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Abstract 
Phage display is commonly employed for the discovery of high affinity ligands to biomolecular 
targets. However, ranking the discovered ligands for their affinity and specificity to the target is 
obscured by genetic amplification bias and amplification of target-unrelated phage, resulting in 
inefficient experimental validation and potentially intractable discovery. Here, we describe the use 
of indirect machine learning (ML) to improve the efficient discovery of target-specific peptide 
ligands from next-generation sequencing (NGS) data. We combine peptide sequence information 
(input) with experimental fitness scores (output) of the individual peptide performance across the 
rounds of bio-panning in a bidirectional long short-term memory (BiLSTM) architecture. Because 
the fitness scores contain bias, we use regularization to facilitate limited indirect learning and 
effectively process the peptide sequence information, while still using the predicted fitness scores 
to rank the peptides. Peptides containing high-affinity binding motifs to our target were ranked by 
the regularized model more than threefold higher, compared to any combination of experimental 
fitness scores. Baseline models of random forest (RF) and -nearest neighbor (KNN) demonstrated 
slightly lower performance but also demonstrated the importance of regularization. However, the 
BiLSTM model emerged as the most robust, as it was less sensitive to the peptide representation 
and the specific fitness score used. Shapley residue analysis generated interpretable structure-
activity-relationship (SAR) by providing insight into predicted affinity-driving residues and 
physicochemical properties across the entire peptide and as well as at motif-specific positions. 
We expect that this approach will elucidate high-affinity ligands against a multitude of targets, 
vastly improving the discovery capability of phage display. 
 
 



Introduction  
  Phage display is a robust method to perform genetically-encoded peptide or protein ligand 
discovery against biomolecular targets.1–7 Peptides and peptidomimetics are a growing 
therapeutic modality that i) provide sufficient surface area to bind protein-protein interfaces, ii) 
have recently experienced higher clinical trial success rates than small molecules, and iii) remain 
less expensive to produce than protein biologics.8–12 Phage display is accessible, inexpensive, 
and can serve as a first-line approach to perform peptide ligand discovery from several 
commercially-available libraries. Furthermore, engineered phage libraries have enabled 
macrocyclization and covalent pharmacophore modification to improve discovery outcomes and 
pharmacokinetic properties. 4–7,13–15 Due to these advantages, phage display led to the discovery 
of clinically investigated peptidomimetics as targeted chemotherapeutic conjugates.15–18 Phage 
display has found broad utility in a variety of contexts including in vivo,2 ex vivo, and in vitro (on-
cell) bio-panning.3 The robust use of phage display has generally been enabled by the phage 
capsule’s protection of the genetic material and by the rise of sensitive next-generation 
sequencing (NGS). The sensitivity achieved by NGS has enabled several other ligand discovery 
technologies including DNA-encoded libraries,19,20 mRNA display,14,21 and yeast display.22,23 

However, phage display ligand discovery faces several fundamental challenges that 
obscure the ranking of the discovered ligands by their affinity and specificity to the target.24–26 
Traditionally, three to five rounds of bio-panning are used to enrich target-specific high-affinity 
peptides, each of which can introduce bias from the bacterial-based amplification.1 Specifically, 
during amplification, target-unrelated phage (TUP) variants can propagate due to their mutations 
that confer a growth advantage in biological amplification in host bacteria.24–26 The isolation of 
target-specific phage can be especially challenging if the biomolecular target is not well suited to 
drive the affinity selection (i.e., due to its disorder or allostery)27 resulting in the predominant 
isolation of target-unrelated phage variants. In addition, the efficiency of bacterial amplification 
can be varied with high-affinity candidates being disfavored, resulting in low representation.26 Due 
to the high sensitivity of the NGS, these biases obfuscate the ranking of peptides for their affinity 
and specificity toward the target. Additionally, with up to a million peptides revealed per sample, 
the peptides from NGS data must be ranked in some manner for feasible experimental validation 
while handling these biases. 

Several bioinformatic scores attempt to overcome these challenges by assessing the 
fitness performance of peptides in the bio-panning process. The fitness performance of each 
peptide can be understood by their observed: (i) protein selectivity, (ii) enrichment, and (iii) 
similarity to other identified peptide ligands (Figure 1B). First, peptide enrichment through bio-
panning rounds can be quantified by enrichment ratio (ER).19,26 However, enrichment does not 
include any measure of protein specificity and thus relies on the experiment design and/or 
additional analysis to remove nonspecific peptides from the ranking. Second, specificity can be 
quantified by the comparison of the intensity of the peptide across the bio-panned targets. This 
specificity can be represented as a pairwise fold change (FC) similar to other bioinformatic 
analysis. Along with its calculated statistical confidence (p-value), a volcano plot describes the 
confidence in peptide target specificity.4,5,28 However, utilizing FC with its p-value alone may fail 
to identify high-affinity peptides that do not exhibit rapid increases in enrichment due to any 
detrimental amplification bias. Moreover, identical aliquots of the phage library must be used to 
start all bio-panning; otherwise, the fold change comparison between slightly different subsets 



would inherently lead to the false positive identification.26 Third, clustering analysis works by 
grouping the peptides by their chemical similarity with the goal to reveal frequently-appearing 
motifs that may have driven high-affinity binding in the bio-panning. However, determining the 
optimal number of clusters and measuring peptide similarity lack an objective approach for 
optimization, and may lead to over- or underfitting.29 Many clustering methods also make 
assumptions about the distribution of the data including K-means clustering, which assumes 
spherically-shaped datasets. The high dimensionality of the input data can lead to issues with 
local versus global feature relevance.30,31 Lastly, the presence of nonspecific and parasitic 
peptides within the input data can further obfuscate clustering efforts. 

Machine learning (ML) is set to facilitate a paradigm shift in drug discovery and 
development for its ability to reveal underlying or nonobvious patterns beyond statistical analysis. 
Thus, it has been deployed for the discovery of antimicrobial, cell-penetrant, or immunogenic 
peptides.32–34 For phage display, ML has improved discovery outcomes by being trained directly 
on the NGS data,35 on curated sequences for classification,28 or on fitness scores (e.g., FC, ER).36 
However, approaches using only one type of data (e.g., ER) may still be affected by the isolation 
of target-unrelated phage and amplification bias. In contrast, the combination of all fitness scores 
and sequence-based information may provide a more complete data set to elucidate high-affinity 
peptides from phage display. However, to our knowledge, a combined model has not been 
developed. 

Here, we describe the use of indirect learning to accelerate the discovery of high-affinity 
peptide ligands from phage display bio-panning (Figure 1C). Specifically, our model ranks 
peptides for their likelihood to be high-affinity, target-specific ligands by learning underlying 
connections between the experimental fitness scores from input peptide sequences. Because 
they contain bias, the experimental fitness scores serve as a proxy for the desired ranking based 
on affinity and specificity of the peptide to the target. We use a bidirectional long short-term 
memory (BiLSTM) model to parse peptide sequence information. To evaluate our model, we used 
a calculated “hit rate” for the ranking of peptide “hits,” which contain known target-specific motifs, 
above non-motif containing peptides. Strict regularization was found to be important to highly rank 
peptide hits from the NGS data and resulted in over three-fold higher ranking of peptide hits by 
the BiLSTM versus only using experimental fitness scores. We additionally baseline the BiLSTM 
model against other appropriate models for this task including random forest (RF) and K-nearest 
neighbors (KNN), which demonstrated slightly lower performance but reinforced the importance 
of regularization. Furthermore, we examine the structure-activity relationship (SAR) and 
investigate the peptide motifs using Shapley additive analysis. To our knowledge, this is the first 
work to combine both FC and ER fitness scores as proxies to indirectly learn the unbiased ranking 
of peptides for their target affinity and specificity from genetically-encoded affinity selection. From 
this framework, future work will evaluate the binding affinity of prioritized peptides across a wider 
range of biomolecular targets to assess generality of the approach. 

 
 



 
Figure 1. This work uses biologically-biased fitness scores from phage bio-panning as a proxy 
objective for indirect supervised machine learning model for to rank peptides for their affinity and 
specificity to the target above background. A. A significant challenge of de novo discovery with 
phage display is ranking target-specific peptide binders above the bio-panning background to 
improve research efficiency and maximize discovery success. B. Fitness scores can rank peptide 
sequences from next-generation sequencing (NGS) data for experimental synthesis and 
validation, including enrichment ratio (ER), which quantifies the round-to-round change in 
individual peptide enrichment, and fold change (FC), which quantifies the peptide-protein 
selectivity. Clustering analysis has also been performed to parse and group the isolated peptides 
based on chemical similarity. However, each are susceptible to detrimental biological 
amplification bias. C. This work uses the FC + ER fitness scores as a proxy for the desired ranking 
of peptides by their affinity and specificity from NGS data. Thus, the training of a bidirectional long 
short-term memory (BiLSTM) model on peptide sequence information is limited via regularization 
to avoid fitting to the biological bias. The resulting BiLSTM model provides a >3-fold increase in 
accuracy of ranking peptide hits (motif-containing peptides) from the NGS background, termed 
“hit rate.” 
 



Results and discussion 
Peptide fitness scores from phage panning provide partially orthogonal information well-
suited for model development. 

Multiplexed phage display libraries with linear and macrocyclic peptides were selected 
against mouse double minute 2 (MDM2) and anti-hemagglutinin antibody (12ca5, Figure 2A, see 
SI: Section 2-8). Briefly, three rounds of phage display panning were completed using an 
automated protocol, with the protein target pre-immobilized on magnetic beads. Bio-panning was 
completed in multiplex format by mixing linear peptide libraries (X12 and X7) and macrocyclic 
peptide libraries ACX7C and AXMCXNC (M+N=6) all together for panning. The mixture of all 
libraries was incubated first with unlabeled magnetic beads to remove high-affinity bead binders. 
Nonspecific binding was blocked with 2% non-fat milk for 1 hour before incubation of the protein 
target with depleted pooled phage library together for 1 hour. Overall, these measures to limit 
nonspecific binding were successful, with only 0.06% of peptide sequences containing the off-
target streptavidin binding motif HPQ (SI Section 5.1.1). 

Within this work, we evaluated the accuracy of our approach to rank high-affinity peptides 
above background by whether peptides contain known target-specific motifs. Specifically, the 
known 12ca5 binding motif is D**DY(A/S)37–39 and the known MDM2 binding motif from prior 
phage display work is F**ФФ, where Ф are the hydrophobic amino acids phenylalanine, 
tryptophan, leucine, isoleucine, valine and tyrosine.40–44 As 12ca5 is a peptide-binding antibody, 
we placed more focus on validating our methodology to isolate motif-containing sequences 
against MDM2, with 12ca5 serving as a control. 

In our data, FC and ER fitness scores appeared partially orthogonal, though neither score 
readily ranked peptides “hits,” defined to have the known binding motif, above background 
sequences likely due to biases in bio-panning (Figure 2). Both FC and ER scores are driven by 
the affinity selection process in bio-panning and each has led to the identification of high-affinity 
binders from genetically encoded libraries.4,5,19,26 However, both fitness scores may be 
susceptible to amplification bias and isolation of target-unrelated phage. Common to all affinity 
selections, a weaker signal may be observed if the biomolecular target does not strongly drive 
the selection through affinity-ranked interactions. In comparison to 12ca5, MDM2 appeared less 
able to drive a strong affinity selection as seen in the volcano plot of −ln(p-value) vs ln(FC) (Figure 
2B). The peptide hits colored in orange would be poorly isolated from an FC-based approach. 
Relating FC to ER, we see that additional information emerges (Figure 2C) with the appearance 
of three peptide groups. The peptide hits appear predominantly in the high FC and high-to-modest 
ER region, as expected. However, only 2.8% of the peptides in this region (high FC (> 2.5)4,5 and 
high-to-modest ER (> 0)) contain the desired, high-affinity MDM2 motif. Another high FC 
population demonstrated lower ER, suggestive of target-selectivity but weak enrichment. 
However, this population contains few motif-containing peptide hits. Lastly, there was a population 
that demonstrated low FC and ER likely from the off-target control. Combining these together, the 
clearest localization of the desired motif-containing peptides can be seen in a three-dimensional 
overlay (Figure 2D), where most of the hits appear to have a high FC and ER and a modest p-
value. Overall, these data suggest that the combination of FC and ER may benefit any analysis 
approach toward the identification of specific high-affinity peptides from phage display data 
(Figure 2B,C,D).  
 



 
Figure 2. Experimental fitness scores of fold change (FC) and enrichment ratio (ER) provided 
partially orthogonal information, which when combined may improve the ranking of target-specific 
peptide ligands from phage display. A. Phage display bio-panning isolated peptide ligands by 
iterative affinity selection and inherently biased biological amplification of bound phage. B. 
Volcano plot of −ln(p-value) vs ln(FC) demonstrated most peptide hits (orange) show modest FC 
and p-value. C. The combination of FC and ER partially reveals motif-containing peptide hits as 
a population described by both high FC and high ER. However, only 2.8% of the peptide 
sequences within the high FC (>2.5) and high-to-modest ER (>0) region are hits and contain the 
high-affinity MDM2 motif. D. The projection of the data in 3-dimensions visualized all three criteria 
(ER, FC and its associated p-value) aids in identifying the location of the peptide hits. Orange 
points in plots B through D represent peptides that contain the MDM2 motif. E. Our approach 
utilized a bi-directional long short-term memory (BiLSTM) model to learn on FC and ER as a proxy 
objective to output the desired high ranking of target-specific peptide hits over the NGS 
background. 
 
Clustering of peptides from multiplex phage panning did not clearly identify hit peptides.  

Before employing a more powerful model, we first determined that two common clustering 
methods, k-means clustering30,45 and Cluster Database at High Identity with Tolerance (CD-
HIT),29 were insufficient to identify groups of peptide hits distinct from background in the MDM2 
phage display data. For k-means clustering, the peptides were encoded by amino acid, each 



represented as a 36-length vector from one-hot encoding, relative propensity for binding score,46 
DELPHI predicted protein interaction score,47 and 14 physicochemical property descriptors.46,48 
Residue-based encoding directly improves the ability to perform SAR analysis, ranging from 
amino acid-specific (one-hot) to generalizable (physical property) contributions toward binding 
affinity. Encoded peptides were decomposed using dimensionality reduction with Uniform 
Manifold Approximation and Projection (UMAP)49 and principal component analysis (PCA). The 
data was then clustered using the k-means algorithm after optimization of the number of clusters 
k using the elbow method, and a logo plot was generated for each cluster (Figure S3A). 
Additionally, we calculated the ER or FC of each cluster in an attempt to guide the determination 
of target-selective clusters (Figure S3D).  

The clustering primarily produced separate clusters for each library utilized (i.e., 
separating linear and macrocyclic libraries) due to the lack of sequence alignment and afforded 
no meaningful information about potential peptide hits or target-selective clusters within each 
library. Only a single cluster containing the 12ca5-based aspartic acid motif could be identified, 
with no clusters containing the MDM2 motif in any form. This result was made evident when the 
location of 12ca5- and MDM2-motifs were overlaid on the clusters revealing dispersion, indicating 
that our clustering approach did not isolate any motif-containing hit peptides. Clustering using CD-
HIT was also attempted across a range of similarity metrics. CD-HIT uses greedy incremental 
clustering to estimate sequence similarity first without an alignment at similarity threshold, and 
then with sequence alignment if the similarity falls below the threshold.29 However, even with 
alignment its alignment, CD-HIT was unable to identify any cluster of peptides larger than three 
members in the phage display data. Overall, our efforts indicated that isolation of motif-containing 
peptides can be challenging with clustering, warranting the use of more powerful tools to combine 
the partially orthogonal information from the peptide sequence, ER, FC and its associated p-value. 
 
Regularized learning on fitness scores as a proxy objective improves the ranking of 
peptide hits over background. 

We proposed regularized supervised learning to perform indirect learning on biologically-
biased fitness scores of enrichment (ER) and target selectivity (FC, p-value) as a proxy objective 
to reveal an improved ranking of peptide hits above background sequences. Peptides that exhibit 
high FC and ER have a higher fraction of hits (defined by their target-specific motif). However, 
only 2.8% of these high FC and high ER peptides were observed to be hits to MDM2 (Figure 2). 
We hypothesized that the biological bias that contributes to the NGS background and obscures 
the straightforward ranking of the peptide hits by FC and ER was similar to other types of noise 
in experimental labels. Thus, the use of regularization to limit the model from fitting to data could 
reveal a broader underlying pattern and potentially enable the improved ranking of peptide hits 
from the NGS data. In this way, we sought to perform indirect learning to highly rank peptide hits 
by using regularized supervised learning from encoded peptide sequence inputs. The resulting 
predicted outputs of ER (ŷER) and FC (ŷFC) could then be summed together to provide a single 
ranking (ŷrank, Figure 2E) and evaluated by whether they contain the MDM2-binding motif. From 
the input peptide sequence, we employed a BiLSTM model to predict the ŷrank ranking (Figure 
2E).50 The BiLSTM architecture was chosen for its capacity to preserve sequence order, represent 
peptide libraries of multiple lengths, and handle cases of motif frame shift and macrocycle 
bidirectionality.  



In the BiLSTM model, the greatest training performance to identify and efficiently rank 
MDM2 and 12ca5 peptide hits was achieved using multiple types of regularization. Regularization 
limits overfitting during training. We hypothesize regularization limits the model to learning broader 
underlying sequence patterns that drive binding, rather than nuances between the performance 
of individual peptides, which may be more strongly affected by biological bias. The importance of 
regularization was revealed during analysis of the effects of hyperparameter optimization on the 
ranking of peptide hits using Bayesian hyperparameter optimization with the Tree-Structured 
Parzen Estimator algorithm51 (Figure S4). Specifically, high dropout (λDropout = 0.5), substantial 
weight decay penalty (λL2 = 0.01), low learning rate (α = 0.0005), shallow model depth (depth = 
7), narrow model width (width = 64), and substantial batch sizes (n = 128) were found to improve 
the hit rate of discovery (Figure S4 for further detail). Each of these parameters affect the model’s 
learning, likely only forming broad connections between the peptide features with experimental 
FC and ER during the training process. This stringent regularization improved the model’s ability 
to highly rank peptide hits above background at the cost of reducing prediction accuracy (Figure 
S5), following the classic variance-bias tradeoff.52  

 
 

 



Figure 3. BiLSTM model efficiently ranks MDM2 motif-containing peptide hits above NGS 
background >3-fold better than any combination of experimental fitness scores. Ranking peptides 
is required due to the large number of potential peptide ligands identified to prioritize the 
investment of synthesis and experimental binding validation. A. Hexbin projections with 
highlighted zones corresponding to the top 500 peptides as determined by the different strategies 
to rank the peptides as potential peptide hits. Arrows shown in the bottom right display the 
direction of ranking (x-direction, y-direction, or both). B. Positional frequency matrix of the top 500 
identified peptides. The macrocyclic 9-mer AXNCXMC (N + M = 6) library contained most of the 
peptide hits, and outperformed the other libraries. Thus, the positional frequency matrices of the 
top 500 show the 9-mer variable region of the 9-mer library (cysteine not shown on y-axis for 
clarity). C. The BiLSTM model outperformed all other experimental methods to efficiently rank hit 
peptides (motif-containing) above background. This result is shown by the hit rate, which is 
defined as the number of motif-containing peptide divided by their rank shown as a percentage. 
Only 527 peptides contained the MDM2 motif, and thus, the top 500 peptides ranked by each 
method was examined. For example, if the top 100 peptides were synthesized, 84% of the 
BiLSTM ranked peptides are expected to be hits as they contain the MDM2-binding motif, versus 
~30% from other methods. Considering the area under the curve up to 500 peptides, the BiLSTM 
performs >3-fold better at highly ranking the motif-containing peptides. D. Calculation of the area 
under the hit rate curve in C indicates that 64% of the top 500 BiLSTM ranked peptides contain 
the MDM2 motif. 
 
The regularized BiLSTM model highly ranked motif-containing peptide (hits) over 
background. 

Our BiLSTM model highly ranked peptides containing F**ΦΦ motif known to drive high-
affinity peptide binding to MDM240–44 above background (Figure 3A,B). Additional confidence can 
be placed in ligand discovery when compounds containing a similar set of critical features or 
residues (i.e., a “motif”) are enriched, forming the base utility of clustering.8,9,53–56 In the context of 
affinity selection, these motifs are generally assumed to facilitate high-affinity interactions. Within 
our NGS data, 527 peptides contain the MDM2 motif. Thus, we sought to compare the number of 
peptides that contain the MDM2 motifs within the top 500 ranked peptides from the 10-fold cross-
validated model ŷrank versus combinations of the experimental fitness scores including FC-only, 
FC with its associated p-value (volcano plot),4,5,28 ER-only, and FC+ER (Figure 3A). We assessed 
their motif pattern by using a positional frequency matrix seen in Figure 3B. Only the BiLSTM 
model showed a clear motif pattern closely matching the F**ΦΦ motif known to drive high-affinity 
peptide binding to MDM2.40–44 The other approaches showed no clear discernable pattern and 
appeared random. 

Similarly, the BiLSTM ranked peptide hits from the NGS data with an >3-fold higher hit 
rate than the experimental fitness scores it indirectly learns from, concentrating the likelihood of 
success for initial synthesis validation attempts (Figure 3C,D). The ranking the peptides from bio-
panning NGS data is required to efficiently prioritize the investment of experimental validation 
toward peptides with the highest likelihood of being high-affinity hits. Similar to the motif 
identification, the BiLSTM rank (ŷrank) from the 10-fold cross-validated model was assessed for its 
efficiency to highly rank peptide hits in the top 500 peptides from the NGS data. Specifically, we 
determined the percentage of peptides that contain the MDM2 motifs as a function of their rank 
within the top 500 ranked peptides as a “hit rate” (Figure 3C). A theoretically perfect ranking would 



rank all peptides hits above background (gray dashed line in Figure 3C). Thus, per peptide 
invested in experimental validation, the hit rate assesses how efficiently hits are identified. Overall, 
the BiLSTM model hit rate significantly outperforms all fitness score-based approaches by >3-
fold, with ER only providing the next best performance.  
 

 
Figure 4. Baseline of other indirect learning models across peptide representation and proxy 
objective (ER, FC, or ER+FC) of the desired ranking of peptide hits over background. The 
efficiency of each model was assessed by its hit rate, defined as the number of motif-containing 
peptide divided by their rank shown here as a fraction. on both the MDM2 and 12ca5 target protein 
systems. All results reported on the hit rate of a 20% holdout dataset taken before hyperparameter 
optimization (n = 84 maximum theoretical MDM2 hits, n = 166 maximum theoretical 12ca5 hits). 
 
Other suitable models perform similarly, but the BiLSTM appears the most robust. 

Next, we benchmarked the performance of the BiLSTM model against baseline models 
including random forest (RF) and K-Nearest Neighbor (KNN, which are also suitable for this 
analysis of NGS-based discovery data using the hit rate.19,57 Hyperparameter optimization of the 
RF model prioritized shallow tree depth (max depth of 10) and greater number of estimators (200) 
presumably to increase regularization by averaging multiple decision trees that individually suffer 
from high variance, resulting in the elucidation of underlying data patterns that are robust to noise 
in the dataset. Similarly, during hyperparameter optimization, regularization in KNN models was 
implicitly controlled by adjusting for large neighbor set sizes (35). Ultimately, all three model 
architectures achieved comparable performance, with a slight advantage to the BiLSTM. Notably, 
all three model architectures across all peptide representations and indirect training objectives 
(ER, FC, or ER+FC) achieved significantly higher hit rates relative to the experimental fitness 
scores alone. This result further underscored the vital importance of regularization, likely for its 
role in limiting the model to only learn and rank broader, underlying sequence patterns (i.e., the 
MDM2 motif) and provide an efficient ranking of peptide hits. 

The BiLSTM model demonstrated greater robustness for the type of peptide encoding 
input (One-Hot, Physicochemical) and proxy objective (ER, FC) used relative to RF and KNN 
models (Figure 4). In the two distinct protein systems examined, the fitness score used as the 
proxy objective (ER, FC, and p-value) resulted in different effectiveness to rank peptide hits. 
Specifically, for MDM2, ER provided the most valuable information as the proxy objective for 
ranking peptide hits across the model baselines. Whereas for 12ca5, FC and p-value proved to 
be the most valuable as the proxy objective for ranking peptide hits. Similarly, the RF and KNN 
showed improved performance for specific encodings (physicochemical for RF and one-hot 



encoding for KNN) rather than the combined encoding. However, across both proteins, the 
BiLSTM showed the best performance with the combined peptide encoding (both One-Hot and 
physicochemical) and both (FC+ER) proxy objectives. Thus, the application of the BiLSTM is the 
most streamlined and robust, without the need to consider the optimal proxy objective and/or 
encoding combinations. 
 

 
Figure 5. The UMAP decompositions of the BiLSTM learned latent features demonstrated the 
effect of regularization on proxy objective learning to result in the consolidation of peptide hits. 
The UMAP transformation was obtained from the penultimate layer of the BiLSTM model with 
multiple color-coded points overlayed. A. The 500 peptides with the top experimental FC and ER 
peptides highlighted in dark green. B. The 500 peptides with the top predicted BiLSTM ranking 
(ŷrank = ŷER + ŷFC) highlighted in red were observed to be grouped together for MDM2. A logo plot 
exhibits multiple frameshifts of the hydrophobic motif. C. For comparison, all MDM2 motif-
containing sequences (F**ΦΦ) are highlighted in orange, indicating nearly the same group of 
peptides prioritized in the top 500 by the BiLSTM ranking in B. Cysteine residues are excluded 
from the logo plots for clarity of the motif. 
 
The effect of regularized indirect learning of the proxy objectives (FC and ER) was revealed 
by UMAP of the BiLSTM latent space. 

From visualizing the BiLSTM latent space, the effect of regularization or enact indirect 
learning resulted in the cluster-like consolidation of motif-containing peptides as seen by UMAP 
(Figure 5). Examining the latent space BiLSTM embeddings can reveal the influence of the 
learning toward the proxy objective FC and ER versus the model’s ability to parse and/or 



consolidate similarities of the peptide features. The UMAP decomposition into two dimensions of 
all latent peptide embeddings from the penultimate layer of the BiLSTM is shown throughout 
Figure 5 with various color-coded overlays. The peptides with the top 500 predicted ER and FC 
highlighted to indicate the location of peptides that were highly ranked by the model. 

The clear consolidation of highly ER- and FC-ranked peptides indicated that the BiLSTM 
model placed significant weight toward understanding and grouping key motifs or patterns from 
the NGS data background. Moreover, the partial overlap of the top 500 predicted and top 500 
experimental peptides (Figure 5A vs B) demonstrated the lack of complete model accuracy, likely 
due to regularization. The evidence for limited learning and accuracy was further confirmed by 
parity plots (Figure S5 and S7). For MDM2 (Figure 4), we see one region in the UMAP plot that 
contains motif-containing peptide sequences that strongly overlaps with those predicted to have 
high ER and FC, which are summed to give the ranking. For 12ca5, the top 500 peptides exhibiting 
the highest predicted 12ca5 ER and 12ca5 FC scores also exhibit a significant consolidation 
within the UMAP projection. In addition to successfully identifying 12ca5 motif-containing 
sequences (*DYA*), the BiLSTM model prioritized a similar set of anionic peptides containing 
motifs including D**DY*, which is highly similar to the known motif (D**DYA), and LE*E, which 
has not been reported before. Overall, these findings underscore the effect of regularization to 
consolidate similar peptides from NGS data across while considering their FC and ER fitness 
scores. 
 

 
Figure 6. Built-in model interpretability using Shapley analysis provided amino acid and property 
based SAR. A. Shapley feature importance across representation features as calculated by the 
10-model ensemble trained via cross validation splitting on a test set of 500 randomly sampled 
peptides. This result indicated that high volume, low polarity, high hydrophobicity, and high 
flexibility are predicted to improve MDM2 binding propensity. B. Positional Shapley feature 
importance across residue identities as calculated by the 10-model ensemble on the set of all 558 
MDM2 motifs containing hits within the dataset. Sequences are aligned by motif position, and 
error bars are calculated according to the standard deviation of Shapley values per residue across 
all peptides and all models. This result underlied the importance of hydrophobic amino acids to 
drive binding and the potential for small or polar amino acids to disrupt peptide binding to MDM2. 
 



Shapley analysis provided amino-acid and positional structure activity relationships. 
In addition to potentiating discovery, we can analyze the BiLSTM model results and 

prioritizations at the individual amino acid level to infer structure activity relationship (SAR) 
information using Shapley Additive Explanation analysis.58 We have demonstrated that the 
BiLSTM model highly ranks peptides hits. From the ranking, the valuable sequence motifs, down 
to the specific amino acid level, can be revealed using Shapley Additive Explanation analysis of 
our 10-fold cross-validated BiLSTM model ensemble. Shapley analysis uses coalition game 
theory to calculate the contribution of each encoded feature (for this work amino acid and 
physicochemical property) to the final model prediction.58 Thus, this analysis identifies the 
importance of each representation feature (Figure 6A) for its influence in driving MDM2 binding.  

For MDM2, high volume, low polarity (P12 polarizability), low exposed surface area, and 
high (H12) hydrophobicity descriptors46,48 were found to be the most indicative characteristics of 
residues to drive high-affinity binding (Figure 5A). These parameters match well with the 
properties of canonical uncharged aromatic amino acids, including tyrosine, tryptophan, and 
phenylalanine, which are known to be a part of the MDM2 motif that drives high affinity binding. 
Other features such as low exposure, high flexibility, and median side chain net charge index 
according to the cross validated model ensemble correlate with the MDM2 binding likelihood. 
From the same analysis, favorable properties to drive 12ca5 can be inferred as well from the “low” 
Shapley values or the stand-alone analysis (Figure S9). High polarity, high exposed surface area, 
low flexibility, and low hydrophobicity were seen to likely drive 12ca5 binding, consistent with the 
D**DYA motif. For both proteins, the two pretrained descriptors of relative binding propensity and 
DELPHI protein interaction scores were less connected to peptide binding activity. In addition, 
one-hot descriptors show relatively low Shapley importance ranges, which suggested that the 
model ensemble eschewed specific categorical understanding in favor of deeper physicochemical 
understanding. 

For additional interpretability, we summed the Shapley values across the representation 
dimension to determine positional importance, also referred to as Positional Shapley (PoSHAP) 
(as illustrated in Figure 6B).59 Positional Shapley analysis of peptide hits aligned by the theoretical 
MDM2 motif (Figure 6B) allowed the quantitative comparison of residue importance at different 
positions. Our findings revealed that uncharged aromatic amino acids had the most influence on 
the model performance, with the highest contributions according to our proxy metric. Hydrophobe 
1 (Φ1 in F**Φ1Φ2) is often seen to be tyrosine in literature,40–44 but seen to be highly weighted as 
tryptophan by our model. The negatively charged residues aspartic and glutamic acid in position 
3 or 7 (relative to the start of the motif) were recognized to significantly reduce propensity to bind 
by our model ensemble in addition to other small or polar amino acids. These polar amino acids 
likely prefer to be solvated rather than bound to the hydrophobic MDM2 patch surface. For 12ca5 
(Figure S9) PoSHAP revealed the higher importance of the aspartic acid residues within the motif 
(D**DYA) for binding than the tryptophan and alanine residues. Overall, we envisage that the 
integration of PoSHAP within BiLSTM improves the interpretability of the model and the SAR 
information gained from affinity selection and bio-panning discovery. 
 



Conclusion 
 Here, regularized indirect learning on biologically biased fitness scores improved the 
ranking of high-affinity, target-specific peptide hits from phage bio-panning. Indirectly learning 
connections from peptide fitness (FC and ER) to peptide features appeared to overcome the 
biological bias or “noise” from target-unrelated phage and/or weak affinity-driven enrichment. The 
indirect learning was critically enforced by regularization in the form of high dropout (λDropout = 0.5), 
high L2 penalty (λL2 = 0.01), low learning rate (α = 0.0005), shallow model depth (depth = 7), 
narrow model width (width = 64), and substantial batch sizes (n = 128) for the BiLSTM 
architecture, and led to the cluster-like consolidation of sequence feature information (Figure 5) 
guided by experimental FC and ER. This regularized approach led to the high ranking of peptides 
hits to MDM2 at a >3-fold improved hit rate relative any combination of the fitness scores used 
for training (Figure 3). Compared to baseline models of RF and KNN, the BiLSTM model 
demonstrated similar or slightly improved hit rate. However, the BiLSTM appeared more robust 
for its ability to provide good performance from the combine proxy objective (FC and ER) and all 
amino acid descriptors for both MDM2 and 12ca5 (Figure 4), meaning optimal encoding or proxy 
objective need not be explored. In comparison, RF and KNN showed variability in their optimal 
encoding method and target objective (e.g., FC, FC+ER), whereas the BiLSTM model improved 
with the more diverse information input. Lastly, the addition of Shapley Additive Explanation 
analysis allows for SAR-level information to be isolated from the ligand discovery experiment 
directly. From initial discovery experiments, Shapley analysis holds potential to guide the 
importance of peptide amino acid composition (Figure 6A) as well as with respect to sequence 
(Figure 6B), informing derivatization efforts. 
 Next, we will seek to apply this indirect learning approach toward peptide fitness to phage 
display against novel targets including experimental validation. This future direction will reveal the 
connection between predicted hit rate against these model protein targets (12ca5 and MDM2) as 
well as establish a true experimental hit rate against more challenging targets. We expect that 
this indirect learning approach to learn proxy objectives will generally improve the hit rate and 
discovery of high-affinity peptide ligands against biomolecular targets, offering a useful 
computational tool to streamline and enhance the pre-clinical development pipeline of next-
generation peptidomimetic therapeutics. 
 

Data availability 
Data supporting the findings of this work are available within the Supplementary Information, 
which contains phage display biopanning, titering, and amplification protocols; details on MDM2 
chemical synthesis; clustering of NGS data; BiLSTM hyperparameter optimization; parity plots; 
and additional sequence analysis of the latent space. All data utilized in this work is available at 
https://github.com/YitongTseo/ml_phage_display. 
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