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ABSTRACT

The field of antibody drug discovery relies substantially on extensive experimen-
tal screening of B cells from immunized animals. Machine learning (ML)-guided
prediction of antigen-specific B cells offers the potential to accelerate antibody
drug discovery, however this requires sufficient labeled training data. Addressing
this challenge, our study focuses on antigen specificity prediction using a novel
dataset of B cells with single-cell transcriptome and antibody repertoire sequenc-
ing. We identify key patterns in gene expression (GEX) indicative of antigen
specificity and elucidate the sequence diversity distribution of antigen-specific an-
tibody sequences in immune repertoire data. We evaluate linear (Logistic Re-
gression), non-linear (Support Vector Classification) and ensemble-based (Ran-
dom Forest, Gradient Boosting) models trained on different feature combinations
of GEX and antibody sequence. Additionally, transfer learning approaches us-
ing features generated from ESM-2, a general protein language model (PLM),
as well as from AntiBERTy, an antibody specific PLM, were evaluated as inputs
to these models. Our findings reveal that GEX-based models demonstrate supe-
rior performance in specificity predictions with F1 scores up to 0.939 compared
to antibody sequence-based models, highlighting the intricate nature of immune
repertoire modeling. Contrary to our expectations, using PLM features did not
enhance predictive accuracy. Our research contributes to the computational dis-
covery of antibody therapeutics, offering insights into B cell biology and serving
as dataset contribution to the development of ML approaches in this field.

1 INTRODUCTION

Therapeutic antibodies have become one of the most dominant drug modalities for the biopharma-
ceutical industry (Kaplon et al., 2023). Many antibody discovery campaigns rely on animal immu-
nization and experimental screening of B cells (Kellermann & Green, 2002; Laustsen et al., 2021)
(Figure 1A). A critical aspect of this process is the identification of B cells expressing antibodies that
not only exhibit high specificity and affinity towards the target antigen, but also meet key biophysical
criteria (developability), which are important for downstream drug development (Jain et al., 2017;
Raybould et al., 2019; Jarasch et al., 2015). Utilizing animal immunization, while technologically
straightforward, offers the advantage of producing antibodies that have undergone in vivo affinity
maturation, yielding high affinity and in vivo stability (Laustsen et al., 2021). However, downstream
engineering steps often require extensive wet lab validation of 1,000 - 10,000 antibodies, while
still yielding only a small subset of therapeutic candidates (<100). (Zost et al., 2020; Chi et al.,
2020; Brouwer et al., 2020). Recent technological advancements in single-cell sequencing, such as
LIBRA-seq, have enhanced the efficiency of discovering antigen-specific antibodies from immune
repertoires. LIBRA-seq is a B cell receptor sequencing approach that utilizes DNA-barcoded anti-
gens to map antibody sequence to antigen specificity using next-generation sequencing (Shiakolas
et al., 2022; Setliff et al., 2019). While potentially increasing throughput, these methods still require
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extensive experimental screening, which can again hinge on the availability of expressible antigens
and the steric accessibility of the epitopes. The potential to use computational tools, such as ML
to identify antigen-specific antibodies from immune repertoires has gained substantial interest due
to their potential to considerably reduce wet lab experimentation costs and efforts (Akbar et al.,
2022). Nevertheless, the success of these methods is still hampered by insufficient data of labeled
(antigen-specific) antibody sequences (Greiff et al., 2020).

To address these challenges, we have generated a dataset of antigen-specific and non-specific B
cells with single-cell transcriptome and antibody repertoire sequencing. We hypothesize that post-
activation gene expression patterns in B cells, as well as convergent patterns in antibody sequences
are indicative of antigen specificity(Young & Brink, 2021; Cyster & Allen, 2019). By leveraging
training data of transcriptional B cell phenotypes and antibody sequences, we aim to improve the ac-
curacy of antigen-specificity prediction models. Thus, in this study we evaluate ML models trained
on this dataset that serve as benchmarks to identify learnable patterns in the transcriptome and anti-
body sequences associated with antigen specificity. While our primary goal is to enhance ML meth-
ods in antibody discovery, the dataset also offers valuable insights into B cell biology. Ultimately,
by demonstrating the efficacy of PLM embeddings in predicting antigen specificity, we anticipate
this work to contribute to the computational design of future antibody therapeutics, leveraging the
generative capabilities of PLMs (Shuai et al., 2023; Wang et al., 2023).

Figure 1: A. In vivo antibody discovery technologies are reliant on extensive experimental screen-
ing, but yield antibodies with beneficial biophysical properties. B. Dataset Generation. Mice were
immunized with antigens. Organs of the immunized animals were processed and single cells sepa-
rated in antigen-specific and non-specific cell populations. Transcriptome and antibody genes of the
single-cell populations were profiled by single-cell transcriptome and antibody repertoire sequenc-
ing.

2 METHODS

2.1 DATA GENERATION

One of the major bottlenecks in the development and validation of computational methods for an-
tibody discovery and engineering is the lack of sufficient labeled datasets. Therefore, we aimed to
generate single-cell transcriptome and antibody sequence data from B cells of antigen-immunized
mice. The experimental workflow is depicted in Figure 1B. We immunized two groups of mice,
each with one of two protein antigens: ovalbumin (OVA) and the receptor binding domain (RBD) of
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SARS-CoV-2. Following immunization, B cells were sorted by flow cytometry into antigen-specific
and non-specific populations. Single-cell sequencing was performed on the sorted cell fractions,
resulting in two primary datasets. Each dataset was characterized by three key features or labels:
(1) a binary for antigen-specific and non-specific cells, (2) GEX, and (3) antibody sequences. No-
tably, sequencing for the OVA-immunized samples was conducted individually for each mouse,
generating separate datasets for specific and non-specific cells (referred to as s1 OVA spec and
s2 OVA nonspec for mouse 1, and s3 OVA spec and s4 OVA nonspec for mouse 2). For the RBD-
immunized mice, samples from both individuals were pooled, resulting in a consolidated dataset for
specific cells (labeled s1 RBD spec) and another for non-specific cells (labeled s2 RBD nonspec).
Details on the performed experiments can be found in the appendix A.

2.2 SPECIFICITY PREDICTION BENCHMARKS

To investigate the presence of learnable patterns predictive for antigen specificity within our datasets,
we conducted benchmark experiments using ML models that included linear (Logistic Regression,
LogReg), non-linear (kernel Support Vector Machine Classifier, kSVC) and ensemble models (Ran-
dom Forest, RF; Gradient Boosted Decision trees, GBoost (Ho, 1995; Friedman, 2002)). These
binary classification models were trained on features derived from GEX and antibody sequences,
within a framework of 5-fold cross-validation. Train-test splits were either sampled randomly in
a stratified manner (random splits) or split based on antibody sequence similarity, thus preventing
highly similar sequences in both training and test sets (similarity based splits). We refer to A.7 for
details on train test splitting. In addition, we also leveraged transfer learning, a concept supported
by its success in predicting protein function (Rao et al., 2019; Hie et al., 2020; Li et al., 2023). The
rationale behind this approach stems from the hypothesis that features derived from PLMs that are
trained on vast repositories of protein sequences could potentially enable our models to tap into a
broader ”protein universe” for improved prediction of protein function (Hie et al., 2023). Therefore,
representations were generated from the last hidden layer states of two PLMs, ESM-2 and AntiB-
ERTy, and used as input features for our ML models. ESM-2 and AntiBERTy are deep contex-
tual language models containing information about biological properties of proteins and antibodies.
ESM-2 was trained with 250 million protein sequences (Rives et al., 2021) and AntiBERTy is an
antibody specific PLM, that was trained with 558 million natural antibody sequences (Ruffolo et al.,
2021).

Feature generation: For specificity prediction, we generated diverse feature sets from GEX and an-
tibody sequence data. GEX features are the scaled, log-transformed gene expression of the top 2000
most variable genes (GEX 2000 var) that are fed as input to the ML models. These features were
prepared separately for the OVA, the RBD and an integrated OVA RBD dataset (using Harmony sin-
gle cell integration method (Korsunsky et al., 2019)). Using the integrated dataset for the specificity
prediction of two distinct antigens follows the assumption that GEX patterns in activated B cells are
similar across antigens. Antibody sequence features included k-mer frequencies, specifically 3-mer,
for both heavy and light chains (VH VL) and heavy chain only (VH). Additionally, PLM-derived
features were obtained by mean-pooling the last hidden layer of ESM-2 (Rives et al., 2021) and
AntiBERTy (Ruffolo et al., 2021) for both full-length VH and VL sequences or VH only. Further-
more, ESM-2 representations of complementary determining regions (CDR) (ESM-CDRextract)
only were evaluated. This approach aimed to assess whether focusing on the CDRs, which are
crucial for antigen binding, would yield sufficient or more effective embeddings for our specificity
prediction models. To assess the synergy between GEX and antibody sequence data, GEX 2000 var
and 3-mer features were concatenated and used as inputs to the ML models, exploring potential
enhancement in predictive performance.

3 RESULTS

3.1 DATASET

In response to immune challenges such as infections or immunizations, antigen-specific B cells un-
dergo activation, followed by expansion and affinity maturation, a highly regulated, cellular process
(Young & Brink, 2021). We propose that these antigen-specific B cells exhibit unique gene ex-
pression profiles that, once identified, could serve as a basis for predicting antigen specificity. Our
single-cell sequencing experiments yielded a dataset encompassing 10,881 (OVA) and 7,677 (RBD)

3



Machine Learning for Genomics Explorations workshop at ICLR 2024

single-cell transcriptomes, alongside 8,226 (OVA) and 6,846 (RBD) paired heavy and light chain
antibody sequences from individual cells. For visualization of our integrated dataset, we employed
uniform manifold approximation and projection (UMAP) and labelled cells as OVA or RBD spe-
cific and non-specific. We observed limited clustering of antigen-specific B cells within the UMAP
landscapes, indicating the presence of OVA and RBD-specific B cells across all clusters with a
slightly lesser frequency towards the right side (Figure 2A). Additional analysis was performed and
summarized in the Appendix A.5.

An expanding B cell and its descendants and the antibodies they express are assigned to a clono-
type in immune repertoire analysis. We delineated clonotypes based on 10x Genomics Cell Ranger
software (v5.0.0), which groups B cell clonotypes using enclone. The process of expansion leads
to a skewed distribution characterized by large proportions of duplicated or very similar antibody
sequences in immune repertoire datasets. Visualization in Figure 2B highlights the expansion of
antigen-specific samples exhibiting a higher number of expanded clones, as evidenced by fewer
grey fractions, thereby occupying a larger proportion of the dataset.

Figure 2: A. UMAP plot of single cells coloured by OVA, RBD specificity (blue, red); non-specific
B cells depicted in grey. B. Pie charts indicating the fraction of B cells per clone and sample captured
by single-cell sequencing. Numbers in the center indicate the total number of clones (Top) and cells
(Bottom). Fraction of unexpanded clones consisting of one cell are shown in black and the fractions
in varying shades of grey depict clones consisting of >1 cells.

3.2 SPECIFICITY PREDICTION BASED ON ANTIBODY SEQUENCES

Given the aim of predicting the positive class (antigen specific) as correctly as possible in this imbal-
anced dataset, F1 score was adopted as the primary metric for evaluating model performance (Fig-
ure 3A). For similarity based splits, the best-performing models were identified as LogReg trained
on ESM-2 features for the OVA dataset (F1=0.570) and AntiBERTy features for the RBD dataset
(F1=0.408), as detailed in Table 3. As expected, when the train-test datasets were split randomly,
a significant improvement in predictive performance was observed (Figure 6A). Hereby, the top-
performing model was RF trained on 3-mer features achieving F1 scores of 0.795 for OVA and
0.690 for RBD. When the cutoff of the similarity based splits was chosen more stringently, a de-
crease in performance was observed (See Table 8). These results highlight the impact of dataset
splitting strategies on model efficacy in the context of antibody specificity predictions. Interest-
ingly, transfer learning approaches using PLM representations of ESM-2 and AntiBERTy as input
features did not result in a significant increase in F1 scores compared to 3-mer features (See Sec-
tion A.10, Figure 6A). However, LogReg trained on ESM-2 and AntiBERTy features of the OVA
and RBD dataset, respectively, exhibited the best performance in similarity based splits, suggesting
enhanced generalization capabilities to more distantly related sequences. Unexpectedly, ML mod-
els trained with features from AntiBERTy, an antibody specific PLM, did not outperform models
trained with ESM-2 features (Figure 6A). Furthermore, when CDR representations were extracted
from the full-length PLM representation and used as features, we observed either equal or slightly
improved performance for the specificity prediction task. This finding indicates that the contextual
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information captured in the CDRextract features, as opposed to the full-length sequence ESM-2
features, appears sufficient for specificity prediction. Even though more detailed evaluations would
be required, these insights could imply that it is sufficient to generate PLM features of CDRs only.
Shorter sequences lead to more efficient generation of PLM features, a process typically demanding
significant computational resources.

Figure 3: F1 score of model evaluations based on A) antibody sequence features and B) GEX
features.

3.3 SPECIFICITY PREDICTION BASED ON GENE EXPRESSION

In this analysis, we focused on cells where both GEX and antibody sequence data was available,
to ensure a consistent basis for evaluation of the specificity predictions. Additionally, we included
sequence-only feature (3-mer) predictions for these datasets to provide a comparative perspective.
The F1 scores of the model predictions (Figure 3B and Table 9) reveal notable predictive perfor-
mance of GEX features in antigen specificity prediction. This finding reaffirms the results in the
analysis of differentially expressed (DE) genes (Figure 5). Specifically, using kSVC with solely
GEX features yielded remarkable F1 scores of up to 0.849 for OVA and 0.939 for RBD. GEX fea-
tures for the RBD dataset yield statistically significant improvements compared to sequence based
features. Interestingly, when GEX and antibody sequence features were combined, this did not
enhance performance for the OVA and RBD datasets. This outcome suggests superiority of GEX
features over antibody sequence features in the context of antigen specificity prediction, particularly
in the RBD dataset (Figure 3B, Figure 7B). Further, our analysis revealed only a minor, but not
significant decrease in F1 scores when employing similarity based splits compared to random splits
in GEX predictions. This observation suggests that splitting train and test sets based on sequence
similarity, or lackthereof, does not substantially affect the predictive power of GEX features (Figure
7A).

In contrast, when predictions on the integrated dataset were evaluated, the effectiveness of GEX
features to predict antigen specificity was significantly reduced. Further analysis of the coefficient
values learned by the LogReg models trained on separate OVA and RBD datasets showed only mi-
nor correlation and overlap (Figure 8, 9 and see A.12 for details). Even though these results imply

5



Machine Learning for Genomics Explorations workshop at ICLR 2024

divergent antigen-specific gene signatures that are learned by the LogReg models to predict antigen
specificity, more detailed analysis would be required to confirm this hypothesis. Nevertheless, com-
bined GEX and antibody features did exhibit a capacity to recover some predictive performance,
achieving an F1 score of 0.466. While this score marks an improvement compared to GEX-only
models, it falls notably short of the F1 scores obtained for the model evaluations when trained on
the separate OVA and RBD datasets, especially compared within similarity based splits. Eventually,
a control experiment was conducted using the top 10 upregulated and downregulated differentially
expressed (DE) genes to evaluate the necessity of ML in predicting antigen specificity from GEX
features with the integrated OVA and RBD dataset (See Appendix A.13 for details). These results
(Table 9) show slightly improved F1 scores compared to model predictions based on GEX features
for the OVA RBD dataset, but cannot outperform combined GEX 3-mer features.

4 DISCUSSION

As proof-of-concept, we demonstrate that antigen specificity predictions of B cells based on single
cell GEX data are effective within an antigen cohort, yet susceptible when applied to integrated
datasets of two antigen cohorts. A hypothesis for the low performance of the ML models using
integrated datasets could be a divergence in antigen-specific gene expression, challenging our as-
sumption of a ’universal’ antigen-specific response. These findings are supported by our GEX anal-
ysis, which shows separation on the PCA plot based on specificity as well as antigen (Figure 5A).
The analysis of the UMAP plot, however, is in contrast to these results as it does not depict any
distinct clustering or separation of B cells activated by two different antigens (Figure 2A). Given
that UMAP radically reduces the dimensionality of GEX, it may not fully capture complex GEX
pattern. The superior performance of nonlinear models such as kSVC and GBoost when using GEX
features, highlights the complexity and intricacy of antigen-specific GEX signatures. These diverg-
ing results in model performance also suggest the presence of random batch effects, which could be
investigated by generating additional, independent batches of single cell sequencing datasets. Such
investigations require carefully designed experiments incorporating both technical and biological
replicates. This remains technically challenging, however, due to limitations in the throughput of
animal experiments and the number of cells that can be sequenced in a single experiment. Further
experiments are also required to experimentally validate the results of the model predictions. To our
current knowledge, no study has thoroughly explored differences in antigen specific GEX patterns
of primary B cells.

The results of the antibody sequence-based predictions clearly showed a significant impact of the
similarity split threshold on on the overall predictive performance, underscoring the complexities
inherent in modeling immune repertoire datasets that are shaped by natural immune responses, such
as clonal expansion. Interestingly, transfer learning by using PLM representations, such as those
from ESM-2, did not enhance model performance. Similarly, when employing ML models with
representations from AntiBERTy, a PLM specifically trained with antibody sequences, no improve-
ment in model performance was observed. These results stand in contrast to other studies that have
documented improvements of downstream protein function prediction using PLM representations
(Rao et al., 2019; Hie et al., 2020; Li et al., 2023). Nonetheless, the observed predictive capacity of
PLM features for antigen specificity opens avenues for further investigation into how PLMs could
be utilized for the design of novel antibody sequences. This could entail sampling from the PLM
embedding space or leveraging PLM pseudo log-likelihoods to guide antibody design (Hie et al.,
2023). Moreover, our findings indicate that combining GEX and antibody sequence features does
not improve model performance for antigen specificity prediction. More sophisticated methods than
simple feature concatenation, however, could further enhance model performance. One such ap-
proach could utilize features from a latent space that integrates antibody sequence and GEX data,
such as the Benisse model (Zhang et al., 2022). Taken together this study provides critical insights
into the challenges and potential directions for advancing ML applications in antibody discovery
from immune repertoires.
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A APPENDIX

A.1 MOUSE EXPERIMENTS

For protein immunizations, 6-week-old female C57BL/6 mice were repeatedly immunized 3 times
in 9 days intervals s.c. into the flank with 100 µg of OVA (Sigma, A5503) or 10 µg RBD (Sino Bi-
ological, 40592-V08B) with 20 µg MPLA (Sigma, L6895) adjuvant and euthanized 11 days (OVA)
and 16 days (RBD) post immunization. Euthanization was conducted by CO2 asphyxiation and cer-
vical dislocation and axillary and inguinal lymph nodes on the side of immunization were collected.

Figure 4: Immunization scheme of the mouse experiments

A.2 FLUOURESCENCE ACTIVATED CELL SORTING

To prepare single cell suspensions, lymph nodes were mashed through a 70µm cell strainer. Single-
cell suspensions were stained with fluourescently labelled with anti-CD19, anti-IGM, anti-IGD and
fluourescently labelled target antigen (OVA, RBD). Cells were sorted on a FACSAria 3 (BD Bio-
sciences) as activated B cells (CD19+, IGM-, IGD-) that are specific (OVA+/RBD+) or non-specific
(OVA-/RBD-).

A.3 SINGLE-CELL SEQUENCING AND BIOINFORMATIC PREPROCESSING

Single-cell immune repertoire and transcriptome sequencing was performed using the 10x Genomics
Chromium Single-Cell V(D)J Reagents Kit (CG000166 Rev A) as previously described (Neumeier

10

https://www.nature.com/articles/s42256-022-00492-6
https://www.nature.com/articles/s42256-022-00492-6
https://www.nature.com/articles/s41591-020-0998-x
https://www.nature.com/articles/s41591-020-0998-x


Machine Learning for Genomics Explorations workshop at ICLR 2024

et al., 2022). In brief, single cells for all samples were processed using the 10x Genomics proto-
col and kits (User Guide, CG000207). After preparation of the sequencing sample, the GEX and
VDJ library were pooled before sequencing on the Illumina NovaSeq S1 using a concentration of
1.8 pM with 5% PhiX. Paired-end sequencing files for GEX and VDJ libraries were aligned to the
murine reference genome (mm10) and V(D)J germlines (GRCm38) using 10x Genomics cellranger
(v5.0.0) software. Cell ranger output was further preprocessed and filtered using the R package
Platypus (v3.2.1, (Cotet et al., 2023)), which uses the transcriptome analysis workflow of the R
package Seurat (Satija et al., 2015). Only those cells containing less than 20% of mitochondrial
reads were retained in the analysis. In addition, cells with barcodes that were not unique across
samples of the same mouse were filtered. Genes involved in the adaptive immune receptor (e.g.,
IGH, IGK,...), were removed from the count matrix to prevent clonal relationships from influencing
transcriptional phenotypes. Gene expression was normalized for each cell by the total expression,
multiplied by a scale factor of 10,000, and log-transformed. 2000 variable features were selected
using the “vst” selection method and used as input to principal component analysis (PCA, with
10 principle components). Dataset integration was performed by the single-cell integration pack-
age “harmony”, which was run on the sparse matrix of library size normalized expression counts.
The package scales expression data, runs PCA, and the Harmony integration algorithm (Korsunsky
et al., 2019). Graph-based clustering using the Louvain modularity optimization and hierarchical
clustering was performed using the functions FindNeighbors and FindClusters in Seurat using the
ten dimensions of the PCA and harmony output and a cluster resolution of 0.5. UMAP was per-
formed equally. The antibody genes were realigend using MiXCR software v4.2.0 (Bolotin et al.,
2015) for proper annotation according to AIRR guidelines.

A.4 NUMBER OF CELLS SEQUENCED (GEX AND ANTIBODY SEQUENCE)

In total we could successfully align 15,072 antibody heavy and light chain sequences of single cells
in our dataset (Table 1). For the specificity prediction task we filtered for duplicated sequences,
which are commonly observed in immune repertoire datasets because of expanded clones. In addi-
tion, we removed sequences that were seen in the specific, as well as non-specific samples. These
sequences might have incorrect labels due do experimental measurement noise, and or exhibit low
binding affinity.

In Table 2 the numbers of cells in our GEX dataset are summarized. After standard QC filtering
and preprocessing we were able to successfully analyze the transcriptome of almost 18,558 cells
in total. To reduce noise and biological variation in the data, filtering for T-cells and plasma cells
(based on gene expression markers) was performed. In addition, we removed cells with identical
CDR3H and CDR3Ls that were present in the specific and non-specific sample. For the specificity
prediction evaluations based on GEX features, only cells were retained that had both, GEX and
antibody sequence, profiled to ensure comparability across prediction tasks. Eventually 3,622 and
3,593 cells were retained in the OVA and RBD dataset, respectively.

Table 1: Antibody repertoire dataset size as number of antibody sequences

Dataset specific non-specific Total
Before filtering
OVA 823 7403 8226
RBD 1122 5724 6846
After filtering
OVA 550 3072 3622
RBD 642 2951 3593

11



Machine Learning for Genomics Explorations workshop at ICLR 2024

Table 2: GEX dataset size as number of cells’s transcriptome profiled

Dataset specific non-specific Total
Before filtering
OVA 1071 9810 10881
RBD 1281 6296 7677
After filtering
OVA 728 7912 8640
RBD 966 4874 5840
Cells with GEX and antibody sequence
OVA 371 2937 3308
RBD 510 2051 2561
OVA RBD integrated 885 5029 5914

A.5 DIFFERENTIAL GENE EXPRESSION ANALYSIS

To further evaluate our hypothesis that antigen-specific cells can be distinguished by their gene
expression profiles, we conducted differential gene expression analysis (DGEA). Initially, pseudo-
bulking was performed — a method demonstrated to enhance the robustness of detecting differen-
tially expressed (DE) genes (Squair et al., 2021). Hence, gene expression counts were summed per
sample followed by normalization and log-transformation. PCA revealed a segregation of specific
versus non-specific samples along PC2, while PC1 differentiated between OVA and RBD samples
Figure 2A, suggesting diverging signals across antigens or the presence of potential batch effects.
We then applied DESeq2 (Love et al., 2014) to identify genes that were significantly upregulated or
downregulated, identifying 859 genes with p-values less than 0.05. Notably, genes associated with
cell cycle progression and DNA replication were upregulated, whereas those involved in lymphocyte
activation and cytokine production regulation were downregulated (Figure 2B).

Figure 5: A. PCA of gene expression after pseudobulking mRNA transcripts per sample. B. Volcano
plot of DE genes (specific vs. nonspecific) after pseudobulking mRNA transcripts per sample.

A.6 DETAILS ON FEATURE GENERATION

k-mer features: As antibody sequence features, we calculated k-mer frequecies, which were gen-
erated by identifying and counting all possible subsequences of length 3 within each sequence (3-
mers). These counts were normalized by dividing by the total number of k-mers in each sequence,
resulting in a frequency distribution for each k-mer. All unique k-mers from the dataset were aggre-
gated and each sequence was represented as a vector, with elements corresponding to the frequencies
of these k-mers. As the feature dimensions strongly increase with increasing k, 3-mers were cho-
sen for our model evaluation. 3-mers represents a good trade-off between dimensionality of feature
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space and still capturing a more complex sequence representation compared to considering single
amino acid frequencies.

PLM features: PLM representations were generated using the ESM-2 protein language model and
the AntiBERTy language model. ESM-2 (esm2 t33 650M UR50D) is a variant of the ESM model
with 33 layers and 650 million parameters (Rives et al., 2021). This model was trained on the
UR50/D 2021 04 dataset, as detailed in the ESM GitHub documentation: https://github.
com/facebookresearch/esm?tab=readme-ov-file#available. AntiBERTy is an
antibody-specific transformer language model, which was pre-trained on 558 million natural anti-
body sequences (Ruffolo et al., 2021). The documentation of AntiBERTy can be found in the fol-
lowing GitHub repository: https://github.com/jeffreyruffolo/AntiBERTy. The
antibody protein sequences of both the heavy and light chains were tokenized and passed through
the models. Thus, a PLM representation for each antibody sequence was generated by taking the
last hidden layer’s representation for each amino acid. The resulting variable length embedding, a
sequence length-dependent vector of 1280 dimensions (seq len x 1280) for ESM-1b and 512 dimen-
sions for AntiBERTy (seq len x 512) was then mean-pooled to obtain fixed-length embeddings for
each antibody sequence (n seqs x 1 x 1280). Specifically, for the heavy chain (VH) features, we used
only the heavy chain embeddings, while for the VH VL features, we concatenated and mean-pooled
the representations from both the heavy and light chains.

ESM-CDRextract embeddings were generated by initially creating full-length representations and
then selectively extracting tokens corresponding to the CDRs (CDRH1-3 and CDRL1-3). The ex-
tracted representations were mean-pooled to generate fixed-length feature vectors for both VH and
VH VL representations.

All of the features were preprocessed independently by removing the mean and scaling to unit
variance before feeding into the ML models.

A.7 DETAILS ON TRAIN TEST SPLITTING

For the evaluation of our models, we implemented two distinct methods for generating train-test
splits: random and sequence similarity-based splits. Random train test splits were generated us-
ing StratifiedShuffleSplit of the sklearn library. This function returns stratified randomized folds,
maintaining the percentage of samples for both classes. This method ensures that each fold is a
representative subset of the overall dataset.

To avoid data leakage by ensuring that highly similar sequences were not present in training and test-
ing sets, we also evaluated our ML models on sequence similarity based train test splits. Therefore,
we calculated normalized edit distances between each sequence and all the others in the dataset.
Using the resulting distance matrix, hierarchical clustering (single linkage) was performed using the
linkage function of the SciPy package. Clusters were then determined based on the linkage matrix,
with the threshold parameter ’t’ resembling the edit distance cutoff that controls cluster assignment.
This parameter acts as a cutoff, dictating the maximum allowed normalized edit distance for as-
signing sequences to a cluster. Based on the established clusters, we used the StratifiedGroupKFold
function from sklearn to split the data into training and testing sets. The function attempts to return
stratified folds of non-overlapping clusters. The folds are made by preserving the percentage of
samples for each class.

A.8 IMPLEMENTATION OF ML MODELS

LogReg, kSVC, RF and GBoost models were all implemented using the sklearn library. The code
is available on GitHub: https://github.com/LSSI-ETH/sc_AbSpecificity_pred.
git. These models were assessed using nested cross validation for hyperparameter tuning and
model evaluations. Parameter tuning was conducted with options detailed below in the parameter
grids using RandomizedSearchCV also from the sklearn library, maximizing the metric recall. Each
model’s performance was evaluated using metrics like precision, recall, F1 score and AUC ROC.

Parameter grid for LogReg: ’penalty’: [’l2’, None], ’class weight’: [’balanced’, None], ’C’: [10, 1,
0.1, 0.01, 0.001], ’max iter’: [500, 1000, 2000].
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Parameter grid for kSVC: ’C’: [1, 0.1, 0.01, 0.001], ’kernel’: [’poly’, ’rbf’, ’sigmoid’], ’degree’: [2,
3, 4], ’gamma’: [’scale’, ’auto’].

Parameter grid for RF: ’n estimators’: [100, 200, 300], ’max depth’: [None, 5, 10],
’min samples split’: [2, 5, 10], ’min samples leaf’: [1, 2, 4], ’max features’: [’auto’, ’sqrt’, ’log2’].

Parameter grid for GBoost: ’n estimators’: [100, 200, 300], ’learning rate’: [0.05, 0.1, 0.2],
’max depth’: [3, 4, 5], ’min samples split’: [2, 5, 10], ’min samples leaf’: [1, 2, 4], ’max features’:
[’auto’, ’sqrt’, ’log2’, None], ’subsample’: [0.8, 0.9, 1.0].

A.9 SPECIFICITY PREDICTIONS - MAIN TABLES

See Table 3 for a detailed summary of evaluation metrics: F1, precision (prec) and recall, of pre-
dictions with antibody sequence feature (heavy and light chain, VH VL) with sequence similarity
splits (distance threshold 0.05). Equally, Table 4 lists the detailed metrics of the ML models based
on GEX features for specificity predictions (distance threshold 0.05).

Table 3: Specificity prediction results based on antibody sequence features - distance threshold for
similarity based splits: 0.05

Dataset Similarity based split random split
OVA VH VL F1 precision recall roc auc F1 precision recall roc auc
LogReg ESM 0.570 0.515 0.661 0.781 0.682 0.596 0.8 0.851
kSVC ESM 0.197 0.253 0.189 0.552 0.353 0.407 0.313 0.616
RF ESM 0.269 0.896 0.161 0.579 0.749 0.895 0.645 0.816
GBoost ESM 0.45 0.849 0.31 0.65 0.761 0.881 0.671 0.827
LogReg ESM-CDR 0.568 0.525 0.641 0.775 0.708 0.631 0.809 0.862
kSVC ESM-CDR 0.288 0.426 0.253 0.595 0.48 0.558 0.422 0.681
RF ESM-CDR 0.372 0.969 0.235 0.617 0.772 0.902 0.676 0.832
GBoost ESM-CDR 0.501 0.906 0.352 0.673 0.78 0.891 0.695 0.84
LogReg Antiberty 0.511 0.447 0.632 0.756 0.658 0.547 0.827 0.852
kSVC Antiberty 0.302 0.382 0.302 0.611 0.43 0.482 0.391 0.657
RF Antiberty 0.498 0.918 0.353 0.674 0.779 0.885 0.696 0.84
GBoost Antiberty 0.564 0.802 0.445 0.714 0.771 0.859 0.7 0.84
LogReg 3-mer 0.532 0.674 0.458 0.713 0.758 0.738 0.78 0.865
kSVC 3-mer 0.434 0.831 0.302 0.646 0.783 0.86 0.72 0.849
RF 3-mer 0.498 0.888 0.357 0.675 0.795 0.874 0.729 0.855
GBoost 3-mer 0.466 0.867 0.33 0.662 0.768 0.821 0.724 0.848
RBD VH VL
LogReg ESM 0.319 0.322 0.344 0.6 0.573 0.49 0.694 0.768
kSVC ESM 0.162 0.265 0.137 0.517 0.314 0.375 0.272 0.587
RF ESM 0.024 0.6 0.013 0.506 0.626 0.939 0.47 0.732
GBoost ESM 0.104 0.608 0.058 0.524 0.652 0.859 0.527 0.754
LogReg CDRextract 0.326 0.325 0.343 0.601 0.592 0.517 0.695 0.776
LogReg CDRextract 0.326 0.325 0.343 0.601 0.592 0.517 0.695 0.776
kSVC CDRextract 0.158 0.239 0.13 0.522 0.356 0.454 0.295 0.609
RF CDRextract 0.034 0.6 0.018 0.509 0.639 0.935 0.486 0.739
GBoost CDRextract 0.109 0.507 0.062 0.526 0.648 0.873 0.516 0.75
LogReg Antiberty 0.408 0.377 0.463 0.656 0.581 0.49 0.714 0.776
kSVC Antiberty 0.257 0.36 0.238 0.56 0.271 0.395 0.206 0.569
RF Antiberty 0.132 0.915 0.071 0.535 0.651 0.935 0.5 0.746
GBoost Antiberty 0.209 0.714 0.127 0.556 0.66 0.844 0.544 0.761
LogReg 3-mer 0.311 0.365 0.315 0.591 0.561 0.494 0.648 0.752
3-mer 0.28 0.748 0.175 0.582 0.648 0.909 0.505 0.747

RF 3-mer 0.185 0.935 0.106 0.552 0.69 0.93 0.55 0.77
GBoost 3-mer 0.246 0.565 0.166 0.569 0.677 0.84 0.569 0.772
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Table 4: Specificity prediction results based on gene expression - distance threshold for similarity
based splits 0.05

Dataset Similarity based split random split
OVA F1 prec recall roc auc F1 prec recall roc auc
LogReg GEX 2000 var 0.762 0.657 0.92 0.931 0.775 0.661 0.938 0.938
kSVC GEX 2000 var 0.849 0.963 0.761 0.879 0.862 0.967 0.778 0.887
RF GEX 2000 var 0.267 1 0.157 0.579 0.25 1 0.143 0.572
GBoost GEX 2000 var 0.815 0.982 0.696 0.847 0.808 0.97 0.695 0.846
LogReg 3-mer 0.519 0.428 0.681 0.785 0.661 0.58 0.778 0.852
kSVC 3-mer 0.574 0.846 0.453 0.722 0.733 0.862 0.638 0.812
RF 3-mer 0.54 0.914 0.421 0.708 0.794 0.897 0.714 0.852
GBoost 3-mer 0.504 0.768 0.426 0.704 0.778 0.862 0.708 0.847
LogReg GEX 3-mer 0.64 0.497 0.913 0.9 0.714 0.577 0.935 0.924
kSVC GEX 3-mer 0.753 0.936 0.642 0.818 0.835 0.916 0.768 0.879
RF GEX 3-mer 0.4 0.98 0.279 0.639 0.711 0.962 0.565 0.781
GBoost GEX 3-mer 0.767 0.988 0.639 0.819 0.854 0.986 0.754 0.876
RBD
LogReg GEX 2000 var 0.866 0.786 0.97 0.957 0.88 0.807 0.969 0.955
kSVC GEX 2000 var 0.934 0.974 0.898 0.947 0.946 0.99 0.906 0.952
RF GEX 2000 var 0.774 1 0.633 0.816 0.832 1 0.712 0.856
GBoost GEX 2000 var 0.939 0.988 0.895 0.946 0.958 1 0.92 0.96
LogReg 3-mer 0.438 0.398 0.498 0.663 0.65 0.592 0.722 0.799
kSVC 3-mer 0.4 0.783 0.275 0.631 0.745 0.927 0.625 0.806
RF 3-mer 0.217 0.772 0.132 0.564 0.767 0.931 0.655 0.821
GBoost 3-mer 0.343 0.743 0.236 0.612 0.751 0.868 0.665 0.82
LogReg GEX 3-mer 0.781 0.679 0.926 0.914 0.85 0.769 0.951 0.94
kSVC GEX 3-mer 0.712 0.966 0.578 0.787 0.85 0.983 0.751 0.874
RF GEX 3-mer 0.601 1 0.433 0.716 0.849 0.992 0.743 0.871
GBoost GEX 3-mer 0.9 0.96 0.849 0.921 0.941 0.989 0.898 0.948
OVA RBD integrated
LogReg GEX 2000 var 0.255 0.198 0.364 0.554 0.241 0.189 0.333 0.541
kSVC GEX 2000 var 0.017 0.281 0.009 0.502 0.009 0.114 0.005 0.499
RF GEX 2000 var 0 0 0 0.5 0 0 0 0.5
GBoost GEX 2000 var 0.062 0.255 0.036 0.507 0.072 0.279 0.042 0.511
LogReg 3-mer 0.413 0.345 0.515 0.673 0.596 0.506 0.725 0.8
kSVC 3-mer 0.417 0.797 0.288 0.638 0.701 0.882 0.583 0.785
RF 3-mer 0.281 0.876 0.177 0.587 0.771 0.926 0.661 0.826
GBoost 3-mer 0.33 0.722 0.228 0.607 0.747 0.861 0.66 0.82
LogReg GEX 3-mer 0.466 0.382 0.599 0.716 0.599 0.494 0.759 0.811
kSVC GEX 3-mer 0.378 0.783 0.254 0.621 0.691 0.874 0.573 0.779
RF GEX 3-mer 0.185 0.867 0.111 0.555 0.659 0.937 0.508 0.751
GBoost GEX 3-mer 0.318 0.639 0.221 0.601 0.691 0.844 0.585 0.783

A.10 STATISTICAL TESTING FOR MODEL COMPARISON

In order to assess the statistical significance of differences in performance between the ML models,
we conducted pairwise comparisons using Welch’s t-test. The F1 scores were averaged across dif-
ferent train-test splits, features, and model types, with both the mean values and standard deviations
presented in Figure 6 and Figure 7 for the model results of antibody sequence features and GEX
features, respectively. To correct for multiple comparisons, we applied the Bonferroni adjustment
method to the p-values obtained from these tests. In Figure 6 and 7, significance levels are indicated
by brackets. ”*”: p <0.05, ”**”: p <0.01, ”***”: p <0.001; the absence indicates non-significant
difference.
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Figure 6: Barplots of averaged antibody sequence model performance for data splitting strategies,
features and model types. Significance of pairwise comparisons are indicated with brackets and
significance levels are depicted as asterisk ”*”: p <0.05, ”**”: p <0.01, ”***”: p <0.001; If no
bracket is drawn, comparisons are not significant.

A.11 SPECIFICITY PREDICTIONS - EVALUATION OF DISTANCE THRESHOLD IN SIMILARITY
BASED TRAIN TEST SPLITTING

To evaluate the impact of the distance threshold utilized to control similarity based train test splits,
models were also evaluated using a threshold of 0.1, increasing stringency of sequence similarity
splits. Results for predictions based on sequence feature are summarized in Table A.11. See Table 6
for specificity predictions of VH features and refer to Table 8 for GEX feature specificity predictions
with train test splits based on distance threshold 0.1.
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Figure 7: Barplots of aggregated GEX model performance for data splitting strategies, features
and model types.Significance of pairwise comparisons are indicated with brackets and significance
levels are depicted as asterisk ”*”: p <0.05, ”**”: p <0.01, ”***”: p <0.001; If no bracket is drawn,
comparisons are not significant.

A.12 ANALYSIS OF COEFFICIENTS OF LOGREG GEX MODELS

To further investigate the observed divergence in GEX ML model performance between the separate
OVA and RBD datasets versus the integrated dataset, we analyzed the coefficients values learned
by the LogReg models. Specifically, we compared the coefficients for genes when the LogReg
models were trained on the OVA and RBD datasets individually. We focused on the top 50 genes
that exhibited the highest and lowest coefficients in either of the datasets and illustrated the overlap
in Figure 8. Notably, there was an overlap of only 3 and 6 genes between those with the smallest
and largest coefficients for the OVA and RBD datasets, suggesting divergent patterns learned by the
LogReg models across these datasets. Additionally, when comparing the overlap of the integrated
dataset with the separate datasets, again only 3-5 genes were common among those with the top
and lowest coefficients. Furthermore, the correlation between the coefficients of the genes from the
OVA and RBD datasets was minor, with a pearson correlation coefficient of 0.277 (Figure 9). While
these findings support our hypothesis regarding the presence of batch effects or distinct antigen-
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Table 5: Specificity prediction results based on antibody sequence features - VH VL - distance split
threshold: 0.1

Dataset Similarity based split random split
OVA VH VL F1 prec rec roc auc F1 prec rec ROC AUC
LogReg ESM 0.346 0.356 0.39 0.635 0.682 0.596 0.8 0.851
kSVC ESM 0.198 0.282 0.191 0.552 0.353 0.407 0.313 0.616
RF ESM 0 0 0 0.5 0.749 0.895 0.645 0.816
GBoost ESM 0.052 0.45 0.029 0.513 0.761 0.881 0.671 0.827
LogReg ESM-CDRextract 0.362 0.35 0.397 0.637 0.708 0.631 0.809 0.862
kSVC ESM-CDRextract 0.182 0.229 0.185 0.558 0.48 0.558 0.422 0.681
RF ESM-CDRextract 0.014 0.2 0.007 0.504 0.772 0.902 0.676 0.832
GBoost ESM-CDRextract 0.085 0.32 0.049 0.522 0.78 0.891 0.695 0.84
LogReg Antiberty 0.422 0.366 0.555 0.697 0.658 0.547 0.827 0.852
kSVC Antiberty 0.225 0.256 0.254 0.574 0.43 0.482 0.391 0.657
RF Antiberty 0.102 0.334 0.06 0.529 0.779 0.885 0.696 0.84
GBoost Antiberty 0.135 0.449 0.099 0.546 0.771 0.859 0.7 0.84
LogReg 3-mer 0.218 0.34 0.18 0.552 0.758 0.738 0.78 0.865
kSVC 3-mer 0.106 0.477 0.072 0.532 0.783 0.86 0.72 0.849
RF 3-mer 0.014 0.2 0.007 0.504 0.795 0.874 0.729 0.855
GBoost 3-mer 0.082 0.271 0.05 0.514 0.768 0.821 0.724 0.848
RBD VH VL F1 precision recall ROC AUC F1 precision recall ROC AUC
LogReg ESM 0.228 0.227 0.236 0.538 0.573 0.49 0.694 0.768
kSVC ESM 0.067 0.077 0.08 0.472 0.314 0.375 0.272 0.587
RF ESM 0 0 0 0.5 0.626 0.939 0.47 0.732
GBoost ESM 0.026 0.24 0.014 0.504 0.652 0.859 0.527 0.754
LogReg ESM-CDRextract 0.263 0.289 0.26 0.562 0.592 0.517 0.695 0.776
kSVC ESM-CDRextract 0.091 0.143 0.082 0.504 0.356 0.454 0.295 0.609
RF ESM-CDRextract 0 0 0 0.5 0.639 0.935 0.486 0.739
GBoost ESM-CDRextract 0.018 0.31 0.009 0.502 0.648 0.873 0.516 0.75
LogReg Antiberty 0.317 0.274 0.383 0.596 0.581 0.49 0.714 0.776
kSVC Antiberty 0.237 0.279 0.263 0.56 0.271 0.395 0.206 0.569
RF Antiberty 0.031 0.6 0.016 0.508 0.651 0.935 0.5 0.746
GBoost Antiberty 0.147 0.56 0.097 0.525 0.66 0.844 0.544 0.761
LogReg 3-mer 0.321 0.298 0.353 0.594 0.561 0.494 0.648 0.752
kSVC 3-mer 0.13 0.533 0.077 0.533 0.648 0.909 0.505 0.747
RF 3-mer 0.008 0.229 0.004 0.501 0.69 0.93 0.55 0.77
GBoost 3-mer 0.146 0.375 0.092 0.534 0.677 0.84 0.569 0.772

specific gene signatures Nevertheless, further detailed evaluations are necessary to fully validate
these observations.

A.13 CLASSIFICATION BASED ON DIFFERENTIALLY EXPRESSED GENES

To ascertain the utility and necessity of ML methods in predicting antigen specificity from GEX
data, we designed a control experiment utilizing the top 10 DE genes, both upregulated and down-
regulated. First, the integrated OVA RBD dataset was divided into a 70% training and 30% test
split. DESeq2 was utilized on pseudo-bulk gene expression data (Love et al., 2014; Squair et al.,
2021) to identify DE genes in the 70% training dataset. Subsequently, gene module scores were
computed for each cell, defined as the mean expression level of the identified genes, adjusted by the
average expression of randomly selected control gene sets. We calculated the mean of the module
scores of the antigen-specific cell fraction in the training dataset, which was used to classify cells
in the test dataset. Cells were deemed specific, if the gene module score for the upregulated genes
was at or above and the score for the downregulated genes was at or below the respective mean
scores determined from the training set. The outcomes of this experiment are detailed in Table 9.
Summarized results reveal that this classification approach outperformed models using the top 2000
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Table 6: Specificity prediction evaluation results based on antibody sequence features from VH only
- distance split threshold: 0.05

Dataset Similarity based split random split
OVA VH F1 prec recall roc auc F1 prec recall roc auc
LogReg ESM 0.561 0.498 0.701 0.779 0.667 0.56 0.824 0.855
kSVC ESM 0.333 0.529 0.255 0.608 0.481 0.664 0.377 0.672
RF ESM 0.275 0.852 0.175 0.584 0.69 0.884 0.569 0.778
GBoost ESM 0.419 0.714 0.307 0.644 0.732 0.866 0.637 0.809
LogReg CDRextract 0.54 0.497 0.646 0.76 0.686 0.583 0.835 0.864
kSVC CDRextract 0.38 0.565 0.307 0.631 0.565 0.684 0.482 0.721
RF CDRextract 0.344 0.862 0.238 0.615 0.734 0.914 0.616 0.803
GBoost CDRextract 0.454 0.762 0.351 0.665 0.757 0.87 0.673 0.828
LogReg Antiberty 0.472 0.373 0.681 0.739 0.616 0.491 0.83 0.838
kSVC Antiberty 0.377 0.499 0.319 0.628 0.498 0.649 0.405 0.683
RF Antiberty 0.434 0.745 0.332 0.656 0.709 0.834 0.619 0.799
GBoost Antiberty 0.46 0.688 0.365 0.668 0.713 0.811 0.637 0.805
LogReg 3-mer 0.619 0.651 0.642 0.787 0.731 0.679 0.793 0.863
kSVC 3-mer 0.493 0.783 0.375 0.678 0.757 0.844 0.69 0.834
RF 3-mer 0.487 0.775 0.38 0.68 0.781 0.844 0.73 0.853
GBoost 3-mer 0.538 0.79 0.423 0.701 0.769 0.836 0.715 0.845
RBD VH
LogReg ESM 0.388 0.372 0.432 0.637 0.572 0.495 0.678 0.764
kSVC ESM 0.162 0.247 0.136 0.53 0.341 0.443 0.278 0.601
RF ESM 0.071 0.782 0.038 0.516 0.611 0.922 0.458 0.725
GBoost ESM 0.158 0.634 0.1 0.541 0.625 0.836 0.5 0.739
LogReg CDRextract 0.388 0.371 0.431 0.636 0.575 0.491 0.694 0.769
kSVC CDRextract 0.181 0.338 0.168 0.534 0.394 0.541 0.309 0.626
RF CDRextract 0.07 0.967 0.037 0.518 0.633 0.941 0.478 0.736
GBoost CDRextract 0.198 0.719 0.121 0.557 0.654 0.876 0.523 0.753
LogReg Antiberty 0.385 0.361 0.435 0.64 0.574 0.484 0.708 0.772
kSVC Antiberty 0.224 0.437 0.22 0.569 0.428 0.615 0.33 0.642
RF Antiberty 0.272 0.73 0.198 0.586 0.64 0.917 0.492 0.741
GBoost Antiberty 0.26 0.379 0.216 0.577 0.625 0.815 0.508 0.741
LogReg 3-mer 0.302 0.265 0.395 0.583 0.532 0.459 0.631 0.735
kSVC 3-mer 0.243 0.636 0.192 0.578 0.633 0.903 0.488 0.738
RF 3-mer 0.215 0.788 0.169 0.572 0.673 0.897 0.539 0.763
GBoost 3-mer 0.218 0.414 0.182 0.56 0.671 0.831 0.562 0.769

variable genes via LogReg or kSVC with F1 score of 0.3968. However, this method still fell short of
the performance achieved by LogReg models integrating GEX and antibody sequence information
(3-mer sequences).
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Table 7: Specificity prediction evaluation results based on antibody sequence features from VH only
- distance split threshold: 0.1

Dataset Similarity based split random split
OVA VH F1 prec recall roc auc F1 prec recall roc auc
LogReg ESM 0.316 0.335 0.382 0.619 0.667 0.56 0.824 0.855
kSVC ESM 0.234 0.618 0.174 0.579 0.481 0.664 0.377 0.672
RF ESM 0.133 0.2 0.1 0.55 0.69 0.884 0.569 0.778
GBoost ESM 0.16 0.425 0.102 0.547 0.732 0.866 0.637 0.809
LogReg ESM-CDRextract 0.31 0.394 0.342 0.621 0.686 0.583 0.835 0.864
kSVC ESM-CDRextract 0.316 0.468 0.3 0.63 0.565 0.684 0.482 0.721
RF ESM-CDRextract 0.005 0.2 0.002 0.5 0.734 0.914 0.616 0.803
GBoost ESM-CDRextract 0.137 0.414 0.085 0.538 0.757 0.87 0.673 0.828
LogReg Antiberty 0.37 0.378 0.38 0.633 0.616 0.491 0.83 0.838
kSVC Antiberty 0.251 0.393 0.197 0.576 0.498 0.649 0.405 0.683
RF Antiberty 0.157 0.533 0.112 0.556 0.709 0.834 0.619 0.799
GBoost Antiberty 0.195 0.327 0.153 0.557 0.713 0.811 0.637 0.805
LogReg 3-mer 0.357 0.49 0.358 0.646 0.731 0.679 0.793 0.863
kSVC 3-mer 0.291 0.524 0.268 0.616 0.757 0.844 0.69 0.834
RF 3-mer 0.08 0.2 0.05 0.525 0.781 0.844 0.73 0.853
GBoost 3-mer 0.153 0.387 0.096 0.539 0.769 0.836 0.715 0.845
RBD VH
LogReg ESM 0.176 0.181 0.217 0.533 0.572 0.495 0.678 0.764
kSVC ESM 0.177 0.229 0.159 0.547 0.341 0.443 0.278 0.601
RF ESM 0 0 0 0.496 0.611 0.922 0.458 0.725
GBoost ESM 0.055 0.097 0.04 0.488 0.625 0.836 0.5 0.739
LogReg ESM-CDRextract 0.192 0.194 0.219 0.519 0.575 0.491 0.694 0.769
kSVC ESM-CDRextract 0.166 0.226 0.242 0.562 0.394 0.541 0.309 0.626
RF ESM-CDRextract 0 0 0 0.497 0.633 0.941 0.478 0.736
GBoost ESM-CDRextract 0.022 0.083 0.013 0.498 0.654 0.876 0.523 0.753
LogReg Antiberty 0.177 0.277 0.187 0.551 0.574 0.484 0.708 0.772
kSVC Antiberty 0.136 0.138 0.188 0.532 0.428 0.615 0.33 0.642
RF Antiberty 0 0 0 0.498 0.64 0.917 0.492 0.741
GBoost Antiberty 0.087 0.126 0.069 0.51 0.625 0.815 0.508 0.741
LogReg 3-mer 0.198 0.165 0.272 0.475 0.532 0.459 0.631 0.735
kSVC 3-mer 0.024 0.308 0.012 0.5 0.633 0.903 0.488 0.738
RF 3-mer 0 0 0 0.499 0.673 0.897 0.539 0.763
GBoost 3-mer 0.038 0.13 0.026 0.482 0.671 0.831 0.562 0.769
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Table 8: Specificity prediction results based on gene expression - sequence distance split 0.1 based
on antibody sequences

Dataset Similarity based split random split
OVA F1 prec recall roc auc F1 prec recall roc auc
LogReg GEX 2000 var 0.707 0.595 0.902 0.918 0.775 0.661 0.938 0.938
kSVC GEX 2000 var 0.815 0.951 0.717 0.857 0.862 0.967 0.778 0.887
RF GEX 2000 var 0.273 1 0.165 0.582 0.25 1 0.143 0.572
GBoost GEX 2000 var 0.795 0.966 0.678 0.838 0.808 0.97 0.695 0.846
LogReg 3-mer 0.323 0.299 0.372 0.635 0.661 0.58 0.778 0.852
kSVC 3-mer 0.21 0.559 0.132 0.561 0.733 0.862 0.638 0.812
RF 3-mer 0.007 0.2 0.003 0.502 0.794 0.897 0.714 0.852
GBoost 3-mer 0.084 0.771 0.047 0.523 0.778 0.862 0.708 0.847
LogReg GEX 2000 var 3-mer 0.577 0.439 0.868 0.871 0.714 0.577 0.935 0.924
kSVC GEX 2000 var 3-mer 0.441 0.853 0.313 0.654 0.835 0.916 0.768 0.879
RF GEX 2000 var 3-mer 0.046 0.6 0.024 0.512 0.711 0.962 0.565 0.781
GBoost GEX 2000 var 3-mer 0.512 0.986 0.348 0.674 0.854 0.986 0.754 0.876
RBD
LogReg GEX 2000 var 0.85 0.764 0.966 0.952 0.88 0.807 0.969 0.955
kSVC GEX 2000 var 0.935 0.978 0.897 0.947 0.946 0.99 0.906 0.952
RF GEX 2000 var 0.807 1 0.68 0.84 0.832 1 0.712 0.856
GBoost GEX 2000 var 0.947 0.992 0.907 0.953 0.958 1 0.92 0.96
LogReg 3-mer 0.389 0.36 0.451 0.631 0.65 0.592 0.722 0.799
kSVC 3-mer 0.426 0.831 0.297 0.642 0.745 0.927 0.625 0.806
RF 3-mer 0.099 0.383 0.059 0.527 0.767 0.931 0.655 0.821
GBoost 3-mer 0.211 0.37 0.151 0.555 0.751 0.868 0.665 0.82
LogReg GEX 2000 var 3-mer 0.723 0.611 0.92 0.89 0.85 0.769 0.951 0.94
kSVC GEX 2000 var 3-mer 0.707 0.973 0.566 0.781 0.85 0.983 0.751 0.874
RF GEX 2000 var 3-mer 0.612 1 0.447 0.724 0.849 0.992 0.743 0.871
GBoost GEX 2000 var 3-mer 0.917 0.98 0.862 0.929 0.941 0.989 0.898 0.948
OVA RBD integrated
LogReg GEX 2000 var 0.218 0.18 0.302 0.527 0.241 0.189 0.333 0.541
kSVC GEX 2000 var 0.009 0.213 0.005 0.5 0.009 0.114 0.005 0.499
RF GEX 2000 var 0 0 0 0.5 0 0 0 0.5
GBoost GEX 2000 var 0.037 0.203 0.021 0.501 0.072 0.279 0.042 0.511
LogReg 3-mer 0.378 0.335 0.449 0.641 0.596 0.506 0.725 0.8
kSVC 3-mer 0.324 0.704 0.216 0.602 0.701 0.882 0.583 0.785
RF 3-mer 0.02 0.56 0.01 0.505 0.771 0.926 0.661 0.826
GBoost 3-mer 0.151 0.566 0.091 0.537 0.747 0.861 0.66 0.82
LogReg GEX 2000 var 3-mer 0.437 0.367 0.55 0.689 0.599 0.494 0.759 0.811
kSVC GEX 2000 var 3-mer 0.241 0.698 0.148 0.569 0.691 0.874 0.573 0.779
RF GEX 2000 var 3-mer 0.018 0.467 0.009 0.504 0.659 0.937 0.508 0.751
GBoost GEX 2000 var 3-mer 0.155 0.513 0.093 0.538 0.691 0.844 0.585 0.783

Table 9: Specificity prediction results based on gene expression - sequence distance split 0.05 based
on antibody sequence sequences

DE genes F1 prec recall
Top10 down 0.3084 0.2049 0.6229
Top10 up 0.3825 0.3227 0.4695
Top10 down & Top10 up 0.3968 0.3805 0.4144
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Figure 8: Overlap of genes within the top 50 highest and lowest coefficients from LogReg models
trained on the OVA and RBD dataset.

Figure 9: Correlation plot of the values of the coefficients from LogReg models trained on OVA and
the RBD GEX features.
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