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ABSTRACT

Decoding attempted speech from neural activity offers a promising avenue for
restoring communication abilities in individuals with speech impairments. Previous
studies have focused on mapping neural activity to text using phonemes as the
intermediate target. While successful, decoding neural activity directly to phonemes
ignores the context dependent nature of the neural activity-to-phoneme mapping in
the brain, leading to suboptimal decoding performance. In this work, we propose
the use of diphone - an acoustic representation that captures the transitions between
two phonemes - as the context-aware modeling target. We integrate diphones
into existing phoneme decoding frameworks through a novel divide-and-conquer
strategy in which we model the phoneme distribution by marginalizing over the
diphone distribution. Our approach effectively leverages the enhanced context-
aware representation of diphones while preserving the manageable class size of
phonemes, a key factor in simplifying the subsequent phoneme-to-text conversion
task. We demonstrate the effectiveness of our approach on the Brain-to-Text 2024
benchmark, where it achieves state-of-the-art Phoneme Error Rate (PER) of 15.34%
compared to 16.62% PER of monophone-based decoding. When coupled with
finetuned Large Language Models (LLMs), our method yields a Word Error Rate
(WER) of 5.77%, significantly outperforming the 8.93% WER of the leading
method in the benchmark.

1 INTRODUCTION

Verbal communication is a unique feature of human social interaction. Loss of ability to articulate
speech as a result of neurological pathologies such as stroke and Amyotrophic Lateral Sclerosis
(ALS) can significantly reduce the quality of life for affected individuals. Recent advancements
in Brain-Computer Interfaces (BCI) offer promising pathways toward restoring communication
ability in these patients by translating neural activity into communicative messages. These messages
can be conveyed through various modalities, including typed characters (Pandarinath et al., 2017),
handwriting (Willett et al., 2021), text (Herff et al., 2015; Willett et al., 2023a; Metzger et al., 2023),
and synthesized speech (Metzger et al., 2023).

Among existing speech BCI systems, the methods with highest decoding accuracy and throughput are
those that translate neural signals associated with orofacial movements during attempted speech into
fundamental acoustic units (phonemes), which are then decoded into words and sentences (Willett
et al., 2023a; Metzger et al., 2023). This two-staged approach typically involves (1) neural signal
to phonemes: using a temporal deep network to decode a binned multi-channel neural time series
into probability of phonemes being spoken at each time step, and (2) phonemes to text: employing a
language model (LM) to infer the most probable sequence of words given the phoneme probabilities.

Prior work shows that decoding phonemes as an intermediate representation rather than directly
decoding words, provides the system the flexibility to decode phrases from extensive vocabularies a
limited set of training examples (Metzger et al., 2023), since from a fixed set of 40 phonemes, one
can practically construct any word of any arbitrary length. This scalability is especially advantageous
given the limited availability of neural recordings in clinical settings.
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Figure 1: Overview of the Brain-to-Text decoding pipeline. The Neural Decoder with Divide-and-
Conquer Strategy (DCoND) decodes multi-channel neural activity into phonemes. The phonemes are
subsequently converted into words by LLMs using either ICL or fine-tuning techniques.

While decoding single phonemes from neural activity may offer more scalability than decoding
words, it remains a challenging task. Given the innate variability of neural signals, the mapping from
neural activity to phonemes is many-to-one and highly nonlinear. Furthermore, evidence suggests that
cortical activation patterns producing a particular phoneme is not static, but can vary depending on the
context of surrounding phonemes, a phenomenon known as coarticulation (Bouchard & Chang, 2014;
Mugler et al., 2014). In other words, cortical neurons at any given time during speech production
are likely encoding a phoneme along with its context, rather than a phoneme in isolation. Given this
observation, diphone (Nedel et al., 2000) - a sequence of two adjacent phonemes - is a more suitable
representation for capturing this context dependency in neural signals and potentially reducing the
nonlinearity in phoneme decoding. Hence we propose to decompose the phoneme classification task
into subtasks of diphone classification, after which diphone probabilities are summed up to obtain
the phoneme prediction, i.e. predicting phoneme distribution by marginalizing over the diphone
distribution. We show that this divide-and-conquer strategy significantly enhances phoneme decoding
performance.

Recently introduced approaches leverage language models, such as n-gram model, to translate
phoneme probabilities into words (Willett et al., 2023a; Metzger et al., 2023; Benster et al., 2024).
Notably, (Benster et al., 2024) further uses GPT3.5 (Brown et al., 2020) after a 5-gram model
to refine the resulting word sequences into coherent sentences by ensembling multiple 5-gram
transcription candidates. However, the transcription candidates generated by the n-gram model can
significantly deviate from the ground truth phoneme sequence. To address this issue, we propose to
augment the ensembling method in (Benster et al., 2024) to include decoded phonemes alongside
transcription candidates, which proves to provide extra information for GPT3.5 to infer the correct
transcription. Additionally, we propose an In-Context Learning (ICL) paradigm for LLMs, enabling
them to adapt quickly to newly decoded inputs in a gradient-free manner without the need for the
computationally expensive finetuning process. This approach offers a more efficient alternative for
improving transcription accuracy in resource-constrained settings.

In summary, our contributions in this work are as follows:

• We propose DCoND (Divide-and-Conquer Neural Decoder), a novel framework for decoding
phonemes from neural activity during attempted speech. Backed by neuroscientific insights,
DCoND infers the temporal phoneme distribution by marginalizing over the diphone distribution,
leveraging the context-dependent nature of phonemes in neural representation.

• We propose incorporating decoded phonemes alongside decoded words in an LLM-based ensem-
bling strategy to enhance the speech decoding performance. We also propose the use of (ICL)
paradigm (DCoND-LI) as an alternative to FineTuning LLMs (DCoND-LIFT), offering a more
efficient solution for resource-constrained brain-to-text systems.

• We demonstrate the effectiveness of our approaches on the Brain-to-Text 2024 benchmark, where
our approach achieves state-of-the-art (SOTA) PER of 15.34% and WER of 5.77%, a significant
improvement compared to 8.93% WER of the leading SOTA method.
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2 RELATED WORK

Brain-to-Text Decoding with Speech Waveforms The problem of decoding speech from neural
activity is relatively more manageable when the temporal correspondence between the neural signal
and the speech is known. Such a situation occurs during speech perception tasks (Poeppel et al.,
2008; Défossez et al., 2023; Fodor et al., 2024; Yang et al., 2024). In this case, the mapping from
neural activity to perceived speech could be learned through supervised learning (Fodor et al., 2024;
Yang et al., 2024) or contrastive learning (Défossez et al., 2023). Temporal correspondence between
neural activity and speech also exists in speech production experiments performed by individuals who
still retain the ability to speech normally, during which concurrent speech waveforms are recorded.
Studies for such scenarios include (Jou et al., 2006; Schultz & Wand, 2010; Kapur et al., 2018;
Meltzner et al., 2018; Diener et al., 2018; Janke & Diener, 2017; Chen et al., 2024). When the
produced speech is not fully observed, Gaddy and Klein propose to use dynamic time warping and
canonical correlation analysis to align the neural signals with recorded audio signal(Gaddy & Klein,
2020; 2021). In contrary to these works, our study focuses on speech decoding when audio recordings
of speech are not available.

Brain-to-Text Decoding without Speech Waveforms In cases of individuals who cannot produce
intelligible speech, the speech decoding problem could be entirely avoided by using typing-based
systems, albeit with low throughput (Vansteensel et al., 2016; Pandarinath et al., 2017; Linse et al.,
2018). Early works on speech decoding were demonstrated with a small vocabulary size (Moses
et al., 2021; Kellis et al., 2010), which could be improved by learning to decode letters(Metzger et al.,
2022). Other studies investigate phonemes as the decoding target (Pei et al., 2011; Mugler et al.,
2014; Herff et al., 2015; Willett et al., 2023a; Metzger et al., 2023). However, decoding phonemes
directly can be a difficult task since neural representations for phonemes could change depending on
the contexts they are spoken(Mugler et al., 2014). We leverage this observation to devise our strategy
using diphones as decoding target.

Brain-to-Text Decoding vs. Speech-to-Text Decoding While there are similarities between
brain-to-text and speech-to-text decoding, decoding text from neural signals is a significantly more
challenging task. One key difference is that speech signals are univariate, while neural activity is
multivariate as it is recorded by multi-channel electrodes. Furthermore, neural signal is far more
intricate. Less is known about how neurons encode speech within their spiking activity, as well as the
degree to which speech-relevant components can be extracted from the complex interaction of neural
population. However, brain-to-text decoding methods have drawn inspiration from speech-to-text
decoding research, commonly referred to as Automatic Speech Recognition (ASR). Earlier studies
(Miao et al., 2015; Aggarwal & Dave, 2011; Huang et al., 2014) use Hidden Markov Models and
Gaussian Mixture Models to decode recorded speech signals into phonemes before translating into
words. (Darjaa et al., 2011; LAleye et al., 2016) suggest that using diphone or triphone could
enhance the accuracy of ASR systems. Modern ASR systems have transitioned to end-to-end learning
approaches, directly decoding speech signals into words (Prabhavalkar et al., 2023; Graves, 2012;
Gulati et al., 2020; Hsu et al., 2021; Schneider et al., 2019). However, end-to-end learning requires a
large number of word targets which are generally not available in neuroscience domain. We therefore
adopt the two-stage system for brain-to-text decoding, where phonemes serve as the intermediate
decoding targets.

In-Context Learning LLMs pretrained on large corpora of texts exhibit the ability to learn new
tasks in-context (Brown et al., 2020). That is, conditioning on a few demonstrations of input-target
pairs, LLMs can generalize to unseen cases without updating their weights. This ICL ability has
proven useful across a wide range of tasks (Wei et al., 2022; Touvron et al., 2023). While ICL
typically underperforms a specialized LLM finetuned for a specific downstream task, it still surpasses
zero-shot inference, and is particularly valuable when finetuning is not feasible due to resource
constraints such as time or computational power, or the inacessibility of proprietary LLMs (Mosbach
et al., 2023).
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Figure 2: A: Illustration of the brain-to-phoneme decoding pipeline (DCoND). An RNN in DCoND
takes multi-channel neural signals as inputs and generates diphone probabilities, which are then
marginalized into single phoneme probabilities. B: Illustration of the ensembling method for refining
transcription predictions (LI/LIFT). Given an ensemble of phoneme and transcription candidates as a
query, GPT3.5 produces the most sensible transcription composed from these inputs. To do this, the
LLM leverages examples of prediction-correction pairs provided either in-context at inference time
(LI) or as training data during the finetuning process (LIFT).

3 METHODS

Problem formulation The problem of decoding phonemes from neural activity can be formulated
as follows. Let f : X → Z be the mapping from neural activity X ∈ RT×D to phoneme sequence
Z ∈ ZT ′

, where D is the number of neural features, T is the number of neural time bins, and T ′

is the number of ground truth phonemes in a sentence. We note that T > T ′ in general, i.e. the
articulation of one phoneme may span multiple timesteps. We also emphasize that there is no ground
truth temporal alignment between X and Z due to the nature of the silent speech task. Both T and
T ′ vary across trials depending on the length of the sentence in that trial. We aim to learn a model
fθ : X → Z to approximate f with a set of parameters θ. We use an RNN model (GRU) for fθ
together with Connectionist Temporal Classification (CTC) loss as the optimization objective.
GRU has demonstrated superior performance on this dataset, as reported in previous works (Willett
et al., 2023a; Benchetrit et al., 2023). A comparative study of alternative architectures, such as LSTM
and transformer, is avaliable in the Appendix. Decoded phonemes Z can be subsequently translated
to sentences Y with the help of a language model hϕ : Z → Y , where hϕ can be a pre-built statistical
language model, e.g. 5-gram, or an LLM, e.g. GPT3 (Brown et al., 2020). The overall pipeline is
depicted in Figure 1.

A Divide-and-Conquer strategy for phoneme decoding Decoding phonemes from neural activity
is a nontrivial task given the highly nonlinear nature of f and the variability of the neural population
dynamics. Evidence exists that the neural representations for phonemes vary depending on the
surrounding contexts (Bouchard & Chang, 2014; Mugler et al., 2014). We illustrate this observation
in Figure 3 where segments of phoneme-aligned neural activity form clusters in the neural space
based on the context they are in. It can be seen that there is no single cluster representing each
phoneme, but rather each phoneme is represented by multiple subclusters. We further show that the
subclusters are identifiable by the phoneme preceding the phoneme of interest. For instance, the
phoneme AH is represented by subclusters DH → AH and SIL → AH (see further discussion in
Section 4.4). Learning to model these context-aware sub-units of speech instead of single phonemes
directly could facilitate the phoneme decoding task. Concretely,

f(x) := p(Z|X) =
∑
S

p(Z, S|X) =
∑
s∈S

gZs (x) (1)

where S is a random variable denoting the context surrounding the phoneme Z. For simplicity of
notation, here we consider the prediction of Z at single time step, i.e. T ′ = 1. Z takes discrete
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values from phoneme classes, i.e. Z ∈ [1, C]. The problem of learning single phoneme classes (f )
now reduces to the problem of learning the phoneme context-dependent subclasses (gZs ), which is
more manageable and in-line with the context-dependent nature of the data. We refer to our phoneme
decoder with this divide-and-conquer strategy as DCoND.

Diphone as a context-dependent representation of phonemes The context-dependent subclasses
could be defined in multiple ways. In this work, we adopt diphone, a context-dependent representation
for phoneme sequences where transitions between phonemes are the subject of interest. For example,
the single phoneme representation of “hope”, H, OW, P , will have a diphone representation:

SIL → H, H → H, H → OW, OW → OW, OW → P, P → P, P → SIL.

where ’SIL’ indicates the silence between the words. Diphone expands the length of phoneme
sequence to T ′′ = 2T ′ and increases the number of decoding classes to C2, where C = 40 for the
English language1.

Formally, we reformulate the problem of decoding phoneme from neural activity as the marginaliza-
tion over the distribution of diphones, conditioning on the observed neural activity

p(Z = ci|X) =
∑
cj∈S

p(cj , ci|X),

where p(cj , ci|X) is the probability of neural activity X encoding the diphone cj → ci. A visualiza-
tion of the marginalization process is shown in Fig. 2A. Neural activity is processed by an RNN to
predict the probability of 402 diphones being spoken at each timestep. The diphone probability is
depicted by a 40× 40 matrix where columns correspond to the main phonemes and rows correspond
to the preceding phonemes. The single phoneme probability is then obtained by summing the joint
probabilities column-wise.

Parameter Optimization for Phoneme Decoding As mentioned above, we do not have the
temporal alignment between T timesteps of neural activity and T ′ ground truth phonemes in each
trial. We therefore use the Connectionist Temporal Classification (CTC) loss as proposed in (Graves
et al., 2006) to resolve the non-alignment issue. Specifically, we try to maximize the probability of Z
given X

p(Z|X) =
∑

A∈A(X,Z)

T ′∏
t=1

p(at|X), (2)

where A(X,Z) is the set of valid alignments between X and Z.

Now that we have the diphone representation for each ground truth sentence, we consider the CTC
losses over both the diphone and single phoneme representations:

L = αLc + (1− α)Ls (3)

where Lc = − log(
∑

A∈A(X,Z)

∏T ′

t=1 pm(at|X)) is the loss for single phoneme decoding, Ls =

− log(
∑

A∈A(X,S)

∏T ′′

t=1 p(at|X)) defines the loss over subclasses (diphone) decoding.

Coefficient α controls the balance of the single phoneme decoding and diphone decoding. α is
designed to be small at the beginning and gradually increase over the course of training. See
Appendix A.6 for more implementation details.

Word Decoding with Language Models The predicted phoneme probabilities are further trans-
formed into high-quality text through (i) generation of transcription candidates from phonemes,
(ii) re-scoring of transcription candidates, and (iii) error correction using an ensemble of selected
candidates.

Transcription Generation. During the phase of candidate sentence generation, we convert the
predicted phoneme probabilities into words using a 5-gram model. Based on the predicted phoneme

1the phonemes are defined as per CMU Pronouncing Dictionary: http://www.speech.cs.cmu.edu/
cgi-bin/cmudict/
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probability distribution, the 5-gram model leverages its internal word and sentence distributions to
generate the most likely sentence candidates (Miao et al., 2015; Willett et al., 2023a). Each candidate
is associated with a likelihood score provided by the 5-gram model.

Transcription Re-scoring LLMs trained on large corpora of texts, such as the Open Pre-trained
Transformer (OPT) (Zhang et al., 2022), could provide more accurate likelihood of the generated
transcriptions. Hence, we use OPT to re-score the 5-gram likelihood outputs. The transcription
candidates with the highest likelihoods are selected(Willett et al., 2023a).

Transcription Error Correction with Ensemble Method While the 5-gram and OPT models can correct
some phoneme errors made by the phoneme decoder to produce more contextually sound sentences
(transcriptions), these sentences are not always perfect. Variations of the phoneme decoding model
could result in changes of generated and selected sentence candidates. Ensembles of phoneme
decoding models, with each model being an expert in different situations, could mitigate the errors
made by another model.

In (Benster et al., 2024) GPT3.5 is finetuned to evaluate an ensemble of 10 transcription candidates
and generate the most sensible sentence from the 10 candidates. However, providing GPT3.5 only the
candidate transcriptions hinders the LLM’s ability to understand the underlying phoneme sequences,
which are the generating source of the transcriptions and might have been incorrectly converted
by the 5-gram model. We therefore propose to include both the transcription candidates and the
corresponding phoneme sequences as inputs to GPT3.5, tasking the model with generating both
the correct transcription and phoneme sequence. An illustration of such task is shown in Fig.2. By
finetuning the LLM in this manner, we train it to infer the relationship between predicted phonemes
and the predicted transcriptions, as well as identifying common model-specific mistakes made by the
phoneme decoders across their predictions. We show in Section 4.3 that this strategy further boosts
the WER from 8.06% to 5.77%.

In addition, since finetuning LLM is a resource-intensive process, we also propose to leverage ICL as
an alternative learning paradigm for refining predicted transcriptions. Instead of finetuning GPT3.5
over multiple batches of (10× predictions, 1× ground truth) pairs, we directly include N examples of
these pairs as context in each prompt, along with a query input to be refined. The LLM then leverages
its ICL ability to quickly refine the query transcriptions without updating its weights. The prompts
used for both in-context inference and finetuning are detailed in the Appendix A.8.

4 EXPERIMENTS

4.1 DATASET

We demonstrate the effectiveness of DCoND-LIFT in decoding attempted speech using the Brain-to-
Text Benchmark 2024 (Willett et al., 2023a;b). The dataset was collected from a human subject with
ALS who had lost the ability to produce intelligible speech. In the experiments, the subject attempts
to silently speak sentences displayed on a screen. These sentences are composed from a vocabulary
set of 125,000 words. In each trial, one sentence is shown followed by an auditory ‘Go’ cue, after
which the subject attempts to speak at their own pace. Neural activity (multiunit threshold crossings
and spike band power) is recorded from the ventral premotor cortex (6V) while the subject attempted
speaking. Due to the nature of the silent speech task, the correspondence between neural activity and
the produced speech is unknown. The dataset is split into training, validation, and competition sets
with 8800, 600, and 1200 sentences, respectively.

4.2 EVALUATION METRICS

PER Phoneme Error Rate (PER) is calculated by comparing the decoded phoneme sequence with
the ground truth phoneme sequence. After aligning the recognized phoneme sequence with the
reference phoneme sequence, the number of insertions, deletions, and substitutions required to match
the sequences are counted. The sum of these operations is divided by the total number of phonemes
in the ground truth sequence to compute the PER. This metric reflects how accurately neural signals
can be recognized into phonetic units.

6
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Table 1: Performance comparison on Brain-to-Text 2024 Benchmark
PER×100 ↓ WER×100 ↓ P-WER×100 ↓

NPTL (Willett et al., 2023a) 16.62 9.46 11.33
LISA (Benster et al., 2024) – 8.93 –

DCoND-L (Ours) 15.34 8.06 8.02
DCoND-LI (Ours) – 7.29 –
DCoND-LIFT (Ours) – 5.77 –

WER Similar to PER, word error rate (WER) is computed by aligning the sequence of recognized
words with the ground truth sentence first and then counting the number of insertions, deletions,
and substitutions of words needed to reconcile any discrepancies between the two sequences. The
total number of these operations is divided by the total number of words in the reference sequence
to obtain WER. As neural activity is translated into phonemes before converted into words, WER
reflects the performance of both neural decoder and the language model.

P-WER We adapt Perceptual Word Error Rate (P-WER) (Metzger et al., 2023) to measure the quality
of phoneme decoding at the word perception level. Specifically, we use eSpeak-NG (Reece H. Dunn)2

to synthesize speech from the decoded phoneme sequences. Then the synthesized speech is translated
into sentences by Whisper (Radford et al., 2022) from which the WER is estimated. Considering the
systematic errors introduced by the eSpeak-NG synthesizer and the Whisper ASR system, we define
P-WER as follows

P-WER = (1−
1− WERWhisper-P

1− WERWhisper-GT
),

where WERWhisper−GT and WERWhisper−P are the WER measured on Whisper’s decoded tran-
scriptions when audio is synthesized with ground truth phoneme sequences (GT) and predicted
phoneme sequences (P), respectively.

4.3 COMPARISON WITH SOTA METHODS

We show DCoND-LIFT achieves state-of-the-art performance on the Brain-to-Text Benchmark 2024,
where WER is the primary evaluation metric (see Table 1). Specifically, we compared DCoND-LIFT
with the leading methods NPTL (Willett et al., 2023a) and LISA (Benster et al., 2024). NPTL uses
a 5-layer RNN to decode neural activity to phonemes, followed by a combination of 5-gram and
OPT language models (Miao et al., 2015; Zhang et al., 2022) to translate decoded phonemes to texts.
LISA uses the same RNN model architecture as NPTL to decode phonemes from neural activity, but
leverages GPT3.5 to further improve transcriptions given by the 5-gram model. See Appendix A.6
for more implementation details.

As seen in Table 1, our model variants outperform the competing methods across the board. DCoND
combined with 5-gram LM and OPT (DCoND-L) yields WER of 8.06%, compared to 9.46% WER of
NPTL and 8.93% of LISA. Further sensitivity analysis is provided in Table 4 of the Appendix. Given
that DCoND-L uses the same RNN backbone and LMs as NPTL, we posit that the improvements in
WER come from the effectiveness of our divide-and-conquer phoneme decoding strategy. Indeed,
DCoND-L achieves a better PER and P-WER (15.34% and 8.02% compared to 16.62% and 11.33%
of NPTL), proving that modeling context-dependent phoneme representations facilitates the phoneme
decoding task.

The WER further improves when we equip DCoND-L with the more powerful language model
GPT3.5 to evaluate an ensemble of predicted transcriptions and their associated phoneme represen-
tations. When ensemble examplars are shown to GPT3.5 in-context (DCoND-LI), WER improves
from 8.06% to 7.29%. This performance is achieved with 25 ICL examplars, the largest number of
ICL examplars GPT3.5 can afford due to its prompt length constraint. When we finetune GPT3.5
using all available training examplars (DCoND-LIFT), WER is further boosted to 5.77%, a signifi-
cant improvement over 8.93% WER of LISA. These results support our proposal of including both

2https://github.com/espeak-ng/espeak-ng
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Table 2: Trade-offs between diphone loss and monophone loss.
α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

(DCoND-L) (NPTL)

PER×100 ↓ 15.64 15.26 15.34 15.49 16.62
WER×100 ↓ 8.47 8.70 8.06 8.64 9.46

transcriptions and phoneme representations in the demonstrations to GPT3.5 so that it can leverage
the relationship between phonemes and words to refine the transcriptions.

4.4 PHONEME DECODING ANALYSES

Neural activity represents phonemes in context-dependent clusters Previous works demonstrate
that the accuracy of decoding phonemes from neural activity could degrade when phonemes are
pronounced in the context of other phonemes as opposed to being pronounced individually (Mugler
et al., 2014). To get a glimpse of how the brain encodes phonemes, in Fig. 3A we visualize phoneme-
aligned segments of neural activity in the 2D t-SNE space (van der Maaten & Hinton, 2008). Since
the dataset does not have the exact temporal correspondence between neural activity and phonemes,
we leverage Dynamic Time Warping (DTW) to align the ground truth phonemes to neural activity
segments according to the timestamps obtained from the decoded phonemes (Müller, 2007). We
annotate the neural activity segments based on the resulting phoneme alignment. The visualization
reveals that neural activity segments form distinct clusters in the t-SNE space. Notably, these clusters
are organized based not only on single phonemes but also on the context in which they are spoken.
For instance, during periods where ‘T’ is the main phoneme being spoken, the neural activity is
organized into subclusters of AE→T (orange) and SIL→T (pink), depending on whether phoneme
‘AE’ or ‘SIL’ is spoken before ‘T’. Similar observations hold for subclusters DH→AH (green) and
SIL→AH (red) for phoneme ‘AH’. We note that further subclusters could exist within each subcluster,
suggesting a continuum of finer contexts beyond the preceding phoneme.

Decoding diphone leads to enhanced clusters in latent space We visualize in Figures 3C and
3D the latent space at the last layer of the neural decoder when trained to decode single phonemes
(monophones) vs. diphones. In Figure 3C, each color represents a single decoded phoneme label.
For clear visualization, we selected five single phoneme classes with the most samples. The clusters
that correspond to single phonemes appear to spread out over the whole space, and overlap with
each other. In Figure 3D, each color represents a decoded diphone. Since there are fewer samples
for each diphone, we visualize 16 diphone classes with the highest occurrence. It can be observed
that the neural decoder represents diphones in the latent space by clusters that are significantly more
condensed and well-separated. Such clear structure facilitates the subsequent classification of single
phonemes and demonstrates the effectiveness of our divide-and-conquer phoneme decoding method.

Phoneme Prediction Error Analysis In Figure 3B, we show the confusion matrix of the predicted
phonemes and the ground truth phonemes. From the figure we can see that most phonemes are
correctly classified with accuracy greater than 80%. The mistakes the model typically makes, if any,
are on phonemes that are pronounced similarly. For example, the model usually confuses ‘SH’ with
‘S’, and ‘CH’ with ‘TH’. Since the articulation of these phonemes is very similar, the neural activity
generating them is likely to be similar. Such confusion is expected to some extent, given the ALS
condition hindering the subject’s ability to clearly articulate the desired words.

4.5 ABLATION STUDY

Trade-off Between Diphone Loss and Monophone Loss We systematically investigate the trade-
off between diphone loss Lc and monophone loss Ls, controlled by the parameter α in Equation 3.
The impact of varying α on model performance is shown in Table 2. We find that a balance between
these two losses, with α = 0.6, yields the most optimal results. Consequently, we adopt α = 0.6 for
all DCoND models used in this paper.

Alternatives for context-dependent phoneme representations Besides diphone, triphone is
another way to define context-dependent representations for phonemes. Each triphone class consists
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Figure 3: A: 2D t-SNE visualization of neural signal projections illustrating the context-dependent
nature of phonemes in neural reprentations. Different colors indicate different diphone classes.
B: Confusion matrix of ground truth phonemes vs. DCoND’s predicted phonemes. C: 2D t-SNE
visualization for the latent space of the neural decoder trained with single phoneme decoding objective
(Monophone). Different colors indicate different phoneme classes. D: 2D t-SNE visualization for the
latent space of the neural decoder trained with diphone decoding objective. Different colors indicate
different diphone classes.

Table 3: Ablation study on alternative definitions of context-aware phoneme representations.
Triphone

DCoND-L K=50 K=100 K=200 Grouping

PER×100 ↓ 15.34 16.01 15.02 15.11 28.55
WER×100 ↓ 8.06 9.69 9.67 9.81 13.98

of three consecutive phonemes, e.g. H → OW → P , providing a finer granularity of context
dependency with 403 possible classes. Such a large number of classes can be overwhelming for the
model to learn. Given that many of them have few to no presence in the data, to efficiently maintain a
manageable size of decoding classes we select the top K combinations of preceding and succeeding
phonemes for each main phoneme, e.g. ∗ → OW → ∗, based on their frequency of occurrence in
the data, where K ∈ [50, 100, 200]. Alternatively, the preceding and succeeding phonemes could be
grouped based on their articulatory similarity ("Grouping" in Table 3) (see Appendix A.2 for more
details).

Results in Table 3 suggest that triphone with appropriate class size achieves comparable PER as the
diphone counterpart (DCoND-L). However, triphone modeling underperforms diphone modeling in
terms of WER, possibly because reducing the triphone’s class size skews the phoneme distribution
output of the neural decoder, making it incompatible with the distribution the subsequent 5-gram
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model was originally trained on. Notably, the "grouping" method despite yielding a class size similar
to that of K = 200, performs signficantly worse in both PER and WER. This implies that neural
encoding for phonemes is more intricate, and grouping phonemes based on pronunciation similarity
may not be optimal. Overall, we empirically find diphone, with its context-dependent nature and
manageable class size, to be the most suitable modeling choice for this task and dataset.

WER
5 6 7 8

DCoND-L
8.39

7.49

7.28

7.23

6.13

5.90

DCoND-LI5

DCoND-LI15

DCoND-LI25

DCoND-LIFT w/o P

DCoND-LIFT

Figure 4: Ablation study on the contribution of
LLMs.

Contribution of LLMs LLMs play an im-
portant role in translating phonemes into sen-
tences. As detailed in Section 3, our LLM-based
phoneme-to-text pipeline consists of three steps:
(i) transcription generation (5-gram), (ii) tran-
scription rescoring (OPT), (iii) error correction
via ensembling with ICL GPT3.5 or finetuned
GPT3.5. We show in Figure 4 how each step
of the LLM pipeline contributes to the over-
all WER. In particular, we consider the fol-
lowing variants of LLMs on top of DCoND:
5-gram+OPT as used in NPTL (DCoND-L), 5-
gram+OPT+ICL GPT3.5 with context length of
5 (DCoND-LI5), context length of 15 (DCoND-LI15), and context length of 25 (DCoND-LI25),
5-gram+OPT+finetuned GPT3.5 without phoneme inputs (DCoND-LIFT w/o P), and our most
performant model – 5-gram+OPT+finetuned GPT3.5 with phoneme inputs (DCoND-LIFT). We
show that using GPT3.5 to refine the transcriptions from an ensemble of candidates, selected based
on the highest re-scored likelihood given by the 5-gram+OPT step, leads to an improvement in
WER. Specifically, when GPT3.5 is exposed to ICL exemplars (DCoND-LI), its performance further
improves as more exemplars are provided. However, finetuned GPT3.5 – unaffected by the limited
ICL context length – enjoys more improvements in WER. The best WER is achieved when GPT3.5
leverages the predicted phonemes to refine the query transcriptions (DCoND-LIFT). Additional
ablations are provided in Section A.3 of the Appendix.

5 DISCUSSION

In this work, we propose a divide-and-conquer approach for neural decoders (DCoND) together with
an LLM-enhanced ensembling method (LI and LIFT) for decoding speech from neural activity. Moti-
vated by a neuroscientific insight (coarticulation), DCoND leverages diphone, a context-dependent
representation for phoneme sequences, as the modeling target. We show that decomposing the
phoneme classification task into diphone classfication subtasks facilitates the phoneme decoding task,
subsequently improve the final sentence decoding accuracy. LI and LIFT propose an LLM-based
ensembling approach where both phoneme sequence candidates and transcription candidates are
provided as inputs to GPT3.5 to enhance its ability to refine the transcription candidates. We show that
DCoND-LIFT achieves SOTA PER and WER on the Brain-to-Text 2024 Benchmark, outperforming
leading methods by a large margin.
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Sakhia Darjaa, Miloš Cerňak, Štefan Beňuš, Milan Rusko, Róbert Sabo, and Marián Trnka. Rule-
based triphone mapping for acoustic modeling in automatic speech recognition. In Text, Speech
and Dialogue: 14th International Conference, TSD 2011, Pilsen, Czech Republic, September 1-5,
2011. Proceedings 14, pp. 268–275. Springer, 2011.

Alexandre Défossez, Charlotte Caucheteux, Jérémy Rapin, Ori Kabeli, and Jean-Rémi King. Decod-
ing speech perception from non-invasive brain recordings. Nature Machine Intelligence, 5(10):
1097–1107, 2023.

Lorenz Diener, Gerrit Felsch, Miguel Angrick, and Tanja Schultz. Session-independent array-based
emg-to-speech conversion using convolutional neural networks. In Speech Communication; 13th
ITG-Symposium, pp. 1–5. VDE, 2018.

Milán András Fodor, Tamás Gábor Csapó, and Frigyes Viktor Arthur. Towards decoding brain activity
during passive listening of speech. arXiv preprint arXiv:2402.16996, 2024.

David Gaddy and Dan Klein. Digital voicing of silent speech. arXiv preprint arXiv:2010.02960,
2020.

David Gaddy and Dan Klein. An improved model for voicing silent speech. arXiv preprint
arXiv:2106.01933, 2021.

Alex Graves. Sequence transduction with recurrent neural networks. arXiv preprint arXiv:1211.3711,
2012.

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks. In Proceedings
of the 23rd international conference on Machine learning, pp. 369–376, 2006.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented transformer for
speech recognition. arXiv preprint arXiv:2005.08100, 2020.

Christian Herff, Dominic Heger, Adriana De Pesters, Dominic Telaar, Peter Brunner, Gerwin Schalk,
and Tanja Schultz. Brain-to-text: decoding spoken phrases from phone representations in the brain.
Frontiers in neuroscience, 9:217, 2015.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
29:3451–3460, 2021.

Xuedong Huang, James Baker, and Raj Reddy. A historical perspective of speech recognition.
Communications of the ACM, 57(1):94–103, 2014.

Matthias Janke and Lorenz Diener. Emg-to-speech: Direct generation of speech from facial elec-
tromyographic signals. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25
(12):2375–2385, 2017.

Szu-Chen Jou, Tanja Schultz, Matthias Walliczek, Florian Kraft, and Alex Waibel. Towards contin-
uous speech recognition using surface electromyography. In Ninth International Conference on
Spoken Language Processing, 2006.

Arnav Kapur, Shreyas Kapur, and Pattie Maes. Alterego: A personalized wearable silent speech
interface. In 23rd International conference on intelligent user interfaces, pp. 43–53, 2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Spencer Kellis, Kai Miller, Kyle Thomson, Richard Brown, Paul House, and Bradley Greger. Decod-
ing spoken words using local field potentials recorded from the cortical surface. Journal of neural
engineering, 7(5):056007, 2010.

Fréjus AA LAleye, Laurent Besacier, Eugène C Ezin, and Cina Motamed. First automatic fongbe
continuous speech recognition system: Development of acoustic models and language models.
In 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), pp.
477–482. IEEE, 2016.

Katharina Linse, Elisa Aust, Markus Joos, and Andreas Hermann. Communication matters—pitfalls
and promise of hightech communication devices in palliative care of severely physically disabled
patients with amyotrophic lateral sclerosis. Frontiers in neurology, 9:379945, 2018.

Geoffrey S Meltzner, James T Heaton, Yunbin Deng, Gianluca De Luca, Serge H Roy, and Joshua C
Kline. Development of semg sensors and algorithms for silent speech recognition. Journal of
neural engineering, 15(4):046031, 2018.

Sean L Metzger, Jessie R Liu, David A Moses, Maximilian E Dougherty, Margaret P Seaton, Kaylo T
Littlejohn, Josh Chartier, Gopala K Anumanchipalli, Adelyn Tu-Chan, Karunesh Ganguly, et al.
Generalizable spelling using a speech neuroprosthesis in an individual with severe limb and vocal
paralysis. Nature communications, 13(1):6510, 2022.

Sean L Metzger, Kaylo T Littlejohn, Alexander B Silva, David A Moses, Margaret P Seaton, Ran
Wang, Maximilian E Dougherty, Jessie R Liu, Peter Wu, Michael A Berger, et al. A high-
performance neuroprosthesis for speech decoding and avatar control. Nature, pp. 1–10, 2023.

Yajie Miao, Mohammad Gowayyed, and Florian Metze. Eesen: End-to-end speech recognition
using deep rnn models and wfst-based decoding. In 2015 IEEE workshop on automatic speech
recognition and understanding (ASRU), pp. 167–174. IEEE, 2015.

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Dietrich Klakow, and Yanai Elazar. Few-shot fine-
tuning vs. in-context learning: A fair comparison and evaluation. arXiv preprint arXiv:2305.16938,
2023.

David A Moses, Sean L Metzger, Jessie R Liu, Gopala K Anumanchipalli, Joseph G Makin, Pengfei F
Sun, Josh Chartier, Maximilian E Dougherty, Patricia M Liu, Gary M Abrams, et al. Neuroprosthe-
sis for decoding speech in a paralyzed person with anarthria. New England Journal of Medicine,
385(3):217–227, 2021.

Emily M Mugler, James L Patton, Robert D Flint, Zachary A Wright, Stephan U Schuele, Joshua
Rosenow, Jerry J Shih, Dean J Krusienski, and Marc W Slutzky. Direct classification of all
american english phonemes using signals from functional speech motor cortex. Journal of neural
engineering, 11(3):035015, 2014.

Meinard Müller. Dynamic time warping. Information retrieval for music and motion, pp. 69–84,
2007.

Jon P Nedel, Rita Singh, and Richard M Stern. Phone transition acoustic modeling: application to
speaker independent and spontaneous speech systems. In INTERSPEECH, pp. 572–575, 2000.

Chethan Pandarinath, Paul Nuyujukian, Christine H Blabe, Brittany L Sorice, Jad Saab, Francis R
Willett, Leigh R Hochberg, Krishna V Shenoy, and Jaimie M Henderson. High performance
communication by people with paralysis using an intracortical brain-computer interface. elife, 6:
e18554, 2017.

Xiaomei Pei, Dennis L Barbour, Eric C Leuthardt, and Gerwin Schalk. Decoding vowels and
consonants in spoken and imagined words using electrocorticographic signals in humans. Journal
of neural engineering, 8(4):046028, 2011.

David Poeppel, William J Idsardi, and Virginie Van Wassenhove. Speech perception at the interface
of neurobiology and linguistics. Philosophical Transactions of the Royal Society B: Biological
Sciences, 363(1493):1071–1086, 2008.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rohit Prabhavalkar, Takaaki Hori, Tara N Sainath, Ralf Schlüter, and Shinji Watanabe. End-to-
end speech recognition: A survey. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2023.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. arxiv (2022). arXiv preprint
arXiv:2212.04356, 2022.

Alexander Epaneshnikov Reece H. Dunn, Valdis Vitolins. espeak ng text-to-speech. GitHub.

Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsupervised
pre-training for speech recognition. arXiv preprint arXiv:1904.05862, 2019.

Tanja Schultz and Michael Wand. Modeling coarticulation in emg-based continuous speech recogni-
tion. Speech Communication, 52(4):341–353, 2010.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Ma-
chine Learning Research, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/
vandermaaten08a.html.

Mariska J Vansteensel, Elmar GM Pels, Martin G Bleichner, Mariana P Branco, Timothy Deni-
son, Zachary V Freudenburg, Peter Gosselaar, Sacha Leinders, Thomas H Ottens, Max A Van
Den Boom, et al. Fully implanted brain–computer interface in a locked-in patient with als. New
England Journal of Medicine, 375(21):2060–2066, 2016.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Francis R Willett, Donald T Avansino, Leigh R Hochberg, Jaimie M Henderson, and Krishna V
Shenoy. High-performance brain-to-text communication via handwriting. Nature, 593(7858):
249–254, 2021.

Francis R Willett, Erin M Kunz, Chaofei Fan, Donald T Avansino, Guy H Wilson, Eun Young
Choi, Foram Kamdar, Matthew F Glasser, Leigh R Hochberg, Shaul Druckmann, et al. A high-
performance speech neuroprosthesis. Nature, pp. 1–6, 2023a.

Francis R Willett, Erin M Kunz, Chaofei Fan, Donald T Avansino, Guy H Wilson, Eun Young Choi,
Foram Kamdar, Matthew F Glasser, Leigh R Hochberg, Shaul Druckmann, et al. Data for: A
high-performance speech neuroprosthesis [dataset]. Dryad, pp. 1–6, 2023b.

Yiqian Yang, Yiqun Duan, Qiang Zhang, Renjing Xu, and Hui Xiong. Decode neural signal as speech.
arXiv preprint arXiv:2403.01748, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

13

http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 4: Sensitivity analysis on Brain-to-Text 2024 Benchmark
PER×100 ↓ WER×100 ↓ P-WER×100 ↓

NPTL [46] 16.62 9.46 11.33
LISA [2] – 8.93 –

DCoND-L (Ours) 15.44 ± 0.46 8.39 ± 0.22 8.09 ± 1.62
DCoND-LI (Ours) – 7.23 ± 0.08 –
DCoND-LIFT (Ours) – 5.90 ± 0.08 –

A APPENDIX

A.1 SENSITIVITY ANALYSIS

We report the mean and standard deviation of DCoND-L, DCoND-LI and DCoND-LIFT in Table
4. The mean and standard deviation are obtained across 5 random seeds. The proposed methods
(DCoND-L, DCoND-LI and DCoND-LIFT) maintain a significant gap over the NPTL and LISA
baselines (Willett et al., 2023a; Benster et al., 2024).

A.2 TRIPHONE AS AN ALTERNATIVE FOR CONTEXT-DEPENDENT PHONEME REPRESENTATION

Triphones expand upon diphones by incorporating a larger context. Specifically, a triphone considers
one phoneme before and one phoneme after the current main phoneme. Consequently, when a neural
signal segment is decoded into acoustic units based on the continuity of three phonemes, it reflects a
triphone structure. For example, the single phoneme sequence

H, OW, P

for “hope", can be transferred to triphone

“SIL → H → OW, H → OW → P, OW → P → SIL”.

In this scenario, the time steps required for decoding single phonemes and triphones remain the same.
However, triphones introduce a substantial increase in the number of classes, scaling as N3, which
can be prohibitively large (e.g., 64000 when N = 40). The divide and conquer idea in this case could
be expressed as:

f(x) = p(Z = ci|X) =
∑

cj∈C,cq∈C

p(cj , ci, cq|X)

Similar to the diphone probability matrix, these triphone classes are then mapped into a triphone
matrix, where each element represents the probability of the current neural signal encoding the
phoneme transition from phoneme cj to phoneme ci and concluding at phoneme cq. By summing
over the first and last dimensions, we obtain p(Z = ci|X). Given the potential sparsity of triphone
combinations, certain triphone subclasses may not occur frequently in a given language. To mitigate
this, we select the top K subclasses for each triphone sample, based on occurrence counts within
the current vocabulary. Specifically, for a main phoneme ci, we rank all possible combinations of
∗− > ci− > ∗ and retain the top K as subclasses for the phoneme class ci.

Additionally, aside from selecting the top K subclasses, an alternative approach involves grouping
phones according to articulation similarity Herff et al. (2015). This categorization leads to subclasses
of the phoneme ci as groupj− > ci− > groupq. We categorize phonemes into 14 groups, encom-
passing Bilabial Sounds, Labiodental Sounds, Dental Sounds, Alveolar Sounds, Palatal Sounds, Velar
Sounds, Glottal Sounds, Front Vowels, Central Vowels, Back Vowels, and SIL. In this context, the
number of subclasses amounts to 14 ∗ 40 ∗ 14, which is comparable to the number of classes when
K = 200 (resulting in a total of 200*40 subclasses).

A.3 ADDITIONAL ABLATION STUDY ON THE CONTRIBUTION OF LMS

We conduct additional study to assess the role of phoneme-to-transcription generation and re-scoring
methods (Figure 5). We show that removing the re-scoring step performed by the OPT model
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Figure 5: Ablation study on the contribution of re-scoring step in the phoneme-to-transcription
pipeline.

Table 5: GPT-3.5 vs Llama-3.1-70B for error correction from ensemble of transcriptions
Llama-3.1-70B WER GPT 3.5 WER

DCoND-LI 7.38 7.29
DCoND-LIFT 6.85 5.77

in DCoND-L significantly degrades WER (DCoND-3gram and DCoND-5gram), highlighting the
importance of the transcription re-scoring step. In addition, the 5-gram model with longer phoneme
dependency generates more accurate transcription candidates compared to the 3-gram model.

A.4 OPEN-SOURCE LLMS FOR DCOND-LI & DCOND-LIFT

In addition to the closed-source GPT-3.5, we explore the use of the open-source Llama-3.1-70B
for refining transcription predictions. We evaluated Llama-3.1-70B in both in-context learning
(DCoND-LI) and fine-tuning (DCoND-LIFT) scenarios and compare it against GPT3.5 (Table 5).
Llama-3.1-70B performs on par with GPT3.5 in ICL setting, while closely trail behind in finetuning
setting, all the while outperforming NPTL and LISA baselines. These results demonstrate our
method’s robustness and generalizability to other LLMs besides GPT3.5, and warrant the accessibility
of our methods to the broad community.

A.5 INVESTIGATION ON ARCHITECTURE CHOICES FOR NEURAL DECODERS

We study the effects of different model architectures on the phoneme decoding performance (PER)
(Table 6). We observe a significant performance degradation in PER when using Transformer as
the neural decoder. On the other hand, RNN counterparts (LSTM and GRU) perform decently well,
with GRU being the most performant model for both single phoneme decoding (NPTL) and diphone
decoding (DCoND).

A.6 IMPLEMENTATION DETAILS

We preprocess the neural signal and construct an RNN neural encoder following the methodology
outlined in Willett et al. (2023a). The raw neural signal X ∈ RT×D is initially partitioned into smaller
patches with a window size of W , resulting in a patched neural signal of shape X ∈ RT ′×(DW ).
Overlapping between patches is permitted and determined by the stride size. W = 14 for diphone
experiments and 32 for the triphone experiemnts. The bidirectional RNN processes these patched
neural signals as inputs, which are subsequently transformed into the neural representation space
H = [h1, h2, · · · , hT ′ ] ∈ RT ′×d. A fully connected layer then maps the hidden representations to

Table 6: Comparison of different model architectures on phoneme decoding performance
PER

Transformer LSTM GRU
NPTL 39.58 ± 0.15 17.49 ± 0.32 16.63 ± 0.19
DCoND 38.88 ± 0.17 16.08 ± 0.23 15.44 ± 0.46

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

N
u
m

b
e
r 

o
f 

e
d

iti
o
n

s

Insertion Substitu tion Deletion

Single 

Phoneme

Diphone

0

400

800

1200

1600

Figure 6: Phoneme error types analysis during single phoneme decoding and diphone.

diphone or triphone subclasses, denoted as P (S = si|X). The outputs of the fully connected layer
are used to compute Ls. The computation of single phoneme probabilities is detailed in Equation 3.
We merge the probability computed from diphone or triphone.

During the RNN training, we utilize a batch size of 32, a learning rate of 0.02, and the Adam optimizer
across various experiments the same set of parameters as used in NPTL baseline Willett et al. (2023a).
To facilitate diphone and triphone learning, we initially train the subclasses for 10 epochs and then
gradually increase the ratio of the single phoneme loss by 0.1 every 10 epochs until it reaches 0.6.
The number of training epochs varies for single phoneme learning, diphone learning, and triphone
learning. Specifically, we conduct experiments for up to 100 epochs for single phoneme learning
(NPTL baseline), 120 epochs for diphone learning, and 140 epochs for triphone learning since the
diphone and triphone required additional subclass training procedures. Increasing the number of
training epochs can often lead the model to overfit the training data. Training was done on 2 GeForce
RTX 2080 Ti with around 12GB memory. The training take around 6-8 hours.

The 5-gram model takes the predicted phoneme logits as inputs, which can be scaled by a temperature
factor denoted as t using the formula logits := logits/t. Through experimentation, we have found
that setting t = 1.2 generally improves the decoding performance. Therefore, we use t = 1.2 for our
experiments, including the implementation of NPTL, which has resulted in improved baseline results.
Specifically, the leaderboard score has improved from 9.76 to 9.46.

A.7 PHONEME ERROR ANALYSIS

We conducted a detailed analysis of the various types of errors encountered during phoneme decoding.
This analysis involved assessing the operations necessary to align the decoded phoneme sequence with
the ground truth phonemes, comparing scenarios where only single phoneme decoding is used versus
employing diphone subclass decoding. Overall, our findings indicate that employing diphone subclass
decoding leads to a reduction in the number of operations required to align the decoded sequence
with the ground truth phonemes. Specifically, fewer editing operations, particularly substitutions,
are needed when utilizing the diphone decoding paradigm compared to directly decoding single
phonemes.

A.8 PROMPT FOR GPT3.5

Prompt to GPT3.5 : Your task is to perform automatic speech recognition. Below are multiple
candidate transcriptions together with their corresponding phoneme representations. The phonemes
are taken from the CMU Pronouncing Dictionary. The special symbol SIL represents the start
of the sentence, or the end of the sentence, or the space between two adjacent words. Based
on the transcription candidates and their phoneme representations, come up with a transcription
and its corresponding phoneme representation that are most accurate, ensuring the transcription is
contextually and grammatically correct. Focus on key differences in the candidates that change
the meaning or correctness. Avoid selections with repetitive or nonsensical phrases. In cases of
ambiguity, select the option that is most coherent and contextually sound, taking clues from the
phoneme representations. The candidate phoneme representations may not always be the correct
representation of the corresponding candidate transcriptions. Some phonemes in the candidate
phoneme sequences might have been incorrectly added, removed, or replaced. However, the candidate
phonemes contain useful information that will help you come up with the correct transcription and
phoneme representation. You should translate each subgroup of phonemes that is enclosed by two SIL
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symbols into one single word. You should remove SIL symbols at the start or the end of the phoneme
sequence. Respond with your refined transcription and its corresponding phoneme representation
only, without any introductory text.

Examples of prediction and correction pairs Transcription candidate 1: but we don’t know that.
Transcription candidate 2: but we don’t know that. Transcription candidate 3: but you don’t know
that. Transcription candidate 4: but you don’t know that. Transcription candidate 5: but you don’t
know that. Transcription candidate 6: but you don’t know that. Transcription candidate 7: but you
don’t know that. Transcription candidate 8: but you don’t know that. Transcription candidate 9: but
we don’t know that. Transcription candidate 10: but we don’t know that. Phoneme candidate 1: SIL
B AH T SIL W IY SIL D OW N T SIL N OW SIL DH AE T SIL. Phoneme candidate 2: SIL B AH
T SIL Y IY SIL D OW N T SIL N OW SIL DH AE T SIL. Phoneme candidate 3: SIL B AH T SIL Y
UW SIL D OW N T SIL N OW SIL AE T SIL. Phoneme candidate 4: SIL B AH T SIL Y UW SIL D
OW N T SIL N OW SIL DH AE T SIL. Phoneme candidate 5: SIL B AH T SIL DH UW SIL D OW
N T SIL N OW SIL DH AE T SIL. Phoneme candidate 6: SIL B AH T SIL Y UW SIL D OW N T
SIL N OW SIL DH AE T SIL. Phoneme candidate 7: SIL B AH T SIL Y UW SIL D OW N T SIL N
OW SIL DH AE T SIL. Phoneme candidate 8: SIL B AH T SIL Y UW SIL D OW N T SIL N OW
SIL DH AE T SIL. Phoneme candidate 9: SIL B AH T SIL W IY SIL D OW N T SIL N OW Z SIL
DH AE T SIL. Phoneme candidate 10: SIL B AH T SIL DH IY SIL D OW N T SIL N OW SIL AE
T SIL.
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Table 7: Example of In-Context-Learning (ICL) prompts and query.
System Prompt: Your task is to perform automatic speech recognition. You are given ten candi-

dates of an unknown transcription. Your job is to come up with a transcription
that is most accurate, relying on the context that the candidates provide. First,
observe the provided examples demonstrating how the task should be done,
then work on the query candidates. In each example, ten transcription can-
didates, their corresponding phoeneme representations, and a ground truth
transcription are given. The ground truth transcription is the correct tran-
scription, while the transcription candidates and phoneme representations
may or may not contain errors. Some phonemes in the phoneme sequences
might have been incorrectedly added, removed, or replaced. However, the
phonemes contain helpful information that will help you come up with the
correct transcription. You should translate each subgroup of phonemes that is
enclosed by two SIL symbols into one single word. You should remove SIL
symbols at the start and the end of the phoneme sequence. Make sure your
transcription based on the query candidates is contextually and grammatically
correct. Focus on key differences in the candidates that change the meaning or
correctness. Avoid selections with repetitive or nonsensical phrases. In cases
of ambiguity, select the option that is most coherent and contextually sound.
Respond with your final transcription only, without any introductory text.

Context prompt: Example 1: Transcription candidate 1: i enjoyed it very much. · · · Transcrip-
tion candidate 10: i enjoyed it very much. Phoneme candidate 1: AY SIL
EH N JH OY D SIL IH T SIL V EH R IY SIL M AH CH SIL. · · · Phoneme
candidate 10: AY SIL EH N JH OY D SIL IH T SIL V EH R IY SIL M AH
CH SIL. · · · Ground truth phonemes: AY SIL EH N JH OY D SIL IH T
SIL V EH R IY SIL M AH CH. Ground truth transcription: i enjoyed it
very much. · · · Example N: Transcription candidate 1: the ranks of asian
riders are falling too. · · · Transcription candidate candidate 10: the ranks of
asian riders are willing to. Phoneme candidate 1: DH AH SIL R AE NG K S
SIL AH V SIL EY ZH AH N SIL R AY D Z SIL AA R SIL F L D IH NG
SIL T UW SIL. · · · Phoneme candidate 10: DH AH SIL R AE K S SIL AH
V SIL EY ZH AH N SIL R EY D ER Z SIL AA R SIL F IY L IH NG SIL T
UW SIL. Ground truth phonemes: DH AH SIL R AE NG K S SIL AH V
SIL EY ZH AH N SIL R AY D ER Z SIL AA R SIL S W EH L IH NG SIL T
UW. Ground truth transcription: the ranks of asian riders are swelling too

Query: Transcription candidate 1: i’m originally from colorado. · · · Transcription
candidate 10: i’m only from colorado. Phoneme candidate 1: SIL AY M SIL
ER N AH L IY SIL F R AH M SIL K AO L ER AA D OW SIL. · · · Phoneme
candidate 10: SIL AY M SIL AH N L IY SIL F R AH M SIL K AO L R AA
D OW SIL.
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