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Abstract

Retrieval augmentation is a powerful but001
expensive method to make language mod-002
els more knowledgeable about the world.003
Memory-based methods like LUMEN (de Jong004
et al., 2023a) pre-compute token representa-005
tions for retrieved passages to drastically speed006
up inference. However, memory also leads to007
much greater storage requirements from stor-008
ing pre-computed representations.009

We propose MEMORY-VQ, a new method010
to reduce storage requirements of memory-011
augmented models without sacrificing perfor-012
mance. Our method uses a vector quanti-013
zation variational autoencoder (VQ-VAE) to014
compress token representations. We apply015
MEMORY-VQ to the LUMEN model to obtain016
LUMEN-VQ, a memory model that achieves a017
16x compression rate with comparable perfor-018
mance on the KILT benchmark. LUMEN-VQ019
enables practical retrieval augmentation even020
for extremely large retrieval corpora.021

1 Introduction022

Retrieval augmentation is a common method to im-023

prove the factual knowledge of language models024

(Izacard and Grave, 2021; Borgeaud et al., 2022;025

Lewis et al., 2020; Khandelwal et al., 2020; Guu026

et al., 2020; Izacard et al., 2022). Retrieval pro-027

vides a model with additional context in the form028

of text passages relevant to an input query. How-029

ever, retrieval augmentation comes at an increased030

computational cost, as the model must process the031

retrieved passages on-the-fly.032

A recent line of work (Zemlyanskiy et al., 2021;033

de Jong et al., 2022; Chen et al., 2022; Li et al.,034

2022; de Jong et al., 2023a) speeds up retrieval035

augmentation by pre-encoding passages from the036

corpus in advance. This way, the model can retrieve037

representations instead of raw text, which avoids038

the cost of reading retrieved passages from scratch.039

One such model, LUMEN, stands out for its strong040

FiD LUMEN L-VQ
Inference cost in TFLOPs

Per sample 28.0 12.5 12.5

Storage cost
Per token 2 bytes 8 KB 0.5 KB
For Wikipedia 8 GB 30 TB 2 TB
For 1T tokens 2 TB 7 PB 0.5 PB

KILT valid in % exact match
Average 72.80 72.66 72.42
NaturalQuestions 61.47 62.64 62.74
TriviaQA 83.40 82.84 82.61
FEVER 93.47 92.77 92.18
TREX 83.58 83.78 83.42
ZeroShot RE 72.77 72.85 72.61
HotpotQA 42.09 41.09 41.00

Table 1: Main results: LUMEN-VQ (L-VQ) nearly
matches Fusion-in-Decoder in quality while benefit-
ing from LUMEN compute savings without impracti-
cal LUMEN storage requirements.

performance, achieving 3x faster inference than 041

standard Fusion-in-Decoder (Izacard and Grave, 042

2021) (FiD) with minimal loss in quality. 043

However, these pre-encoding memory models 044

use much more storage than traditional retrieval- 045

augmented models - LUMEN saves an embedding 046

for each token in the corpus, which takes up much 047

more space than token IDs. Table 1 compares 048

storage requirements for T5 XXL-sized models. 049

FiD requires 2 bytes to store an ID of each to- 050

ken, while LUMEN uses a 4096-dimensional vector 051

of bfloat16 values, summing to 8KB per token. 052

Wikipedia contains around 4 billion tokens, which 053

means LUMEN token representations take up 30TB. 054

For an internet-scale corpus of 1 trillion tokens, 055

disk requirements balloon to an impractical 7PB. 056

This work combines of product quantization (Jé- 057

gou et al., 2011) and VQ-VAE method (van den 058

Oord et al., 2017) to significantly reduce storage 059
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requirements for memory-based methods with lim-060

ited loss in quality. In particular, LUMEN-VQ061

achieves a 16x compression rate, meaning we only062

need 2TB to store memories for all of Wikipedia063

and 500TB for a 1 trillion token corpus. Moreover,064

LUMEN-VQ suffers minimal loss in performance065

on the KILT benchmark (Petroni et al., 2021) of066

knowledge intensive tasks.067

Our contribution is the first paper on compress-068

ing pre-encoded token memory representations.069

This compression makes memory methods such as070

LUMEN practical even for extremely large retrieval071

corpora. Previous works (e.g., (Santhanam et al.,072

2022; Yang et al., 2022b; Cohen et al., 2022; Yang073

et al., 2022a)) have focused on token representation074

compression for late-interaction reranking models.075

In contrast, our approach compresses the interme-076

diate representations of a language model. These077

compressed representations are used as inputs into078

an LLM, and the compression layers’ parameters079

are trained alongside the rest of the model.080

2 Background081

We aim to match FiD and LUMEN performance082

in quality while reducing LUMEN storage require-083

ments. We first describe FiD and LUMEN, methods084

on which MEMORY-VQ is built, and their storage085

requirements. For an in-depth analysis, please see086

de Jong et al. (2023a). We follow up with back-087

ground on vector quantization, including product088

quantization and VQ-VAE used for MEMORY-VQ.089

2.1 Retrieval and memory augmented models090

2.1.1 Fusion-in-Decoder091

Fusion-in-Decoder (FiD) (Izacard and Grave, 2021)092

builds upon the T5 (Raffel et al., 2020) encoder-093

decoder model. It retrieves relevant text passages,094

appends them to the input Q, and processes each095

input-passage pair with the encoder. The resulting096

token representations are merged and attended by097

the decoder. We highlight live components in blue098

and pre-computed in orange. FiD does not have099

any pre-computed components.100

G = Dec
[
Enc(Q;Passage1); . . .Enc(Q;Passagek)

]
101

FiD storage needs are low since we only need to102

store token IDs. Each ID can be encoded with 16103

bits, so the storage cost for a retrieval corpus with104

N tokens is105
SFiD = 16 ·N106

2.1.2 LUMEN 107

LUMEN (de Jong et al., 2023a) reduces inference 108

cost by partially pre-computing encoder represen- 109

tations for retrieved passages. Instead of retrieving 110

the actual text, LUMEN retrieves intermediate layer 111

representations during inference. 112

LUMEN is initialized from a pre-trained T5 113

encoder-decoder model, with a memory encoder 114

containing the initial 1−α proportion of layers and 115

a live encoder with the remaining α proportion of 116

layers. The memory encoder is applied offline to 117

pre-compute memory representations for passages 118

in the corpus. Later, these representations are dy- 119

namically updated with the fine-tuned live encoder 120

based on the input and task. To ensure compatibil- 121

ity, MEMORY-VQ applies the memory encoder to 122

the input before concatenating the question repre- 123

sentation with the memory representation. 124

Hi =
[
MemEnc(Q); MemEnc(Passagei)

]
125

G = Dec
[
Q;LiveEnc(H1); . . .LiveEnc(Hk)

]
126

Choosing α = 1 yields a model very close to FiD 127

while α = 0 is a full memory model. One of the 128

insights of the LUMEN paper is that one can match 129

FiD performance while using small α, reducing in- 130

ference cost to a fraction α of FiD encoder FLOPs 131

for any given model size. 132

LUMEN keeps d-dimensional MemEnc output 133

representations for every token. With bfloat16 134

format, the total storage cost becomes 135

SLUMEN = 16d ·N 136

2.2 Vector quantization 137

Vector quantization (VQ) is a classical compression 138

technique for vector data. The general idea is to 139

prepare a set of vectors known as “codes” and then 140

represent each input vector with the nearest code. 141

The approach significantly reduces storage require- 142

ments as we only need to store the integer ID of the 143

code instead of the entire high-dimensional input 144

vector. VQ is a lossy compression method since 145

decompression returns the value of the nearest code 146

(by looking up the ID) instead of the original vector. 147

Usually, codes are generated by clustering the input 148

vectors, for example, using kmeans-like methods. 149

2.2.1 Product quantization 150

A popular variant of vector quantization is prod- 151

uct quantization (Jégou et al., 2011; Ge et al., 152
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2013). The method involves partitioning high-153

dimensional vectors into subspaces and indepen-154

dently quantizing each subspace using a vector155

quantization subroutine. The product quantization156

is frequently used in modern approximate nearest157

neighbor search engines (Guo et al., 2020; Johnson158

et al., 2021) to speed up lookup.159

2.2.2 VQ-VAE160

The VQ-VAE approach (van den Oord et al., 2017)161

is a variant of variational autoencoders that utilizes162

vector quantization for obtaining a discrete latent163

representation. Notably, the VQ-VAE compression164

layer allows joint training with the rest of the model165

due to a straight-through estimator for gradient166

backpropagation. The method is commonly used167

in creating discrete representations of continuous168

objects such as images or audio (van den Oord169

et al., 2017; Razavi et al., 2019).170

3 MEMORY-VQ171

We propose MEMORY-VQ, an efficient method for172

reducing storage requirements for memory-based173

models. The high-level idea is to compress memo-174

ries using vector quantization techniques and store175

integer codes instead of the original memory vec-176

tors. Codes are decompressed into vectors on the177

fly. Applying the method to LUMEN yields the178

following LUMEN-VQ model.179

codesi = CompressVQ(MemEnc(Passagei))180

Hi =
[
MemEnc(Qi); DecompressVQ(codesi)

]
181

G = Dec
[
Q;LiveEnc(H1); . . .LiveEnc(Hk)

]
182

To perform CompressVQ and DecompressVQ183

we apply product quantization, splitting each vector184

into subspaces and independently quantizing each185

subspace using VQ-VAE. Codes are an exponential186

moving average of memory vectors assigned to the187

code in each batch. Appendix A in van den Oord188

et al. (2017) contains a detailed description.189

For training the compression layer jointly with190

the model, we follow the VQ-VAE recipe, but we191

avoid using the commitment loss in our experi-192

ments as it led to model divergence.193

To initialize the codebooks, we use a procedure194

similar to kmeans++ initialization (Arthur and Vas-195

silvitskii, 2007). Additionally, we perform code-196

book reset (Williams et al., 2020) using the same197

procedure to re-initialize infrequently used codes.198

We divide memories into g subspaces, and if 199

needed, pad memories with zeros to ensure divisi- 200

bility. Each subspace has C codes. Therefore the 201

storage requirement for each quantized vector is 202

the number of subspaces multiplied by the number 203

of bits required to represent each ID, which is the 204

logarithm of the number of codes. 205

SLUMEN-VQ = g · dlog2Ce ·N 206

4 Experiments 207
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Figure 1: LUMEN-VQ achieves a strongly improved
trade-off between performance and compression.
The plot shows average exact match on dev sets of
KILT tasks as a function of compression rate. We com-
pare LUMEN-VQ with baselines Scale down (LUMEN
XL and LUMEN Large) and LUMEN-Light (FiD-Light
from Hofstätter et al. (2022a) adapted for LUMEN).

Model KILT, EM
LUMEN-VQ 72.43
initialize from fine-tuned LUMEN 72.42
+ freeze memory encoder 72.33
+ freeze whole model 71.79

Table 2: Performance comparison of different ap-
proaches for initializing and training the LUMEN-VQ.

4.1 Experimental setup 208

Model configuration LUMEN-VQ and LUMEN 209

are built on the T5.1.1 architecture (Raffel et al., 210

2020) and implemented in JAX using Flax (Heek 211

et al., 2020) and Flaxformer. All models fine-tune 212

public T5.1.1 XXL checkpoints. We train FiD us- 213

ing the recipe from Izacard and Grave (2021). 214

The training setup for LUMEN and LUMEN-VQ 215

is based on de Jong et al. (2023b). We initialize 216
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the memory encoder with the first 1 - α proportion217

of layers from the T5 encoder and the live encoder218

with the last α proportion of layers, where α is the219

given proportion of live layers. We set α = 1
3 in220

our main experiments.221

We train and evaluate on a subset of knowledge-222

intensive task datasets from the KILT benchmark223

(Petroni et al., 2021). We adopt the retrieval proce-224

dure from Hofstätter et al. (2022b) and use GTR-225

Base model (Ni et al., 2021) as the retriever. See226

Appendix A and de Jong et al. (2023b) for details.227

4.2 Main results228

In our main experiments, we compress LUMEN-229

XXL’s 4096-dimensional memories using g = 256230

subspaces and C = 65536 codes per subspace,231

allowing us to store code IDs in int16 format. We232

need 512 bytes to store each token vector instead of233

8192 bytes for the original memories. As a result,234

LUMEN-VQ achieves a compression rate of 16 with235

minimal performance loss, as shown in Table 1.236

4.3 Quality-Compression rate trade-off237

We investigate the quality-compression tradeoff for238

LUMEN-VQ by varying the number of subspaces.239

We compare against several naive baselines;240

the first involves scaling down the model (e.g.,241

LUMEN-XL or LUMEN-Large). This reduces d242

from 4096 to 2048 or 1024, respectively. The sec-243

ond baseline, called LUMEN-Light, is inspired by244

the FiD-Light approach (Hofstätter et al., 2022a).245

In LUMEN-Light, we retain memories of the first246

K tokens, varying K from 1
2 to 1

4 of the passage247

length, achieving compression rates of 2 and 4.248

Figure 1 presents the performance results. Both249

baselines exhibit significant performance losses250

as compression rates increase. In contrast, the251

LUMEN-VQ measure shows a gradual decline in252

performance, with a loss of approximately 0.2 per-253

formance points at a compression rate of 16.254

4.4 Ablations255

We investigate if initializing VQ-VAE training from256

a fine-tuned LUMEN model yields better results.257

The results in Table 2 show that fine-tuning LUMEN-258

VQ from scratch achieves similar performance to259

initializing from a fine-tuned LUMEN model.260

We also analyze which model components bene-261

fit most from joint fine-tuning with VQ-VAE. Freez-262

ing the memory encoder during joint training, start-263

ing with a fine-tuned LUMEN model, has little im-264

pact on performance. However, updating only VQ-265

VAE codes while freezing the entire model leads 266

to decreased performance, indicating the model’s 267

need to adapt to decompression layer errors. 268

5 Related work 269

Memory models Retrieval augmentation can be 270

computationally expensive due to the additional 271

context that language models need to process. 272

To mitigate this, memory models like LUMEN 273

(de Jong et al., 2023a), GLIMMER (de Jong et al., 274

2023b), and others (Zemlyanskiy et al., 2021; 275

de Jong et al., 2022; Wu et al., 2022a; Li et al., 276

2022; Zhong et al., 2022; Chen et al., 2022; Wu 277

et al., 2022b; Bertsch et al., 2023; Milbauer et al., 278

2023) store pre-computed representations in mem- 279

ory. MEMORY-VQ focuses on improving the stor- 280

age requirements for memory-based models. While 281

our experiments involve the LUMEN (de Jong et al., 282

2023a) model due to its strong performance, the 283

method applies to a broader range of models. 284

Compression for late-interaction reranking 285

MEMORY-VQ focuses on compression for late- 286

interaction memory models, while other works 287

have explored compression for late-interaction 288

reranking. For instance, SDR (Cohen et al., 2022) 289

employs an autoencoder to reduce token represen- 290

tation dimensionality, followed by product quanti- 291

zation. BECR (Yang et al., 2022a) utilizes locality- 292

sensitive hashing for token representation compres- 293

sion. CQ (Yang et al., 2022b) learns vector quan- 294

tization parameters by treating codes as learnable 295

weights and uses Gumbel-Softmax for differen- 296

tiable nearest code determination. Finally, Col- 297

BERTv2 (Santhanam et al., 2022) proposes a cus- 298

tom compression scheme combining PQ and inte- 299

ger quantization to handle reconstruction residuals. 300

6 Conclusion 301

We introduced MEMORY-VQ, a novel approach 302

for reducing the storage requirements of memory- 303

augmented language models without compromis- 304

ing performance. By employing VQ-VAE to com- 305

press token representations, we obtain a LUMEN 306

model with 16x compression, denoted as LUMEN- 307

VQ. Remarkably, LUMEN-VQ maintains perfor- 308

mance close to LUMEN and FiD and benefits from 309

LUMEN inference speed-ups with sharply reduced 310

storage cost. Using MEMORY-VQ, memory aug- 311

mentation is a practical solution for drastic infer- 312

ence speedups with extensive retrieval corpora. 313

4



7 Limitations314

This work concerns a memory compression and315

speedup method for language models augmented316

with retrieved passages. The goal of a retrieval-317

augmented language model is often to enhance318

factuality by grounding generations in a specific319

corpus of text. Of course, this pushes the burden of320

factuality on to the curation of text, and without a321

good corpus can still result in model confabulations322

and propagation of harmful biases. Especially in323

the context of search-result-augmented language324

models, retrieved web data has no guarantee of fac-325

tuality or unbiasedness. Secondly, when looking326

at compression-quality tradeoffs, it is important327

to consider the measures of quality. In our work328

we evaluate the compressed model on a variety of329

knowledge-intensive benchmarks, but those wish-330

ing to use our method in contexts requiring other331

capabilities or safeguards will need to evaluate the332

compression-quality tradeoff in those specific do-333

mains.334
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A Experimental setup 615

Model configuration The original LUMEN im- 616

plementation employed a separate question en- 617

coder, but de Jong et al. (2023b) showed we can 618

re-use the memory encoder as long as it is fine- 619

tuned. 620

Fine-tuning During fine-tuning, we utilize the 621

Adafactor optimizer (Shazeer and Stern, 2018) with 622

a constant learning rate of 0.0001, a batch size of 623

128, and a dropout rate of 0.1 for all tasks. When 624

performing multi-task training, we uniformly sam- 625

ple from the tasks. We allocate 48 and 304 to- 626

kens for question and passage inputs, respectively. 627

LUMEN-VQ is using 0.999 as an EMA factor for 628

code updates. 629

Data We train and evaluate on a subset of 630

knowledge-intensive task datasets from the KILT 631

benchmark (Petroni et al., 2021). The datasets 632

include question-answering datasets such as Nat- 633

ural Questions (Kwiatkowski et al., 2019), Triv- 634

iaQA (Joshi et al., 2017), and HotPotQA (Yang 635

et al., 2018), along with the fact verification dataset 636

FEVER (Thorne et al., 2018), and the slot-filling 637

datasets Zero Shot RE (Levy et al., 2017) and T- 638

REx (ElSahar et al., 2018). To address imbalanced 639

dataset issues, we apply the relevance filtering pro- 640

cedure introduced by Hofstätter et al. (2022b). 641

For the retrieval corpus, we use a Wikipedia 642

dump provided by the KILT benchmark 643

http://dl.fbaipublicfiles.com/BLINK/ 644

enwiki-pages-articles.xml.bz2 containing 645

approximately 4B tokens. 646
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Retrieval We adopt the retrieval procedure in-647

troduced by Hofstätter et al. (2022b), where648

Wikipedia articles are segmented into chunks, each649

containing up to 200 words. The dense retriever,650

a pre-trained GTR-Base model (Ni et al., 2021),651

is utilized to identify the most relevant chunks for652

each query, with 20 retrieved passages for each653

query.654

B Experiments655

B.1 Smaller codebook656
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Figure 2: The plot shows average exact match on vali-
dation sets of KILT tasks as a function of compression
rate. We compare LUMEN-VQ with the codebook of
size C = 65536 and C = 4096.

We study the effect of using a smaller codebook657

of size C = 4096 instead of C = 65536. Results658

in Figure 2 show that using a smaller codebook has659

similar quality-compression trade-offs for lower660

compression rates but leads to worse trade-offs661

when we increase the compression rate.662

B.2 Can we compress code IDs even further?663

Integer data, like token IDs, might exhibit regu-664

larities, enabling additional data compression by665

using fewer bits for frequent patterns. For instance,666

applying standard compression tools like gzip or667

zstd to Wikipedia token IDs resulted in a compres-668

sion factor of around 1.5. However, using the same669

tools on LUMEN-VQ codes of Wikipedia passages670

yielded a more modest compression rate of 1.1.671

Compression was performed independently on672

each subspace, with most subspaces being incom-673

pressible. Around 5% of the subspaces showed674

compression rates ranging from 2 to 6. Notably, 675

no compression was achieved when attempting to 676

compress codes from all subspaces together. 677
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