Aes-095

BiasBench enables a more complete understanding096

of fairness and demographic sensitivity in MLLMs.097

It provides a foundation for future work on socially098

aware and user-aligned multimodal systems.099

The contributions of this work are threefold:100

• Revealing stereotype biases in MLLMs for101

PIAA using tailored metrics that quantify102

group-specific deviations.103

• Analyzing alignment between model outputs104

and human aesthetic preferences across per-105

ceptual, assessment, and empathy dimensions.106

• Evaluating 19 state-of-the-art MLLMs, high-107

lighting the effect of model size and identity108

information on fairness and alignment.109

2 Related Work110

2.1 Personalized Image Aesthetic Assessment111

Image aesthetic assessment (IAA) aims at compu-112

tationally evaluating image quality based on pho-113

tographic rules(Deng et al., 2017). Due to signifi-114

cant variations in aesthetic preferences among in-115

dividuals, image aesthetics can be categorized into116

Generic Image Aesthetic Assessment (GIAA) and 117

Personalized Image Aesthetic Assessment (PIAA). 118

Regarding GIAA, early studies focused on design- 119

ing and extracting image features, mapping them 120

to annotated aesthetic labels. As a result, numerous 121

IAA datasets have emerged to support research in 122

this field (Dhar et al., 2011; Murray et al., 2012; Yi 123

et al., 2023). 124

Personalized Image Aesthetic Assessment aims 125

to capture the unique aesthetic preferences of in- 126

dividuals (Yang et al., 2022). Existing methods 127

typically rely on generic image aesthetic assess- 128

ment (GIAA), incorporating rich attributes to facil- 129

itate specific aesthetic predictions (Li et al., 2020). 130

Ren et al. (2017) found that individual aesthetic 131

preferences have a strong correlation with image 132

content and aesthetic attribute, and proposed resid- 133

ual scores to modify generic aesthetic scores into 134

personalized aesthetic scores. Zhu et al. (2020) 135

trained PIAA models by fine-tuning a pretrained 136

GIAA model on personal rating data, while Cui 137

et al. (2020) utilized GIAA model as feature extrac- 138

tor to capture deep feature representing aesthetic 139

preferences. Instead based on priorledge of GIAA, 140

Hou et al. (2022) directly estimated personalized 141

aesthetic experiences by analyzing interaction ma- 142

trices, which represents interaction between image 143

content and user preferences. At the same time, 144

the Q-instruct (Wu et al., 2024a) framework has 145

improved MLLMs’ low-level visual capabilities 146

across multiple base models, and Q-align (Wu et al., 147

2023) leveraged the visual power of MLLMs to pro- 148

pose a new scoring method. These advances have 149

laid the groundwork for using MLLMs in PIAA 150

tasks. 151

2.2 Biases in MLLMs 152

The recent success of large language mod- 153

els (LLMs) has fueled exploration into vision- 154

language interaction, leading to the emergence 155

of multimodal large language models (MLLMs). 156

These models have demonstrated strong capabil- 157

ities in dialogue based on visual inputs. Given 158

their advanced visual understanding, MLLMs can 159

be leveraged to tackle various multimodal tasks re- 160

lated to high-level vision, including image aesthetic 161

assessment(Zhou et al., 2024). However, the inher- 162

ent biases in MLLMs may introduce systematic 163

distortions in image evaluations, leading to biased 164

aesthetic assessments. 165

Recent studies have explored the response biases 166

in LLMs, which often influenced by various con- 167
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Please complete the above task based on your understanding 
and preferences. Only choose one from the available choices.

Task Image aesthetic perception: evaluate the image based on low-
level elements like technical quality, color balance, lighting, sharpness, 
exposure, contrast, and overall visual impact. The available choices are: 
positive, normal, and negative.

Image aesthetic assessment: evaluate the aesthetic appeal of 
the image, focusing on elements like composition, color harmony, 
visual balance, and overall attractiveness. The available choices are: 
positive, normal, and negative.

Image aesthetic empathy: analyze the emotion the image 
evokes or conveys to you. The available choices are: amusement, 
excitement, contentment, awe, disgust, sadness, fear, and neutral.
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Figure 2: AesBiasBench framework for stereotype bias measurement and aesthetic alignment evaluation. The
model’s default prompt includes an image < img > and task t, while the personalized prompt adds a demographic
group g. After obtaining model responses for all images, IFD and NRD detect stereotype bias, while AAS identifies
alignment, revealing the demographic group the model’s aesthetic preferences align with.

textual and cultural factors(Gallegos et al., 2024;168

Tjuatja et al., 2023). Such biases also appear in169

MLLMs, where visual and textual modalities can170

interact in ways that reinforce existing societal bi-171

ases(Chen et al., 2024a). These biases are com-172

monly detected and analyzed through its manifes-173

tations in models outputs(Lin et al., 2024; Kumar174

et al., 2024; Naous et al., 2023). Specifically, Jiang175

et al. (2024) revealed differences in occupations,176

descriptions, and personality traits due to social177

gender and racial biases across both visual and lan-178

guage modalities. Building on this line of work,179

we focus on aesthetic biases that emerge when180

MLLMs evaluate images conditioned on identity in-181

formation. We first examine stereotype bias, where182

models produce systematically different aesthetic183

judgments across demographic groups. We then184

evaluate whether these biased outputs align with185

the aesthetic preferences of corresponding human186

groups, highlighting how model behavior may re-187

flect or distort real-world preferences.188

3 Methodology189

3.1 Preliminaries190

This section introduces our definition and design191

of bias quantification when MLLMs applied to per-192

sonalized image aesthetic assessment labeling. The193

bias quantification problem includes four compo-194

nents: the image needed to be assessed < img >,195

the specific assess task t, the identity group G and196

the MLLM used for quality assessment M(·). We197

can collect the response from the MLLM as fol-198

lows:199

Mt(< img > |G = g) (1)200

where M(·) ∈ ∆ and ∆ denotes the output for- 201

mat. Following (Huang et al., 2024), we focus on 202

three assessment tasks t, including Aesthetic Per- 203

ception which representing the perceived technical 204

quality of the image, Aesthetic Assessment which 205

representing the subjective aesthetic appeal of the 206

image, and Aesthetic Empathy which capturing the 207

emotional response evoked by the image. 208

For identity group, we evaluate the bias across 209

three different group categories, including age, gen- 210

der and education group. We divide the individuals 211

to different identities in each group category. For 212

age group, we divide individuals into five different 213

identities: 18 to 21, 22 to 25, 26 to 29, 30 to 34, 214

and 35 to 40. For education group, we classify 215

them into five education levels: junior high school, 216

technical secondary school, senior high school, uni- 217

versity, and junior college. For gender category, we 218

consider male and female. 219

We define the output format ∆ for each of the 220

three tasks. For Aesthetic Perception and Aesthetic 221

Assessment, ∆ = {positive, normal, negative}. 222

For Aesthetic Empathy, ∆ = {amusement, 223

excitement, contentment, awe, disgust, sadness, 224

fear, neutral}. 225

3.2 Quantifying Bias 226

To analyze stereotype bias, we propose two met- 227

rics: Identity Frequency Disparity (IFD) and Nor- 228

malized Representation Disparity (NRD). Identity 229

Frequency Disparity (IFD) measures differences in 230

how often the model assigns specific aesthetic eval- 231

uations ∆ to various identity groups. This metric 232

quantifies disparities in frequency, revealing poten- 233

tial biases in how different identities are assessed. 234
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Normalized Representation Disparity (NRD) ex-235

amines the model’s preferences and emotional re-236

sponses toward different types of images across237

identities. By normalizing for baseline differences238

in representation, NRD captures variations in the239

model’s perceptions and affective reactions that240

may indicate bias. Together, these metrics provide241

a structured approach to identifying and quantify-242

ing stereotype bias in the model’s behavior. They243

are defined as:244

IFD(t) =
1

|Φ| × n∆

n∆∑
k=1

∑
G∈Φ

nG∑
g=1

|pg,k − pG,k|,

(2)245

where pg,k represents the proportion of choice246

k made by identity group g, nG is the number of247

identity groups in category G, Φ is the set of all248

group categories and n∆ is the number of the out-249

put choice.250

The Normalized Representation Disparity251

(NRD) measures the disparities in the model’s252

output M(·) between different identity groups g253

for a given task t, normalized by the total sentiment254

for each output M(·) across all identity groups. It255

is defined as:256

NRD(t) =
1

n∆

n∆∑
k=1

√√√√ 1

nG

nG∑
g=1

∑
m∈Ω

(
Fm
g,k −

1

nG

)2

,

(3)257

Fm
g,k =

Sm
g,k∑nG

h=1 S
m
h,k

, (4)258

where Sm
g,k is the number of times the outputs259

M(·) = k for identity group g and task t within260

image type m and Ω is the set of all image types.261

3.3 Alignment Evaluation262

We evaluate the extent to which the biased out-263

puts of MLLMs align with the aesthetic judgments264

of human users from corresponding demographic265

groups. This analysis focuses on measuring how266

closely model outputs reflect real human prefer-267

ences, providing a complementary perspective on268

the effects of stereotype bias. We conduct this eval-269

uation from two perspectives:270

• We examine which demographic groups the271

model’s aesthetic judgments are more aligned272

with its default or pre-trained aesthetic prefer-273

ences. This focuses on identifying whether the274

model shows a stronger bias towards certain 275

groups when no specific identity is specified. 276

• We explore which demographic groups the 277

model’s aesthetic judgments align more 278

closely with human aesthetic preferences, 279

when given the identity information explic- 280

itly. This helps identify whether the model’s 281

outputs reflect the actual preferences of differ- 282

ent identity groups. 283

To measure the similarity between two outputs, 284

we compute the similarity score using the Jensen- 285

Shannon Divergence. Let Og and Oh represent the 286

model’s outputs for images from groups g and h 287

where Og, Oh ∈ ∆. To compute the JS divergence, 288

we first map the discrete aesthetic choices in ∆ to 289

probability distributions using a one-hot encoding 290

scheme, obtaining Eg and Eh. The JS divergence 291

between Eg and Eh can then be calculated as: 292

JS(Eg ∥Eh) =
1

2
[DKL(Eg ∥M)+DKL(Eh ∥M)] ,

(5) 293

where M is the average distribution of Eg and 294

Eh, M =
Eg+Eh

2 . And DKL is the Kullback- 295

Leibler (KL) Divergence, given by: 296

DKL(E ∥ M) =
∑
j

E(j) log

(
E(j)

M(j)

)
. (6) 297

To evaluate the alignment, we define the similar- 298

ity score as: 299

S(g) = 1− JS(Eg ∥ Eh), (7) 300

and the Aesthetic Alignment Score (AAS) is 301

defined as follows: 302

AASt(g) = St(g)− S̄t, (8) 303

where St(g) is the similarity score of the current 304

identity in task t and S̄t is the mean similarity score 305

of the category G in task t. 306

This metric is designed to compare the rela- 307

tive accuracy across different demographic groups, 308

highlighting potential disparities in the model’s 309

ability to align with human aesthetic evaluations. 310

4 Experiments and Results 311

4.1 Experimental Setup 312

Dataset. In our experiments, we investigate bias 313

in three identity dimensions: gender, age, and ed- 314

ucation. Each dimension is specifically chosen to 315
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Figure 3: Left: IFD scores heatmap across diverse set of models. Right: Radar chart of IFD scores for InternVL-2.5
series models, showing variations by model size. A higher IFD indicates a greater degree of stereotype bias.

investigate societal biases in aesthetic perceptions316

toward the respective groups. We perform exten-317

sive testing on a well-established dataset for per-318

sonalized image aesthetic assessment (Yang et al.,319

2022), the Personalized Image Aesthetics Database320

with Rich Attributes (PARA). PARA comprises321

31,220 images annotated by 438 human raters with322

rich feature annotations. Built upon it, we gener-323

ate three types of task evaluations for the 31,220324

images: aesthetic perception, aesthetic assessment,325

and emotional perception. The three tasks are eval-326

uated by IFD, NRD, AAS, and similarity score to327

examine both stereotype bias and aesthetic align-328

ment bias.329

To align with human raters, who typically judge330

based on discrete text-defined levels, we convert331

continuous scores in the PARA dataset into dis-332

crete rating levels. In AesBiasBench (ABB), this333

ensures consistency with the output formats ∆ and334

facilitates fair comparisons between model outputs335

and human judgments. We adopt equidistant in-336

tervals to convert scores into rating levels as Wu337

et al. (2023), which is to uniformly divide the range338

between the highest score (M) and lowest score (m)339

into three distinct intervals.340

L(s) = li (9)341

where m+ i−1
3 × (M−m) < s ≤ m+ i

3 × (M−342

m).343

Models. In this work, we investigate a diverse344

set of models, including InternVL2.5 (1B, 2B, 4B,345

8B, 26B, 38B) (Chen et al., 2024b,c,d), Qwen2.5-346

VL (3B, 7B) (Yang et al., 2024), LLaVA (v1.5-7B,347

v1.6-vicuna-7B) (Liu et al., 2023a,b), LLaMA- 348

3.2 (11B-vision-instruct) (Grattafiori et al., 2024), 349

mPLUG-Owl3 (7B) (Ye et al., 2024), Mono- 350

InternVL (2B) (Luo et al., 2024), Phi-3.6- 351

Vision (Abdin et al., 2024), GLM-4V (9B) (GLM 352

et al., 2024), and DeepSeek (VL2) (Wu et al., 353

2024b). We also include closed-source models 354

such as Claude-3.5-Sonnet, Gemini-2.0-flash and 355

GPT-4o in our analysis. This comprehensive se- 356

lection enables a systematic evaluation of biases 357

across a wide range of architectures and scales. 358

With this setup, we can compare bias variations 359

within the same model series across different sizes, 360

as well as across models of similar sizes. Such com- 361

parisons provide deeper insights into how model 362

architecture, scale, and training paradigms influ- 363

ence bias. 364

4.2 Stereotype Bias Analysis 365

4.2.1 Existence of Bias in MLLMs 366

We quantify stereotype bias in MLLMs performing 367

PIAA using two metrics: Identity Fairness Devi- 368

ation (IFD) and Normalized Response Deviation 369

(NRD). The heatmap in Figure 3 shows the IFD 370

scores across multiple models, indicating substan- 371

tial identity-related biases, where higher IFD values 372

reflect stronger bias. Among these, the InternVL2.5 373

model series consistently shows lower IFD values, 374

suggesting better fairness across demographic iden- 375

tities. 376

Additionally, Figure 4 (left) illustrates NRD 377

scores, confirming strong biases, particularly evi- 378

dent in empathy-driven aesthetic tasks. Gender is 379
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Figure 4: Left: NRD scores for age, gender, and education across three tasks. Right: Fm
g,k scores of fear emotion

from different groups for aesthetic empathy task in Claude-3.5-Sonnet, illustrating stereotype bias.

consistently identified as a major influencing factor,380

with notably higher NRD scores across all evalu-381

ated models. This emphasizes significant differ-382

ences in the emotional perception of images among383

different demographic groups.384

To further illustrate this, Figure 4 right provides385

a detailed example using Claude-3.5-Sonnet in the386

empathy task. The model predicts that younger387

individuals, those with lower education levels, and388

females are more likely to exhibit fear responses.389

These results suggest that advanced models encode390

systematic differences in emotional aesthetic judg-391

ment across demographic groups in emotional aes-392

thetic judgment, reinforcing the presence of subtle393

but persistent stereotypical biases in MLLMs.394

4.2.2 Impact of Model Size on Bias395

The radar chart in Figure 3 right shows the IFD396

scores across the InternVL2.5 series. The results397

reveal a clear inverse relationship between model398

size and stereotype bias: as the model size increases399

from 1B to 38B, the IFD scores consistently de-400

crease. InternVL2.5-1B shows the highest level of 401

bias, followed by 2B, 4B, and 8B, with each larger 402

model displaying progressively lower bias. The 403

largest models, 26B and 38B, yield the most stable 404

and fair outputs. This trend indicates that identity- 405

related bias decreases consistently with increasing 406

model size. 407

This pattern is not limited to the InternVL2.5 408

series. Similar trends are observed in other model 409

families, where smaller variants consistently ex- 410

hibit higher IFD scores than their larger counter- 411

parts, indicating stronger stereotype bias. While 412

this may appear to reflect the effect of model ca- 413

pacity alone, it is likely influenced by differences 414

in training data scale and diversity as well. Larger 415

models are often trained on broader and more bal- 416

anced datasets, which may provide better coverage 417

of identity-related variations and contribute to more 418

equitable outputs. 419
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Figure 5: AAS of the model on three tasks without identity information, showing the two most common identity
patterns for each task. ◦, ⋄, and △ represent groups by gender, age, and education respectively.

4.3 Aesthetic Alignment Analysis420

4.3.1 Default Aesthetic Preferences of Models421

We begin by analyzing the default aesthetic align-422

ment of MLLMs when no identity information is423

provided in the prompt. Using the Aesthetic Align-424

ment Score (AAS), we measure the similarity be-425

tween model outputs and the aesthetic preferences426

of different demographic groups across the three427

tasks.428

The heatmap and radar plots in Figure 5 and429

summary statistics in Table 1 reveal clear and con-430

sistent demographic biases across tasks. All three431

tasks show a strong alignment with female aes-432

thetic preferences, with 17 out of 19 models ex-433

hibiting this pattern. In terms of age, the 22–25434

group dominates in Perception and Assessment,435

while Empathy shows a shift toward the younger436

18–21 group. Educational alignment is more task-437

specific. The most consistent pattern appears in438

the Assessment task, where nearly all models align439

with the same group: female, aged 22–25, with a440

university education.441

Task-specific patterns also emerge. As shown in442

Figure 5, the points in the radar plot for the Empa-443

thy task are more tightly clustered, indicating that444

the AAS values are generally lower compared to445

the other tasks. This aligns with the observation446

Perception Assessment Empathy
Gender female (17) female (17) female (17)
Age 22_25 (12) 22_25 (17) 18_21 (8)
Education Tech (7) University (17) Junior (7)

Table 1: The number of models exhibiting the highest
AAS with different demographic groups across three
tasks. The table summarizes results from 19 models.

in Figure 3, where the Empathy task also exhibits 447

lower IFD values. Together, these results show 448

that the default models are more fair in the Empa- 449

thy task and exhibit weaker alignment with human 450

aesthetic preferences. 451

4.3.2 Sensitivity to Identity in Aesthetic 452

Preferences 453

To further examine how identity information in- 454

fluences aesthetic alignment, we analyze the con- 455

sistency of identity patterns across tasks after ex- 456

plicitly including demographic attributes in the 457

prompts. 458

As shown in Figure 6 and summary statistics 459

in Table 2, adding explicit identity information re- 460

duces the number of models that share the same 461

dominant aesthetic pattern. This shift reflects that 462

model outputs are sensitive to demographic descrip- 463

tors, indicating the absence of neutral or identity- 464

invariant behavior. It indicates that aesthetic out- 465
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Figure 6: AAS of the model on three tasks with identity information, showing the two most common identity
patterns for each task. ◦, ⋄, and △ represent groups by gender, age, and education respectively.

Perception Assessment Empathy
Gender female (15) female (14) male (17)
Age 22_25 (10) 22_25 (15) 30_34 (8)
Education Junior (7) University (10) University (6)

Table 2: The number of models exhibiting the highest
AAS with different demographic groups across three
tasks when explicit identity attributes are provided. The
table summarizes results from 19 models.

puts are systematically influenced by identity de-466

scriptors, revealing latent social biases in the mod-467

els.468

In particular, Table 2 shows a striking shift in the469

Empathy task: 17 models align with male identi-470

ties, which is a complete reversal from the identity-471

agnostic setting, where 17 models had aligned472

with female. Table 3 illustrates this bias sensi-473

tivity, showing increased alignment with male pref-474

erences when gender is added.475

As shown in Table 3, most models show a greater476

increase in similarity to male preferences after gen-477

der is specified, indicating higher sensitivity to478

male identity. Instead of exposing more balanced479

behavior, the inclusion of gender information re-480

veals stronger model bias, with responses becom-481

ing more aligned to male-associated aesthetic pat-482

terns—a deviation possibly reflecting differences in483

training data composition or architectural design.484

5 Conclusion485

This paper introduced AesBiasBench, a bench-486

mark for evaluating biases in MLLMs on PIAA487

tasks. To quantify stereotype bias, we proposed488

two metrics: IFD and NRD. In addition, we used489

the AAS to measure how model outputs correspond490

to human aesthetic preferences across demographic491

groups. Key findings include: (1) Stereotype bias492

is prevalent across models, with smaller models493

showing more pronounced deviations and larger494

Model ∆SE(M) ∆SE(F) ∆
DeepSeek-VL2 -0.0535 -0.0749 0.0214
Llama-3.2-11B-Vision 0.0074 -0.0021 0.0095
GPT-4o 0.0395 -0.0748 0.1143
Phi-3.5-Vision -0.0113 -0.0293 0.0180
Claude-3.5-Sonnet 0.1180 -0.1166 0.2346
Gemini-2.0-Flash 0.0274 -0.3780 0.4054
GLM-4V-9B -0.0743 -0.1015 0.0272
mPLUG_Owl3 -0.0047 -0.0226 0.0179
Qwen2.5-VL-3B 0.0330 0.0196 0.0134
Qwen2.5-VL-7B 0.0287 0.0198 0.0089
InternVL2.5-1B 0.0220 -0.0244 0.0464
InternVL2.5-2B 0.0187 -0.1971 0.2158
InternVL2.5-4B 0.0085 -0.0022 0.0107
InternVL2.5-8B -0.0007 -0.0126 0.0119
InternVL2.5-26B -0.0160 -0.0324 0.0164

Table 3: ∆SE(M) and ∆SE(F) denote the changes in
similarity scores to male and female aesthetic prefer-
ences, respectively, after adding gender identity to the
prompt in the empathy task. ∆ represents the incre-
mental gain of male over female, computed as ∆SE(M)
−∆SE(F). The top 3 highest and lowest ∆ values are
highlighted using soft red and blue gradients.

models exhibiting lower IFD and NRD scores, in- 495

dicating increased fairness with scale. (2) Model 496

outputs align disproportionately with certain demo- 497

graphic groups, notably, female individuals aged 498

22–25 with university education—even when iden- 499

tity information is not provided. (3) Adding iden- 500

tity descriptors amplifies existing biases, as shown 501

in the empathy task where alignment shifts more 502

strongly toward male preferences, revealing height- 503

ened sensitivity to demographic cues rather than 504

neutrality. These results highlight the importance 505

of identity-aware evaluation and point to the need 506

for fairness-oriented design in future MLLMs used 507

for subjective and socially-influenced tasks. 508
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limitations509

Our AesBiasBench evluates existing MLLMs510

along two complementary axes: (1) stereotype bias511

and (2) human preference alignment. To make the512

results more reliable, we indentify two possible513

limitations:514

First, the analysis is restricted to three identity515

attributes: age, gender, and education. While these516

dimensions capture important aspects of demo-517

graphic variation, other factors, such as culture,518

race, and religion, may also influence aesthetic519

preferences and model behavior. Incorporating520

a broader range of identity dimensions could en-521

able a more comprehensive understanding of de-522

mographic bias in MLLMs.523

Second, we evaluate 19 MLLMs, including pro-524

prietary models (e.g., GPT-4o, Claude-3.5-Sonnet)525

and open-source models (e.g., InternVL2.5 and526

Qwen2.5-VL series). While this selection spans527

a range of model families and sizes, future work528

could explore a broader set of architectures, train-529

ing strategies, and deployment contexts, which may530

reveal additional forms of bias or alternative align-531

ment.532

Ethics533

In this study, we constructed AesBiasBench using534

the publicly accessible Personalized Image Aes-535

thetics Database with Rich Attributes (PARA). No536

original data collection was conducted; all analyses537

relied solely on pre-existing dataset resources. To538

the best of our knowledge, the PARA dataset was539

developed in strict adherence to academic and sci-540

entific data collection protocols, ensuring compli-541

ance with ethical standards for research involving542

human subjects.543

Our research does not involve any person-544

ally identifiable information (PII) or process pri-545

vate/sensitive user data. The demographic at-546

tributes utilized (e.g., age groups, gender, edu-547

cation levels) are provided in the PARA dataset548

as anonymized and aggregated metadata, with549

no individual-level data accessible. This design550

ensures that no participant can be re-identified551

through the study’s analyses.552

The core objective of this research is to system-553

atically uncover and characterize biased behaviors554

of multimodal large language models (MLLMs) in555

personalized aesthetic judgment tasks. By quanti-556

fying demographic disparities in model outputs, we557

aim to foster greater awareness within the research558

community and contribute to the development of 559

more equitable, transparent, and socially account- 560

able AI systems. Our work aligns with the broader 561

ethical imperative to promote fairness in machine 562

learning, particularly in applications impacting hu- 563

man values and societal norms. 564
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