

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COUNTERFACTUAL TECHNIQUES FOR ENHANCING CUSTOMER RETENTION

Anonymous authors

Paper under double-blind review

ABSTRACT

In this paper, we introduce a novel method for generating counterfactual explanations to convert customers from an e-commerce company who frequently add items to their cart but do not proceed to checkout. We demonstrate that our method i) allows customization of mutable features, improving the practical applicability of our counterfactual explanations, and ii) outperforms existing techniques including DICE, GANs, and CFRL in key metrics such as reconstruction error and L1 distance, while maintaining a low latency. Our method can easily be customized to optimize for high coverage or low latency by adjusting the number of nearest unlike neighbors, highlighting the trade-off between these competing goals.

1 INTRODUCTION

In various industries, counterfactual explanations can be used to analyze how a model’s prediction would change if specific features were altered. For example, in e-commerce, customers often add items to their cart but do not proceed to checkout. Similarly, it is also important for loan companies Zhang et al. (2023); Grath et al. (2023), insurance providers Rye & Boyd (2022); Kumar & Ravi (Year), and fraud detection Whitrow et al. (2009); Ngai et al. (2011) companies to explain to their customers why they were denied loans or insurance. Understanding the reasons behind these behaviors and finding strategies to convert these customers is important for improving conversion rates. Recently, the demand for explainable AI has grown, becoming essential for increased transparency and trust among customers Gohel et al. (2023); Verma et al. (2020); Adadi & Berrada (2018).

Existing counterfactual explanations methods like Nearest Instance Counterfactual Explanations (NICE) Brughmans et al. (2022), Diverse Counterfactual Explanations (DiCE) Mothilal et al. (2019), Generative Adversarial Networks (GANs) Goodfellow et al. (2014), Counterfactual GANs (CounterGAN) Nemirovsky et al. (2021), and Counterfactuals with Reinforcement Learning (CFRL) Samoilescu et al. (2021) often suffer from high latency, lack of customization (i.e., the user cannot specify which features are mutable), or suboptimal performance in terms of plausibility (i.e., how closely the counterfactual resembles the real world data) and distance (i.e., distance between the original instance and the counterfactual). Providing counterfactuals with actionable and customizable (i.e., mutable) features is essential for achieving business goals.

To address these challenges, we propose a novel counterfactual explanations method that supports customization of mutable features and allows the use of a variety of contextual embedding techniques to find the nearest neighbors from the opposite class. Our approach involves converting each data row into text, considering both feature and value, and then generating embeddings using a BERT Devlin et al. (2018) model. In the e-commerce domain, we specifically use eBERT, which is fine-tuned on e-commerce product titles. Through BERT-based embeddings, feature values are represented semantically, making it an effective method for finding neighbors that are similar but have a different predicted label.

Our new technique is particularly valuable in production systems because it supports customization, allowing business users to specify which features can be changed. As a result, the generated counterfactuals are more actionable. Compared to baseline methods that support customization, our method performs best in coverage, reconstruction error, and L1 distance.

054 1.1 CONTRIBUTIONS
055

056 The primary objective of this research is to develop a novel counterfactual explanations method
057 to enhance customer retention in e-commerce settings. Our method aims to provide explainable,
058 actionable insights that help identify key factors influencing customers' decision-making processes,
059 specifically for scenarios where customers abandon their carts before completing a purchase. We
060 have achieved the following contributions:

- 061 • Developed a new counterfactual explanations algorithm that improves upon current state-
062 of-the-art methods such as NICE, DiCE, and GAN-based approaches by balancing cover-
063 age, latency, and plausibility of counterfactuals.
- 064 • Introduced an embedding-based approach using BERT to generate highly plausible coun-
065 terfactuals that more accurately reflect customer behavior in an e-commerce setting.
- 066 • Ensured that the proposed method supports customization of mutable features, allowing
067 business stakeholders to specify which factors can be realistically adjusted to achieve de-
068 sired outcomes, thus enhancing the practical applicability of counterfactual explanations.
- 069 • Evaluated the effectiveness of the proposed method against existing techniques using key
070 metrics such as coverage, reconstruction error, and L1 distance, and demonstrated its ap-
071 plicability in real-world datasets, including both a proprietary e-commerce dataset as well
072 as the public adult income benchmark.

073 This work aims to address current limitations in counterfactual explanations, offering a comprehen-
074 sive and actionable solution for improving customer retention.

075 2 DATA PREPROCESSING
076077 2.1 E-COMMERCE
078

079 Our proprietary dataset consists of 200,000 shopping sessions to understand customer behavior. The
080 dataset includes a total of 47 features extracted primarily from User, Cart, and Listing tables. Of
081 these features, 36 are categorical, such as product categories and purchase data, while the remaining
082 11 are numerical variables, including shipping costs, item prices, and feedback scores. The target
083 value is the outcome of the shopping session, either 1 (i.e., success) if the customer successfully
084 checked out or 0 (i.e., failure) otherwise.

085 To preprocess the data for embedding generation, we scaled the price and shipping fee features
086 between 0 and 100 and categorized them into four buckets. The price features were divided into
087 four buckets: 0-20 (*budget*), 20-40 (*affordable*), 40-60 (*premium*), and 60-100 (*luxury*). Shipping
088 fees were also categorized into four buckets: 0-25 (*low*), 25-50 (*medium*), 50-75 (*high*), and 75-100
089 (*very high*). In an ablation study, we compared to embeddings generated without bucketization.

090 After bucketizing, we removed null values, scaled numerical feature values using a standard scaler,
091 and encoded categorical data using a binary encoder. We explored several encoding methods for
092 the categorical features, including label encoding, one-hot encoding, target encoding, and binary
093 encoding. While one-hot encoding achieved slightly higher accuracy, it led to overfitting due to high
094 cardinality, increasing the dataset to over 9,000 features and significantly increasing computation
095 time. Binary encoding, although slightly less accurate, reduced dimensionality to 165 features,
096 preventing overfitting and significantly reducing the computation time. Binary encoding was chosen
097 due to its ability to reduce dimensionality and computation time, while preventing overfitting.

098 The dataset was divided into a training set of 160,000 instances and a test set of 40,000 instances to
099 evaluate model performance. This preprocessing step ensured that both categorical and numerical
100 features were ready for embedding generation.

101 2.2 ADULT INCOME
102

103 The public adult income dataset consists of 32,561 adults, split into 80% training and 20% testing,
104 with a target variable indicating whether or not the individual's income exceeds \$50,000 per year.

108 Table 1: Performance metrics of various classifiers on an e-commerce binary classification task for
 109 whether or not a customer completed a purchase.

		Accuracy	Precision	Recall	F1
113	Random Forest	89.0	88.7	89.3	89.0
114	MLP	82.1	82.4	82.1	82.1
115	Logistic Regression	66.4	66.4	66.4	66.4
116	XGBoost	84.7	81.4	89.7	85.4

117
 118
 119 There are 14 features, including categorical features such as workclass, race, and sex, as well as
 120 numerical features such as age, hours per week, capital gain, and capital loss.

121 Just as we did with the e-commerce dataset, we preprocessed the data for embedding generation by
 122 encoding the numerical features with a standard scaler and categorical features with a binary encoder
 123 prior to converting feature and values to text. We also investigated the effects of bucketizing age into
 124 three buckets for ages 0-30 (*young*), 30-50 (*middle-aged*), and 50-100 (*elderly*) versus bucketizing
 125 age into eight finer-grained buckets, one for each decade, as well as bucketizing hours per week into
 126 three buckets: 0-20 hours (*part-time*), 20-40 (*full-time*), and 40-100 (*overtime*).

128 3 CLASSIFICATION

131 Counterfactual explanations algorithms incorporate classifiers by using their predictions as feedback
 132 during the generation process. Each counterfactual is tested to see if it successfully flips the classi-
 133 fier’s original decision or not. We implemented four different types of classifiers—a Random Forest
 134 (RF), Logistic Regression, XGBoost Chen & Guestrin (2016), and Multilayer Perceptron (MLP).

135 As shown in Table 1, the RF classifier showed promising results and was selected for generating
 136 counterfactual explanations. With the highest F1 score of 89% on the held-out e-commerce dataset,
 137 the RF classifier demonstrated its ability to properly classify and understand customer behavior. The
 138 Logistic Regression classifier performed the worst.

140 4 BASELINE COUNTERFACTUAL METHODS

143 Here, we describe four strong baseline counterfactual explanations methods we compared against.

144 *Diverse Counterfactual Explanations (DiCE)* Mothilal et al. (2019) primarily focuses on generating
 145 feasible and diverse counterfactuals. It extends counterfactual explanations by incorporating deter-
 146 minantal point processes (DPP) Kulesza et al. (2012), which is a probabilistic model used to ensure
 147 diversity in the generated examples. This allows DiCE to provide a range of alternatives for chang-
 148 ing outcomes. DPP selects a subset of diverse examples by maximizing the determinant of a kernel
 149 matrix built from the examples. This diversity is balanced against proximity, which measures the
 150 closeness of counterfactuals to the original input. The method optimizes a loss function that com-
 151 bines y-loss (the difference in prediction), proximity, and diversity, adjusted using hyperparameters
 152 λ_1 and λ_2 . The counterfactuals are generated through gradient descent, which iteratively adjusts
 153 feature values to meet the objective while respecting any real-world feature constraints.

154 While DiCE focuses on generating diverse counterfactuals, it suffers from lower plausibility, i.e.,
 155 high reconstruction error and L1 distance. In contrast, our method is customizable while still achiev-
 156 ing low reconstruction error and L1 distance, providing more actionable and plausible counterfactu-
 157 als, especially in e-commerce applications where proximity is more critical than diversity.

158 *Nearest Instance Counterfactual Explanations (NICE)* Brughmans et al. (2022) generates counter-
 159 factual explanations using a nearest unlike neighbor-based approach. The algorithm identifies the
 160 nearest neighbor with a different class label and changes one feature value at a time from the original
 161 instance to match that of the neighbor. This process generates hybrid instances, guided by a reward
 function that prioritizes sparsity, proximity, or plausibility, depending on the specific NICE variant.

162 Although NICE produces counterfactuals with minimal L1 distance, it lacks support for customization
 163 of feature mutability, limiting its practical applicability, especially in the e-commerce domain.
 164

165 *Generative Adversarial Networks (GANs)* CounteRGAN Nemirovsky et al. (2021) is an extension of
 166 Residual GAN (RGAN), designed to generate realistic and actionable counterfactuals by applying
 167 small perturbations to existing data points rather than creating new instances from scratch. The idea
 168 is to generate subtle modifications that can flip a model’s prediction, while ensuring that the changes
 169 are realistic and feasible. In RGAN, the generator produces perturbations that modify input data,
 170 while the discriminator attempts to distinguish between real and modified data. CounteRGAN adds
 171 a target classifier to this process, which ensures that the generated counterfactuals not only resemble
 172 real data but also result in the desired predicted label change.

173 Standard GAN and CounteRGAN generate counterfactuals with the lowest latency, but at the cost of
 174 higher L1 distance, which reduces plausibility. Our method, while slightly slower, strikes a balance
 175 by providing highly plausible counterfactuals with lower L1 distance, making it more effective in
 176 producing realistic and actionable outcomes.

177 *Counterfactuals using Reinforcement Learning (CFRL)* Samoilescu et al. (2021) uses a reinforcement
 178 learning framework for counterfactual generation, transforming the optimization process into
 179 a learnable task. It enables the generation of multiple counterfactuals in a single forward pass, relying
 180 solely on the feedback from the classifier’s predictions. This model-agnostic method allows for
 181 feature-level constraints, ensuring real-world feasibility. CFRL uses a critic to estimate rewards from
 182 the environment and an actor to output counterfactual latent representations. This method enables
 183 high flexibility, as feature-level constraints like immutability can be incorporated via conditioning
 184 vectors, ensuring that the generated counterfactuals are plausible and actionable.

185 The documentation for CFRL says that it supports mutable feature customization. However, in our
 186 experiments, the generated counterfactuals did not respect the mutable feature constraints, and it had
 187 a larger L1 distance compared to our method. By offering a better balance between feature mutability,
 188 coverage, and proximity, our method produces more actionable and realistic counterfactuals.

189 Other counterfactual generation methods such as CERT Sharma et al. (2020) and MACE Karimi
 190 et al. (2020) were not considered due to their high latency Schleich et al. (2023). GeCo Schleich
 191 et al. (2023), although it offers many customization options for the counterfactual, suffers from very
 192 low coverage Brughmans et al. (2022).

193 5 OUR METHOD

194 Our novel embedding-based counterfactual explanations method is designed to address the limitations
 195 of NICE, GANs, and CFRL by supporting customization of feature mutability. In addition,
 196 our method provides support for generating BERT-based embeddings that capture deep semantic
 197 relationships within the data, in order to identify more plausible and actionable counterfactuals.
 198

200 5.1 EMBEDDING GENERATION USING BERT

201 In our method, each data sample is transformed into a text representation to generate embeddings
 202 for counterfactual explanations. This transformation involves converting all feature names and their
 203 respective values into a textual format. For example, a data sample with the following attributes:

- 206 • PRICE = *affordable*
- 207 • SHPNG_COST = *low*
- 208 • PAYMNT_TYPE = *CreditCard*
- 209 • QTY SOLD = 2

210 would be represented as: “PRICE *affordable* SHPNG_COST *low* PAYMNT_TYPE *CreditCard*
 211 QTY SOLD 2.” This text is then standardized to lowercase to maintain consistency before
 212 preprocessing. The preprocessed text for each of the features in each dataset is input into either SentenceBERT
 213 Reimers & Gurevych (2019) or the e-commerce-specific eBERT model. The eBERT
 214 model outputs a 768-dimensional embedding for each data sample, capturing the semantic relationships
 215 of the data. In our ablation study, we compare these BERT models to no embeddings (i.e.,

simply representing each data sample as a vector of all its feature values), using the embedding of an autoencoder trained on the dataset, and using an embedding generated by TabTransformer Huang et al. (2020) for tabular datasets.

These vector representations serve as the basis for the next step in our method, which involves identifying the nearest unlike neighbors. This process is crucial for generating plausible and contextually relevant counterfactual explanations by calculating the distances between the generated embeddings.

5.2 NEAREST UNLIKE NEIGHBORS GENERATION

After generating vector representations of the data, the next step involves finding the nearest unlike neighbors. Our method employs FAISS (Facebook AI Similarity Search) Facebook Engineering (2017) IndexFlatL2 to identify the k nearest unlike neighbors based on a similarity metric (i.e., L2 distance or inner product). FAISS is a library optimized for fast similarity searches, particularly for high-dimensional vectors such as embeddings. We compare two index types (i.e., IndexFlatL2 and IndexFlatIP) for searching for nearest neighbors, using either L2 or inner product distances. For example, a vector representing an unsuccessful shopping session may be queried against the index containing vectors of successful sessions to find the k nearest neighbors with the “success” label.

The nearest unlike neighbors retrieved represent instances that lie on the opposite side of the decision boundary. Each of these neighbors has different values for features such as PRICE, SHPNG_COST, and PAYMNT_TYPE, which makes them candidates for generating counterfactuals. The overall process involves building the FAISS index, adding all dataset vectors, associating each vector with a class label, and then retrieving the k nearest unlike neighbors using FAISS.

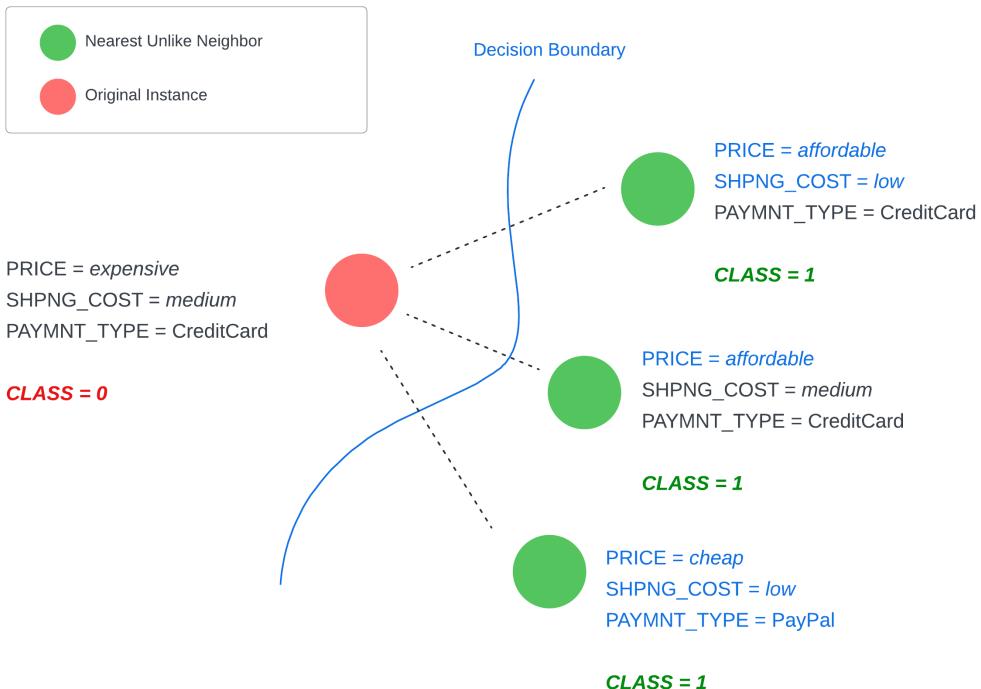


Figure 1: The original instance (red) has a PRICE of *expensive*, a SHPNG_COST of *medium*, and uses PAYMNT_TYPE = *CreditCard*. The class is 0, indicating that this customer is not predicted to make a purchase. The nearest unlike neighbors (green) are counterfactual instances with slightly different features, located on the opposite side of the decision boundary (i.e., the class is 1, and thus are predicted to make a purchase).

270 Figure 1 illustrates the concept of nearest unlike neighbors in relation to the decision boundary. The
 271 original instance (red dot) is positioned near several nearest unlike neighbors (green dots) that lie on
 272 the opposite side of the decision boundary. This proximity allows for generating counterfactuals by
 273 modifying features in a way that crosses the decision boundary, achieving a different classification.
 274

275 **5.3 COUNTERFACTUAL SEARCH**

276 Once we identify the nearest unlike neighbors, the next step is to generate counterfactuals using a
 277 greedy heuristic search method. In counterfactual search, we find data points that can be used to alter
 278 a classifier’s decision, while making sure that they have a low distance from the original instance.
 279

280 Using the neighbors identified in the previous section, the greedy heuristic search modifies fea-
 281 tures one at a time. As shown in Figure 1, the original instance has a PRICE of *expensive*, a SH-
 282 PNG_COST of *medium*, and uses PAYMNT_TYPE = *CreditCard*. We modify each of these features
 283 individually to match one of the nearest unlike neighbors. For example, lowering the PRICE from
 284 *expensive* to *affordable* or lowering the SHPNG_COST from *medium* to *low* could flip the prediction
 285 from class 0 to class 1.
 286

287 As the features are adjusted, the heuristic search keeps track of how each modification affects the
 288 classifier’s decision. The goal is to generate the closest counterfactual, i.e., the one that modifies the
 289 fewest features while successfully flipping the class. In some cases, a combination of modifications,
 290 like changing both PRICE and SHPNG_COST, may be required.

291 The Counterfactual Generation Algorithm 1 seeks to identify the closest counterfactual instance to
 292 an original data point by iteratively modifying its features to achieve a desired target classification.
 293 Initialized with the original instance x_{orig} , the algorithm progresses through the feature space by
 294 comparing against a set of nearest unlike neighbors \mathbb{N} . For each neighbor, the algorithm creates
 295 X_{mod} , which is a set of new instances derived from x_{orig} , where each instance in X_{mod} is generated
 296 by altering one specific mutable feature of x_{orig} to match the corresponding feature in the neighbor.
 297

298 **Algorithm 1** Counterfactual Generation

299 **Require:**

300 M : Prediction model
 301 E : Encoders for categorical features
 302 S : Scaler for numerical features
 303 \mathbb{N} : Set of nearest unlike neighbors

304 **Initialize:**

305 $x_{\text{cf}} \leftarrow x_{\text{orig}}$ ▷ Initialize counterfactual candidate with original instance
 306 $d_{\text{min}} \leftarrow \infty$ ▷ Initialize minimum distance

307 **Ensure:**

308 x^* : Optimal counterfactual instance

309 d_{min} : Minimum distance

310 1: **for** $n \in \mathbb{N}$ **do**

311 2: **for** $t \leftarrow 1$ to $Iter_{\text{max}}$ **do**

312 3: $X_{\text{mod}} \leftarrow \{x' : x' \text{ varies from } x_{\text{cf}} \text{ by one feature towards } n\}$ ▷ Generate new instances

313 4: $(x', d) \leftarrow \text{EvaluateModifications}(X_{\text{mod}}, x_{\text{cf}}, E, S, M)$ ▷ Evaluate counterfactuals

314 5: **if** $d < d_{\text{min}}$ **then**

315 6: $d_{\text{min}} \leftarrow d$

316 7: $x^* \leftarrow x'$ ▷ Update optimal counterfactual

317 8: $x_{\text{cf}} \leftarrow x'$ ▷ Update current counterfactual

318 9: **end if**

319 10: **if** $M(x_{\text{cf}}) = \text{target class}$ **then**

320 11: **return** $(x_{\text{cf}}, d_{\text{min}})$ ▷ Return if target class is achieved

321 12: **end if**

322 13: **end for**

323 14: **end for**

324 15: **return** (x^*, d_{min})

324 Each modified instance, denoted as x' , is evaluated for its potential as a counterfactual: the mod-
 325ifications are checked to ensure they not only bring x' closer to achieving the target classification
 326 but also maintain minimal distance from x_{orig} . This iterative process continues until a satisfactory
 327 counterfactual that meets the target classification is found, or all possibilities are exhausted. This
 328 method ensures that each proposed counterfactual is a minimal and interpretable adjustment to the
 329 instance that alters the model’s decision.

330

331 6 EXPERIMENTS

332

333 We conducted experiments on a randomly held-out test set of 1,000 data points using all the coun-
 334terfactual techniques in Section 4 and compared them on both datasets using the following metrics:
 335

336

- 337 • *Reconstruction Error*: Measures how closely a counterfactual instance resembles real-
 338 world data. It is calculated as the L2 norm between the counterfactual instance and the
 339 output of an autoencoder trained to predict the original training datapoints, given noisy
 340 training data as input. A lower reconstruction error indicates a more plausible and realis-
 341 tic counterfactual Looveren & Klaise (2019); Dhurandhar et al. (2018); Nemirovsky et al.
 342 (2021). Our autoencoder consists of two 32-dimensional fully-connected layers with tanh
 343 activation and a final layer with tanh activation. This error is defined as

344

$$345 E = \|AE(x_{cf}) - x_{cf}\|_2^2 \quad (1)$$

346

347 where AE is the autoencoder model and x_{cf} is the counterfactual instance.

348

- 349 • *L1 Distance*: Measures the distance between the original and counterfactual instances.
 350 Again, a lower L1 distance indicates a more plausible and realistic counterfactual.

351

$$352 L1(x_{\text{orig}}, x_{cf}) = \sum_{i=1}^d |x_{\text{orig},i} - x_{cf,i}| \quad (2)$$

353

- 354 • *Latency*: Estimates the time (in seconds) required to generate a single counterfactual.
- 355 • *Coverage*: Represents the proportion of test set instances for which counterfactuals can be
 356 successfully found, calculated as

357

$$358 C = \frac{\sum_{i=1}^n \mathbf{1}(M(x_{cf}^{(i)}) = d)}{n} \times 100 \quad (3)$$

359

360 where n is the total number of instances, M is the prediction model, d is the desired class
 361 (i.e., the opposite of the predicted class), and $\mathbf{1}(\cdot)$ is the indicator function that equals one
 362 if its argument is true and zero otherwise. Coverage calculates the percentage of instances
 363 where the model’s prediction for the counterfactual is the desired class.

364

365 The results of our evaluation on the held-out test set for both datasets, where all features are consid-
 366 ered mutable, are shown in Tables 2 and 3. We see that our method has the lowest reconstruction
 367 error compared to all baselines on both datasets. However, NICE has the lowest L1 distance, and
 368 the GANs have the lowest latency. On the e-commerce dataset, our method suffers from high lat-
 369 ency due to the higher dimensionality of the data. Although NICE appears to be the best method
 370 overall when using all feature values, it does not allow customization of mutable features and thus
 371 is impractical for real-world business use cases, which is the primary advantage of our approach.

372

373 Our experiments in tuning hyperparameter k (i.e., the number of nearest unlike neighbors) on the e-
 374 commerce dataset show that increasing k results in higher coverage, at the expense of higher latency.
 375 Our experiments with different bucketization strategies and distance metrics on the e-commerce
 376 dataset show that L2 distance slightly outperforms inner product, and that using a few buckets out-
 377 performs both using more fine-grained buckets and not bucketizing before generating embeddings.

378

379 In Table 4, we see the results of experiments on both datasets with only one mutable feature (i.e.,
 380 current price for the e-commerce dataset and hours per week for the adult income dataset). Here is
 381 where our method shines—it outperforms DiCE in coverage, reconstruction error, and L1 distance.

378
 379 Table 2: A comparison of all the counterfactual methods on four evaluation metrics on the e-
 380 commerce dataset. We vary hyperparameter k to demonstrate the tradeoff between coverage and
 381 latency. Note that the \pm values represent the 95% confidence interval, calculated as $(1.96 \times \frac{\sigma}{\sqrt{n}})$,
 382 where σ is the standard deviation and n is the sample size.

Method	Coverage	Reconstruction Error	L1 Distance	Latency (s)
DiCE	100%	52.0 ± 27.6	131 ± 52.0	1.82 ± 0.07
NICE	100%	7.03 ± 0.31	1.27 ± 0.61	0.32 ± 0.01
CFRL	100%	6.14 ± 0.007	56.0 ± 0.54	1.28 ± 0.009
Standard GAN	100%	7.26 ± 0.00	70.2 ± 0.40	0.01 ± 0.002
CounteRGAN	100%	7.08 ± 0.09	32.1 ± 0.33	0.06 ± 0.001
Ours ($k = 12$)	99.5%	3.75 ± 0.11	41.4 ± 0.75	2.49 ± 0.10
Ours ($k = 24$)	99.8%	3.75 ± 0.11	34.5 ± 1.01	2.46 ± 0.10
Ours ($k = 36$)	99.9%	3.75 ± 0.11	34.4 ± 1.10	2.50 ± 0.10
Ours ($k = 48$)	100%	3.75 ± 0.11	19.8 ± 1.12	2.42 ± 0.10

395
 396 Table 3: A comparison of all the counterfactual methods on four evaluation metrics on the adult
 397 income dataset. Our method uses $k = 12$ for each experiment, only varying the bucketization
 398 strategy or distance metric used to find nearest unlike neighbors. The default is three age buckets,
 399 whereas with fine-grained age buckets, there are eight buckets, one for each decade.

Method	Coverage	Reconstruction Error	L1 Distance	Latency (s)
DiCE	100%	5.93 ± 0.23	7.82 ± 0.28	0.29 ± 0.003
NICE	100%	1.27 ± 0.08	2.62 ± 0.152	0.10 ± 0.002
CFRL	100%	4.57 ± 0.02	20.5 ± 0.20	0.13 ± 0.001
Standard GAN	100%	3.55 ± 0.06	14.5 ± 0.11	0.06 ± 0.001
CounteRGAN	100%	3.77 ± 0.06	16.5 ± 0.11	0.07 ± 0.001
Ours	100%	1.20 ± 0.08	4.70 ± 0.24	0.15 ± 0.004
Ours (<i>no buckets</i>)	100%	1.24 ± 0.08	4.62 ± 0.23	0.14 ± 0.003
Ours (<i>8 age buckets</i>)	100%	1.24 ± 0.07	5.00 ± 0.24	0.15 ± 0.004
Ours (<i>inner product</i>)	100%	1.22 ± 0.05	6.75 ± 0.31	0.20 ± 0.005

411
 412
 413 However, our method has higher latency, just as when all features are mutable, but in this more
 414 realistic use case, the latency is less than one second per counterfactual generated, for both datasets.
 415 While CFRL’s documentation claims that it allows the user to set mutable features, it does not in
 416 practice always respect these constraints since it violated them for every instance in both datasets.

417 In our ablation study, we see that BERT-based embeddings outperform all other embedding types,
 418 with eBERT best for the e-commerce dataset and SentenceBERT best for the adult income dataset.
 419 This makes sense intuitively since BERT trained on e-commerce data is likely to have learned the
 420 semantic relationships among words used in product titles better than SentenceBERT, and vice versa.

421 In Table 5, we see the same pattern as with only one mutable feature for two, three, and four mutable
 422 features, where our method is best in terms of coverage, reconstruction error, and L1 distance, but
 423 worse than DiCE in terms of latency. Again, performance is higher overall for the adult income
 424 dataset than the e-commerce dataset. Perhaps related to this, we see a bigger gap in coverage be-
 425 tween our method and the baseline method on the e-commerce dataset. Again, if we increase k , the
 426 improvement in performance of our method compared to the baseline also increases.

427 Finally, we performed feature importance analysis to determine which features are most important
 428 in the predictions made by the random forest classifier and, thus, most important in flipping the
 429 prediction to the opposite class during counterfactual generation. With the feature importance assigned
 430 to each of the features by the random forest classifier itself, the most important features for the adult
 431 income dataset are work class and age, which are two of the four mutable features we used. Using
 SHAP, the most important features for the adult income dataset are marital status, education level,

432 Table 4: A comparison of DiCE to our method on both datasets when only one feature is mutable.
 433 We set $k = 12$ and vary the embeddings, e.g., raw feature values (*no embeds*) vs TabTransformer.
 434

Method	E-commerce Dataset				Adult Income Dataset			
	Coverage	Error	L1	Latency	Coverage	Error	L1	Latency
DiCE	4.8%	26.3 ± 7.33	67.4 ± 9.39	0.45 ± 0.05	23.3%	1.60 ± 0.13	13.2 ± 0.51	0.15 ± 0.003
Ours (<i>no embeds</i>)	6.4%	3.67 ± 0.15	43.6 ± 2.20	0.84 ± 0.02	22.4%	1.09 ± 0.11	12.4 ± 0.58	0.20 ± 0.006
Ours (<i>TabTransf</i>)	6.1%	3.76 ± 0.17	43.0 ± 2.58	0.86 ± 0.02	24.9%	1.10 ± 0.10	12.4 ± 0.53	0.22 ± 0.006
Ours (<i>autoencoder</i>)	7.5%	3.65 ± 0.14	41.7 ± 2.34	0.85 ± 0.02	23.8%	1.06 ± 0.10	12.6 ± 0.51	0.22 ± 0.006
Ours (<i>eBERT</i>)	11.5%	3.72 ± 0.20	43.1 ± 1.80	0.90 ± 0.02	24.7%	1.21 ± 0.11	12.8 ± 0.53	0.22 ± 0.007
Ours (<i>SentBERT</i>)	11.1%	3.69 ± 0.20	43.1 ± 1.66	0.86 ± 0.02	26.2%	1.15 ± 0.10	12.7 ± 0.51	0.23 ± 0.006

445 Table 5: Coverage of DiCE vs our method for two, three, or four mutable features. For e-commerce,
 446 the second mutable feature is shipping cost, third is payment type, and fourth is unit price. For adult
 447 income, the second mutable feature is occupation, third is work class, and fourth is age.
 448

Method	E-commerce Dataset			Adult Income Dataset		
	2 features	3 features	4 features	2 features	3 features	4 features
DiCE	3.9%	7.8%	12.3%	27.1%	30.2%	41.8%
Ours (<i>eBERT</i>)	15.7%	15.4%	23.9%	28.3%	31%	44.5%

456 capital gain, age, hours per week, relationship, capital loss, and occupation; again, age is impor-
 457 tant, as well as the other features we considered mutable, including hours worked per week and
 458 occupation. The small bump in coverage when we added the second and third features, occupation
 459 and work class, to the set of mutable features could be due to the lack of importance for these two
 460 features relative to age and hours per week. For the e-commerce dataset, current price and unit price
 461 are third and fourth most important for the RF classifier and fifth and sixth most important according
 462 to SHAP. With the RF feature importance, shipping cost ranks ninth out of 47 features, and payment
 463 type is lower, at only 27 out of 47. Again, this is reflected in the lack of improvement in coverage
 464 when we add the third feature, payment type, to the set of mutable features.

465 7 CONCLUSION

466 In this paper, we introduced a novel counterfactual explanations method that uses embeddings gen-
 467 erated by a BERT model to create more accurate and actionable counterfactuals than existing ap-
 468 proaches and, more importantly, our technique supports customization of mutable features. This is
 469 especially important in e-commerce settings where companies wish to determine how best to adjust
 470 specific features such as price in order to nudge a customer to complete a purchase.

471 Our experiments conducted on 200K shopping sessions and the public adult income benchmark
 472 demonstrate that our method outperforms existing counterfactual generation methods in terms of
 473 coverage, reconstruction error, and L1 distance, with a tradeoff between plausibility and latency.
 474 The final latency of 0.3 seconds per counterfactual on the adult income dataset with three mutable
 475 features indicates that our method is suitable for real-time applications. In future work, we aim to
 476 further reduce latency and add functionality to specify a range of values for each mutable feature,
 477 which will improve the customization and real-world usability of our method.

478 8 ETHICS STATEMENT

479 The business use case of generating counterfactuals raises ethical concerns about consumer ma-
 480 nipulation, the potentially unfair treatment of certain customer groups, and lack of transparency to
 481 customers. To address fairness and privacy concerns, the e-commerce dataset is anonymized, and
 482 no personal information is used, other than whether they are verified as an adult, whether they take

486 part in surveys, whether they are a registered bulk user, and whether they want customer support,
 487 direct mail, or telemarketing. The majority of the 47 features are all related to the product in the
 488 cart, including its category ID, price information, quantity, shipping, and seller rating, etc.
 489

490 9 THE USE OF LARGE LANGUAGE MODELS (LLMs)

491 LLMs were used to polish the writing of some sections of this paper.

492 495 REFERENCES

496 Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on explainable
 497 artificial intelligence (xai). *IEEE Access*, 6:52138–52160, 2018.

498 Dieter Brughmans, Pieter Leyman, and David Martens. Nice: An algorithm for nearest instance
 500 counterfactual explanations, 5 2022.

501 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. *Proceedings of the*
 502 *22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, 2016.

503 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 505 bidirectional transformers for language understanding. *Google AI Language*, 2018.

506 Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shan-
 508 mugam, and Payel Das. Explanations based on the missing: Towards contrastive explanations
 509 with pertinent negatives. In S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi,
 510 and R Garnett (eds.), *Advances in Neural Information Processing Systems 31*, pp. 592–603. Cur-
 511 ran Associates, Inc., 2018.

512 Facebook Engineering. Faiss: A library for efficient similarity search, 2017. URL
 513 [https://engineering.fb.com/2017/03/29/data-infrastructure/
 514 faiss-a-library-for-efficient-similarity-search/](https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/).

515 Prashant Gohel, Priyanka Singh, and Manoranjan Mohanty. Explainable ai: Current status and future
 516 directions. *DA-IICT, Gandhinagar, Gujarat, India and Centre for Forensic Science, University of*
 517 *Technology Sydney, Australia*, 2023.

518 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 519 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
 520 C. Cortes, N. D. Lawrence, and K. Q. Weinberger (eds.), *Advances in Neural Information Pro-
 522 cessing Systems 27*, pp. 2672–2680. Curran Associates, Inc., 2014.

523 Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, and
 525 Freddy Lécué. Interpretable credit application predictions with counterfactual explanations. 2023.

526 Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
 527 modeling using contextual embeddings. *arXiv preprint arXiv:2012.06678*, 2020.

528 Amir-Hossein Karimi, Gilles Barthe, Borja Balle, and Isabel Valera. Model-agnostic counterfactual
 529 explanations for consequential decisions. In *Proceedings of the International Conference on*
 530 *Artificial Intelligence and Statistics (AISTATS)*, pp. 895–905, 2020.

531 Alex Kulesza, Ben Taskar, and et al. Determinantal point processes for machine learning. *Founda-
 533 tions and Trends® in Machine Learning*, 5(2–3):123–286, 2012.

534 Satyam Kumar and Vadlamani Ravi. Application of causal inference to analytical customer relation-
 535 ship management in banking and insurance. Year. Center for AI and ML, School of Computer
 536 and Information Sciences (SCIS).

537 Arnaud Van Looveren and Janis Klaise. Interpretable counterfactual explanations guided by proto-
 538 types. July 2019.

540 Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers
 541 through diverse counterfactual explanations. Microsoft Research India; University of Colorado
 542 Boulder, 12 2019.

543

544 Daniel Nemirovsky, Nicolas Thiebaut, Ye Xu, and Abhishek Gupta. Countergan: Generating real-
 545 istic counterfactuals with residual generative adversarial nets, 5 2021.

546 Eric WT Ngai, Yong Hu, Yiu Hing Wong, Yijun Chen, and Xin Sun. The application of data mining
 547 techniques in financial fraud detection: A classification framework and an academic review of
 548 literature. *Decision Support Systems*, 50(3):559–569, 2011.

549

550 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 551 networks. *arXiv preprint arXiv:1908.10084*, 2019.

552 Cameron J. Rye and Jessica A. Boyd. Downward counterfactual analysis in insurance tropical cy-
 553 clone models: A miami case study. In J. M. Collins and J. M. Done (eds.), *Hurricane Risk*
 554 in a *Changing Climate*, volume 2 of *Hurricane Risk*. Springer, Cham, 2022. doi: 10.1007/978-3-031-08568-0_9. URL https://doi.org/10.1007/978-3-031-08568-0_9.

555

556 Robert-Florian Samoilescu, Arnaud Van Looveren, and Janis Klaise. Model-agnostic and scalable
 557 counterfactual explanations via reinforcement learning, 6 2021.

558

559 Maximilian Schleich, Zixuan Geng, Yihong Zhang, and Dan Suciu. Geco: Quality counterfactual
 560 explanations in real time, 2023. University of Washington.

561

562 Shubham Sharma, Jette Henderson, and Joydeep Ghosh. Certifai: A common framework to provide
 563 explanations and analyse the fairness and robustness of black-box models. In *Proceedings of the*
 564 *Conference on AI, Ethics, and Society (AIES)*, pp. 166–172, 2020.

565

566 Sahil Verma, Varich Boonsanong, Minh Hoang, and Keegan E. Hines. Counterfactual explanations
 567 for machine learning: A review. *arXiv*, 2010.10596, 2020.

568

569 Christopher Whitrow, David J. Hand, Piotr Juszczak, David Weston, and Niall M. Adams. Trans-
 570 action aggregation as a strategy for credit card fraud detection. *Data Mining and Knowledge*
 571 *Discovery*, 18(1):30–55, 2009.

572

573 Wei Zhang, Brian Barr, and John Paisley. An interpretable deep classifier for counterfactual gener-
 574 ation. 2023.

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593