
Momentum Approximation in Asynchronous Private
Federated Learning

Tao Yu∗

Amazon
Congzheng Song

Apple
Jianyu Wang

Apple
Mona Chinits

Apple

Abstract

Asynchronous protocols have been shown to improve the scalability of federated
learning (FL) with a massive number of clients. Meanwhile, momentum-based
methods can achieve the best model quality in synchronous FL. However, naively
applying momentum in asynchronous FL algorithms leads to slower convergence
and degraded model performance. It is still unclear how to effective combinie these
two techniques together to achieve a win-win. In this paper, we find that asynchrony
introduces implicit bias to momentum updates. In order to address this problem, we
propose momentum approximation that minimizes the bias by finding an optimal
weighted average of all historical model updates. Momentum approximation is
compatible with secure aggregation as well as differential privacy, and can be easily
integrated in production FL systems with a minor communication and storage
cost. We empirically demonstrate that on benchmark FL datasets, momentum
approximation can achieve 1.15–4× speed up in convergence compared to naively
combining asynchronous FL with momentum.

1 Introduction

Practical deployment of synchronous federated learning (SyncFL) [34] encounters scalability issue
due to the requirement on global synchronization of clients’ model updates, wherein the central
aggregation are contingent upon the completion of local training and communication across all
participating clients. In order to address this issue, asynchronous FL (AsyncFL) [6, 41, 43, 49, 56, 61]
was proposed, which allows concurrent model updates at both the server and the clients’ side. One
concrete example is FedBuff [41], which is the state-of-the-art AsyncFL method and has been
deployed in many production systems [22, 51]. In each FedBuff iteration, the server first broadcasts
the global model and triggers local training on K randomly sampled clients, then, receives clients’
local model updates in a buffer. Once the buffer reaches a target cohort size C ≪ K, the server will
directly proceed to the next iteration without waiting for the all K clients finish computation. As
a result, the buffer gets filled up much quicker than SyncFL and the latency per iteration improves
significantly [14]. However, since clients sampled in all previous iterations can contribute to the
current global model update via stale gradients, AsyncFL methods typically have slower model
convergence w.r.t iterations than SyncFL.

On the other hand, momentum-based optimizers such as momentum SGD and Adam have become
dominant in the deep learning community due to their superior performance. Similar observations
also appeared in SyncFL. For example, researchers found that applying momentum methods for the
server model updates (e.g., FedAvgM [21] and FedAdam [45]) can greatly improve the final model
quality and convergence speed.

Given the appealing benefits of asynchrony and momentum, it is desired to combine them to achieve
a win-win in both efficiency and model quality. Unfortunately, the naive combination does not
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Figure 1: (Left and Middle) In SyncFL, FedAvgM and FedAdam with momentum parameter β = 0.9
converges fastest while it is not the case in AsyncFL: no momentum (β = 0) or smaller β = 0.5
is better. (Right) The parameter β′ for the second moments in FedAdam, on the other hand, has
consistent impact on SyncFL and AsyncFL, i.e. larger β′ = 0.99 is better.

work. For instance, [39, 62] showed that sophisticated tuning of the momentum parameter β is very
critical in asynchronous SGD (AsyncSGD). Rather than consistently using a large β (e.g. 0.9) in the
synchronous setting, a smaller or even negative β is preferred and the best value may vary across
datasets. We observe the same phenomenon for AsyncFL. As shown in Figure 1, both FedAvgM and
FedAdam with β = 0.9 underperforms smaller β in asynchronous setting while the pattern is the
opposite if updates are synchronous.

Prior AsyncFL works proposed to down-scale the stale client updates before aggregation to control the
impact of staleness [43, 56]. However, this does not help in combining asynchrony and momentum.
As shown in the experiments of FedBuff [41], even with lower weights for stale updates, β still
needs to be carefully tuned on different datasets and the best value can be 0 (i.e. no momentum). It
remains an open question: is it possible to effectively integrate asynchrony and momentum in FL to
simultaneously harness the advantages in scalability and better model quality?

Contributions. In this paper, we provide an affirmative answer to the above question. Motivated by
the fact that momentum method itself utilizes all past gradients by taking an exponential average (i.e.,
has unbounded staleness), we argue that the key issue in applying momentum to AsyncFL may not be
the large staleness of model updates. Instead, the real problem is that naive asynchronous momentum
method does not properly exploit the past information. We demonstrate that asynchrony introduces
implicit weight bias to past gradients and hence, removes the momentum effect.

In order to address this problem, we propose a new algorithm named momentum approximation,
which solves a least square problem in each FL iteration t to find the best coefficients to weight the
historical model updates before t, such that the weighted historical updates are close to the momentum
updates as in the synchronous setting and thus retain the acceleration from momentum. We highlight
some key features of this algorithm:

• Momentum approximation is compatible with any momentum-based federated optimizer and its
convergence pattern behaves similar to SyncFL. It resolves the need of extensively tuning β from a
wider range for different tasks in prior works. One can consistently set β found in SyncFL to get
the best model quality in the AsyncFL.

• Momentum approximation can be easily integrated in production FL systems, and inherits all the
benefits from FedBuff, such as its scalability, robustness and compatibility to privacy. It incurs only
a minor communication of a iteration number in addition to model updates, and storage cost of
historical updates on the server side.

• We empirically demonstrate that on two large-scale FL benchmarks, StackOverflow [1] and
FLAIR [46], momentum approximation achieves 1.15–4× speed up in convergence and 3–20%
improvements in utility compared to vanilla FedBuff with momentum.

2 Background

In federated learning (FL), we aim to train a model θ ∈ Rd with m clients collaboratively. In iteration
t of FL, a cohort of clients is sampled and the server broadcasts the current global model θt to
the sampled clients Kt. Each sampled client k trains on their local dataset, and then submits the
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model updates ∆k(θt) before and after the local training back to the server. In SyncFL, the server
waits for the local model updates from all K = |Kt| clients and uses the aggregated model updates
dt =

1
K

∑
k∈Kt

∆k(θt) to update the global model before proceeding to the next iteration. More
formally, synchronous federated averaging (FedAvg) [34] algorithm updates the global model as
θt+1 = θt − ηdt where η denotes the server learning rate.

Momentum-based optimizers. In practice, momentum-based optimizers [21, 45, 53] on the
server side are often more preferred than FedAvg as they can either greatly accelerate convergence
or improve the final model quality given a fixed iteration budget. We denote these optimizers as
SERVEROPT, and the update rule of which can be formulated as:

mt = βmt−1 + (1− β)dt, θt+1 = θt − ηH−1
t mt, (1)

where β ∈ [0, 1) is the momentum parameter and mt is the momentum buffer. H−1
t is the pre-

conditioner where Ht = Id in FedAvgM [21], and Ht is the square root of accumulated or expo-
nential moving average of dt’s second moments in adaptive optimizers such as FedAdaGrad and
FedAdam [12, 26, 45].

FL with differential privacy. Though the clients’ raw data is never shared with the server in FL,
the model updates ∆k can still reveal sensitive information [36, 40, 65]. Differential privacy (DP) is
a standard approach to prevent leakage from ∆k and provide a meaningful privacy guarantee.

Definition 2.1 (Differential Privacy [16]). A randomized algorithmA : D 7→ R is (ϵ, δ)-differentially
private, if for any pair of neighboring training populations D and D′ and for any subset of outputs
S ⊆ R, it holds that

Pr[A(D) ∈ S] ≤ eϵ · Pr[A(D′) ∈ S] + δ. (2)

We consider client-level DP where a training population D′ is the neighbor of D if D′ can be
obtained by adding or removing one client from D, and vice versa. Gaussian Mechanism [15] can be
easily combined with FL [35] to enable DP, where two more additional steps are required in each
iteration: (1) each client model update is clipped by clip(∆k, S) = ∆k ·min(1, S/∥∆k∥2) with L2

sensitivity bound S, and (2) the aggregated clipped model updates are added with Gaussian noise as∑
k clip(∆k, S) +N (0, σ2S2I) where σ is calibrated from a standard privacy accountant such as

Rényi DP [37]. We also assume a secure aggregation protocol is used so that the server learns only
the sum

∑
k ∆k but never the individual model updates ∆k [4, 22, 48].

3 Applying Momentum to Asynchronous FL

In this section, we first demonstrate the problem in naively combining momentum and AsyncFL, and
then introduce momentum approximation to address it. Unless otherwise stated, we focus on the
FedBuff algorithm, which is a general and state-of-the-art AsyncFL algorithm.

Notation and assumptions. For a matrix A, we use A[i,:] to denote i-th row, A[:,j] the j-th column,
and A[i,j] the (i, j)-th entry of A. We denote the staleness as τ(k) for client k, i.e. k is sampled at
iteration t− τ(k) and their updates is received at t. We let ei ∈ {0, 1}T denote the one-hot encoding
vector where all entries are 0 except for the i-th entry being 1, and 1 = [1, 1, . . . , 1]⊤ denote a vector
with all ones. We denote Kt as the set of K clients sampled at iteration t, and Ct as the set of C
clients whose updates received by server at iteration t.

To gain insights on the impact of momentum in AsyncFL, we define d⋆
t = 1

m

∑m
k=1 ∆k(θt), i.e.

the average of local model updates over all m clients starting from the same point θt. We make the
following assumptions throughout.

Assumption 3.1 (Bounded Population Client Update). For each iteration t, ∥d⋆
t ∥22 ≤ S2.

Assumption 3.2 (Bounded Global Dissimilarity). For all clients k ∈ [m] and for each iteration t,
Ek∼[m]∥∆k(θt)− d⋆

t ∥22 ≤ G2.

Assumption 3.3. (Bounded Client Subset Sampling Error) For the sampled clients set Kt in each
iteration t, Ek∼Kt

∥∆(θt)k − d⋆
t ∥22 ≤ ∥dt − d⋆

t ∥22 + ρ2.

Assumption 3.4. (Random Arrival Order of Sampled Clients) For each iteration t and s ≤ t, each
client k ∈ Kt,s is a random sample from the set Ks.
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Figure 2: Visualization of the desired momentum matrix M (β = 0.9), the implicit momentum
matrix MW , the approximated momentum matrix AW , the staleness coefficient matrix W , and
the solved weighting matrix A in momentum approximation.

Assumptions 3.1 and 3.2 are common in the FL literature [29, 41, 55, 60]. Assumptions 3.1 also
trivially holds with DP. Assumption 3.3 is a natural extension given Assumption 3.2 and ρ2 ≤ G2.
Assumption 3.4 is based on the fact the timing of client participation tends to be random among
sampled clients. We justify Assumption 3.4 in detail in Appendix B.2.

3.1 Implicit Momentum Bias

In order to get a better understanding on the convergence issue of AsyncFL with momentum, we
first present a general update rule for FL and then compare synchronous momentum methods and
asynchronous ones as special cases.

Without loss of generality, we define rt ∈ Rd as the aggregated pseudo-gradient (or model updates)
received by the server at iteration t, and denote R = [r1, r2, . . . , rT ] ∈ Rd×T . Then, the following
proposition holds [11].
Proposition 3.5. Suppose the server model θ is updated using momentum method as follows:

mt = βmt−1 + (1− β)rt, θt+1 = θt − ηmt.

This update rule is equivalent to θt+1 = θt − η(1− β)
∑t

s=1 β
t−srs. The final model after total T

iterations can be written as:

θT+1 = θ1 − ηRM⊤1, (3)

where M ∈ RT×T is a lower-triangular matrix defined as: M[t,s] =

{
βt−s(1− β) if t >= s

0 otherwise
.

With the above general update rule, both SyncFL and AsyncFL can be treated as special cases. For
SyncFL with all clients participating, the received (pseudo-) gradient on server is just the aggregated
local model updates from all m clients, that is, rt = d⋆

t . For SyncFL with client sub-sampling,
rt = dt. Denote D⋆ = [d⋆

1,d
⋆
2, . . . ,d

⋆
T ] and D = [d1,d2, . . . ,dT ], then

θ⋆
T+1 = θ1 − ηD⋆M⊤1, θsync

T+1 = θ1 − ηDM⊤1. (4)

For asynchronous setting, the concrete expression of rt is more complicated. At each iteration of
FedBuff, the server broadcasts the latest model θt to K random sampled clients to trigger local
training and applies a global update after receiving C local model updates from Ct. However, these
received local model updates can be stale. Let Kt,s be the set of clients sampled at iteration s with
updates received at iteration t where |Kt,s| = Ct,s ≥ 0 and

∑t
s=1 Ct,s = C. Then, the current

(pseudo-) gradient on server can be written as a weighted average of all past updates:

rt =
1

C

∑
k∈Ct

(τ(k) + 1)−p∆k(θt−τ(k)) =

t∑
s=1

(τ + 1)−p

C

∑
k∈Kt,s

∆k(θs)

=

t∑
s=1

(τ + 1)−pCt,s

C
(d⋆

s +
1

Ct,s

∑
k∈Kt,s

∆k(θs)− d⋆
s) =

t∑
s=1

(τ + 1)−pCt,s

C
(d⋆

s + ζt,s), (5)

where (τ + 1)−p is a down-scaling factor commonly used in AsyncFL to mitigate the impact of
staleness τ = t − s on model updates [41, 43, 56], and d⋆

s has the same definition as of in the
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synchronous setting above. Besides, since the server only receives a subset of Ct,s individual local
updates out of the sampled K clients at iteration s, there is an extra sampling error denoted as ζt,s.
We can define a weight matrix similar to M :

W[t,s] =

{
(t− s+ 1)−pCt,s/C if t >= s

0 otherwise.

Then, one can easily derive that R = D⋆W⊤ + E where the t-th column of error matrix E is
defined as

∑t
s=1(τ + 1)−p Ct,s

C ζt,s. Substituting R back into (3), we get

θasync
T+1 =θ1 − ηD⋆W⊤M⊤1− ηEM⊤1

=θ1 − ηD⋆

M⊤ + (MW −M)⊤︸ ︷︷ ︸
implicit momentum bias

1− ηEM⊤1︸ ︷︷ ︸
async. sampling bias

. (6)

Comparing the update rules Equations (4) and (6), there are two additional terms in asynchronous
setting. One is the implicit momentum bias: the algorithm implicitly assigns biased weights MW
(which is different from normal momentum weight M ) to historical gradients, losing the benefits of
momentum acceleration. We provide a visualization of M and MW in Figure 2. While the normal
momentum assigns the largest weight to the most recent gradients, asynchronous momentum tends to
weigh more towards stale gradients, as they arrive more frequently. The second additional term in
Equation (6) is the asynchronous sampling bias: the server sampled K clients from s-th iteration but
can only received Ct,s from the cohort at iteration t.

Previous works [39] also observed that giving additional lower weights (e.g. set p > 0) to historical
gradients can help convergence. This phenomenon can be intuitively explained by the definition
of implicit momentum bias, which becomes smaller when W approaches to the identity matrix.
However, this approach cannot entirely solve the problem. It is nearly impossible to set W = I in
realistic settings, as the current gradients may only arrive in future iterations.
Theorem 3.6. For SyncFL and AsyncFL with momentum, by choosing η = O( 1√

T
),

E∥ 1
T
(θ⋆

T+1 − θsync
T+1)∥

2
2 ≤

1

2
η2TG2 = O(G2), (7)

E∥ 1
T
(θ⋆

T+1 − θasync
T+1)∥

2
2 ≤ η2(2TS2 + TG2 + 2

ρ2

C
) = O(S2 +G2). (8)

We defer the proof to Appendix B.1. Both SyncFL and AsyncFL have the same sampling bias in
the order of O(G2) on average, but AsyncFL introduces an extra O(S2) term due to the implicit
momentum bias. Note that θ⋆

T+1 can be different for SyncFL and AsyncFL due to different parameter
update trajectory, and we focus on comparing to the θ⋆

T+1 within each algorithm.

3.2 Proposed Method: Momentum Approximation

From Equation (5), note that, in asynchronous setting, the received (pseudo-) gradient rt is already a
weighted average of historical gradients. Therefore, instead of naively applying momentum on top
of it, can we simply adjust the weights to imitate the momentum updates? Following this idea, we
propose a new update rule for AsyncFL:

θt+1 = θt − ηRat, (9)

where at ∈ RT is an arbitrary vector weighting the aggregated model updates. Accordingly, we have

θMA
T+1 = θ1 − ηRA⊤1 = θ1 − ηD⋆W⊤A⊤1− ηEA⊤1

= θ1 − ηD⋆[M⊤ + (AW −M)⊤]1− ηEA⊤1, (10)

where A⊤ = [a1,a2, . . . ,aT ]. One can choose a matrix A such that AW ≈M . As a result, the
implicit momentum bias is largely removed. The resulting algorithm approximates the synchronous
momentum method without explicitly adjusting momentum. For this reason, we name the proposed
method as momentum approximation (MA).
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Implementation. The practical implementation of the proposed algorithm (outlined in Algorithm 1)
is very straightforward. Thanks to the lower-triangular nature of both matrices W and M , we can
approximate the momentum matrix M row-by-row, i.e., in an online fashion. At iteration t, the
desired weights for past gradients are given as the t-th row of M and known beforehand. We seek to
optimize the following objective to find the best at = aopt to be used in Equation (9):

min
a∈RT

∥a⊤W −M[t,:]∥22, subject to a[s] = 0,∀s > t. (11)

In each vector at, only the first t elements are non-zero such that matrix A is enforced to be an lower-
triangular matrix. This is because the server cannot use gradients from future iterations. Solving
Equation (11) requires knowing W[:t,:t] (the first t rows and columns of W ) which can be obtained
by having each received client k to upload a one-hot encoding es ∈ {0, 1}T of their model version
s.2 More concretely, suppose at iteration t, the received updates at server are from a subset of C
clients and their model version are denoted as {t− τ(k)}k∈Ct

. Then, the matrix W is initialized with
all 0 and updated online as W[t,:] =

1
C

∑
k∈Ct

e⊤t−τ(k). Sending the extra et−τ(k) adds a negligible
communication cost as et−τ(k) has a payload size of T bits and T ≪ d for common FL tasks.

Theorem 3.7. Under the condition that W is full rank and E∥A∥2F = O(CT 2), for AsyncFL with
momentum approximation (MA), by choosing η = O( 1√

T
),

E∥ 1
T
(θ⋆

T+1 − θMA
T+1)∥22 ≤ η2(TG2 + 2

ρ2

TC
E∥A∥2F ) = O(G2). (12)

We defer the proof and discuss the more general case when W is not full rank to Appendix B.1.
Under the given condition, AsyncFL with momentum approximation achieves the same error as
SyncFL and drops the implicit momentum bias term in Equation (8). We show that the condition of
E∥A∥2F = O(CT 2) holds empirically in Appendix B.2.

Light-weight momentum approximation. The full approximation above requires a server-side
storage cost of O(Td) as all past received gradients R needs to be saved to disk. This is usually not a
concern as disk storage is cheap. In addition, T in FL is typically in the order of thousands and the
model size d is small to meet on-device resource constraints [58, 59].

In the case of both T and d are high and the disk storage cost becomes a concern, we propose a
light-weight approximation which has no extra storage cost on the server. The light-weight update
rule is the same as Equation (9) except that at is replaced by ãt defined recursively as below:

ãt = utet + vtãt−1, (13)

where ut, vt ∈ R are to be optimized. With the recursive definition of ãt, we rewrite Equation (9) as:

θt+1 = θt − ηRãt = θt − η(utRet + vtRãt−1) = θt − η(utrt + vtRãt−1), (14)

which can be simplified to the following update rule similar to Equation (1):

m̃t = Rãt = utrt + vtm̃t−1, θt+1 = θt − ηm̃t. (15)

The difference to Equation (1) is that there are T pairs of real numbers (ut, vt) in light-weight
MA instead of a single β ∈ [0, 1]. Since Equation (15) depends on m̃ and not on R, light-weight
approximation saves the extra O(Td) storage cost and has the same space complexity as the standard
momentum updates by maintaining a single buffer m̃t.

To find the best (ut, vt) = (uopt, vopt) in iteration t, we substitute (13) back into (11):

min
u,v∈R

∥(uet + vãt−1)
⊤W −M[t,:]∥22. (16)

Differentially private momentum approximation. Both the model updates ∆k and the model
version one-hot encoding et−τ(k) are sensitive information as they reveal the client’s local data and
their timing of participating FL. We can use DP mechanisms to protect both information.

2We need to send the one-hot encoding instead of the integer t − τ(k) to server as one-hot encoding is
compatible with secure aggregation and DP to update W and raw integer is not.
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Figure 3: Comparison between MA, light-weight MA (MA-L) and baseline approaches.

Figure 4: Impact of β on SyncFL and AsyncFL with MA on the StackOverflow dataset.

Let γ be a scaling factor and yk = ∆k ⊕ γet−τ(k) ∈ Rd+T be the payload that client k intends
to send to the server, where ⊕ denotes vector concatenation. We constrain the L2 sensitivity of
yk as ȳk = clip(∆k, S∆) ⊕ γet−τ(k), such that ∥ȳk∥2 ≤

√
S2
∆ + γ2 = S. Applying Gaussian

Mechanism as
∑

k ȳk + N (0, σ2S2I) satisfies (ϵ, δ)-DP as described in Section 2. By choosing
γ = σ√

ξ2−σ2
S∆, the Gaussian noise added to the un-scaled

∑
k et−τ(k) is N (0, (σγS)

2I)) with

standard deviation:

σ

γ
S =

σ

γ

√
S2
∆ + γ2 =

√
σ2(ξ2 − σ2)

σ2
+ σ2 = ξ. (17)

In practice, we tune ξ > σ to balance the utility on
∑

k ∆k and
∑

k et−τ(k). As momentum
approximation is a post-processing [17] on the private aggregates:

rt =
1

C
[
∑
k∈Ct

clip(∆k, S∆) +N (0, σ2S2I)], W[t,:] =
1

Cγ
[
∑
k∈Ct

γe⊤t−τ(k) +N (0, σ2S2I)], (18)

the MA update rules in Equations (9) and (15) also satisfies the same (ϵ, δ)-DP guarantee.

Implicit momentum bias in the preconditioner. For adaptive optimizers such as Adam [26]
and RMSProp, the preconditioner Ht is the square root of exponentially decaying average of the
gradients’ second moments: diag(Ht)

2 ← β′diag(Ht)
2 + (1− β′)r2t . The stale updates in rt bias

the estimation of second moments similar to the implicit momentum bias term in the first moments.
Nonetheless, preconditioner is known to be robust to delayed gradients [18, 30]. In Figure 1, we
show that β′ impacts the performance in AsyncFL similarly to in SyncFL. We leave the study of
implicit bias from staleness in the second moments to future work.

4 Experiments

In this section, we describe the empirical evaluation of momentum approximation (MA) with FedBuff.
We denote the light-weight MA in Equation (16) as MA-light or MA-L. We focus on two server-side
momentum-based optimizers: FedAvgM [21] and FedAdam [45].
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Figure 5: Comparison between MA, light-weight MA (MA-L) and baseline approaches with DP.

Datasets and ML Tasks. We conduct experiments on FLAIR [46], a large-scale annotated image
dataset for multi-label classification, and StackOverflow [1], a commonly used language modeling
FL benchmark dataset. Both datasets have natural client partition which captures the non-IID
characteristics in real world FL setting, and we believe they better represent the production FL
datasets compared to other commonly used datasets (e.g. CIFAR10) with artificially simulated client
partition from a given distribution (e.g. Dirichlet [21]).

For the FLAIR dataset, the task is to predict the set of coarse-grained labeled objects in a given image.
We use macro averaged precision (macro AP) as the evaluation metric. For the StackOverflow dataset,
the task is next word prediction and we use top prediction accuracy as the evaluation metric following
prior work [45]. The details of hyerparameter choices are described in Appendix A.1

4.1 Baselines

AsyncFL with tuned momentum parameter. We consider FedBuff as the baseline AsyncFL
approach. As suggested in [39, 41], β needs to be tuned carefully in AsyncFL and sometimes negative
β performs better. We tune β from the range (−1, 1).
Weight prediction (WP). WP is proposed to speed up AsyncSGD [27] and in particular, to address
the implicit momentum issue [19] in traditional distributed training setting. We modify WP to be
compatible with AsyncFL as detailed in Appendix A.2.

4.2 Results

Figure 3 summarizes the convergence comparison between our proposed MA and the baseline
approaches. For both FedAvgM and FedAdam on both datasets, MA and MA-light significantly
outperforms the baseline approaches of best tuned β. We do not find WP worked well in the FL setting
and acknowledge that more thoughtful integration is required to adopt techniques from AsyncSGD
literature to AsyncFL, which is beyond the scope of this work.

Impact of β. Figure 4 illustrates how β impacts SyncFL and AsyncFL with MA. The correlation
pattern between β and the performance remains the same between SyncFL and AsyncFL with MA,
i.e., larger β leads to better performance in this task. This demonstrates that the AsyncFL with MA
can reuse the tuned β in SyncFL experiments instead of searching in a wider range from scratch,
which saves the costs from expensive hyperparameter tuning in FL.

Impact of cohort size. Smaller cohort can negatively impact the convergence of MA as the variance
of rt in Equation (5) increases. We evaluate the impact of cohort size C on the StackOverflow dataset
by varying C from 50 to 400. We compare the performance between SyncFL and FedBuff with MA
on the same C. Left of Table 1 shows the impact of C on MA. As C increases from 50 to 400, the
gap between AsyncFL with MA and SyncFL becomes smaller, which validates our hypothesis that
smaller cohort size has more negative impacts on MA than SyncFL.

DP results. Figure 5 illustrates the convergence results with DP. The pattern of the performance
comparison is similar to that of the non-private case where both MA and MA-light outperform the
AsyncFL baselines. We notice that in FedAdam baseline, negative β values are optimal on both
datasets, indicating that the baseline requires more hyper-parameter tuning in a wider range of β.
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Table 1: (Left) relative accuracy gap (%) between SyncFL and AsyncFL with MA for different cohort
sizes C on the StackOverflow dataset. (Right) Relative speed up (×) of MA compared to FedBuff
baseline. FLR denotes FLAIR and SO denotes StackOverflow.

FedAvgM FedAam
C MA MA-light MA MA-light

50 5.17 7.68 7.26 11.94
100 3.17 4.25 2.47 4.51
200 2.18 3.44 0.52 1.87
400 1.39 2.8 0.46 0.4

FedAvgM FedAam
Setup MA MA-light MA MA-light

FLR 3.56 3.01 2.20 1.66
FLR w. DP 2.57 2.09 1.61 1.15
SO 3.96 3.30 1.62 1.30
SO w. DP 2.06 1.80 1.50 1.55

Speed up of MA. We finally evaluate the speed up of MA. Following [41], we record the iterations
that MA needed to achieve the best metric from FedBuff baseline, and have this number divided by
the iterations the baseline took to get the relative speed up. Right of Table 1 summarizes the results.
On both FLAIR and StackOverflow, MA speeds up FedAvgM more than FedAdam, and we suspect
the reason is that the preconditioner in the FedAdam baseline is less affected, thereby mitigating the
impact of staleness. Thus the improvement from MA is less significant. DP also impacts the speed
up negatively as the estimation of W becomes noisy and the noise scale on rt increases.

5 Related Work

Asynchronous distributed SGD. The negative impact of gradient staleness has been studied in the
traditional AsyncSGD setting. A line of research focused on reducing the impact of staleness or the
discrepancy between worker’s model and the central model. [63] first proposed to down-scale the
stale gradients based on their staleness τ . [2] argued that τ failed to accurately reflect the discrepancy
and proposed to schedule down-scale based on the similarity between worker’s model and the central
model. [64] used a Taylor expansion and Hessian approximation to compensate for the staleness.
[19, 27] proposed parameter prediction of the future central model to reduce discrepancy, simply
by following the optimization oracle for more iterations. The impact of staleness is exacerbated by
momentum, as analyzed in [39], where a small or even negative momentum parameter is preferred to
adverse effects of asynchrony, which motivated an adaptive momentum training schedule [62].

Asynchronous federated learning. Existing AsyncFL works draw inspirations from AsyncSGD
to handle stragglers and heterogeneous latency. [41, 43, 56] down-scaled the local model updates
based on staleness τ before the central aggregation. Nonetheless, as we showed, stale updates after
down-scaling still affect training performance of momentum in practice.

On the other hand, FL differs from the traditional distributed SGD setting by having massive number
of clients, higher communication overhead and more complicated system for secure aggregation and
DP. Hence, many AsyncSGD algorithms do not directly fit in AsyncFL. Gradient compensation [64]
applied complicated operations on individual client updates, which is less obvious how to implement
with secure aggregation. [8, 19, 27] required broadcasting model parameters and momentum, leading
to doubled communication cost. Further research is needed to study how to integrate the other
promising AsyncSGD algorithms efficiently in AsyncFL.

Apart from aforementioned AsyncFL algorithms on weight aggregation, there are many orthogonal
tactics on improving AsyncFL. For example, gradient compression techniques [28, 33] improved
communication efficiency; and model splitting [7, 13, 54] had each client responsible for training a
certain part of the whole model.

Momentum-based federated optimizers. [21] first proposed to extend FedAvg with server-side
momentum (FedAvgM) to accelerate convergence. [45] improved the server-side optimization further
by using adaptive optimizers with momentum. [24, 25, 42, 57] proposed to perform momentum
updates locally on the clients to alleviate local drift problem. [47] introduced multistage FedGM
which interpolates between FedAvg and FedAvgM with a hyperparameter scheduler, and provides a
general momentum computation for FL to better control the momentum acceleration. Our approach
is compatible to any momentum-based optimizers and orthogonal to these works as they were not
proposed to resolve the server-side implicit momentum bias in AsyncFL.
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6 Conclusion

We demonstrate how stale model updates incur an implicit bias in AsyncFL, which diminishes
the acceleration from momentum-based optimizers. To address this issue, we propose momentum
approximation which optimizes a least square problem online to find the optimal weighted average of
historical model updates that approximates the desired momentum updates. Momentum approxima-
tion is easy to integrate in production FL systems with a minor storage and communication cost. We
empirically evaluate momentum approximation in both non-private and private settings on real-world
benchmark FL datasets, and demonstrated that it outperforms the existing AsyncFL algorithms.
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Algorithm 1 FedBuff with Momentum Approximation
Inputs: client sampling rate q, cohort size C, server optimizer SERVEROPT, server learning rate η,
number of FL iterations T , client local learning rate ηl, number, number of client local SGD steps Q
for t = 1, . . . T do
Kt ← sampled K clients with sampling rate q
Run CLIENT(θt, t) for k ∈ Kt asynchronously
if receives ∆k(θt−τ(k)) and et−τ(k) from k then
rt ← rt +

1
C∆k(θt−τ(k))

W[t,:] ←W[t,:] +
1
C e⊤t−τ(k)

if server received C local model updates then
if light-weight momentum approximation then
ut, vt ← solve Equation (16)
m̃t ← vtm̃t−1 + utrt

else
R[:,t] ← rt update the pseudo-gradient history
at ← solve Equation (11)
m̃t ← Rat

Ht ← update based on SERVEROPT
θt+1 ← θt − ηH−1

t m̃t

rt+1,W[t+1,:] ← 0

function CLIENT(θ, t)
θ′ ← run Q SGD steps with ηl on local data
et ← one-hot encoding of t
Upload ∆ = θ − θ′ and et to server

A Additional Experiments Details

A.1 Experimental Setup

All experiments were run on a machine with 4 Nvidia A100 GPUs with 40GB VRAM. Each FLAIR
experiment took 12 hours to finish on average and each StackOverflow experiment took 6 hours.

Client delay distribution. Following [41], we adopt half-Normal distribution to model the client
delay distribution. We demonstrate the impact of different distributions on MA in Appendix A.3.

Staleness scaling and bounding. We tune the power in the down-scaling factor p between 0.5 to
2.0 to control strength of the scaling. We further set a maximum staleness bound τmax (default to 20)
and drop ∆k if τ(k) > τmax.

Hyperparameters. For the FLAIR dataset, we use a ResNet-18 model [20] following the setup
in [46]. We train the model for 5,000 iterations with local learning rate set to 0.1, local epochs set
to 2, and local batch size set to 16. For the StackOverflow dataset, we use a 3-layer Transformer
model [50] following the setup in [52]. We train the model for 2,000 iterations with local learning
rate set to 0.3 and local epochs set to 1, and local batch size set to 16. The cohort size C is set to 200
for both dataset. For FedAvgM, we search the learning rate η between (0.1, 1.0). For FedAdam, we
set the β′ for the second moment to 0.99 and the adaptivity parameter to 0.01, and search the server
learning rate η between (0.01, 0.1).

For DP experiments, we set the (ϵ, δ) privacy budget to (2.0, 10−7)-DP with a simulated population
size of 107 and cohort size of 5,000 following prior work [35]. We set the L2 clipping bound S∆ to
0.1 for FLAIR and 0.2 for StackOverflow. We use amplification by subsampling with Rényi DP to
calibrate the Gaussian noise scale σ [37, 38]. Though we focus on independent Gaussian mechanism
in each iteration, our approach is also compatible with DP-FTRL mechanisms with correlated noise
between iterations [9, 23]. For momentum approximation where W needs to be estimate privately,
we set ξ in Equation (17) such that S = 1.1S∆, i.e. we pay 10% extra noise on ∆ to learn W
privately with the same budget.
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Algorithm 2 FedBuff with Weight Prediction
Inputs: client Poisson sampling rate q, cohort size C, server optimizer SERVEROPT, server learning
rate η, number of FL iterations T , client local learning rate ηl, number, number of client local SGD
steps Q, α EMA decay parameter for historical model updates
while t < T do
Ct ← sampled clients with Poisson sampling rate q
Run CLIENT(θt, t, ηH−1

t xh) for k ∈ Ct asynchronously
if receives ∆k(θt−τ(k)) from k then
xt ← xt +

1
C∆k(θt−τ(k))

if received C results in the buffer then
mt,Ht ← update based on SERVEROPT
θt+1 ← θt − ηH−1

t mt

xh ← αxh + (1− α)xt

xt+1 ← 0
t← t+ 1

function CLIENT(θ, t, ηH−1
t xh)

τ ← t′ − t gets the current staleness
θ̂t+τ ← θ − τηH−1

t xh

θ′ ← run Q SGD steps with ηl on θ̂t+τ

Upload ∆ = θ̂t+τ − θ′ to server

Table 2: (Left) Accuracy (%) with momentum approximation (MA) for different staleness bound
τmax on the StackOverflow dataset. (Right) Relative least square error in Equation (11) for different
client delay distribution.

FedAvgM FedAam
τmax MA MA-light MA MA-light

20 26.36 26.11 26.79 26.45
30 26.26 26.05 26.54 26.24
40 26.15 25.95 26.25 25.87
50 25.97 25.90 26.00 25.46

Client Delay
Distribution MA MA-light

Half-Normal 2.58% 33.07%
Uniform 8.35% 36.78%
Exponential 2.41% 33.89%

For all experiments, we apply exponential moving average (EMA) on central model parameters θ
with decay rate of 0.99 [10], and report the metrics evaluated on the EMA model parameters.

A.2 Weight Prediction Baseline

WP is proposed to speed up asynchronous SGD [27] and in particular, to address the implicit
momentum issue [19]. In Algorithm 2, we modify WP to be compatible with adaptive optimizer in
FedBuff as another baseline for evaluating momentum approximation. To predict the future model,
the server sends both θt and the historical model updates xh to devices. For a sampled client with
staleness τ , the client tries to first predict the future model θ̂t+τ ≈ θt+τ , by running τ steps of
SERVEROPT(θ,xh, η). We consider xh to be the exponential decay averaging of X:t for variance
reduction. For adaptive SERVEROPT such as Adam, we send H−1

t xh to devices for WP. Client then
runs the local SGD steps on θ̂t+τ and returns the model update to the server. Note that this method
will also double the communication as the server needs to send extra historical model updates for WP.

A.3 Additional Results

Impact of staleness bound τmax. We empirically study the impact of τmax on momentum approxi-
mation by varying it from 20 to 50. Left of Table 2 summarizes the results on the StackOverflow
dataset, where larger τmax leads to lower accuracy. Another observation is that the drop in perfor-
mance of FedAdam is greater than that of FedAvgM which could be from the impact of staleness on
the estimation of preconditioner in FedAdam.
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Impact of client delay distribution. We evaluate the impact of different client delay distribution
on momentum approximation objective in Equation (11). We choose Half-Normal, Uniform and
Exponential distribution following [41]. We measure the relative least square error as ∥AW −
M∥2F /∥M∥2F using the setup in Appendix A.1 and report the results in the right of Table 2. The
relative error for light-weight approximation is much higher as expected and is more than 30% for
all three distributions. The approximation error is worst for Uniform distribution, while it is in the
similar range for Half-Normal and Exponential distribution. Uniform client delay distribution is
unrealistic in production FL system and thus our method is robust to different sensible client delay
distributions.

B Additional Details of Momentum Approximation

Notation. LetHi be the history of sampled clients K1,K2, . . . ,Ki up to iteration i. Let ζs = ds −
d⋆
s be the sampling error for the subset Ks sampled at iteration s. Let dt,s =

1
Ct,s

∑
k∈Kt,s

∆k(θs)

be the averaged update of the set of clients Kt,s ⊆ Ks whose updates arrived at iteration t and denote
Ct,s = |Kt,s|. Let ζt,s = dt,s−d⋆

s be the sampling error for the subset Kt,s. Let K:i,:i be the subsets
Kt,s for all 1 ≤ s ≤ t ≤ i and C:i,:i be their cardinalities.

We first note an upper bound on the sampling error ζs. From Assumption 3.2,

EKs
[∥ζs∥22] = EKs

[∥ 1
K

∑
k∈Ks

∆k(θs)− d⋆
s∥22]

≤ EKs [
1

K2
K

∑
k∈Ks

∥∆k(θs)− d⋆
s∥22]

=
1

K

K∑
j=1

Ek∼[m][∥∆k(θs)− d⋆
s∥22] ≤ G2 (19)

B.1 Proof of Results

We state two useful lemmas for proving Theorem 3.6 and 3.7.

Lemma B.1. For any 1 ≤ s ≤ t ≤ i and 1 ≤ s′ ≤ t′ ≤ i,

EKt,s,Kt′,s′ |Ct,s,Ct′,s′ ,Hi
[ζ⊤

t,sζt′,s′ ] ≤ ζ⊤
s ζs′ +

ρ2

Ct,s
1[(t, s) = (t′, s′)]. (20)

Proof. Let ζt,s,k = ∆k(θs)− d⋆
s for k ∈ Kt,s, and given Assumption 3.4, we have

Ek∼Kt,s|Hi
[ζt,s,k] = Ek∼Ks|Hi

[∆k(θs)]− d⋆
s = ds − d⋆

s = ζs. (21)

Then for the case when (t, s) ̸= (t′, s′),

EKt,s,Kt′,s′ |Ct,s,Ct′,s′ ,Hi
[ζ⊤

t,sζt′,s′ ]

= EKt,s,Kt′,s′ |Ct,s,Ct′,s′ ,Hi
[

1

Ct,sCt′,s′

∑
k∈Kt,s

∑
k′∈Kt′,s′

ζ⊤
t,s,kζt′,s′,k′ ]

=
1

Ct,sCt′,s′

Ct,s∑
j=1

Ct′,s′∑
j′=1

Ek∼Kt,s|Hi
[ζ⊤

t,s,k]Ek′∼Kt′,s′ |Hi
[ζt′,s′,k′ ]

=
1

Ct,sCt′,s′

Ct,s∑
j=1

Ct′,s′∑
j′=1

ζ⊤
s ζs′ = ζ⊤

s ζs′ . (22)
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For the case when (t, s) = (t′, s′),

EKt,s,Kt′,s′ |Ct,s,Ct′,s′ ,Hi
[ζ⊤

t,sζt′,s′ ]

= EKt,s|Ct,s,Hi
[ζ⊤

t,sζt,s] = EKt,s|Ct,s,Hi
[
1

C2
t,s

∑
k,k′∈Kt,s

ζ⊤
t,s,kζt,s,k′ ]

= EKt,s|Ct,s,Hi
[
1

C2
t,s

∑
k,k′∈Kt,s,k ̸=k′

ζ⊤
t,s,kζt,s,k′ +

1

C2
t,s

∑
k∈Kt,s

∥ζt,s,k∥22]

=
C2

t,s − Ct,s

C2
t,s

Ek∼Kt,s|Hi
[ζ⊤

t,s,k]Ek′∼Kt,s|Hi
[ζt,s,k′ ] +

1

Ct,s
Ek∼Kt,s|Hi

∥ζt,s,k∥22

≤
C2

t,s − Ct,s

C2
t,s

ζ⊤
s ζs +

1

Ct,s
(∥ζs∥22 + ρ2) = ζ⊤

s ζs +
ρ2

Ct,s
. (23)

Lemma B.2. For any coefficient xi,t ∈ R,

EK:i,:i|Hi
∥

i∑
t=1

xi,t

i∑
s=1

W[t,s]ζt,s∥22 ≤ EC:i,:i|Hi
[∥

i∑
t=1

xi,t

i∑
s=1

W[t,s]ζs∥22 +
ρ2

C

i∑
t=1

x2
i,t]. (24)

Proof.

EK:i,:i|Hi
∥

i∑
t=1

xi,t

i∑
s=1

W[t,s]ζt,s∥22

= EK:i,:i|Hi
[

i∑
t=1
s=1

i∑
t′=1
s′=1

xi,txi,t′W[t,s]W[t′,s′]ζ
⊤
t,sζt′,s′ ]

= EC:i,:i|Hi
[

i∑
t=1
s=1

i∑
t′=1
s′=1

xi,txi,t′W[t,s]W[t′,s′]EKt,s,Kt′,s′ |Ct,s,Ct′,s′ ,Hi
[ζ⊤

t,sζt′,s′ ]]

Lemma B.1
≤ EC:i,:i|Hi

[

i∑
t=1
s=1

i∑
t′=1
s′=1

xi,txi,t′W[t,s]W[t′,s′]ζ
⊤
s ζs′ +

i∑
t=1
s=1

x2
i,tW

2
[t,s]ρ

2 1

Ct,s
]

= EC:i,:i|Hi
[∥

i∑
t=1

xi,t

i∑
s=1

W[t,s]ζs∥22 +
ρ2

C

i∑
t=1

x2
i,t

i∑
s=1

W[t,s]]

≤ EC:i,:i|Hi
[∥

i∑
t=1

xi,t

i∑
s=1

W[t,s]ζs∥22 +
ρ2

C

i∑
t=1

x2
i,t]. (25)

The last inequality comes from the fact that
∑t

s=1 W[t,s] ≤ 1.

Theorem B.3. For SyncFL and AsyncFL with momentum,

E∥ 1
T
(θ⋆

T+1 − θsync
T+1)∥

2
2 ≤

1

2
η2TG2, (26)

E∥ 1
T
(θ⋆

T+1 − θasync
T+1)∥

2
2 ≤ η2(2TS2 + TG2 + 2

ρ2

C
). (27)
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Proof. For SyncFL with momentum,

E∥θ⋆
T+1 − θsync

T+1∥
2
2 = η2E∥(D −D⋆)M⊤1∥22
≤ η2TE∥(D −D⋆)M⊤∥2F

= η2T

T∑
i=1

E∥M[i,:](D −D⋆)∥22

= η2T

T∑
i=1

E∥
i∑

t=1

M[i,t]ζt∥22

≤ η2T

T∑
i=1

i

i∑
t=1

M2
[i,t]E∥ζt∥

2
2

≤ η2T

T∑
i=1

iG2 ≤ 1

2
η2T 3G2. (28)

By telescoping the constant, we get:

E∥ 1
T
(θ⋆

T+1 − θsync
T+1)∥

2
2 ≤

1

2
η2TG2. (29)

For AsyncFL with momentum,

E∥θ⋆
T+1 − θasync

T+1∥
2
2 = η2E∥D⋆(MW −M)⊤1+EM⊤1∥22
≤ 2η2(E∥D⋆(MW −M)⊤1∥22 + E∥EM⊤1∥22)
≤ 2η2T (E∥D⋆(MW −M)⊤∥2F + E∥EM⊤∥2F ) (30)

Let M̌ = MW where M̌[i,:] = M[i,:]W and
∑i

t=1 M̌[i,t] ≤
∑i

t=1 M[i,t] given
∑t

s=1 W[t,s] ≤ 1.
Then ∥M̌[i,:]∥2 ≤ ∥M̌[i,:]∥1 = ∥M[i,:]∥1 ≤ 1. We first bound the implicit momentum bias term.

E∥D⋆(MW −M)⊤∥2F =

T∑
i=1

E∥(M̌[i,:] −M[i,:])D
⋆⊤∥22

=

T∑
i=1

E∥
i∑

t=1

(M̌[i,t] −M[i,t])d
⋆
t ∥22

≤
T∑

i=1

E[i
i∑

t=1

(M̌[i,t] −M[i,t])
2∥d⋆

t ∥22]

≤
T∑

i=1

iS2E[∥M̌[i,:] −M[i,:]∥22]

≤ S2
T∑

i=1

iE[∥M̌[i,:]∥22 + ∥M[i,:]∥22 − 2M̌[i,:]M
⊤
[i,:]]

≤ S2
T∑

i=1

2i ≤ S2T 2. (31)
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We then bound the asynchronous sampling bias term:

E∥EM⊤∥2F =

T∑
i=1

E∥M[i,:]E
⊤∥22

=

T∑
i=1

EHi
EK:i,:i|Hi

∥
i∑

t=1

M[i,t]

i∑
s=1

W[t,s]ζt,s∥22

Lemma B.2
≤

T∑
i=1

EHi
EC1:i,1:i|Hi

[∥
i∑

t=1

i∑
s=1

M[i,t]W[t,s]ζs∥22 +
ρ2

C

i∑
t=1

M2
[i,t]]

=

T∑
i=1

E[∥
i∑

s=1

ζs

i∑
t=1

M[i,t]W[t,s]∥22 +
ρ2

C
∥M[i:]∥22]

≤
T∑

i=1

E[∥
i∑

s=1

M̌[i,s]ζs∥22 +
ρ2

C
]

≤
T∑

i=1

E[iG2∥M̌[i,:]∥22] + T
ρ2

C

≤
T∑

i=1

iG2 + T
ρ2

C
≤ 1

2
G2T 2 + T

ρ2

C
. (32)

By substituting Equation (31) and (32) in Equation (30) and telescoping the constant, we get:

E∥ 1
T
(θ⋆

T+1 − θasync
T+1)∥

2
2 ≤ η2(2TS2 + TG2 + 2

ρ2

C
). (33)

We next present a generalized version of Theorem 3.7 for W with any rank. We note that at iteration
i, the first i elements of solution ai[: i] = M[i,:i]W

+
[:i,:i] where W+

[:i,:i] is the Moore–Penrose inverse
of W[:i,:i], and the rest elements in ai[: i] are zeros. Let ri denotes the rank of W[:i,:i], and let
[Uri ,U−ri ]Σi[Vri ,V−ri ]

⊤ be the singular value decomposition of W[:i,:i], where Uri ,Vri are the
first ri left and right singular vectors ordered by the singular values.

We define

αi =
M[i,:i]VriV

⊤
ri M

⊤
[i,:i]

∥M[i,:]∥22
∈ [0, 1],

i.e. the normalized magnitude of projection of M[i,:] onto the columns space of W[:i,:i]. Then we
can decompose ∥M[i,:]∥22 as:

∥M[i,:]∥22 = M[i,:i]VriV
⊤
ri M

⊤
[i,:i] +M[i,:i]V−riV

⊤
−riM

⊤
[i,:i]

= αi∥M[i,:]∥22 +M[i,:i]V−riV
⊤
−riM

⊤
[i,:i]

Thus,

M[i,:i]V−riV
⊤
−riM

⊤
[i,:i] = (1− αi)∥M[i,:i]∥22 ≤ 1− αi. (34)

Theorem B.4. Let A(T ) =
∑T

i=1 iE[1− αi]. For AsyncFL with momentum approximation (MA),

E∥ 1
T
(θ⋆

T+1 − θMA
T+1)∥22 ≤ η2(2S2A(T )

T
+G2T + 2

ρ2

TC
E∥A∥2F ). (35)

Proof. Similar to Equation (30), we have:

E∥θ⋆
T+1 − θMA

T+1∥22 ≤ 2η2T (E∥D⋆(AW −M)⊤∥2F + E∥EA⊤∥2F ) (36)
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Denote M̃ = AW and M̃[i,:i] = ai[: i]
⊤W[:i,:i] = M[i,:i]W

+
[:i,:i]W[:i,:i]. We first bound the

implicit momentum bias term:

E∥D⋆(AW −M)⊤∥2F =

T∑
i=1

E∥(M̃[i,:] −M[i,:])D
⋆⊤∥22

≤
T∑

i=1

iS2E∥M̃[i,:i] −M[i,:i]∥22

=

T∑
i=1

iS2E∥M[i,:i](W
+
[:i,:i]W[:i,:i] − I)∥22

=

T∑
i=1

iS2E∥M[i,:i]V−riV
⊤
−ri∥

2
2

=

T∑
i=1

iS2E[M[i,:i]V−riV
⊤
−riM

⊤
[i,:i]]

≤
T∑

i=1

iS2E[1− αi] = S2A(T ) (37)

We then bound the asynchronous sampling bias term. Since W+W is a orthogonal projection
operator, ∥M̃[i,:]∥22 ≤ ∥M[i,:]∥22 ≤ 1 and we have:

E∥EA⊤∥2F =

T∑
i=1

E∥A[i,:]E
⊤∥22

=

T∑
i=1

EHi
EK:i,:i|Hi

[∥
i∑

t=1

A[i,t]

i∑
s=1

W[t,s]ζt,s∥22]

Lemma B.2
≤

T∑
i=1

E[∥
i∑

s=1

M̃[i:]ζs∥22 +
ρ2

C
∥ai∥22]

≤
T∑

i=1

E[iG2∥M̃[i,:]∥22] +
ρ2

C

T∑
i=1

E∥ai∥22

≤
T∑

i=1

iG2 +
ρ2

C
E∥A∥2F ≤

1

2
T 2G2 +

ρ2

C
E∥A∥2F . (38)

By substituting Equation (37) and (38) in Equation (36) and telescoping the constant, we get:

E∥ 1
T
(θ⋆

T+1 − θMA
T+1)∥22 ≤ η2(2S2A(T )

T
+G2T + 2

ρ2

TC
E∥A∥2F ). (39)

When W is full rank, αi = 1 for all iterations and A(T ) = 0. When W is not full rank, αi is more
likely to be closer to 1 when ri is high and leads to smaller A(T ). We discuss in Appendix B.2 that
how can down-scaling factor increases ri and reduces implicit momentum bias.

B.2 Discussion

Justification for Assumption 3.4. We argue that in the production FL systems, the order of
sampled clients’ updates arriving at server is random does not dependent on their data size. In
common deployed FL systems [3, 22, 44, 51], the initiation of on-device training process is subject to
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Figure 6: (Left) Nullity (i − ri) of W[:i,:i] over iterations for different p. (Middle) 1 − αi over
iterations for different p. (Right) Scale of E∥A∥2F versus CT 2 in the log space over iterations for
different p and β.

a set of conditions: connected to power and wireless network, idle, and scheduled by device OS. The
timing of the event for all these conditions to be met is naturally nondeterministic rather than data
dependent, e.g. a client might always charge their device at certain time of a day but OS scheduler
might not always prioritize the FL training process and start training at exactly the time of charging.

Let Xk denote the random variable for client k’s the starting time of training, and let Yk be the
random variable of on-device training and network latency for submitting model update to server.
Then Xk + Yk is the time that k’s updates arrived at server. When the variance of Xk is dominating
Xk + Yk, the arrival order of sampled clients is not data dependent and random. This is highly likely
as the on-device training becomes extremely efficient with advances in hardware, e.g. training a
modern neural network on an edge device takes only a few seconds [5, 31, 32]. To further enforce the
arrival order to be random and less data dependent, we can also implement simple on-device logic
such as enforcing the maximum amount of data to train on and injects a small random delay before
on-device training [48].

Importance of the down-scaling factor. The down-scaling factor (t− s+1)−p for the stale model
updates plays an important role when solving Equation (11). We find that larger p leads to higher
rank of W and smaller least square objective, and thus better momentum approximation as illustrated
in Figure 6. For p = 0.0, the nullity (i− ri) increases over iterations while W[:i,:i] is mostly full-rank
when choosing a higher p. As a consequence, the relative least square error 1− αi is nearly zero for
higher p. However, we cannot set p arbitrarily high as this would over-penalize the stale gradients
and impact the model convergence.

Scale of E∥A∥2F . We empirically evaluate the condition in Theorem 3.7 that E∥A∥2F = O(CT 2),
i.e. E∥A∥2F should not grow faster than CT 2 when T increases. Right of Figure 6 shows the quantity
log∥A[:i,:i]∥2F / logCi2 over iterations, where the quantity is less than 1 for different choices of p
and β, indicating that E∥A∥2F grows slower than CT 2. We also note that higher p results in smaller
E∥A∥2F leading to smaller sampling error in Equation (12).

C Limitations

Our analysis in Theorem 3.6 and Theorem 3.7 did not make any assumptions about the distribution of
W . Though the analysis gives the results for an arbitrary W but we note that the distribution of W
might have some special properties when using a particular client delay distribution. As discussed
in Appendix B.2, we also empirically find the spectral properties of W are associated the choice of
down-scaling factor and its exponent p. These special properties of W , which we did not formalize,
could potentially improve the theoretical results . We leave it to future work to explore the impact of
the distribution and properties of W on momentum in AsyncFL. We also did not analyze the impact
of stale gradients on the bias in the second moments in optimizers like FedAdam as we acknowledged
in Section 3.2.
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D Broader Impact

This work does not have negative societal or ethical impact. On the contrary, this work can potentially
benefit the society in terms of stronger privacy protection. Our proposed method is compatible with
secure aggregation and differential privacy, and can be easily integrated to existing asynchronous
federated learning production systems. We believe that our method can improve the applicability of
asynchronous private federated learning to more on-device ML products where the data is highly
personal and sensitive, and thus provide meaningful privacy guarantee to the end users.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are reflected in both theoretical and
empirical results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Limitations are discussed in Appendix C.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Assumptions are provided in Section 3 and proofs are provided in Ap-
pendix B.1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Detailed description of hyperparameters and setup is provided in Appendix A.1.
We plan to open source the code and data for reproducing the results in the paper in the near
future.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We plan to open source the code and data for reproducing the results in the
paper in the near future.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed description of hyperparameters and setup is provided in Appendix A.1.
We also separately analyzed the impact of some critical hyperparameters in the algorithms.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail
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