
Value Alignment Verification

Daniel S. Brown∗
University of California, Berkeley

dsbrown@berkeley.edu

Jordan Schneider∗, Scott Niekum
University of Texas at Austin

{joschnei,sniekum}@cs.utexas.edu

Abstract

As humans interact with autonomous agents to perform increasingly complicated,
potentially risky tasks, it is important that humans can verify these agents’ trust-
worthiness and efficiently evaluate their performance and correctness. In this paper
we formalize the problem of value alignment verification: how to efficiently test
whether the goals and behavior of another agent are aligned with a human’s val-
ues? We explore several different value alignment verification settings and provide
foundational theory regarding value alignment verification. We study alignment
verification problems with an idealized human that has an explicit reward function
as well as value alignment verification problems where the human has implicit
values. Our theoretical and empirical results in both a discrete grid navigation do-
main and a continuous autonomous driving domain demonstrate that it is possible
to synthesize highly efficient and accurate value alignment verification tests for
certifying the alignment of autonomous agents.

1 Introduction

If we desire autonomous agents that can interact with and assist humans and other agents in performing
complex, potentially risky tasks, then it is important that humans can verify that other agents’ policies
are aligned with what is expected and desired. This alignment is often termed value alignment and
is defined in the Asilomar AI Principles2 as follows: "Highly autonomous AI systems should be
designed so that their goals and behaviors can be assured to align with human values throughout
their operation." We note that it is also important that even non-human agents are mututally value
aligned in multi-agent settings so that they can assist each other and collaborate under shared norms
and preferences. In this paper, we propose and explore the problem of efficient value alignment
verification: How can a human efficiently test whether a robot is aligned with the human’s values?

The goal of value alignment verification is to construct a kind of “driver’s test” that a human can give
to another agent which can verify value alignment and consists of only a small number of queries.
For the purposes of this paper we will define values in the reinforcement learning sense, i.e. with
respect to a value function or reward/utility function. We say that a robot is perfectly value aligned
with a human if the robot’s policy is optimal under the human’s reward function. The two agents in a
value alignment verification problem (human and robot) will likely have different communication
mechanisms and different value introspection abilities. Thus, value alignment verification will take
different forms depending on whether the human and robot have explicit (i.e. being able to write
down a value function or reward function) or implicit access to their values (i.e. only able to answer
preference queries or to sample actions from a policy). As an example, artificial agents typically
have explicit value functions or policies, while humans typically have implicit values. Despite these
differences, we would like to perform value alignment verification regardless of the agent having
explicit or implicit values. In Section 4.2.1 we examine methods for provable value alignment

∗Equal contribution
2https://futureoflife.org/ai-principles/

NeurIPS 2020 Workshop on Human And Machine in-the-Loop Evaluation and Learning Strategies (HAMLETS)

https://futureoflife.org/ai-principles/

Human
Tester

Test Generator

Preference
Elicitation

Alignment Test Agents to be verifiedVerification

Figure 1: Value alignment verification with a human tester with implicit values. The tester’s values
are distilled into a succinct alignment test via preference elicitation. This test can then be applied to
any number of agents to verify their alignment with the human’s values.

verification in an idealized setting when both the human and robot have explicit values. Then, in
Section 4.2.2 we discuss how we can use this test under several different conditions including when
the robot may have implicit values and can only answer preference queries. Finally, in Section 4.3 we
propose an approximation algorithm for value alignment verification (depicted in Figure 1) that is
applicable in cases where the human tester has implicit values.

Prior work on value alignment often focuses on loose definitions of value alignment, qualitative
evaluation of trust [20] or asymptotic alignment of an agent’s performance via interactions and
active learning [17, 18, 30]. In contrast, our work seeks to build trust between agents by formally
defining value alignment and seeking efficient tests for value alignment verification that are applicable
when two or more agents already have learned a policy or reward function and want to quickly
test compatibility. Related work seeks to provide high-confidence bounds on the performance of
a reinforcement learning agent [19, 34] or an imitation learning agent [12, 14]. However, these
approaches typically require full access to the parameterized policies of both agents and involve
evaluating the robot’s policy over significant amounts of historical data or extensive counterfactual
computations. To the best of our knowledge, we are the first to address the general problem of
algorithmic value alignment verification. In particular, we propose exact, approximate, and heuristic
tests that one agent can use to quickly and efficiently verify value alignment with another agent.

The contributions of this work are the following: (1) We formally define value alignment verification;
(2) We then analyze the complexity of value alignment verification and show that in an idealized
setting it can be much more efficient than active reward learning, requiring only a constant number
of queries; (3) We next propose exact and heuristic value alignment verification methods that are
applicable under a wide range of test queries; (4) We also propose an approximation algorithm for
value alignment verification that works with a human tester with implicit values; and (5) We provide
empirical results demonstrating the efficacy of exact and approximate value alignment verification in
both a discrete grid navigation domain and a continuous autonomous driving domain.

2 Related work

Value Alignment: Most work on value alignment focuses on how to iteratively train a learning
agent such that its final behavior is aligned with a user’s intentions [5, 22, 28]. One example is
cooperative inverse reinforcement learning (CIRL) [18], which formulates value alignment as a game
between a human and a robot, where both try to maximize a shared reward function that is only known
by the human. CIRL and other research on value alignment focus on ensuring the learning agent
asymptotically converges to the same values as the human teacher, but do not provide a way to check
when value alignment has been achieved. By contrast, we are instead interested in value alignment
verification: testing whether an agent is currently value aligned. We do not assume a cooperative
setting—the robot is not assumed to have the same payoff as the human. Instead, we assume the
agent being tested has already learned a policy/reward function via some black-box optimization
process and the human wants to efficiently test for alignment.

Active Reward Learning: Value alignment verification is closely related to the problem of active
preference learning [2, 8, 10, 14, 17, 20, 24] where an AI system seeks to efficiently determine
the reward function of a human expert via queries for expert demonstrations or preferences over
trajectories; however, value alignment verification only seeks to answer the question of whether
two agents are aligned, without concern for the exact reward function of the robot. We prove in

2

Section 4.1 that value alignment verification can sometimes be performed in a constant number of
queries whereas active learning requires a logarithmic number of queries. We also demonstrate that
when the human has implicit values, then active reward learning can be used to automatically generate
a high-confidence value alignment test with respect to these implicit values.

Machine Teaching: Machine teaching [36, 37] is the inverse problem to machine learning. In
machine teaching, a teacher seeks a minimal set of training data such that a student (running a
particular learning algorithm) learns a desired set of model parameters. Value alignment verification
is related and can be seen as a form of machine testing rather than teaching. Machine teaching
algorithms typically search for a minimal set of training data that will teach a learner a specific model,
whereas we seek a minimal set of questions that will allow a tester to verify another agent’s model.
Thus, in machine teaching, the teacher provides examples and their answers, but in machine testing
the tester provides examples and then queries the student for the answer. Machine teaching has been
previously applied to sequential decision making problems [13, 15], but has not been used to directly
address the problem of machine testing. Other related work has proposed to use pedagogic examples
as a way to enable robots to express their capabilities [21] and values [20] to a human. Our work is
similarly motivated by building trust between agents via verification testing.

Policy Evaluation Policy evaluation [33] can be seen as a form of value alignment, but aims to
answer the harder question of "How much return would the other agent achieve according to my
values?" By focusing on the simpler question, "Is the robot value aligned with the human?", our work
provides sample-efficient tests for exact and approximate value alignment. Off-Policy Evalutaion
(OPE) seeks to perform policy evalution without executing the testee’s policy [27, 34, 35]. OPE is
often sample-inefficient or provides high-variance estimates and typically assumes explicit access to
the tester’s reward function, explicit access to the tester and testee policies, and a large dataset of
rollouts from the tester’s policy with corresponding returns. By contrast, value alignment verification
is applicable in settings where the policies and reward functions of both agents may be implicit
and only accessible indirectly. High-confidence policy evaluation has also been investigated in the
imitation learning setting [1, 10, 12] where an agent has access to demonstrations from an expert and
seeks to evaluate its policy loss with respect to the teacher’s unknown reward function. Rather than
considering a learner that receives demonstrations from a teacher, we consider a tester who seeks to
design a test that can (approximately) verify the value alignment of any other agent.

3 Preliminaries and notation

Because we are interested in agents that have different reward functions, we adopt notation proposed
by Amin et al. [3] where a Markov Decision Process (MDP) M consists of an environment E =
(S,A, P, S0, γ) and a reward function R : S → R. An environment has a set of states S, a set of
actionsA, a transition function P : S×A×S → [0, 1], a discount factor γ ∈ [0, 1), and a distribution
over initial states S0. A policy π : S × A 7→ [0, 1] is a mapping from states to a distribution over
actions. The state and state-action values of a policy π are V πR (s) = Eπ[

∑∞
t=0 γ

tR(st) | s0 =
s] and QπR(s, a) = Eπ[

∑∞
t=0 γ

tR(st) | s0 = s, a0 = a] for s ∈ S and a ∈ A. We denote
V ∗R(s) = maxπ V

π
R (s) and Q∗R(s, a) = maxπ Q

π
R(s, a). The expected value of a policy is denoted

by V πR = Es∈S0
[V πR (s)]. As is common [7, 14, 26, 38], we will often assume that the reward function

can be expressed as a linear combination of features φ : S 7→ Rk, so that R(s) = wTφ(s), where
w ∈ Rk. Thus, we use R and w interchangeably. Note that this assumption of a linear reward
function is not restrictive as these features can be arbitrarily complex nonlinear functions of the state
and can be obtained via unsupervised learning from raw state observations [14, 16, 32]. Given this
assumption, the state-action value function can be written in terms of discounted expectations over
features as QπR(s, a) = wTΦ

(s,a)
π , where Φ

(s,a)
π = Eπ[

∑∞
t=0 γ

tφ(st) | s0 = s, a0 = a].

4 Value alignment verification

In this section we first explicitly define value alignment and value alignment verification. Next, we
discuss how assuming rationality of the robot agent enables highly efficient provable value alignment
verification. We then present results for value alignment verification when the human has full control
over the environment and also in the case where the environment is fixed. We conclude this section

3

by presenting a method for approximate value alignment verification when the tester is a human with
implicit values.

We first formalize value alignment. Consider two agents: a human and a robot. We will assume that
the human has a (possibly implicit) reward function that provides the ground truth for determining
value alignment verification of the robot. We define exact value alignment as follows:
Definition 1. Given reward function R, policy π′ is value aligned in environment E if and only if

π′ ∈ OPT (R), (1)

where OPT(R) = {π | π(a|s) > 0⇒ a ∈ arg maxaQ
∗
R(s, a)}, is the set of all optimal (potentially

stochastic) policies in MDP (E,R) and arg maxx f(x) := {x | f(y) ≤ f(x),∀y}.

In complex environments or for robots with bounded rationality or computation, expecting exact
alignment may be unreasonable. Thus, we also define ε-value alignment:
Definition 2. Given reward function R, policy π′ is ε-value aligned in environment E if and only if

V ∗R − V π
′

R ≤ ε. (2)

Note that Definition 1 is a special case of Definition 2 when ε = 0.

We are interested in the problem of value alignment verification which we define as follows:
Definition 3. Value Alignment Verification: Given an environment E, reward function R, policy π′,
and a threshold ε, solve the decision problem: Is π′ ε-value aligned with R in environment E?

To verify value alignment without checking alignment at every state, it needs to be the case that the
robot preferring an action in one state implies something about its preferences in another. Any such
implication is going to require both that the states have some relationship to one another and that the
agent’s preferences are consistent with this relationship between states. In our case we assume states
have known reward features and that agents act rationally with respect to a linear reward in these
features. While we require these assumptions for our theoretical analysis, we will later show that
many of our proposed methods for value alignment verification can be used as heuristics for building
trust even if the subject agent is not rational.

A rational agent is one that picks actions to maximize its utility [29]. Thus, given a reward function
R′, a rational agent’s policy π′ is of the form:

π′(s) ∈ arg max
a

Q∗R′(s, a). (3)

Consider two rational agents with reward functions R and R′. Because there are infinite reward
functions that lead to the same optimal policy [25], determining that ∃s ∈ S,R(s) 6= R′(s) is not
sufficient to verify mis-alignment. Instead we formalize value alignment for reward functions with
arbitrary shaping or scale via the following Lemma that directly follows from Definition 1 and the
definition of a rational agent in Equation (3).
Lemma 1. A rational robot with reward function R′ is value aligned with a human with reward
function R in environment E if and only if OPT (R′) ⊆ OPT (R).

Proof. This follows directly from Definition 1 and the definition of a rational agent in Eq. (3).

Thus a rational robot is aligned with a human if all optimal policies under the robot’s reward function
are also optimal policies under the human’s reward function.

4.1 ε-Alignment Verification via Omnipotent Testing

We first consider the theoretical setting of an omnipotent testing agent: one that is able to construct a
set of arbitrary test MDPs to verify value alignment across a family of environments that share the
same reward function. We assume that the human has explicit access to their reward function, but
only assume that the robot has implicit values which allow the agent to answer preference queries.
Amin and Singh [4] prove under these assumptions that an omnipotent active learner can determine
the reward function of another agent within ε precision via O(log |S| + log(1/ε)) active queries.

4

These queries take the form of asking for the entire policy of the robot. In Appendix A.2, we extend
this result to the case of value alignment testing, where we prove that if the human is able to query
the robot for preferences over policies, then the sample complexity of ε-value alignment verification
is only O(1).
Theorem 1. Given a testing rewardR, there exists a two-query test (complexityO(1)) that determines
ε-value alignment of a rational agent over all MDPs that share the same state space and reward
function R, but may differ in actions, transitions, discount factors, and initial state distribution.

Proof. See Appendix A.2.

This illustrates the benefit of having a verification test versus running active reward learning and
confirms related work that has shown that methods related to machine teaching are much more sample
efficient than active learning methods [13, 36]. While creating an arbitrary synthetic testing world
may work in some cases, it is often the case that nature provides the environment in which we would
like to guarantee verification. In the rest of this paper we focus on this setting, where the testing
environment is fixed and cannot be arbitrarily constructed or changed.

4.2 Provable Exact Value Alignment Verification for a Non-Omnipotent Tester

In this section we develop theoretical results regarding provable exact alignment verification (ε = 0)
of a rational robot when the tester does not have full control over the testing environment.

4.2.1 Aligned Reward Polytopes

We seek an efficient value alignment verification test which enables a human to query the robot
to determine alignment according to Lemma 1. As demonstrated by Theorem 2 below, due to the
linearity of R, a sufficient condition for value alignment verification is to test whether the rational
robot’s reward function lies in the following geometric object.
Definition 4. Given an MDP M composed of environment E and reward function R, the aligned
reward polytope (ARP) is defined as the following set of reward functions:

ARP(R) = {R′ | OPT(R′) ⊆ OPT(R)}. (4)

We now present a sufficient test for provable exact value alignment. As a reminder, given a linear
reward function we can write the state-action value function as QπR(s, a) = wTΦ

(s,a)
π , where

Φ
(s,a)
π = Eπ[

∑∞
t=0 γ

tφ(st) | s0 = s, a0 = a].
Theorem 2. Given an MDP M = (E,R), if the human’s reward function R and robot’s reward
function R′ can be represented as a linear combination of features φ(s) ∈ Rk, i.e., R(s) = wTφ(s),
R′(s) = w′

T
φ(s), then a sufficient condition for testing value alignment is to test whether

w′ ∈
⋂

(s,a,b)∈S×A×A

HRs,a,b ⊆ ARP (R) (5)

where HRs,a,b =
{
w | wT (Φ

(s,a)
π∗R

− Φ
(s,b)
π∗R

) > 0
}

, if a ∈ arg maxa′∈AQ
∗
R(s, a′), b /∈

arg maxa′∈AQ
∗
R(s, a′) and is equal to Rk, i.e., non-constraining, otherwise.

Proof. See Appendix A.1.

4.2.2 Provable Exact Value Alignment Verification

Given Theorem 2, we can now design an efficient test value alignment verification where we have
an idealized human and robot that both have explicit representations of their reward functions. Our
analysis provides theoretical insight into the value alignment verification problem and the resulting
tests for exact alignment in this section will motivate our approximation algorithm for value alignment
verification when one or both of the agents have implicit values.3 We propose an approach that is

3We also note that our results are of practical interest if there are two robots that need to collaborate, but
were trained by different organizations and have different reward functions and/or policies [6, 31]. Running a
value alignment test with explicit values if an efficient way to verify if the robots can work together.

5

much more efficient than running a brute force policy comparison or standard policy evaluation of
the robot’s policy under the human’s reward function. Unlike policy evaluation which has to be
performed for each new agent, we seek a verification test that can be computed once and then reused
to test any number of agents.

We first consider the setting where the human can directly query for the robot’s reward function
weights w′. Later we will show that many different types of queries reduce to this type of test.
A direct result of Theorem 2 is that we can test for value alignment verification via the test T =
{Hs,a,b | (s, a, b) ∈ S ×A×A} where the questions are defined as

w′
T

(Φ
(s,a)
π∗R
− Φ

(s,b)
π∗R

) > 0?, if a ∈ arg max
a′∈A

Q∗R(s, a′), b /∈ arg max
a′∈A

Q∗R(s, a′),∀s ∈ S (6)

All constraints of this form can be checked simultaneously via a single matrix-vector multiplication
ΦARPw′ > 0, where ΦARP is a matrix where each row corresponds to a unique feature count
difference in Equation (6). The above test assumes that the human can query directly for the robot’s
reward function weights w′. In Appendix C, we show that similar tests can be formulated under more
restrictive query assumptions, including preferences queries answered via implicit values:
Proposition 1. Under the assumption of a rational robot that shares the same linear reward features
as the human, efficient exact value alignment verification is possible in the following query settings:
(1) Query access to reward function weights w′, (2) Query access to samples of the reward function
R′(s), (3) Query access to Q∗R′(s, a), and (4) Query access to preferences over trajectories.

Proof. See Appendix C.

Proposition 1 assumes the human can either directly query the robot’s reward or value function or
query the robot for its preferences over trajectories. However, sometimes the human may only have
query access to the robot’s policy π′. In this case, we can resort to heuristics for value alignment
via policy queries that have high verification accuracy in practice, but may occasionally have false
positives where a non-aligned agent is certified as aligned, as we discuss in the next section.

4.3 Approximate Value Alignment Verification for Agents with Implicit Values

We now discuss how to perform value alignment when the human and/or robot only have implicit
values. In this setting, the goal is to distill a human’s intent or values into a verification test that can
be used to quickly check the value alignment of any agent. For example, a regulatory body may want
a sample efficient test to validate proprietary autonomous driving software. The testing agency may
change its regulations periodically and a value alignment test could be used to check whether existing
proprietary software still meets the new guidelines. A well designed value alignment verification test
could also be useful as a replacement for exhaustively backtesting an agent during development to
ensure updates to software do not violate safety constraints.4

Without an explicit representation of the human’s values we cannot directly compute the ARP as
described in the previous section. Instead, we propose the approach outlined in Figure 1 where we
use an AI system as a test generator to enable the creation of an alignment test. The test generator first
performs preference elicitation to distill the human’s internal value function into an efficient alignment
test. This test can then be reused to test any other agent, human or robot, for value alignment.

As is common for many active reward learning algorithms [8, 17, 30], we assume that the preference
elicitation algorithm outputs both a set of trajectory preferences P = {(ξi, ξj) : ξi � ξj} and a set of
sample reward weights w from the posterior distribution P (w|P) = {wi} . Given P and P (w|P),
the aligned reward polytope of the human’s implicit reward function can be approximated as

ARP =
⋂

(ξi,ξj)∈P

{w | wT (Φ(ξi)− Φ(ξj)) > 0
}
, (7)

which generalizes the definition of the ARP to MDPs with continous states and actions. To test the
alignment of agents with bounded rationality or slightly misspecified reward functions we consider

4In some cases, such as an AI tutoring system, the robot could be the tester and the human could be the testee.
For example, a robot that comes preprogrammed from a factory to perform household chores may want to first
quickly verify whether the human’s preferences are aligned with its preprogrammed behavior.

6

testing for ε-value alignment (Definition 2). In particular, we synthesize a test by computing a
(1− δ)-confidence ε-ARP. As each sample wi has a probability mass associated with it, we can create
a high-confidence version of the ε-ARP by only testing using trajectory pairs (ξi, ξj) ∈ P such that
Pr(wT (Φ(ξi)−Φ(ξj)) > ε) > 1− δ under P (w|P). Finally we remove redundant constraints [13].
The result is a succinct, high-confidence test T for ε-value alignment verification that consists of a
minimal set of informative preference queries (see Appendix for details). The alignment test consists
of asking the robot for preferences over trajectories in T and checking if they match the preference
labels given by the human tester.

5 Experiments

5.1 Value Alignment Verification with Idealized Human Tester

In this section, we evaluate the performance of our proposed exact value alignment verification test
(Section 4.2.2) in two forms: querying for the weight vector of the robot (ARP-w) and preference
queries (ARP-pref). We also consider three heuristic alignment tests designed to work with black-box
agents where the tester can only ask policy action queries. We briefly discuss the three black-box
heuristics here and include full details in Appendix D. Our first heuristic is inspired by Huang et
al.’s notion of critical states: states where Q∗R∗(s, π

∗
R∗(s)) − 1

|A|
∑
a∈AQ

∗
R∗(s, a) > t, for some

user defined threshold t [20]. We adapt this idea to form a critical state alignment heuristic (CS)
that computes critical states under the human’s reward function R, then queries the robot’s policy at
each critical state and tests if the robot action is an optimal action under the human’s policy π∗R. Our
second heuristic uses the Set Cover Optimal Teaching algorithm (SCOT) proposed by Brown and
Niekum [13] and adapt this to make it a value alignment heuristic. SCOT generates a set of maximally
informative state-action trajectories designed to efficiently teach a reward function to maximum
likelihood IRL agent. We turn this into an alignment verification test by generating maximally
informative trajectories, querying the robot’s policy at each state in the teaching trajectories and then
testing whether the sampled actions are optimal under the human’s reward function R. Our third
heuristic takes inspiration from the definition of the ARP to define a black-box (action-only-query)
alignment heuristic (ARP-bb). ARP-bb first computes ARP(R), removes redundant half-space
constraints via linear programming, queries the robot’s policy for an action in each state s that defines
a non-redundant halfspace constraint wT (Φ

(s,a)
π∗R
− Φ

(s,b)
π∗R

) > 0 in ARP(R), and finally checks if the
sampled actions are optimal under R.

5.1.1 Case Study

To illustrate the types of test queries found via value alignment verification, we consider two domains
inspired by the AI safety grid worlds [23]. The first domain, island navigation is shown in Figure 2.
Figure 2a shows the optimal policy under the tester’s reward function

R(s) = 50 · 1green(s)− 1 · 1white(s)− 50 · 1blue(s), (8)

where 1color(s) is an indicator feature for the color of the grid cell. Shown in figures 2b and 2c
are the two preference queries generated by ARP-pref. In both cases the query consists of two
trajectories (shown in black and orange for visualization), and the agent taking the test must decide
which trajectory is preferable (black is preferable to orange). We see that preference query 1 verifies
that the agent would rather move the to terminal state (green) rather than visit white cells. The second
preference verifies that the agent would rather visit white cells than blue cells, and prefers an indirect
path to the goal state (green) rather than a more direct path that visits a blue cell. Shown in figures 2d,
2e, and 2f are the query states for ARP-bb, SCOT, and CS heuristics, respectively. In each of these
tests the agent being tested is asked what action its policy would take in each of the states marked
with a question mark. To pass the test, the agent must respond with an action that is optimal action
under the tester’s policy in each of these states. ARP-bb chooses two states where the halfspaces
defined by the expected feature counts of following the optimal policy versus taking a suboptimal
action and following the optimal policy fully define the ARP. SCOT asks queries for maximally
informative trajectory that starts near the water. CS only reasons about Q-value differences and asks
many redundant queries. In Appendix E we show similar results for the lava world environment [23].

7

(a) Optimal policy (b) Preference query 1 (c) Preference query 2

(d) ARP-bb queries (e) SCOT queries (f) CS queries

Figure 2: Example value alignment verification tests for the island navigation domain.

5.1.2 Sensitivity Analysis

We also evaluated the exact value alignment verification methods across a suite of grid navigation
domains with varying numbers of states and reward features. We summarize our results here and
refer the reader to Appendix F for the full details. By construction, ARP-w requires only one query
(querying for w′) to achieve perfect accuracy. Using trajectory preferences to define the ARP (ARP-
pref) also has perfect accuracy, but requires more queries to the robot. SCOT has sample complexity
that is lower than the critical state methods, but much higher than querying directly reward function
weights since it queries at for actions as states along each machine teaching trajectory. We found
empirically that SCOT has nearly perfect accuracy, but occasionally has false positives. Using the
ARP inspired heuristic (ARP-bb) has low sample complexity and high accuracy, but sometimes has
false positives. CS has significantly higher sample cost than the other methods and requires careful
tuning of the threshold t to obtain good performance.These results give evidence that the testing
method of choice depends on the capability of the robot and the complexity of the environment
relative to the robot’s reward function. If the robot can report a ground truth reward weight then
ARP-w has the best performance. If the robot can only answer trajectory preference queries, then
ARP-pref should be used. When only given query access to the robot’s policy, ARP-bb is preferable
in domains where query costs are high and a few false positives are acceptable, if query costs are not
an issue, then SCOT is preferable since we found it to achieve fewer false positives in practice.

5.2 Value Alignment Verification with Implicit Values

We next applied our approximate value alignment verification test to the continuous autonomous
driving domain shown in Figure 3(b), where we only assume implicit values for the human and
robot [9, 30]. We tested the pipeline shown in Figure 1 by eliciting preferences from a simulated
human, filtering the resulting questions for duplication, epsilon value gaps, and redundancy. The
test’s false positive rate (FPR) is then computed. Our 10 simulated humans are randomly generated
reward weight vectors with unit L2 norm in the "Driver" environment[9]. For preference elicitation
we use a batch method proposed by Biyik and Sadigh [9]. A pair of trajectories that best restricts the
remaining space of possible rewards is generated and the simulated human gives its preference. This
preference induces a posterior distribution over reward weights which is then used to compute the
next maximally informative pair of trajectories. Each of the 10 experiments consist of 1000 pairs of
trajectories and preferences. All other parameters are as in Biyik et. al [9]. These preferences are
then filtered for duplicates, a difference in expected value of at least ε under (1-δ) of the posterior
reward distribution, and redundancy, see Appendix D and E.2 for details. The remaining preferences
form our alignment test. If none of the constraints met the ε-(1− δ) value difference criteria then
we say that all agents pass the test. To evaluate these tests we uniformly sample 10,000 reward
weights with with unit L2 norm, use all constraints that meet the ε-(1 − δ) criteria to determine
ground-truth alignment of each reward, and then report the false positive rate for different values of ε
in Figure 3. The largest average test size for any value of ε was 13.8 queries, a 72x reduction from the
initial queries used to build the test. We additionally analyze our method with different human query
budgets and on preferences generated according to the the noise assumptions in Bikik and Sadigh [9]
both with and without an additional noise filtering step (see Appendix H for full results).

8

(a) ε is the maximum value error an agent can make
before being considered misaligned. The average value
gap under the ground truth reward is 0.04, with a 5th
percentile of 0.0003 and a 95th percentile of 0.13.

(b) A preference query. The yellow trajectory
of the white car is fixed. The human is asked
if they prefer the blue or the red trajectory.

(c) Accuracy of test question from human preferences for differ-
ent numbers of human queries and values of ε. 79% accuracy is
achieved for multiple values of ε with both 100 and 181 human
preferences. See Appendix H.4 for more details.

Figure 3: Approximate value alignment verification for a continuous autonomous driving domain.

Additionally, a small pilot study was run which used actual human preferences. We elicited 181
preferences from the authors using the Information Gain criterion from Biyik et. al. [8]. These
preferences were distilled into a test as above. Then 24 reward functions were sampled randomly
from a diagonal Gaussian distribution centered at the mean posterior reward with standard deviation
1
2 , chosen to provide a roughly balanced number of aligned and misaligned agents. An optimal
trajectory under each reward function was generated and manually judged to be either aligned or
misaligned by the authors. We evaluate our method by computing the accuracy of the test relative
to these manual judgments. Our method correctly determines alignment of 19

24 (79%) of the reward
functions for a range of ε values close to 1.0. More complete results are in Figure 3c. Eventually, ε is
so large that most half-space constraints are not included in the test, resulting in many false positives.

6 Conclusion

We proposed and explored the novel problem of value alignment verification of autonomous agents,
where a human wants to verify the alignment of a robot’s policy with respect to the human’s reward
function. Value alignment verification seeks to enable humans to verify and build trust in AI systems
by designing a test that probes another agent via queries to see if they conform to the human’s values.
Distilling a human’s preferences into a test allows humans to efficiently evaluate the performance
of an autonomous agent according to either explicit or implicit human values. We developed a
theoretical foundation for value alignment verification and proved sufficient conditions for verifying
the alignment of a rational agent. Our theoretical results demonstrate that value alignment verification
can be performed in a constant amount of queries as opposed to the logarithmic number required for
active reward learning. Our empirical results demonstrate that heuristics based on machine teaching
and value alignment provide good sample complexity and high accuracy while only requiring black-
box access to an agent’s policy. When the human has only implicit access to their values, active
preference learning algorithms can be leveraged in order to automatically construct a high-confidence
approximate value alignment test that can efficiently test a large number of agents. Future work
includes relaxing rationality assumptions, empirically testing value alignment verification tests in
more complex domains, and performing a full study using actual human preferences.

9

References
[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.

In Proceedings of the twenty-first international conference on Machine learning, page 1. ACM,
2004.

[2] Abhijin Adiga, Sarit Kraus, Oleg Maksimov, and S. S. Ravi. Boolean games: Inferring agents’
goals using taxation queries. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20.

[3] Kareem Amin, Nan Jiang, and Satinder Singh. Repeated inverse reinforcement learning. In
Advances in Neural Information Processing Systems, pages 1815–1824, 2017.

[4] Kareem Amin and Satinder Singh. Towards resolving unidentifiability in inverse reinforcement
learning. arXiv preprint arXiv:1601.06569, 2016.

[5] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

[6] Yoram Bachrach, Richard Everett, Edward Hughes, Angeliki Lazaridou, Joel Z. Leibo, Marc
Lanctot, Michael Johanson, Wojciech M. Czarnecki, and Thore Graepel. Negotiating team
formation using deep reinforcement learning. Artificial Intelligence, 288:103356, 2020.

[7] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. In Advances in
neural information processing systems, pages 4055–4065, 2017.

[8] Erdem Bıyık, Malayandi Palan, Nicholas C Landolfi, Dylan P Losey, and Dorsa Sadigh. Asking
easy questions: A user-friendly approach to active reward learning. In Conference on Robot
Learning (CoRL), 2019.

[9] Erdem Biyik and Dorsa Sadigh. Batch active preference-based learning of reward functions.
PMLR, 2018.

[10] Daniel S Brown, Yuchen Cui, and Scott Niekum. Risk-aware active inverse reinforcement
learning. In Proceedings of the 2nd Annual Conference on Robot Learning (CoRL), 2018.

[11] Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning
via automaticaly-ranked demonstrations. In Conference on Robot Learning (CoRL), 2019.

[12] Daniel S. Brown and Scott Niekum. Efficient Probabilistic Performance Bounds for Inverse
Reinforcement Learning. In AAAI Conference on Artificial Intelligence, 2018.

[13] Daniel S. Brown and Scott Niekum. Machine teaching for inverse reinforcement learning:
Algorithms and applications. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 7749–7758, 2019.

[14] Daniel S. Brown, Scott Niekum, Russell Coleman, and Ravi Srinivasan. Safe imitation learning
via fast bayesian reward inference from preferences. In International Conference on Machine
Learning. 2020.

[15] Maya Cakmak and Manuel Lopes. Algorithmic and human teaching of sequential decision
tasks. In AAAI, 2012.

[16] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. 2020.

[17] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems, pages 4299–4307, 2017.

[18] Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative inverse
reinforcement learning. In Advances in Neural Information Processing Systems 29, pages
3909–3917. 2016.

10

[19] Josiah Hanna, Scott Niekum, and Peter Stone. Importance sampling policy evaluation with an
estimated behavior policy. In Proceedings of the 36th International Conference on Machine
Learning (ICML), June 2019.

[20] Sandy H Huang, Kush Bhatia, Pieter Abbeel, and Anca D Dragan. Establishing appropriate
trust via critical states. In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3929–3936. IEEE, 2018.

[21] Sandy H Huang, David Held, Pieter Abbeel, and Anca D Dragan. Enabling robots to communi-
cate their objectives. In Robotics: Science and Systems, 2017.

[22] Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable
agent alignment via reward modeling: a research direction. arXiv preprint arXiv:1811.07871,
2018.

[23] Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A Ortega, Tom Everitt, Andrew Lefrancq,
Laurent Orseau, and Shane Legg. Ai safety gridworlds. arXiv preprint arXiv:1711.09883, 2017.

[24] Manuel Lopes, Francisco Melo, and Luis Montesano. Active learning for reward estimation
in inverse reinforcement learning. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 31–46. Springer, 2009.

[25] Andrew Y Ng and Stuart J Russell. Algorithms for inverse reinforcement learning. In ICML,
pages 663–670, 2000.

[26] Matteo Pirotta and Marcello Restelli. Inverse reinforcement learning through policy gradient
minimization. In AAAI, 2016.

[27] Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department
Faculty Publication Series, page 80, 2000.

[28] Stuart Russell, Daniel Dewey, and Max Tegmark. Research priorities for robust and beneficial
artificial intelligence. Ai Magazine, 36(4):105–114, 2015.

[29] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Malaysia; Pearson
Education Limited„ 2016.

[30] Dorsa Sadigh, Anca D. Dragan, S. Shankar Sastry, and Sanjit A. Seshia. Active preference-based
learning of reward functions. In Proceedings of Robotics: Science and Systems (RSS), July
2017.

[31] Peter Stone, Gal A Kaminka, Sarit Kraus, Jeffrey S Rosenschein, et al. Ad hoc autonomous
agent teams: Collaboration without pre-coordination. In AAAI, 2010.

[32] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation
learning from reinforcement learning. arXiv preprint arXiv:2009.08319, 2020.

[33] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning, volume 135.
MIT press Cambridge, 1998.

[34] Philip S Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-confidence
off-policy evaluation. In AAAI, pages 3000–3006, 2015.

[35] Tengyang Xie, Yifei Ma, and Yu-Xiang Wang. Towards optimal off-policy evaluation for rein-
forcement learning with marginalized importance sampling. In Advances in Neural Information
Processing Systems, pages 9665–9675, 2019.

[36] Xiaojin Zhu. Machine teaching for bayesian learners in the exponential family. In Advances in
Neural Information Processing Systems, pages 1905–1913, 2013.

[37] Xiaojin Zhu, Adish Singla, Sandra Zilles, and Anna N Rafferty. An overview of machine
teaching. arXiv preprint arXiv:1801.05927, 2018.

[38] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In AAAI, 2008.

11

A Theory and Proofs

A.1 Aligned Reward Polytopes

Theorem 1. Given an MDP M = (E,R), if the tester’s reward function R and subject’s reward
function R′ can be represented as a linear combination of features φ(s) ∈ Rk, i.e., R(s) = wTφ(s),
R′(s) = w′

T
φ(s), then a sufficient condition for testing value alignment (R′ ∈ ARP (R)) is to test

whether
w′ ∈

⋂
(s,a,b)∈S×A×A

HRs,a,b ⊆ ARP (R) (9)

where

HRs,a,b =

{
w | wT (Φ

(s,a)
π∗R
− Φ

(s,b)
π∗R

) > 0
}
, if a ∈ arg maxa′∈AQ

∗
R(s, a′)

and b /∈ arg maxa′∈AQ
∗
R(s, a′),

Rk, i.e., non-constraining otherwise.
(10)

Proof. We will prove that
⋂

(s,a,b)∈S×A×AHRs,a,b ⊆ ARP (R). Assume that w′ ∈⋂
(s,a,b)∈S×A×AHRs,a,b. This implies that, for all states s ∈ S, optimal actions under R have

higher expected utility than suboptimal actions, when evaluated under w′. Thus, there exists an
optimal policy, call it π∗R, under R that is optimal under w′.

Now consider an optimal policy under w′, call it π∗R′ , we need to show that π∗R′ ∈ OPT (R) To do
this, we prove by contradiction that π∗R′ is optimal under R. The key idea is to compare the feature
counts of πR and π∗R′ after one step and notice that they must look equally appealing under w′.
Assume for contradiction that π∗R′ /∈ OPT (R). We know that π∗R ∈ OPT (R′). Thus, there must
exist a state s and actions a, b such that a ∈ π∗R(s), a ∈ π∗R′(s), b ∈ π∗R′(s) but b /∈ π∗R(s). Thus,

w′
T

(Φs,aπ∗
R′
− Φs,bπ∗

R′
) = 0 (11)

⇒ w′
T

Φs,aπ∗
R′

= w′
T

Φs,bπ∗
R′
. (12)

By assumption about the construction ofHRs,a,b, we also have

w′
T

(Φs,aπ∗R
− Φs,bπ∗R

) > 0 (13)

⇒ w′
T

Φs,aπ∗R
> w′

T
Φs,bπ∗R

(14)

We have previously shown that both π∗R and π∗R′ are optimal policies under R′. This means that, for
all states j and actions k,

Q
π∗R
R′ (j, k) = Q

π∗
R′
R′ (j, k) (15)

⇒ w′
T

Φj,kπ∗R
= w′

T
Φj,kπ∗

R′
(16)

and so in particular

w′
T

Φs,aπ∗R
= w′

T
Φs,aπ∗

R′
(17)

w′
T

Φs,bπ∗R
= w′

T
Φs,bπ∗

R′
(18)

By substituting Equations 17 and 18 into Equation 12, we arrive at

w′
T

Φs,aπR
= w′

T
Φs,bπR

(19)

which contradicts our assumption in Equation (14) and yields the desired contradiction. We have
made only one assumption, that there is a state where there is an action taken by πR′ but not πR, so it
must be the case that at all states, every action taken by πR′ is also taken by πR.

This means that all optimal actions under π∗R′ are also optimal under π∗R. Therefore,
arg maxaQ

∗
R′(s, a) ⊆ arg maxQ∗R(s, a). This proves that R′ ∈ ARPM (R) as desired. Thus,⋂

(s,a,b)∈S×A×AHRs,a,b ⊆ ARPM (R).

12

A.2 ε-Alignment Verification via Omnipotent Testing

In this section, we consider the case where the testing agent is able to construct a set of arbitrary test
MDPs to verify value alignment across a family of environments that may have different transitions,
actions, initial state distribution, and discount factor, but that share the same reward function over
states. Amin and Sing [4] prove that an omnipotent active learner can determine the reward function
of another agent within ε precision via O(log(|S|) + log(1/ε)) active policy queries. We extend this
result to the case of value alignment testing.

We first prove that if two agents’ reward functions are sufficiently similar, then we can guarantee
ε-value alignment.

Lemma 1. If ‖R(s) − R′(s)‖∞ ≤ ε(1 − γ)/2, where γ is the discount factor and ε is any non-
negative error term, then rational agents that have reward functions R(s) and R′(s) are ε-Value
Aligned across all MDPs that share the reward function R(s).

Proof. To be ε-value aligned we must have V π
∗
R

R − V π′R ≤ ε, where π′ is optimal under R′. To prove
the lemma we must show that an adversary that can change the reward function from R to R′, within
the constraint ‖R(s)−R′(s)‖∞ ≤ ε(1− γ)/2, cannot make V π

∗
R

R − V ∗R′ > ε under any MDP.

To make value alignment adversarially bad, we want to maximize V π
∗
R

R − V π′R . Writing this out in
terms of expectations over rewards we have:

V
π∗R
R − V π

′

R = E[

∞∑
t=0

γtR(st) | st ∼ π∗R]− E[

∞∑
t=0

γtR(st) | st ∼ π′]. (20)

To create an adversarial MDP we wish to find a reward function R′ such that V π
∗
R

R > V π
′

R and
V
π∗R
R′ < V π

′

R′ . The intuition is that we want to adversarially construct R′ such that it makes π′ = π∗R′

look better than π∗R under R′ while forcing the true policy loss (V π
∗
R

R −V π′R) to be as large as possible.
We now consider the maximal possible perturbation via an adversarial reward function R′. We want
V
π∗R
R > V π

′

R and V π
∗
R

R′ < V π
′

R′ . Thus, given the constraint ‖R′(s) − R(s)‖∞ ≤ ε(1 − γ)/2, the
maximal difference at each state between R′ and R is ε(1− γ)/2. In the worst-case, the adversary
creates R′ by subtracting ε(1 − γ)/2 from the true reward (R′(s) = R(s) − ε(1 − γ)/2) at states
visited by π∗R to make them look as bad as possible and makes the states visited by π′ look as good as
possible by adding ε(1− γ)/2 to the true reward at those states (R′(s) = R(s) + ε(1− γ)/2). Thus,
we have in the worst-case

V
π∗R
R′ = E[

∞∑
t=0

γtR′(st) | st ∼ π∗R] (21)

= E[

∞∑
t=0

γt (R(st) +R′(st)−R(st)) | st ∼ π∗R] (22)

= E[

∞∑
t=0

γt (R(st)− ε(1− γ)/2) | st ∼ π∗R] (23)

= V
π∗R
R − ε(1− γ)

2(1− γ)
(24)

= V
π∗R
R − ε

2
(25)

13

Similarly, we have in the worst-case

V π
′

R′ = E[

∞∑
t=0

γtR′(st) | st ∼ π′] (26)

= E[

∞∑
t=0

γt (R(st) +R′(st)−R(st)) | st ∼ π′] (27)

= E[

∞∑
t=0

γt (R(st) + ε(1− γ)/2) | st ∼ π′] (28)

= V π
′

R +
ε(1− γ)

2(1− γ)
(29)

= V π
′

R +
ε

2
(30)

The adversarial perturbation of the reward function will only be successful if, as noted previously, we
have V π

∗
R

R > V π
′

R and V ∗R′ < V π
′

R′ . Substituting the values above we have in the worst-case that

V
π∗R
R′ < V π

′

R′ (31)

⇒ V
π∗R
R − ε/2 < V π

′

R + ε/2 (32)

⇒ V
π∗R
R < V π

′

R + ε (33)

⇒ V
π∗R
R − V π

′

R < ε (34)

Thus, we have shown that under the assumption that ‖R(s) − R′(s)‖∞ ≤ ε(1 − γ)/2, then the
subject agent with reward function R′ is ε-value aligned with the tester’s reward function R under all
possible MDPs that share the reward function R.

Note that if we scale the reward of an agent by a positive constant or by a constant vector, we can get
the difference to look arbitrarily large even if the two rewards lead to the same optimal policy. This is
undesirable for computing value alignment in terms of reward differences. Thus, it really only makes
sense to compare rewards if they are similarly normalized. We utilize a canonical form for reward
functions defined by the transformation (R(s)−maxsR(s))/(maxsR(s)−minsR(s)) such that
the values of the reward function are scaled to be between 0 and 1 [4]. Following the notation of
Amin and Singh [4] we use [R] to denote the canonical form for reward function R.

Given the ability to construct arbitrary testing environments, we can guarantee ε-value alignment over
all MDPs that share the reward function R. The following theorem is inspired by Amin and Singh [4]
who prove a analogous theorem for the case of actively querying an expert to approximate the expert’s
reward function. The proof of Amin and Singh [4] relies on binary search and the query algorithm
they derive results in query complexity of O(log(|S|) + log(1/ε)), where each query requires the
expert to specify a complete policy for a new MDP. In contrast, our proof is based instead on machine
teaching (the tester knows what it is testing for), and we prove that in the case of value alignment
verification we only require O(1) queries. In fact we only need two test MDPs where for each test
MDP we query the agent whether it prefers one of two different policies in that test MDP.
Theorem 2. Given a testing rewardR, there exists a two-query test (complexityO(1)) that determines
ε-value alignment of a rational agent over all MDPs that share the same state space and reward
function R, but may differ in actions, transitions, discount factors, and initial state distribution.

Proof. By Lemma 1 we want a test that guarantees ‖[R′]− [R]‖∞ ≤ ε(1− γ)/2 Thus we need

|[R′](s)− [R](s)| < ε(1− γ)/2,∀s ∈ S (35)

⇔ [R](s)− ε(1− γ)/2 < [R′](s) < [R](s) + ε(1− γ)/2,∀s ∈ S (36)

We use the notation [R] and [R′] to represent the canonical versions of R and R′, the tester and
subjects reward functions, respectively. If we can directly query for R′, then we simply compute
‖R−R′‖∞ and check if it is less than ε(1−γ)/2. We now consider the case where we can only query

14

the agent about policy preferences. We define smax = arg maxsR(s) and smin = arg minsR(s)
and s′max = arg maxsR

′(s) and s′min = arg minsR
′(s) and we assume that smax and smin are

unique.

We now create a testing environment E such that from each state there is an action a1 that self
transitions and an action a2 that goes from each state to the max reward with probability αs and to
the min reward with probability (1− αs), except in states smin and smax in which all transitions via
a1 and a2 are self transitions. Thus, taking action a2 represents a gamble between the states with
minimum and maximum reward under the tester’s reward function R.

For s ∈ S \ {smax, smin}, we design two different transition dynamics with the parameters αU and
αL such that αLs = max([R]s − ε(1−γ)

2 , 0) and αUs = min([R]s + ε(1−γ)
2 , 1). Then we construct

two test environments EL and EU . L has αL as the transitions and U has αU as the transitions. We
then design two test questions:

1. Is πa1 � πa2 in MDP L?

2. Is πa2 � πa1 in MDP U?

where πa is the policy that always takes action a.

If the agent answers "YES" to the first question, then ∀s ∈ S \ {smax, smin} we know that a1 is
preferred to a2. Thus the agent will prefer to self transition at a state rather than take action a2 which
probabilistically transitions to smax and smin. Thus, under the subject agents unknown reward R′ the
following inequality holds for all s ∈ S \ {smax, smin}:

αLsR
′(smax) + (1− αLs)R′(smin) < R′(s) (37)

⇔ αLsR
′(smax) + (1− αLs)R′(smin)−R′(s′min) < R′(s)−R′(s′min) (38)

⇔ αLs (R′(smax)−R′(s′min)) + (1− αLs)(R′(smin)−R′(s′min)) < R′(s)−R′(s′min) (39)

⇔ αLs
R′(smax)−R′(s′min)

R′(s′max)−R′(s′min)
+ (1− αLs)

R′(smin)−R′(s′min)

R′(s′max)−R′(s′min)
<

R′(s)−R′(s′min)

R′(s′max)−R′(s′min)
(40)

⇔ αLs [R′](smax) + (1− αLs)[R′](smin) < [R′](s). (41)

and similarly, if the agent answers "YES" to question 2, we have

R′(s) < αUs R
′(smax) + (1− αUs)R′(smin) (42)

⇔ [R′](s) < αUs [R′](smax) + (1− αUs)[R′](smin). (43)

These above inequalities hold for all s ∈ S \ {smax, smin}. We now prove that answering "YES" to
both questions 1 and 2 also means that s′max = maxsR

′(s) = maxsR(s) = smax. We prove this by
contradiction. Assume that smax 6= s′max, then s′max is one of the states where the subject answered
question 2 in the affirmative. Thus, we know that

[R′](s′max) < αUs [R′](smax) + (1− αUs)[R′](smin) (44)

⇒ 1 < αUs [R′](smax) + (1− αUs)[R′](smin) (45)

⇒ 1 < αUs + (1− αUs) = 1 (46)

where second line uses the fact that [R′](s′max) = 1, and the third uses the fact that, by definition,
[R](s) <= 1, ∀s ∈ S. Thus 1 < 1 which provides the desired contradiction. Therefore, we must
have that s′max = smax.

Similarly, we prove that s′min ≡ minsR
′(s) = minsR(s) ≡ smin by contradiction. Assume

that smin 6= s′min, then smin is one of the states for which the subject answered question 1 in the
affirmative. Thus, we know that

αLs [R′](smax) + (1− αLs)[R′](smin) < [R′](s′min) (47)

⇒ αLs [R′](smax) + (1− αLs)[R′](smin) < 0 (48)
⇒ 0 < 0 (49)

15

The second line uses the fact that, by definition, [R′](s′min) = 0. The third line uses the fact that by
definition, [R](smax) ≥ 0 and [R](smin) ≥ 0. This provides the desired contradiction so we must
have that smin = s′min.

Combining the above results we have (assuming the subject answers "YES" to questions 1 and 2)
that [R](smax) = [R′](smax) = 1 and [R](smin) = [R′](smin) = 0. Additionally, we know for all
s ∈ S \ {smax, smin} that

αLsR
′(smax) + (1− αLs)R′(smin) < R′(s) < αUs R

′(smax) + (1− αUs)R′(smin) (50)

⇒ αLs [R′](smax) + (1− αLs)[R′](smin) < [R′](s) < αUs [R′](smax) + (1− αUs)[R′](smin)

⇒ αLs < [R′](s) < αUs (51)
⇒ max([R](s)− ε(1− γ)/2, 0) < [R′](s) < min([R](s) + ε(1− γ)/2, 1) (52)
⇒ |[R′](s)− [R](s)| < ε(1− γ)/2. (53)

Thus, we have‖[R′]− [R]‖∞ < ε(1− γ)/2 so by Lemma 1 we have verified ε-value alignment via
two policy preference queries as desired.

B Relationship of the ARP to Ng and Russell’s Consistent Reward Sets

In this section we discuss the relationship between our approach and the foundational work on IRL
by Ng and Russell [25].

We define the set of rewards consistent with an optimal policy as follows:
Definition 1. Given an environment E, The consistent reward set (CRS) of a policy π in environment
E is defined as the set of reward functions under which π is optimal:

CRS(π) = {w ∈ Rk | π is optimal with respect to R(s) = wTφ(s)}. (54)

The fundamental theorem of inverse reinforcement learning [25], defines the set of all consistent
reward functions as a set of linear inequalities for finite MDPs.
Proposition 1. [25] Given an environment E, with finite state and action spaces, R ∈ CRS(π) if
and only if

(Pπ −Pa)(I− γPπ)−1R ≥ 0, ∀a ∈ A (55)

where Pa is the transition matrix associated with always taking action a, Pπ is the transition matrix
associated with policy π, and R is the column vector of rewards for each state in the MDP.

When the reward function is a linear combination of features, we get the following:
Corollary 1. [13, 25] Given an environment E, the CRS(π) is given by the following intersection
of half-spaces:

{w ∈ Rk | wT (Φ(s,a)
π − Φ(s,b)

π) ≥ 0,∀a ∈ π(s), b ∈ A, s ∈ S}. (56)

Proof. In every state s we can assume that there is one or more optimal actions a. For each optimal
action a ∈ support(π(s)). We then have by definition of optimality that

Q∗(s, a) ≥ Q∗(s, b), ∀b ∈ A (57)

Rewriting this in terms of expected discounted feature counts we have

wTΦ(s,a)
π ≥ wTΦ(s,b)

π , ∀b ∈ A (58)

Thus, the entire feasible region is the intersection of the following half-spaces

wT (Φ(s,a)
π − Φ(s,b)

π) ≥ 0, (59)
∀a ∈ support(π(s)), b ∈ A, s ∈ S (60)

and thus the feasible region is convex.

The consistent reward set of a demonstration from an optimal policy can be defined similarly:

16

Corollary 2. [13] Given a set of demonstrations D from a policy π, CRS(D|π) is given by the
following intersection of half-spaces:

wT (Φ(s,a)
π − Φ(s,b)

π) ≥ 0, ∀(s, a) ∈ D, b ∈ A. (61)

Proof. The proof follows from the proof of Theorem 1 by only considering half-spaces corresponding
to optimal (s, a) pairs in the demonstration.

It is important to note that while Corollary 1 seems to solve the alignment verification problem, it
only provides a necessary, but not sufficient condition. Thus, just because a reward function is within
the CRS of a policy, it does not mean agents are aligned. Consider the example of the all zero reward:
it is always in the CRS of any policy; however, an agent optimizing the zero reward can end up with
any policy. Even ignoring the all zero reward we can have rewards on the boundaries of the CRS
polytope that are consistent with a policy, but not value aligned since they lead to more than one
optimal policy, one or more of which may not be optimal under the tester’s reward function.

C Value Alignment Verification with Explicit Values

Proposition 2. Under the assumption of a rational subject agent that shares the same linear reward
features as the tester, efficient exact value alignment verification is possible in the following query
settings: (1) Query access to reward function weights w′, (2) Query access to samples of the reward
function R′(s), (3) Query access to Q∗R′(s, a), and (4) Query access to preferences over trajectories.

Proof. The proof of case (1) follows directly from Theorem 2.

In case (2), the tester can query for samples of the reward function R′(s). If the tester only has
query access to R′(s), then the same test can be used since the tester can solve a system of linear
equations to recover the weight vector w after sampling a sufficient number of R(s) values since the
tester knows the features φ(s). Note that this also works for rewards that are functions of (s,a) and
(s,a,s’). The number of required samples is equal to rank(Φ) where Φ is the matrix where each row
corresponds to the features φ(s) of a unique state. Thus, in the worst case we only need k samples
from the subject’s reward function so that we have a system with k unknowns and k equalities. If
there is noise in the sampling proceedure, then linear regression can be used to efficiently estimate
the subject’s weight vector w′. After recovering the weight vector, the same value alignment test
used for case (1) can be used.

In case (3) the tester has access to the value function of the subject. If the tester can query the subject
agent’s value function then w can be recovered by solving a linear system of equations since we have
for any agent that

R(s) = wTφ(s) = Q(s, a)− γEs′|s,a
[
max
a′

Q(s′, a′)
]

(62)

and the tester knows φ(s) and can query for Q(s, a). As in case (2) we only need rank(Φ) ≤ k
queries to the subject’s value functions and linear regression can be used if there is noise in the
sampling process. Thus, and the tester can verify value alignment via the reward function value
alignment test that is used in case (1).

In case (4), the tester only has access to the subject’s values via preference queries over trajectories.
If the subject agent being tested can answer pairwise preferences over trajectories, then a value
alignment test can also be tested via the ARP. Each preference over trajectories ξA ≺ ξB induces the
constraint wT (ξB − ξA) > 0. Thus, given a test T consisting of preferences over trajectories, we
can guarantee value alignment if

{w | wT (ξB − ξA) > 0,∀(ξA, ξB) ∈ T } ⊆ ARP(w). (63)
Note that a single trajectory in general will not actually match the successor features of a stochastic
policy. However, by synthesizing arbitrary trajectories we can create more halfspace constraints than
are used to define the ARP since these trajectories do not need to be the product of a rational policy.
As more trajectory queries are asked the estimate of the ARP will approach the true ARP. Brown et
al. [11] proved that given random halfplane constraints, the volume of the polytope will decrease
exponentially. Thus we will need a logarithmic number of queries to accurately define the ARP.

17

D Value Alignment Verification Heuristics

In this section we discuss the value alignment verification heuristics in more detail.

D.1 Critical State-Action Value Alignment Heuristic

Prior work by Huang et al. [20], seeks to build human-agent trust by asking an agent for critical states
where critical states are defined as follows:

Q∗R∗(s, π
∗
R∗(s))−

1

|A|
∑
a∈A

Q∗R∗(s, a) > t (64)

for some user-defined t. If t = 0, then all states will be critical states. On the otherhand, for large t,
none of the states will be critical. Thus, t must be carefully tuned to the scale of the reward function
and to the particulars of the MDP. Huang et al. [20] also proposed finding critical states in terms of
states with policy entropy below some threshold t, but found that state-action value critical states
performed better. Futhermore, using entropy would label every state as critical for a deterministic
policy. State-action value critical states can also be computed for both deterministic and stochastic
policies, thus we only compare against state-action value critical states.

One possible way to use critical states for a value alignment heuristic would be to ask an agent for
its critical states and then see if those match the tester’s critical states However, this is problematic
since reward scale isn’t fixed and there are an infinite number of reward functions that lead to the
same policy [25], so the gap in Q-values can be arbitrarily large. Thus t would have to be carefully
constructed and tuned for both the tester and the agent, making this impractical. Instead, we simply
calculate the critical states for the tester under a tester-defined t and then test whether the optimal
action that the agent being tested would take in the tester’s critical state is also optimal under the
tester’s value function.

This results in the following value alignment heuristic:

(1) Find critical states in true MDP for t ≥ 0 and save (s, a) pairs.

(2) For each critical state-action (s, a), query the subject for their action in state s and check if this is
an optimal action under the tester’s reward function.

D.2 Aligned Reward Polytope Black-Box Heuristic

For this heuristic we have the tester compute ARP (R) for the tester’s reward function R, and then
find the state-actions successor features such that the constraints defined by these successor features
are the minimal set of constraints that define the ARP. In other words, we find the minimal set of
constraints using linear programming as discussed in Section H.2. To run a verification test we simply
take the set of states corresponding to the minimal set of constraints. For each of these constraints we
have

wT (Φ
(s,a)
π∗ − Φ

(s,b)
π∗) > 0 (65)

for all a ∈ arg maxa′ Q
∗(s, a′). The test then consists of asking the agent being tested for the action

the testee would take in state s and see if it is optimal under the tester’s reward function.

D.3 SCOT Trajectory-Based Heuristic

We also adapt the set cover optimal teaching (SCOT) algorithm for value alignment verification
[13]. As done in the original paper [13], we first compute feature expectations, then we calculate the
minimal set of constraints that define the consistent reward set (CRS) using Corollary 1. We then
rollout m trajectories using the teacher’s policy from each initial state and calculate the CRS of the
rollouts using Corollary 2. We then run set cover and find the minimum set of rollouts of length H
that implicitly covers the CRS.

Given the machine teaching demos from SCOT we mask the actions and ask the agent being tested
what action it would take in each state. We then compare this action with the machine teaching action.
In particular, we implement this querying the subject agent for an action at each state s and then
checking if this action is optimal under the tester’s reward function.

18

(a) Optimal policy (b) Preference query 1 (c) Preference query 2 (d) ARP black-box queries

(e) SCOT queries (f) Critical state queries

Figure 4: Example value alignment verification tests for the lava world domain.

Note that all of the methods above are not guaranteed to verify value alignment and may give false
positives. However, all are designed to never give a false negative.

E Case Study Continued

To illustrate the types of test queries found via value alignment verification, we consider two
domains inspired by the AI safety grid worlds [23]. The first domain, island navigation is shown in
Section 5.1.1. We now discuss another domain inspired by the AI safety gridworlds: lava world. This
domain is shown in Figure 4. Figure 4a shows the optimal policy under the tester’s reward function

R(s) = 50 · 1green(s)− 1 · 1white(s)− 50 · 1red(s), (66)

where 1color(s) is an indicator feature for the color of the grid cell. Shown in figures 4b and 4c
are the two preference queries generated by ARP-pref. In both cases the query consists of two
trajectories (shown in black and orange for visualization), and the agent taking the test must decide
which trajectory is preferable (we chose the colors such that the black trajectory is preferable to
orange). We see that preference query 1 verifies that the agent would rather move the to terminal
state (green) rather than visit white cells. The second preference verifies that the agent would rather
visit white cells than red cells, and would rather take an indirect path to the goal state (green) rather
than a more direct path that visits a blue cell. Note that the black trajectory in preference query 2 first
goes up, which resuls in a self transition, then goes left to get out of the lava. Shown in figures 5d, 4e,
and 4f are the query states for ARP-bb, SCOT, and CS heuristics, respectively. In each of these tests
the agent being tested is asked what action its policy would take in each of the states marked with a
question mark. To pass the test, the agent must respond with an action that is optimal action under
the tester’s policy in each of these states. ARP-bb chooses two states where the halfspaces defined by
the expected feature counts of following the optimal policy versus taking a suboptimal action and
following the optimal policy fully define the ARP.

F Value Alignment Verification with Idealized Human Tester

In Appendix F, we compare these heuristics with the exact alignment tests described previously that
query for the robot’s reward function (ARP-w) and query for preferences over trajectories (ARP-pref).
Since the tests are designed such that they accurately verify aligned agents, we constructed a suite
of grid navigation domains with varying numbers of states and reward features. We generated 50
different misaligned agents by sampling random reward functions and comparing the resulting optimal
policies to the optimal policy under a randomly-chosen ground-truth reward function. Figure 5 (a)
and (b) show that for a fixed number of features, the size of the test generated via the critical state
heuristic with threshold t = 0.2 (CS-0.2) scales poorly with the size of the grid world, even though
the complexity of the reward function stays constant. The threshold t has a large impact on the

19

(a) ARP black-box queries (b) ARP black-box queries

(c) ARP black-box queries (d) ARP black-box queries

Figure 5: Queries vs. accuracy (1 - false positive rate) for value alignment testing of misaligned
agents. Exact alignment tests (ARP-w and ARP-pref) achieve good efficiency and perfect accuracy.

performance: small t results in better accuracy at the cost of significantly more queries and larger t
results in significantly more false positives. We chose t = 0.2 to minimize false positives while also
attempting to keep the test size small. In Figure 5 (c) and (d) we plot how the number of constraints
grows as the reward function dimension increases and the MDP size is fixed. The plot for ARP-bb
shows that the number of constraints grows with the size of the reward weight vector as expected.
Conversely, the number of critical states has the undesirable effect of growing with the size of the
MDP, regardless of the complexity of the underlying reward function.

By construction, ARP-w requires only one query (querying for w′) to achieve perfect accuracy.
Using trajectory preferences to define the ARP (ARP-pref) also has perfect accuracy, but requires
more queries to the robot. SCOT has sample complexity that is lower than the critical state methods,
but much higher than querying directly reward function weights since it queries at for actions as
states along each machine teaching trajectory. We found empirically that SCOT has nearly perfect
accuracy, but occasionally has false positives. Using the ARP inspired heuristic (ARP-bb) has low
sample complexity and high accuracy, but sometimes has false positives.These results give evidence
that the testing method of choice depends on the capability of the robot and the complexity of the
environment relative to the robot’s reward function. If the robot can report a ground truth reward
weight then ARP-w has the best performance. If the robot can only answer trajectory preference
queries, then ARP-pref should be used. The heuristics (ARP-bb, SCOT, and CS) have higher query
costs and lower accuracy, but are applicable when only given query access to the robot’s policy and
when the robot may not be perfectly rational.

G Details on Value Alignment Verification with Human Tester

This method can be extended to test for ε-value alignment. In continuous or complex environments
some trajectories may be too close in value for the subject to correctly tell the difference. This may
be because the subject being tested has a reward function not exactly within the ARP of the tester or
because the agent being tested has not perfectly rational. To test the alignment of agents like these,
we compute a (1− δ)-confidence ε-ARP.

20

As each w has a probability mass associated with we can compute a (1− δ)-confidence bound by
taking any (ξi, ξj) ∈ P and checking whether

Pr(wT (Φ(ξi)− Φ(ξj)) < ε) < δ (67)

We then throw away all constraints for which fewer than 1− δ of the weights imply a difference in
return at least as big as ε, taking into account the human preference for that halfplane. Duplicate,
noise, and redundancy filter are then applied to obtain a minimal high-confidence ε-ARP that is robust
to noise in the human preferences. The trajectory pairs that make up this set of minimal constraints
now form the test T . If the subject agent is a robot with an explicit reward function, then we can
use the ε-ARP in the same way we used the ARP in the main test, and simply check if w′ is in the
intersection defined by Theorem 2. If the agent does not have explicit access to its reward function
(e.g. if the subject agent is human), then we can test for alignment verification by asking the subject
agent for preferences over trajectories and checking if they match the preferences given by the human
tester.

We then perform a series of post-processing steps to these preferences to create an efficient, robust
test. Trajectory pairs with near-identical feature differences are removed. Humans often make
mistakes when giving preferences, so preferences whose halfspace constraints containing less than
pthresh = 70% of the mass of the preference elicitation algorithm’s reward posterior are filtered out.
Additionally, many halfspace constraints are implied by a more restrictive constraint, so to reduce the
number of questions, linear programming is used to find a minimal set of constraints.

H Experiment Details

H.1 Exact vs Heuristics Grid Domains

In all grid domains the transition dynamics are deterministic and actions corresponding to movement
up, down, left, and right are available at every state. Actions that would lead the agent off of the
grid result result in the agent staying in the same state. We ran experiments over different sized
grid worlds with different numbers of features. For each grid world size and number of features we
generated 50 random MDPs with features placed randomly and with a random ground-truth reward
function. We then sampled 50 different reward function weights w from the unit hypersphere. This
bounds the Q-values of states, and so allowed us to tune over a bounded interval of t hyperparameters
for the critical-action state value alignment heuristic. For each reward we function we computed an
optimal policy to create different agents for verification. Duplicate policies were removed.

H.2 Filtering

All experiments (gridworlds and Driver) do duplication and redundancy filtering. Duplicate con-
straints are detected by computing cosine distance between the halfplane normal vectors. Any normal
vectors that are within a small threshold (0.0001) of other normal vectors are deduplicated arbitrarily.
Trivial (all-zero) constraints are also removed. Redundant constraints are then removed using the
procedure from Brown et al. [13] which we will briefly summarize.

A redundant constraint is one that can be removed without changing the interior of the intersection
of halfspaces. We can find redundant constraints efficiently using linear programming. To check if
a constraint aTx ≤ b is binding we can remove that constraint and solve the linear program with
maxx a

Tx as the objective. If the optimal solution is still constrained to be less than or equal to b
even when the constraint is removed, then the constraint can be removed. However, if the optimal
value is greater than b then the constraint is non-redundant. Thus, all redundant constraints can be
removed by making one pass through the constraints, where each constraint is immediately removed
if redundant.

There are two optional filtering steps that are applied when eliciting preferences from a human or when
operating in a continuous environment. Preferences can be filtered for noise in the human’s elicited
preference, and preferences can filtered to allow for ε-Value alignment. In the main experiments,
only ε-alignment filtering was performed, as the elicited preferences from the human are exact and
consistent. During noise filtering, 1000 rewards are sampled from the posterior distribution implied
by the full set of constraints. A preference is considered to be noisy if the fraction of the rewards
outside the constraint implied by that preference is greater than some threshold (0.7). This removes

21

Figure 6: False positive and negative rates on noisy data with noise filtering (left) and without noise
filtering (right). All false negative rates with noise filtering are exactly 0.

Figure 7: Detailed breakdown of mistakes from the human pilot study.

preferences that are likely to be violated under the posterior. ε-alignment filtering starts by sampling
a new 1000 rewards from the posterior implied by the (possibly noise filtered) remaining set of
constraints. We aim to ensure that P (wT (ξA − ξB) > ε) > 1− δ and we estimate this probability
for each constraint using the samples from the reward posterior. If this condition does not hold for
the sampled reward posterior, the constraint is removed.

H.3 Noise Ablation Experiments for Driving Domain

When eliciting preferences between trajectories from humans, humans sometimes report their prefer-
ences incorrectly. Biyik and Sadigh [9] assume that a human with true reward w reports a preference
ξA ≺ ξB for one trajectory is equal to min(1, exp(wT (ξB − ξA))). We run ten simulations of 1000
noisily reported human preferences using this model. We then evaluate our active test generation
pipeline with and without the noise filtering specified in section H.2. Roughly speaking, this filtering
removes constraints that exclude too much of the posterior reward distribution.

These experiments find that noise filtering does reduce the false-negative rate to 0, but at the cost
of sometimes large increases in the false positive rate. The relative cost of false-positives and false-
negatives is dependent on the specific application, but even without noise filtering, false negatives are
rare enough that most will not want to do noise filtering on elicited preferences. These experiments
are highly idealized based on a specific model of noise in elicited human preferences that may not
hold of actual humans, and further study is needed to determine if the false positive rate of alignment
tests generated from elicited human preferences is high enough to justify noise filtering of some kind.

H.4 Human Pilot Study

As epsilon increases, more of the questions are removed from the test. This necessarily increases the
number of positive judgements the test provides, all else being equal. The accuracy initially increases
with ε because the test has fewer false negatives as more noise questions are removed. At around
ε = 1.0 most of the aligned agents pass, and any further removal of questions creates more false
positives than it removes false negatives, lowering the overall accuracy. The cost of false positives
and false negatives are often unequal, and so accuracy may not be the correct metric for your use
case.

22

	Introduction
	Related work
	Preliminaries and notation
	Value alignment verification
	-Alignment Verification via Omnipotent Testing
	Provable Exact Value Alignment Verification for a Non-Omnipotent Tester
	Aligned Reward Polytopes
	Provable Exact Value Alignment Verification

	Approximate Value Alignment Verification for Agents with Implicit Values

	Experiments
	Value Alignment Verification with Idealized Human Tester
	Case Study
	Sensitivity Analysis

	Value Alignment Verification with Implicit Values

	Conclusion
	Theory and Proofs
	Aligned Reward Polytopes
	-Alignment Verification via Omnipotent Testing

	Relationship of the ARP to Ng and Russell's Consistent Reward Sets
	Value Alignment Verification with Explicit Values
	Value Alignment Verification Heuristics
	Critical State-Action Value Alignment Heuristic
	Aligned Reward Polytope Black-Box Heuristic
	SCOT Trajectory-Based Heuristic

	Case Study Continued
	Value Alignment Verification with Idealized Human Tester
	Details on Value Alignment Verification with Human Tester
	Experiment Details
	Exact vs Heuristics Grid Domains
	Filtering
	Noise Ablation Experiments for Driving Domain
	Human Pilot Study

