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Abstract

Importance weighting is a classic technique to handle distribution shifts. However,
prior work has presented strong empirical and theoretical evidence demonstrating
that importance weights can have little to no effect on overparameterized neu-
ral networks. Is importance weighting truly incompatible with the training of
overparameterized neural networks? Our paper answers this in the negative. We
show that importance weighting fails not because of the overparameterization, but
instead, as a result of using exponentially-tailed losses like the logistic or cross-
entropy loss. As a remedy, we show that polynomially-tailed losses restore the
effects of importance reweighting in correcting distribution shift in overparame-
terized models. We characterize the behavior of gradient descent on importance
weighted polynomially-tailed losses with overparameterized linear models, and
theoretically demonstrate the advantage of using polynomially-tailed losses in
a label shift setting. Surprisingly, our theory shows that using weights that are
obtained by exponentiating the classical unbiased importance weights can improve
performance. Finally, we demonstrate the practical value of our analysis with
neural network experiments on a subpopulation shift and a label shift dataset. Our
polynomially-tailed loss consistently increases the test accuracy by 2-3%.

1 Introduction

Machine learning models are often evaluated on test data which differs from the data that they were
trained on. A classic statistical technique to combat such distribution shift is to importance weight the
loss function during training [12]. This procedure upweights points in the training data that are more
likely to appear in the test data and downweights ones that are less likely. The reweighted training
loss is an unbiased estimator of the test loss and can be minimized by standard algorithms, resulting
in a simple and general procedure to address distribution shift.

Surprisingly, recent papers [2, 17] have found that importance weighting is ineffective in the current
deep learning paradigm, where overparameterized models interpolate the training data or have
vanishingly small train loss. In particular, Byrd and Lipton [2] empirically showed that when no
regularization is used, overparameterized linear and nonlinear models trained with the importance
weighted cross-entropy loss ignore the importance weights. Xu et al. [17] followed up and provided
a theoretical justification for this observation in overparameterized linear and non-linear models.
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Figure 1: Interpolating models trained with gradient descent, with and without importance weights
(IW). (Left) The learned boundary with cross entropy is asymptotically the maximum-margin classifier
even with reweighting. (Right) Our polynomially-tailed loss restores the effects of importance weights,
correctly adjusting for the distribution shift.

Such evidence has led some to wonder if importance weighting is fundamentally incompatible with
overparameterized interpolating models. In this paper, we show that this is not the case. We find that
the culprit behind the ineffectiveness of importance weighting is the exponential tail of popular losses
such as the cross-entropy or the logistic. We propose altering the structure of the loss to have fatter,
polynomially decaying tails instead. We theoretically and empirically demonstrate that importance
weights do correct for distribution shift under such losses even for overparameterized classifiers.

2 Setting

We consider a distribution shift setting where the training samples {(z1,y1), - . -, (Zn,yn)} € R? x
{—=1, 1} are drawn i.i.d. from Py, and the test samples are drawn from a different distribution Pyt
that is absolutely continuous with respect to Py.in. Let fy denote a classifier parameterized by 6.
Given a feature x, a classifier maps this feature to fy(x) € R. In this paper we shall consider cases
where the classifier is either linear (for our theory) or a neural network (for our experiments).

Our goal is to find a classifier fy that minimizes the 0-1 loss with respect to the test distribution:
TestError[fy] = P(s,y)~p.... [sign(fo(z)) # 9]

To handle the mismatch between Pyy,j, and Py, we shall study importance weighting algorithms.
Given a datapoint (x,y) € R% x {—1, 1}, the classical unbiased importance weight at this datapoint
is given by the ratio of densities between the test and the train distributions %. Using these

unbiased importance weights ensure that the reweighted training loss is an unbiased estimate of the
test loss.

We initiate a study of polynomially-tailed losses in the distribution shift setting and show that they have
improved behavior with respect to importance weighting even when the model is overparameterized.
Given parameters o > 0 and 3 € R define the polynomially-tailed loss as follows:

0 s(2) {e.efxz) ifz<p
a,B = 1 ;
F=GB=D" if z > 3,

where £\ is any loss function such that the overall loss function £, g is convex, differentiable and
strictly decreasing. Several natural choices for £, include the scaled logistic (c; log(1+exp(—c22))),
exponential (c; exp(—c22)) or linear (—c1z + ¢2) losses.

Given a training dataset {(x1,91), ..., (Zn, yn)} and a set of weights wy, ..., w, > 0 we let

Los(fo) =Y wila,p(yifo(x:))

i=1
be the reweighted empirical loss on this dataset.



3 Theoretical Results

In this section, we present several theoretical results that justify the use of polynomially-tailed losses
in conjunction with importance weights to handle distribution shifts. To let the analysis proceed, we
restrict our theoretical study to linear classifiers, fp(z) = z - 0, for some 6 € R%.

3.1 Implicit Bias of Gradient Descent on Polynomially-Tailed Losses

We begin by presenting a result that characterizes the implicit bias of gradient descent on reweighted
polynomially-tailed losses for linearly separable classification. Understanding this situation is a key
first step, as gradient descent for separable linear classification is often used as a simplified model to
theoretically characterize the behavior of overparameterized models such as neural networks [13, 5,
10, 8, 6].

Given a linearly separable dataset (x1,41),. .., (Zn, yn), we let z; := y;z;. We shall analyze the
iterates of gradient descent with step-size 7 > 0 and initial iterate #(*) € R%:

0D = 00 — VL, 5(01), fort e {0,1,...}.
Define the direction

Wy

(zi-0)~

NE

0, = arg min
o:[10ll=1

stz -0>0, forallie[n}}. (1)

i=1
The following proposition characterizes the limiting direction of gradient descent iterates.

Proposition 3.1. (Proof in Appendix D.) Suppose that the data is linearly separable. For any o > 0,
B € R, any initial point §©) € R?, and for all small enough step-sizes 1 the direction of the gradient
descent iterates satisfy the following:

) 10 ~
A gy e

Note that, unlike the maximum margin classifier, it is immediately clear that this limiting direction
6., depends on the weights wy, ..., w,. As one would intuitively expect, the direction 6, tries to
achieve a larger margin z; - € on points with larger weights w;. This behavior is also apparent in the
simulation in the rightmost panel in Figure 1, where upweighting points in the minority class helps to
learn a classifier that is similar in direction to the Bayes optimal classifier for the problem.

3.2 Generalization Analysis

The result in the previous subsection shows that the asymptotic classifier learnt by gradient descent,
6., respects importance weights. However, this does not demonstrate that using polynomially-tailed
losses leads to classifiers with lower test error compared to using exponentially-tailed losses. To
answer this more fine-grained question, we will need to perform a more refined analysis. We consider
the setting where the features associated with each label are drawn from two different sub-Gaussian
clusters. We shall consider a label shift problem where the training data is such that the number of
data points from the positive (majority) cluster will be much larger than the number of datapoints
from the negative (minority) cluster. The test datapoints will be drawn uniformly from either cluster.

3.2.1 Upper Bound for the Reweighted Polynomially-Tailed Loss Classifier

First, we shall prove an upper bound on the test error of the solution learnt by gradient descent on the
reweighted polynomially-tailed loss. Under the choice of weights described above, by equation (1)

-~ 1 w
f; = arg min + , st z-0>0, forallie€ [n],
0:][0]|=1 ;;Z(’ ;\/29

where z; = y;x; as defined previously. The following theorem provides an upper bound on the test
error of A1 and specifies a range of values for the weight w.



Theorem 3.2. (Proof in Appendix E.) For any 0 < C < 1, there is a constant ¢ such that, for all
large enough C and for any 0 < 6 < 1/C, under the assumptions of Appendix B, the following holds.

If the weight
3

T cw<om
5 Sw<

then with probability at least 1 — 9§, training on S produces a classifier 61 satisfying:
5 cllpll*
TestError[01] = Py y)~p... |Sign cx) £yl <exp|-— 7 .

It is rather interesting to note that the theorem requires the weight w to scale with 72, instead of 7,
the unbiased importance weight, which would ensure that the reweighted training loss is an unbiased
estimate of the test loss. In our proof, we find that in order to suffer low test error it is important
to guarantee that the norm of the gradients across the two groups is roughly balanced throughout
training. We show that at any training iteration, the ratio of the sum of the derivative of the weighted
losses in the majority and minority clusters scales as — . Thus choosing w to scale with 73 ensures
that the gradients are balanced across both groups. We also verify this in our simulations in Appendix
Figure 2, and find that choosing w = 73 ensures that the test error is equal across both classes leading
to low overall test error.

3.2.2 Lower Bound for the Maximum Margin Classifier

We will now show that classifiers trained with exponentially-tailed losses have their error lower
bounded by 1/8 in the same setting.

Theorem 3.3. (Proof in Appendix F.) Let ¢ ~ N(0, Ijxq). There exist constants ¢ and ¢’ such that,
Sor all large enough C and for any 0 < § < 1/C, under the assumptions of Appendix B, the following

holds. With probability at least 1 — §, training on S produces a maximum margin classifier gMM
satisfying:

c x/ﬁlull2>

T Vd ’

where ® is the Gaussian cdf. Furthermore, if the imbalance ratio T > ¢/ f\y ) then with probability
at least 1 — 9

TestError[@\MM] Pz y)Prs [81gn (QMM x) # y] > % d (_

TestError[OMM} >

oo\»—*

Together, these two theorems demonstrate that there is a strict gap between the performance of
exponentially tailed and polynomially tailed losses under distribution shifts. As a concrete example,
consider the scaling where ||;1||> = d2+30, n = d5 and 7 = d26 < n. For all large enough d, all
our assumptions are satisfied. Now since, ||11)|> > v/d, Theorem 3.2 guarantees that the test error of
51 3 0asd — oo. However, as 7 = d30 > N ul|?/n/d = ¢ dis, for all large enough d, the test
error of the maximum margin classifier is guaranteed to be at least 1/8. This degradation of the test
error with 7 is also apparent in our simulations in Appendix Figure 2.

4 Empirical evaluation on deep interpolating classifiers

Inspired by our theoretical results, we use a polynomially-tailed loss with importance weights to
train interpolating deep neural networks under distribution shift. We train models on two image
classification datasets, one with label shift, Imbalanced binary CIFAR10, and one with subpopulation
shift, CelebA. Though these nonlinear networks violate the assumptions of our theory, polynomially-
tailed loss with importance weights consistently improves test accuracy for interpolating neural
networks under distribution shift compared to importance-weighted cross-entropy loss. We show
these results in Appendix G and with details in Appendix H.

Our theory combined with our experiments suggest that heavy-tailed losses together with importance
weighting serve as a simple and general candidate for addressing distribution shift in deep learning.
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A Related Work

Early work [12, 16] already warned against the potential ineffectiveness of importance weights
on interpolating overparameterized models. Shimodaira [12] showed that when the model is well-
specified, importance weights can fail to have an effect, and that the ordinary maximum likelihood
estimate is asymptotically optimal. Wen et al. [16] showed that when there is a zero-loss minimizer
of an unweighted convex loss minimization problem, then it is also a minimizer of the (adversarially)
reweighted loss as well. Recent work [2, 17] has shown that importance weighting fails to have an
effect on neural networks trained with gradient descent, though always in the setting of exponentially-
tailed losses. Sagawa et al. [11] demonstrated that reweighting can fail to have the desired effect
when unregularized distributionally robust optimization (DRO) methods are used in conjunction with
the cross-entropy loss. They empirically showed that regularization is necessary to reap the benefits
of reweighting, also observed by Byrd and Lipton [2].

Our work also connects to literature that has studied the implicit bias of gradient descent [13, 5, 10].
Especially relevant is the work by Ji et al. [7] who relate the implicit bias of gradient descent with
exponentially and polynomially-tailed losses for linear classifiers to a solution of a regularized loss
minimization problem.

Finally, our generalization analysis draws from the growing literature focused on finite sample bounds
on the test error of the maximum margin classifier in the overparameterized regime [4, 9, 15, 3].

B Setting for Generalization Analysis

Here we formally describe the setting of our generalization analysis. We let C' > 1 and 0 < c<1
denote positive absolute constants, whose value is fixed throughout the remainder of the paper. We
will use ¢, ¢, c1, . . . to denote “local” positive constants, which may take different values in different
contexts.

The training dataset S := {(x1,¥1), ..., (¥n, Yn)} has n independently drawn samples. The condi-
tional distribution of the features given the label is

z|[{y=1} = +Uq
r|{y=—1}=ps +Ug,

where ;1 - p2 = 0, ||pa|| = ||pz]], U is an arbitrary orthogonal matrix, and ¢ is a random variable
such that

* its entries are 1-sub-Gaussian and independent, and
* E[llg)*] > Ca.

We note that in past work that studied this setting [4, 15, 3], the cluster centers were chosen to be
opposite one another ;13 = —pus. Here, since our goal here is to study a label shift setting we consider
the cluster centers p; and s to be orthogonal. This ensures that learning the direction of one of the
centers reveals no information about the other center, which makes this problem more challenging in
this setting.

Define P := {i € [n] : y; = 1} to be the set of indices corresponding to the positive labels and
N :={i € [n] : y; = —1} to be the set of indices corresponding to the negative labels. As stated
above, we will focus on the case where [P| > |N| > 1. Let 7 := % > 1 be the ratio between the
number of positive and negative samples.

The test distribution Pieg; is balanced. That is, if (z,y) ~ Piest, then P[y = 1] =Py = —1] = 1/2
and z | y follows the distribution as described above.

We shall study the case where negative examples (which are in the minority) are upweighted.
Specifically, set the importance weights as follows

S ifieP
T lw ifie N



Test Error vs. Imbalance Ratio (1) Test Error vs. Importance Weight (w = 77)
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n = 100. The mean p; = ||ulle; and po = ||p|le2, and ¢ ~ N(0, Iixq). (Left) We plot the test
error of 6, as 7 varies for different choices of w, and also for the maximum margin classifier. The
choice w = 73 leads to the lowest error throughout, while w = 7 also does well for small 7. Both
the polynomially-tailed classifier with no importance weighting and the maximum margin classifier
suffer large test error. (Right) Here we fix the imbalance ratio 7 = 10.1, and study how the error of
é\l varies with w. When w = 73, the error on both the majority and minority classes is almost equal,
resulting in low overall test error.

Assumptions. Given a failure probability 0 < ¢ < 1/C, we make the following assumptions on
the parameters of the problem:

1. Number of samples n > C'log(1/4).

2. Norm of the means ||u[|? := ||p1]|? = [|p2[|? > Cn?log(n/é).

3. Dimension d > Cnl|u||*.

Our assumptions allow for large overparameterization, where the dimension d scales polynomially
with the number of samples n.

C Label Shift Simulation with Sub-Gaussian clusters.

D Proof of Proposition 3.1

First, we restate the statement of the proposition.

Proposition 3.1. (Proof in Appendix D.) Suppose that the data is linearly separable. For any o > 0,
B € R, any initial point ©) € R%, and for all small enough step-sizes 1) the direction of the gradient
descent iterates satisfy the following:

o) 7

% 6@

Proof. Recall that the loss £, g is assumed to be convex, strictly decreasing to zero and is differen-
tiable. Define the minimizer of the loss over a ball of radius R as follows

fr = argmin Eaﬁ(ﬁ).
o:ll0lI<R

Under the assumptions of this proposition, we can invoke Theorem 1 by Ji et al. [7] to get that
. o . Or
0 [0O] ~ R R

-~

We will therefore instead demonstrate that limp_, ﬁR ., to establish our claim.



First, note that the classiﬁer 0 is the minimizer of loss in a ball of radius R, so there exists a Ry with
Lap(0r,) = Z wila,s(2i - Or,) < (mjin wi)la,s(B)
1€[n] )

such that for all R > Ry, each example is classified correctly by 6z and the margin (z; - ) on each
example is at least 3. Therefore,

Fasn) =St = 5 e

i=1

Thus, for any radius R > Ry we have

Or 1
= —argmmLa 0
R Ry I0l<R o)
1 n ’U_],L
— arg min &, St,zi-0>p
Re|o|<R{Z[i'9(ﬂ1)] }

n

1 1 w; 6 B8
arg min Sa & st,z; - (%) > 5
" Rujoj<r | R ; {z (L) - %} ()2 &

= — X [ R-argmin _—
R ool<1 | = [Zi 0 — @]

Now taking the limit R — oo we get that

lim Or = lim argmin Z S.t., z -0 > g}

T . qas
R— R R—o0 . loj<1 P |: .0 — 7:|

@ argmin { lim Z —a, St,z-02>
N =

n wz
= arg min —_—, st,z;-0>0
0:0)|<1 {; (2 - 0)"

(i4) = wy
= arg min —, St,z-0>0
o:0]|<1 {2_; (2 - 0) }
=0,
where (4) follows since for every R the function
n

Z =
«
—1
is convex and continuous, and therefore
n

W
! s.t., z; -0 >

ol

arg min _—
o:lloI<1 | =1 [Zl -0 — %}

has a unique minimizer (since the objective function is strictly convex, and the constraint set is convex
and compact), and is a continuous map by Berge’s maximum theorem [see, e.g., 1, Theorem 3.6].
Thus, it is possible to switch the order of the limit and the arg min. Equation (i) follows since the
data is linearly separable, so there exists a € such that z; - § > 0 for all ¢ which has finite objective
value.
Therefore,
o) on 5

lim —— = lim — =

t=oo [0 RS0 BV
which finishes our proof. |



E Proof of Theorem 3.2

In this section, we will prove an upper bound on the test error #;, which is the classifier learnt by
gradient descent with the importance weighted Polynomially-tailed loss that decays as 1/z. By
Proposition 3.1, we know the choice of /i and 3 does not affect the implicit bias of gradient descent,
hence here, for the sake of convenience, we shall use the specific loss function

0 o(2) = —(z=p8)+1 ifz<p
1,8(2) = % I~

with 8 = 1 — wn < 0. It can be easily checked that this loss function is convex, differentiable and
monotonically decreasing.

We want to bound the test error of 6;, however, in light of Proposition 3.1 we will instead bound the
test error of the limiting iterate of gradient descent starting from 0(*) = 8w?/3n (u; — w/3p5) with
step-size 7 > 0 (again by the implicit bias of gradient descent is not affected by the choice of the
initial point):

o0+ = 9 — pvL(6M),

where
L) =) liplzi-0)+w Y lp(zi-0).
i€P ieN
Recall that if the step-size is small enough then Proposition 3.1 guarantees that lim;_, % = 51.

In this section we will simply let ¢ denote ¢; g and also use the shorthands K,Et) = 0(z - W) and
O =0 (- 00),

With this setup in place let us begin the proof. All of the assumptions made in Section B are in scope
here. First we have a lemma that upper bounds the test error using Hoeffding’s inequality.

Lemma E.1. There is a positive absolute constant c such that

P g0 (0-5) 31 [ (Y 4y (2]

This lemma follows by mirroring the proof of [4, Lemma 9] which in turn follows by a simple
application of Hoeffding’s inequality [14, Theorem 2.6.3].

Next we have a lemma that proves bounds on the norms of the samples, bounds the inner products
between the samples and also shows that with high probability the data is linearly separable.
Recall that the constants C' > 1 and 0 < C < 1 were defined above in Section 3.2.

Lemma E.2. Forall0 < C < 1, there is a ¢ > 1 such that, for all large enough C, with probability
1 — 6 over the draw of the samples the following events simultaneously occur:

d
forall k € [n], - < lzrll? < ed; ()
foralli# j € P, |z -z §c<||,u\|2+ dlog(n/é)) ; 3)
foralli #jeN,|z -z SC(||MH2—|— dlog(n/é)); 4)
foralli € Pandj € N, |z; - zj| < cy/dlog(n/d); (5)
foralli# j € [n], |2 - 2] < c(|lull® + v/dlog(n/d)); (6)
forall k€ P, |un -z — 2] < /2 ™
forallk € N, |(—p2) - 2 — [|ull®| < [lll?/2; (®)
forallk e N, |y - zi| < cf|pll/log(n/d); 9
forallk € P, |pz - 2| < cl|ullv/log(n/d); (10)
the samples are linearly separable. 1D



Proof. 'We shall prove that each of the ten parts hold with probability at least 1 — §/10 and take a
union bound to prove our lemma. Under the assumptions of this lemma, Parts (2)-(4), (6)-(8) and
(11) can be shown to hold with the required probability by invoking [4, Lemma 13]. We will show
that Parts (5), (9) and (10) also hold with the required probability to complete the proof.

Proof of Part (5): Note that forall : € P, z; = u1 + Ugq;, and foralli € N, z; = pg + Uqgo.
Therefore, for any 7 € P and j € N, since p1 - o = 0,

lzi - 2| = 1 - (Ugj) + p2 - (Ugi) + ¢i - g5
< pa - (Ugp)| + 2 - (Ugi)| + [gi - ¢4
= (U ) - 5] + (U T p2) - @il + lai - g51- (12)
We will show that each of these terms is small with high probability for all pairs i € P and j € V.
For the first two terms, note that by Hoeffding’s inequality [14, Theorem 2.6.3]

c og(n c1c® 2 n
P |07 m) 0] > W] < 2exp (~18 o)

20 (-2 o)

c1c®/9
()
n

0
< )
— 30n

where the last inequality follows since the constant ¢ > 1 can be chosen to be large enough and
because 6 < 1/C for a large enough constant C'. Therefore, by taking a union bound over all j € N

_ c log(n/é ]
P [ay EN, (U ) g5 > DelIos(n/0) Vgg(”] <3 a3
Using an analogous argument we can also show that
1 0 0
P laz' P, (U o) o] > WVIos(n/0) Vggm”] <2 (14)

Next, using [4, inequality (15)] we get that

P[HZ#]E[H], |Qi'qj|> 3 30°

c\/dlog(n/é)] < K (15)

Combining inequalities (12)-(15) we get that for all ¢ € P and j € N with probability at least
1-46/10

o < 2VIOBS) | ARSI oot

|z - J

where the last inequality follows since by assumption d > Cn/||u||? and because C is large enough.
This completes the proof of this part.

Proof of Part (9): Forany k € N, 2, = ua + Ugqg. Recall that pq - us = 0, thus

b1 -zl = [pa - (Ugr)l-
Invoking inequality (13) proves that this part holds with probability at least 1 — 6/10.

Proof of Part (10): This follows by an analogous argument as in the previous part. |

We continue by defining a good event that we will work under for the rest of the proof.

10



Definition E.3. If the training dataset S satisfies all the conditions specified in Lemma E.2 then we
call it a good run.

Going forward in this section we shall assume that a good run occurs.

The following lemma provides some useful bound on the loss ratio at initialization and guarantees
that the loss of example remains in the Polynomially-tailed part throughout training.

Lemma E.4. Recall that 0©) = 8w?/3n(p; — w'/3uy), and that w; = 1ifi € P and w; = w if
i € N. Ona good run, foralli # j € [n]

(0) A\ /3
b _g(w)"
¢ w;
Furthermore, if the step-size 1 is sufficiently small then on a good run, for allt € {0,1,...} and for
all i € [n]

¢ = ! .
LT L0 —(B-1)

Proof. Consider an ¢ € P then
Q) 3
zi 0 = 8uw?n <Zz i — w3z uz) w?3n ( el yw'/3|pl[v/log(n/d) )

N 2c,w'/3 log(n/(;)]

< 120/ |

(i4)
< 16w/ *nl|u|?,

where (i) follows by Lemma E.2 and (ii) follows since ||iz]|> > Cn?log(n/d) > C1%log(n/§) >
5273 Cw?/3log(n/d) for a large enough constant C.. Similarly, we also have the lower bound

zi -0 = 8w?/3n (zZ iy — w3z ug)

> 8w?/3n <||H|| — crw'’3|| ]| \/log(n/0) ) > 4w?Bn|ul? |1

Recall from the definition of the loss that we set 3 = 1 — nw. Now again since ||u|* >
ssw?/3log(n/5), and because we choose 8 = 1 — nw, we infer that

2clw1/3 log(n/d)
[l '

8w?/*n ]

3

Since the margin of the point is larger than (5 — 1) therefore by the definition of the loss function
above we have that

200 —(B—1) > 2/3

—nw > 2w?3n||u|?.

0 = !
T L 00— (3-1)
and hence
1 1
el <9 < S e (16)
By mirroring the logic we can also prove that for all j € N
1 (0) 1 a7

Wown|ul* =7 = 2wnl|pl*
By combining equations (16) and (17) we immediately get that

61(0)<8 ” 1/3
TENTV A

11



This proves the first part of the lemma.

To prove the second part we shall prove that the loss on each example remains smaller than 1/2,
which ensures égt) is equal to the polynomial loss function. Note that

~ P| w|N| wn
LOO) = 3760 4 3700 < | + < <1/2.  (18)
L LTS S P S 2

This proves that 650) < 1/2 for all i € [n]. By [7, Lemma 2] we know that if the step-size is

small enough then the sequence {E(H(t))} is non-increasing. Hence, we have that 61@ < 1/2 for all
t € {0,1,...} and for all samples. This wraps up our proof. |

The next lemma lower bounds the inner product between the normalized gradient descent iterates,
and pq and po.

Lemma E.5. Ler ¢ be an absolute constant. Then, on a good run, for any t € {0,1,...}

pr 0T 00 1
gD = 10D T 90/a 6]
BFF2 600 2ev RIS Sp—ie

Tico | Tiep —will® - SEH S w0t

5=0 Tl

ZZ:O Zie[n] _wz[;(s)

and

po - 00D g 0O p? 1

g(t+1) = |gt+1) 2ev/d [0
oD = O 26V | 14 e Ly

s cy/log(n/é) s
ZZ:O [Zia\/ —wiﬁﬁ( ) £(n/9) Y iep —Wi El( }

el

Zs OZze[n] wlgl()

Proof. Let us prove the first claim for the inner product with p;. The second claim regarding jo shall

follow analogously. For any t € {0, 1,...}, by the definition of the gradient descent step, we have
that

H1 - Ut = pr- 00 + Uzwiul "% (—5;@)) +n Z Wiy * Z4 (_4@)) :
ieP ieN

Note that by the definition of the loss function we have that —E;(t) > 0 for all ¢ and all 7. Thus by
Parts (2) and (9) of Lemma E.2 we get that

0040 > g9 1 DS 0o /) 3 st

i€P iEN
2 1 )
Lo 4 el nllel? 3wl - llull® (e og(n/d) 3 —ul®
2 2 [l =

i
2 iEP ||,u|| iEN

o el lz_ww) er/os0n/8) 5~ _, ,@]

where c; is the constant from Lemma E.2. Unrolling this inequality over ¢ steps we have that

3w - GV RO log(n/9) 3wl )] .19

t
004D = iy g 4 T 5
i€P I ieN

2 s=0

12



On the other hand, by the triangle inequality we know that

10D < [|0@] + | VL(0D)]|

<09 40| S zi(—witl?)

1€[n]
<169 +n Z A (fwiﬁg(t)) (since fwifg(t) >0)
i€[n]
<0 + einvd Y —wil)?, (20)
i€[n]

where the last inequality again uses Part (2) of Lemma E.2. Therefore,

t
16D < 6O+ ernva > S —witl®

s=0i€[n]

t
< Cln\/gz Z —wlgi(s)

s=0i€[n]

1+

16| ]
anVd 22:0 Zie[n] _wigé(s)

Thus, combined with inequality (19) we get that,

py - 60D S K1 A s 1

10T = 60 2e,va | 1 ]
! + anvdyi_, Z'ie[n] _“’l[;(S)

¢ /(s) _ ci1y/log(n/d) /(s)
Ds=0 | 2iep —wily = IT dien —wil;

Zi:O Zie [n] 7w1£;(é)

which completes the proof of the first part of the lemma. The second part follows by an identical
argument. ]

Next, we prove a lemma that shows that throughout training the ratio between the losses between any
two samples remains bounded.

Lemma E.6. There is a positive absolute constant ¢ > 1 such that the following holds for all large
enough C, and all small enough step-sizes 1 and for any T—; < w < 273. On a good run, for all

te{l,2,...} andalli # j € [n]
/0 wo\ /3
i< .
¢ w;

Proof. Let ¢; > 1 be the constant ¢ from Lemma E.2 above. We shall show that the choice

¢ = max {8,2(4c3)'/3} suffices.
We shall prove this via an inductive argument. For the base case, at step t = 0, we know that by

Lemma E.4 that the ratio between the losses of sample 7 and j is upper bounded by 8 (w,/ wi)l/ 8,
Now, we shall assume that the inductive hypothesis holds at an arbitrary step ¢ > 0 and prove that it
holds at step ¢ + 1.

Without loss of generality, we shall analyze the ratio between the losses of the samples with indices
1 = 1and j = 2. A similar analysis shall hold for any other pair. Define G; := E(lt), H, = fgt),

13



At = Ht/Gt. Note that,

Gip1 = 9(t+1) .zll_ (B-1)
B 1
00z 0 g w7 (k 2) — (B 1)
0 1
0 . 2 — (B—1) + nZke[n] w(2zx - 21) (g]it))z
i
1 —i—nﬁgt) Eke[n] wi(zr - 21) (4;))2

1
2
1+ 6" 2 ke Wh(zk - 21) (ES))

-G, -

where (i) follows since égt) = (E,(:))Q as the loss of each example is always in the polynomial tail
of the loss by Lemma E.4. Therefore, we have that

Ht+1 . Ht 1 +n£ Zke[n ’U)k “k 21 ( )
Gis1 Gt 1+n£ Zke[n wi(zk + 22 ( )
1 +77€(t) Zke wg(zg - 21 ( 2 )
ot
k

1+nf(t)zk€ wi(2k + 22 ( )

A =

— A, -

Now since the step-size 7 is chosen to be small enough, |z; - z;| < c¢1d (by Part (3) of Lemma E.2

and by the assumption on d) and because the losses are all smaller than a constant by Lemma E.4, the
following approximations hold

1+ net” Z wi (25 - 21) (51(:))2 <exp [ net” Z wi (25 - 1) (51(:))

ke(n] ke [n]
(t) ) nty) )
1+ nt, Z wg (2k - 22) (ﬁk ) > exp 5 Z wi(zg - 22) (Zk ) ,
ke(n] keln]
and thus,
(0) 0y? _ nts) %
Appr < Arexp | n k%:] wi(zk - 21) (Ek ) - k%:] wi(zk - 22) (& ) . 2D

n C n

14



Let us further upper bound the RHS as follows

2 9 2
Ay exp nﬁ(lt) Z wi(zg - 21) (él(f)) — nT2 Z wi(2k + 22) (pr)

ke(n] keln]

3 1 3
= cesp (o (#7) 11P = Gowa (7)) 21?)

X exp nﬁgt) Zwk(zk - 21) (E,(:))z - %nﬁgt) Zwk(zk >y (@9)2
k#£1 k#2

D 4 oo (cmdwl (K(lt))‘g . (fét))g)

201
(*) fg) 2 )2
x exp | can | 43 + 5 (HMH + dlog(n/é)) Zwk (ék)
ken]

1
< A;exp (clndlef’ — QClndngf’)
2 ®)?
x exp | can (G + Hy) (”/LH + \/dlog(n/5)> E Wk (fk )

ke[n]
1 2c3w

w3
2
x exp | coan (G + Hy) (||MH2 + \/dlog(n/5)> Z W (6,(;)) , (22)
ke[n]

where (i) follows since for all i € [n], d/ci < ||z]|> < c1d and for any j # k, |z - 2| <
e (”/LH2 + dlog(n/é)) by Lemma E.2.

With this upper bound in place, consider two cases.

Case 1 (4} < 4?}%): Using inequality (22) we know that

1 202w
Aprr < Apexp (—%ndngf’ <A? — 11))

w2

x exp | can (Gy + Hy) (||u||2 + dlog(n/é)) Z wi (fo))g
ke(n]

2
< Apexp (cindwiG}) exp | con (Gy + Hy) (HMHQ + dlog(n/5)> Z wi (é;(:))
ke(n]

Now the loss on each example is less than the total initial loss 1/2 (see equation (18)) and therefore,
A1 < Ay exp (esndw) exp (0477 (H;LH2 + dlog(n/5)> wn)

) 2 1/3 2 1/3 (43) 1/3
2 (401M1> exp(1/8) < 2 <461wl) Y C(wl) 7
w

w2 w2

1/3
where (7) follows by choosing the step-size 7 to be small enough and because A; < (4(‘5}%) in

this case, and (i7) follows by the choice of constant ¢ > 2(4¢?)'/? from above.

15



Case 2 (@ < A} < @): In this case again by inequality (22)

2
Aprq < Apexp (—ndw2G3 <A3 2011111))

w3

x exp (ch (@ + ) (Il + /ATog(n9) 3 wi (40)

ke[n]
1 2ctw

2
E(f)
2 ( k
x exp | conG? (A +1) <||u|| + +/dlog(n/d) ) Z W @
keln]
(i) 1 3
< Asexp ( —ndwyG? (Af — 2clw1>)
2¢q w2
u) 1/3 wi\2/3
x exp | cenG? max wi) 71} (H/iH? + dlog(n/é)) Z Wi (wi)
ke[n]

1 2c3w

1/3
X exp (C677U}1G ||H||2 + v/ leg n/§ ) Z (Inln{fu)lu]z}>

< A; exp f—ndng?’ <A3 iy ))
W

X exp (c(;nlef’ (H/L||2 + dlog(n/d)) <|73| + w1/3|N|>)

1 2c3

w2

1/3
X exp <CG77U)1Gt3 (H#HQ + dlog(n/é)) |P] <1 + wT)>

(447) 3 3
< A;exp —Q—ndng A7

(iv) 2
< Aiexp (—ndw2G3 clw1> exp (206171111(?? <H/1,||2 + dlog(n/é)) n)
w3

= A exp [_ClﬂﬂGt (d —cm (HM||2 + dlog(n/5)>)} ’

2c%w1

))wp@%mmﬁowﬁ+ T105(1/3)) n)

w2

where () follows by the inductive hypothesis which guarantees that * m <e(E)t < cw'/?, (i)

follows since wy, = 1 if k € P and wy, = w if k € N. Inequality (uz) follows since w < 273 and

.2 . .
since |P| < n, and finally (iv) follows since in this case A3 > 42}%. Now since by assumption the
dimension

d> Crllul2 > C?n* log(n/9)
1/3
for a large enough constant C. Hence, we have that A; 1 < A; < ¢ (%) in this case.

Recall that since we assumed the inductive hypothesis to hold, the two cases analyzed above are
exhaustive. This completes our proof. |

The next lemma uses the loss ratio bound that we established to show that the difference between the
gradient of the losses over the positive cluster and the negative cluster is small at any iteration.
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Lemma E.7. For any positive ¢, there exists a 0 < ¢ < 1 such that, for all large enough C, if the
step-size n is sufficiently small and g < w < 273 then on a good run, for any t € {0,1,...}

%

ieP |H|| ieN [n]

5t - R S 9 20 5
and

%

= lul =

Z —’wzf/(t) . \/WZ /(75 >c Z —w;l ’(t).

Proof. We begin by proving the first part of the lemma. Note that since [n] = P U N to prove the
first part it suffices to instead show that

(L%Q:wgm>G+amwwv§}wﬂw

i€P

—c —¢® 57V10g(n/5) w /(t)

R o
. (t)2 cy/log(n/d) ) (t)y2

= (1 );(fz ) Z( + Tl > ie/\/(gl )

(since —¢; " —

@@@mgwaz<mcvmmm

———= | w|N| max(él(t))Q
ieN

(éz(.t) )2 for the polynomial loss)

=

([l mmlep(ﬂgt))z
¢+/log(n/d) 1
<(l—-cr>|c 1
t=a ( Tal Wl
(by invoking Lemma E.6; note that ¢; > 1)
= (1- C)~ > w3
c1 (c—!— \/%>

(since ||u|| > v/Cn?log(n/d), where C is a large enough constant).

Since C is large enough, we now choose the constant 0 < ¢ < 1 to be such that (1—c)/(c1 (c+&/v/C))
is at least (2)'/3. This proves the first part of the lemma.

17



To prove the second part of the lemma, note that again since [n] = P U A it suffices to show that

(1 _ C) Z _,wlg;(t) > (C + ClOg(TL/(S)) Z _wlgi(t)

iEN ] i€P

< (1= o Wlwmin(f”)? > (c—i— cy/login/0) 1°g(”/5)> 1P| max(¢")?

( log(n/8) )
el )2
“w > maxiep (¢ f) T
(I-c) mmleN(Q(/ )?
log(n/6
el
S w > (1 — c 01w
c1 (C + L)
<~ w1/3 > 7\/6 - T
(1 —¢)
1/3
where the last implication follows by the choice of ¢ from above. This completes the proof. ]

We now have all the pieces required to prove our main theorem. Recall its statement.

Theorem 3.2. (Proof in Appendix E.) For any 0 < C < 1, there is a constant ¢ such that, for all
large enough C and for any 0 < 6 < 1/C, under the assumptions of Appendix B, the following holds.
If the weight

3

— <w<278
2

7

then with probability at least 1 — 9§, training on S produces a classifier 51 satisfying:

~ ~ 4
TestError[01] = P, )Py, |:Slgn ( ) # y] < exp ( ||Z|| > '

Proof. First, by Part (11) of Lemma E.2 we know that the data is linearly separable. Thus, by
Proposition 3.1 we know that

~ 10
b1 = fim e

Given this equivalence, by Lemma E.1 we know that
Play)npi [Sign (51 x) a y}

' o)
= ]P(l’,y)NPtest |:Slgn (tll>rgc> ||9 t)” ) # y:|

1 P10 2 P10 2
<3 oo (- () ) re (¢ (o ) )|

. . o)
‘We shall now establish lower bounds on hmt%OO (t)”z to obtain the desired

lie
The bound on hrn]HC>O shall

0.y
”9(,)” and hmtHOO

bound on the test error. Let us lower bound limtﬁoo
follow by exactly the same logic.

HQ(*)H HG(”H
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By Lemma E.5 we know that

1 Y
LTI

pa 00l 1
= B ooy M o va [ 1s [Z7] "
Va3, 2iem *“"Z/'(S)
i ,(s) \/log ’fl/6
> | 2wk > v
s=0 LieP N ieN
@ lpl? 1
> - lim X
= 9¢iv/d  t—oo 0]
lf L+ anvd¥i_, 2iemn] —wi )
: /(s) 1y s/ ¢ 10g TL/(;
Z Z_wifi - Il Z
s=0 LieP K 1EN
(72— 1
2q¢*t5& T 0O x

anvdyi_, Die [n] *“’if;(s)

t

. s c14/log(n/d) R

o 3|3 -l - SRS ] ] o
s=0 LieP H ieN

where (i) follows since j; - 6(°) is bounded and [|#*+1)|| — oo by [7, Lemma 2].

We will now show that the first limit in RHS equals 1. To do this, first note that

. 1 1
1> lim =

o0 6] 1+ 6]
s 11
0177\/322:0 Zie[n] *“’ifi( ) e cm\/ﬁzizo Zie[ —wi 5,(5)

Now we will show that

. 16
%) ’( )
= c 77\/>Zs 027.6

. (0
First note that 161 7w = 0, since —w; /(s) > 0, so to show that this limit equals
cin qu 0 276[71 —w;il;

0, it suffices to show that ¢;7v/d Zb 0 2ie]
inequality (20) from above we get that,

icn] wiéi( s) grows unboundedly as ¢ — oo. Using

t
10D < 16D + erpvd D —wilY < 1|6 + anVdd Y —w ).

i€[n] s=04€[n]

The norm [|0(©| is finite and we know that ||| — oo by [7, Lemma 2], therefore
anvd Zi:o > i) —wiﬁg(s) must grow unboundedly. This proves that

I ! =1
= O] -

anvdyi_, 2ieln] _w'iéi(s>
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as claimed. This combined with inequality (24) yields the bound

t ) c14/log(n/d) o gl(8)
RY Gy |2 Dm0 | 2iep —wil; Al 2 ien —wil;

lim > lim ’
t=oo [[0HD]| T 96 \/d = > o Y —l®
) ¢ /(s)
) 02||M||2 . Zs:o Zie[n] —w;l;
Vd tlifgo t 1(s)
D=0 2icin] Wil

ca|lpl®
vd '
where (7) follows by invoking Lemma E.7. As stated above, using a similar argument we can also

pr-0CtD o)
oC+D = va
our proof. |

—~
S

show that lim;_, o . Plugging these lower bounds into inequality (23) completes

F Proof of Theorem 3.3

In this section we will prove a lower bound on the test error of the maximum margin linear classifier
Omm. Here we will work with the exponential loss

£(z) = exp(—2).

Define the loss E(G) = 2 icin] Uyx] 0) = > ien) (2, 0). For a step-size 7 and initial iterate

() = 0 (this choice of initial point is for the sake of convenience, it does not affect the implicit bias
of gradient descent) for any ¢ € {0,1,...}

o0+ = o) — T L(HM)
be the iterates of gradient descent. We let 4” be shorthand for £(z; - () and therefore,

gt = 9) — pVL(eM) =) + ¢ Z Zz'&(vt)-
i€[n]
The results by Soudry et al. [13] guarantee that for a small enough step-size 7 the direction of the
iterates of gradient descent lim;_, % = Omm. Therefore, we will instead prove a lower bound
on the asymptotic iterates of gradient descent.

As we did in the proof of Theorem 3.2, going forward we will assume that a good run occurs (see
Definition E.3), which guarantees that all of the conditions specified in Lemma E.2 are satisfied by
the training dataset S.

With the setup in place, we shall now prove this theorem in stages. Throughout this section the
assumptions stated in Section B shall remain in force. We begin with a lemma that shows that the
margin of the maximum margin classifier scales with \/d/n.

Lemma F.1. There is an absolute constant c such that, on a good run, for all large enough C, for all

i€ [n]
§|\/||v| - Zi Z C\/E.
n

Proof. We will prove this result by constructing a unit vector ¢ with a margin that scales with /d/n.
This immediately implies that the maximum margin classifier must also attain this margin on all of
the points.

Define ¢ to be as follows
b= Zie[n] i
12 5 %l
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‘We will first bound the norm of the denominator as follows

2
Syl =Y 5Pz

JE[n] JE[n] J#k
< lzIP 4+ 1z 2]
J€[n] J#k

(#)
< cynd + e1n? (||,u||2 + dlog(n/é))

__CNMZ<1+,QHMH2+_n\ﬂogﬁv5)>
d Vi
(i1)

< 2¢ind (25)

where (i) follows by Lemma E.2 and (i4) follows since d > Cnl|u||*> > C?n3log(n/d) where recall
C is sufficiently large.

Now we lower bound the margin between numerator of v and zj, for any & € [n]

Sz a=alP+> zim > al? =D Jzi -zl

i€[n] i#£k k#i

@) d
> = —an(lul* + V/dlog{n/5))

_d (| Gnlu?  &ny/1og(n/5)
d Nz
d

C1
> — 26
= (26)

where (i) again follows by invoking Lemma E.2 and by the assumption on d,

Combining inequalities (25) and (26) yields that for any &k € [n]

SR
2c1v/2¢c1nd n

This proves the result. u
The next lemma provides control over the rate at which the norm of iterates #(*) grows late in training.

Lemma F.2. There is an absolute constant c such that, for all large enough C, if the step-size 1 is
sufficiently small then on a good run, there exists a to such that for all t > tg

d
|| > (1g®) \/7 /0
[ [ > 116"]] +cn HE}Z

i€[n

Proof. By the definition of gradient descent
||9(t+1)||2 _ ||9(t) 4+ Z £§”zi||2

i€[n]
— ||9(t)||2 + 27 Z éﬁ-”zz- Q) +772|| Z gl(t)Zin
ken] i€[n]
> (1002 + 27 Y 60z 00, 27)
1€[n]
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Now we know that
that for all ¢ € [n]

— 9MM Also note that in the previous lemma (Lemma F.1) we showed

~ d
Oum - zi > ci1q/ —.
n

Therefore, there exists a iteration ¢; such that for all ¢ > ¢; and all ¢ € [n)]

HG(*)H

) . 2,
16®]]

>7

3

Continuing from (27), for any ¢ > t;
6N = 160”425 Y 672 0

i€[n]
SN Y
i€[n]
t
()2 Cm\fzze
= 16"l 7]
Taking square roots we get that for any ¢ > t;
()
0177\/>Z ¢
10911 = 0] TOTE 28)

Further by [7, Lemma 2] we know that ||9(t) || = oo, so there exists a to such that for all ¢t > o,
0O > 6“787@. Thus, for ¢ > to, we have

(t)
1 Yiem b
T80T .cln\/7 S <s. e[ I <3 (29)

i€[n]

where the last inequality follows since the initial loss is equal to n, as #(®) = 0, and the total loss is
decreasing again by [7, Lemma 2] if the step-size is small enough. It is easy to check that for any
0<xr<8

\/1+x21+£.

Thus, combining inequalities (28) and (29) we get that for all ¢ > to = max{t1,t2}

a2 d ®)
% 77\/7 Zze[n] i t) LAY Zze[n] él

D > (|04 | 1 > 16®] [ 1
ol 2 oy 14— 2 8O | 1 e
d
— lo® a \/7 2
000+ G 38
which completes our proof. |

Continuing we will show that throughout training the ratio of the losses between the different examples
are bounded by a constant. This ensures that each example roughly “influences” the gradient update
by the same amount in each step. However, since the number of points from the positive cluster
is larger, the gradient update shall overall be more highly correlated with the mean of the majority
positive center p1 than the mean of the minority negative center .

The proof is identical to the proof of Lemma 11 by Chatterji and Long [4]. However, since our setting
is slightly different to the setting studied in that paper we reprove the result here.
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Lemma E.3. There is an absolute constant c such that, for all large enough C, and all small enough
step sizes m, on a good run, for all iterations t € {0,1,...} and all i, j € [n]

Proof. First note that 2(9(0)) = i El(.o) = n and since step-size 7 is small enough training loss
is non-increasing by [7, Lemma 2].

Let ¢; be the constant ¢ > 1 from Lemma E.2. We will show that ¢ = 40% suffices.

We shall prove this via an inductive argument. For the base case, at step ¢ = 0, we know that (°) = 0,
therefore the loss on all of the samples is equal to 1. Now, we shall assume that the inductive
hypothesis holds at an arbitrary step ¢ > 0 and prove that it holds at step ¢ + 1.

Without loss of generality, we shall analyze the ratio between the losses of the samples with indices

¢ =1and j = 2. A similar analysis shall hold for any other pair. Define G, := th), H; = K(t),
Ay := H;/Gy. The ratio between these losses at step ¢ + 1 is

(t+1) .z )
(t+1) )

0
6

(=
(=

exp(— (9()‘1‘772%[]5 Zk) 2)
(—(0¢ )“‘772%[]6 Zk) 1)

= A; -exp | —n Z f](f) (Zk “ 2o — 2k '2’1)
ken]

=Ag-exp | = [ Bzl = 600212 =Y 0 2 20+ >0 2 2
k#2 k#1

= Ag-exp | = | Hellzl? = Gellaal* = Y 6020 - 22+ Y 002, 21
k#2 k#1

< Ag-exp [ = | Hillzal® = Gellal? = 3" 60120 22) = > 67 |2 - 21
k2 k#1
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Now note that by Lemma E.2, for all i # j € [n], d/c; < ||z]]? <

< cid and |z; - zj| <
c1 (HMH2 + dlog(n/é)), and therefore,

H.d
Ay < Ap-exp | = | 25 = Grerd = 20 ([l + V/dlog(n/5)) 3 41
ke[n]

f(t)
— ) =201 (lull? + VTlog(n/5)) G 3 -

ken]

e p( n< (4e = ) = 8¢ (IulP + /@Tog/)) Gon )

)
( “(z+2)))

(4, - 201)) (30)

= A; - exp

(i)
< Ay -exp

(#i7)
< A;-exp

where (i) follows since by the inductive hypothesis ﬂg)/ G < ¢ = 4c3, (ii) follows since by
assumption d > Cnl|u||?> > C?n®log(n/§), and (iii) follows since C is sufficiently large.

Now consider two cases.

Case 1 (A; < 2¢?): By inequality (30)

Gd
C1

Appr < Ay -exp <77th (A — 20%)) = A, exp (77

(2¢ — At)> < 2¢2 exp (2nc1Gyd)
a1

< 2¢3 exp (2ncynd)
< 4c2,

where the last inequality follows if the step-size 7 is sufficiently small.

Case 2 (2¢? < A; < 4¢? = ¢): Again by inequality (30)

77th
C1

At+1 S At + exXp ( (At — 26%)) S At S 40%

Thus, we have shown that A; 1 < 4c} = cin both cases. Since we assumed the induction hypothesis
to hold at step ¢, these two cases are exhaustive, and hence the induction is complete. |

The next lemma proves an upper bound on the difference between the inner product between (1) i,
and the corresponding inner product at iteration ¢. Since we start at (°), unrolling this over ¢ steps
gives us an upper bound on inner product 6) - i, for any t > 0.

Lemma F.A4. There is an absolute constant c such that, for all large enough C, if the step-size 1 is
sufficiently small then on a good run, for all t € {0,1,...}

2
C
(6041 6 - () < T 5 4t0)

1€[n]
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Proof. By the definition of a gradient descent step

(O — M) . (—pg) =1 Z 092+ (— o)

1€[n]
( ) 3
77||M|| Zf(t)+01ﬂ||ﬂ||\/wzg(t)
iEN i€EP
(4) 2
< —3’7";‘” NS 0 4l iostnge) - 2215 40
i€[n] i€[n]
_ eanlull® [PV /log(n/0) V1og(n/6) N
2 P ) 2
N| /log(n/d)
< 3c 17||u||2max { ||P|| |MH Z é, )

where (7) follows by Lemma E.2 and (iz) follows by the loss ratio bound in Lemma F.3. Since by
assumption | u||? > Cn?log(n/§), we infer that

log(n/9)
[

V]

<-<i=
Pl

1
n

Thus,

V10g(n/5)
(OED _ g0) . (Zpy) < 30277p||2max{ /7\3/|| Ollg IT/ } Z o = C"”“” 3o,
W

i€[n] i€[n]

wrapping up our proof. ]

With these lemmas in place we are now ready to prove our result. Let us restate it here.

Theorem 3.3. (Proof in Appendix F.) Let ¢ ~ N(0, Iy« q). There exist constants ¢ and ¢’ such that,
Sor all large enough C and for any 0 < § < 1/C, under the assumptions of Appendix B, the following
holds. With probability at least 1 — §, training on S produces a maximum margin classifier Oym
satisfying:

7 1 ¢ nllpl?
TestEroa] = Foonc ion (B 2) 9] > 3o (-2 LA,

B

where ® is the Gaussian cdf. Furthermore, if the imbalance ratio T > ¢/ ‘/E\%”z then with probability
at least 1 — 0

TestError[@\MM} >

00| —
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Proof. The test error for é\MM is
TestError[@MM}

= Pa,y)~Prex [Sigﬂ (§MM : l“) a y}

1 1 . ~
2 QNN(O 51pxp) |:Slg (GMM Ml + q)) # 1:| + i]quN(O’%Ipxp) |:Slgn <0MM : (NQ + q)) 7& _1:|
1
25 5 PyoN(©.11,00) {Sl <9MM (12 ‘H])) # —1}
1
= 2 qNN(OrszXp |:
1
= 2 qNN(O’zIpo |:

SPenon [€< —Bum- (—m)} (since i - g ~ N(0, 1))
O(—Oum - (—
_ ( MM2 ( Mz)), (31)
where ® is the Gaussian cumulative distribution function.

Om - 12 — O - (J<0}

g < —Oum - (— ,uz)}

~ 2
With this inequality in place, we want to prove an upper bound on <0MM - ( —m)) . Now, since

o(t)

2
0 (—p2)\" -
TGl instead.

— Omwm, it suffices to prove an upper bound on (limt —o0 T

To do this, going forward let us assume that a good run (see Definition E.3) occurs. Lemma E.2
guarantees that this happens with probability at least 1 — §.

Let ¢ be the constant from Lemma F.2, then by Lemma F.4 we have that for any ¢ >

t
00 (—pi2) = 00 - (—p) +Z 0 =000 (pa) + DT (09 = 0070) - (o)

s=to+1

s=to ze[n]
where we define 1 := 0(0) - (—pg) + 32, (0¢) — 9=V - (—ps).
On the other hand, by repeatedly applying Lemma F.2 we get that

16D > [lo¢ |+@an ZW (33)

s=to i€[n

Furthermore, since ||0(!)|| — oo [by 7, Lemma 2] and

: t
||9(t+1)|| = |6 4 nz Z 61(-3)21- < 772 Z gES)”ZZ”

s=01i€[n] s=01i€[n]
t
< esnd Z Z Egs) (by Part 2 of Lemma E.2)
5=0 i€ [n]
to—1
—C3ndz Z€5)+03ndz ZZS)
s=0 i€[n s=to i€[n

we can conclude that 3 _ —to 2_ic[n] 6 - o,

Thus combining inequalities (32) and (33) we get that

. ( ,UZ) W+ cm\lu\l Es N Zze )
. . "l
t—o0 ||0 || ~ t—oo He tO)H —+ 0277\/>Zs to 27.6
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Plugging this upper bound into inequality (31) completes the proof. ]

G Empirical evaluation on deep interpolating classifiers (continued)

We use the same polynomially-tailed loss with « = 1, 8 = 1, and £ (2) = log(1 + e~ %)/ log(1 +
e~ 1), ensuring that ¢, s is continuous and differentiable at transition z = f3.

Imbalanced Binary CIFAR10. We construct our label shift dataset from the full CIFAR10 dataset.
Similar to Byrd and Lipton [2], we create a binary classification dataset out of the “cat” and “dog”
classes. We use the official test examples as our label-balanced test set of 1000 cats and 1000 dogs.
To form the train and validation sets, we use all 5000 cat examples but only 500 dog examples from
the official train set, corresponding to a 10:1 label imbalance. We then use 80% of those examples for
training and the rest for validation. We use the same convolutional neural network architecture as
Byrd and Lipton [2] with random initializations for this dataset.

CelebA. For our subpopulation shift dataset, we use the CelebA with spurious correlations dataset
constructed by Sagawa et al. [11]. This dataset has two class labels, “blonde hair” and “dark hair”.
Distinguishing examples by the “male” versus “female” attribute results in four total subpopulations,
or groups. The distribution shift in the dataset comes from the change in relative proportions among
the groups between the train and test sets. To reduce computation, we train on 2% of the full
CelebA training set, resulting in group sizes of 1446, 1308, 468, and 33. We construct our test set
by downsampling the original test to get group-balanced representation in the test set, resulting in
180 examples for each group. Following Sagawa et al. [11], we use a ResNet-50 with ImageNet
initialization for this dataset.

G.1 Interpolating regime

To understand the impact of polynomial losses in the interpolating regime, we train unregularized
neural networks with SGD past 100% train accuracy and report their final accuracies on the test
sets. We compare models trained with our polynomially-tailed loss against those trained with the
cross-entropy loss which has exponential tails. Let w correspond to the unbiased importance weights.
We consider three weighting scenarios for both loss functions: no importance weighting at all,
“No IW”, the classical unbiased importance weighting, “IW (w)”, and biased weighting where we
exponentiate the weights, “IW (w®))”, increasing the ratio of different weights. The third setting is
inspired by our theory in Section 3 that shows biased importance weights can improve performance
for polynomially-tailed losses. We set the exponents to be the largest value that still allowed for stable
optimization. For CelebA, we exponentiate by 2 and for CIFAR10 we exponentiate by 3/2. We run
10 seeds for each experiment setting. We compare the two losses via paired one-sided Welch’s ¢-tests,
pairing runs with the same random seed. We report the exact numbers in Appendix H.

Figure 3 shows the mean accuracy and the standard error for each of the three settings.

As indicated by our theory, we find that importance weighting with polynomially-tailed losses leads
to statistically significant gains over cross-entropy in all cases. Further we find that exponentiating
weights boosts the performance of polynomially tailed losses, confirming our claims in Theorem 3.2.
However, exponentiating the weights leaves the performance of cross-entropy loss largely unchanged.
In the case of CelebA, we find that exponentiated reweighting with poly-tailed losses outperforms
all other methods. While in the case of Imbalanced Binary CIFAR10, we find a smaller gap
between polynomially-tailed losses and cross-entropy, partially due to a substantially higher run-
to-run variability in training. This variability does not affect our main conclusion: exponentiated
reweighting with polynomially tailed losses still outperforms this at a significance level of p = 0.01
even with this noise level.

’The mean test accuracy for “No IW” with cross-entropy on CIFAR10 appears to deviate from “IW”, but this
is due to the high variance across multiple runs of the model. The high variance arises due to 10:1 imbalanced
training data, combined with the fact that we train the models until they interpolate the training data. These
results for “No IW” differ slightly from those in Byrd and Lipton [2] which used balanced training data and
imbalanced test data.
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Figure 3: Polynomially-tailed loss versus cross-entropy loss on a label shift dataset and a subpopula-
tion shift dataset for neural networks optimized past 100% train accuracy without regularization.
and *x indicate p < 0.05 and p < 0.005 statistical significance, respectively. Importance weights
(IW) consistently leads to gains when used with the polynomially-tailed loss across both datasets.
Exponentiating the weights further amplifies these gains for the polynomially-tailed loss. IW has
little effect for cross-entropy.”
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Figure 4: Polynomially-tailed loss versus cross-entropy loss on a label shift dataset and a subpop-
ulation shift dataset for neural networks early-stopped according to the best weighted validation
accuracy. * and *x* indicate p < 0.05 and p < 0.005 statistical significance, respectively. While early
stopping is effective for both losses, our polynomially-tailed loss performs even better on Imbalanced
Binary CIFAR10.

G.2 Early-stopping before models interpolate

Prior works [11, 2] found that adding regularization such as strong L2 regularization and early
stopping can partially restore the effects of importance weights at the cost of not interpolating
the training set. As such, we compare the performance of our polynomially-tailed loss against
cross-entropy when models are early-stopped. For each run in Section G.1, we select the model
checkpoint with the best weighted validation accuracy and evaluate the checkpoint on the test set.
Figure 4 compares the test accuracies of the early-stopped models (IW-ES (w), IW-ES (w®)) against
reweighted models trained past interpolation (IW (w)).

Consistent with prior works, we see that early stopping as a form of regularization improves the test
accuracies of both loss functions when used with importance weights. Our polynomially-tailed loss
gives test accuracies that are better than or similar to cross-entropy in all weighted loss scenarios.
The gain over cross-entropy is statistically significant in the Imbalanced Binary CIFAR10 runs. On
CelebA, the polynomially-tailed loss with squared weights attains the highest mean test accuracy out
of all settings.

H Experimental details
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H.1 Hyperparameters

Imbalanced binary CIFAR10 experiments. We use the same convolutional neural network
architecture with random initialization as [2]. We train for 400 epochs with SGD with a batch size of
64. We chose hyperparameters that resulted in stable training for each setting. We use a constant
0.001 learning rate with 0.9 momentum for “No IW”, “IW (w)”, and “IW-ES (w)”. We use a constant
0.008 learning rate with no momentum for “IW (EW 2y’ and “IW-ES (@3/ 2y,

CelebA experiments. We use a ResNet50 architecture with ImageNet initialization as done in [11].
Due to the large dataset size, we use only 2% of the full training dataset as mentioned in the main text.
Reducing the computation requirements allows us to perform statistical evaluations of the results
over sufficiently many seeds. We train for 100 epochs with SGD with a batch size of 64. We chose
hyperparameters that resulted in stable training for each setting. We use a constant 0.0004 learning
rate with 0.9 momentum for all settings.

H.2 Importance weight computation.

Here we explain in greater detail how we compute the importance weights. Note that the scale of the
importance weights is important in ensuring stable training. Let there be G groups of subpopulations
in the training and testing set. G = 2 for binary CIFAR10 and G = 4 for CelebA. Let nq,...,n¢g be
the counts of each group in the training set. Let n be the total number of training examples. In our
case, the test set is balanced across the groups. Our procedure for computing weights is:

1. For each example ¢ that belongs to group g, compute the unbiased weight: @, < 1/ng.

2. Exponentiate the weights by c if necessary: w; <— wj. No importance weighting corresponds
to ¢ = 0. Unbiased importance weighting corresponds to ¢ = 1.

3. To adjust for the scale of weights, normalize by the average exponentiated weight across the
full training set: w; < w;/ Z?Zl w;. Only normalizing across each minibatch can result in
unstable training, especially when a minibatch contains no representatives from a group.

H.3 Early-stopping metric.

We use the checkpoint with the highest importance weighted validation accuracy when early stopping.
We compute separate importance weights of the validation set with respect to the test set, and reweight
the validation accuracy using unbiased weights, even when the training weights are biased. Our
procedure allows for the situation where the validation set is not exactly the same distribution as the
training set.
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H.4 Exact numerical results of our experiments

Cross Entropy Poly-tailed Loss

mean std.err. mean std.err. p-value
dataset Setting

Subsampled CelebA  Early-stopped IW 0.793 0.004 0.807 0.006 0.014
IW-ES 0.849 0.007 0.840 0.009 0.762
IW-Exp-ES  0.851 0.007 0.859 0.008 0.202
Interpolating  IW 0.793 0.004 0.807 0.006 0.014
IW-Exp 0.787 0.004 0.827 0.004 0.000
No IW 0.796 0.004 0.785 0.004 0.999
Binary CIFAR10 Early-stopped IW 0.578 0.004 0.604 0.003 0.000
IW-ES 0.625 0.007 0.634 0.005 0.022
IW-Exp-ES  0.612 0.008 0.635 0.006 0.001
Interpolating ~ IW 0.578 0.004 0.604 0.003 0.000
IW-Exp 0.574 0.006 0.630 0.006 0.000
No IW 0.605 0.008 0.564 0.004 1.000

Table 1: Numerical results corresponding to Figure 3 and 4. Here “Exp” corresponds to exponentiated
weights. We use 3/2 and 2 as the exponents in Binary CIFAR10 and CelebA respectively.
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