
Published in Transactions on Machine Learning Research (03/2025)

FlashAttention on a Napkin: A Diagrammatic Approach to
Deep Learning IO-Awareness

Vincent Abbott Vincent.Abbott.24@ucl.ac.uk
Department of Computer Science, University College London

Gioele Zardini gzardini@mit.edu
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology

Reviewed on OpenReview: https://openreview.net/ forum?id=pF2ukh7HxA

Abstract

Optimizing deep learning algorithms currently requires slow, manual derivation, potentially
leaving much performance untapped. Methods like FlashAttention have achieved a ×6
performance improvement over native PyTorch by avoiding unnecessary data transfers, but
required three iterations over three years to be developed. Automated compiled methods
have consistently lagged behind. This paper extends Neural Circuit Diagrams for deep
learning models to consider resource usage and the distribution of tasks across a GPU
hierarchy. We show how diagrams can use simple relabellings to derive high-level streaming
and tiling optimization strategies along with performance models. We show how this high-
level performance model allows the effects of quantization and multi-level GPU hierarchies
to be readily considered. We develop a methodology for representing intermediate-level
pseudocode with diagrams, allowing hardware-aware algorithms to be derived step-by-step.
Finally, we show how our methodology can be used to better understand existing techniques
like FlashAttention. This work uses a theoretical framework to link assumptions about
GPU behaviour to claims about performance. We aim to lay the groundwork for a scientific
approach to GPU optimization where experiments can address clear hypotheses rather than
post-hoc rationalizations.

1 Introduction

1.1 Background

To execute an operation, graphical processing units (GPUs) must move data from high-level DRAM to
low-level compute cores. GPUs are as limited as much by GB/s of memory bandwidth as TFLOPs of avail-
able compute. However, AI models have passed the memory wall—algorithms are increasingly limited by
bandwidth/transfer costs (Ootomo & Yokota, 2023; Ivanov et al., 2021; Gholami et al., 2024), as compute
capability has improved far more quickly ×3/2y than DRAM bandwidth ×1.6/2y (Gholami et al., 2024). Fur-
thermore, DRAM already accounts for 46% of total system power (Ghose et al., 2018). As memory becomes
increasingly inefficient relative to compute, the importance of considering transfer costs—IO-awareness (Dao
et al., 2022; Aggarwal & Vitter, 1988)—will become even more critical.

FlashAttention (Dao et al., 2022; Dao, 2023; Shah et al., 2024) is an IO-aware approach to attention that
overcomes the memory wall. Attention (Vaswani et al., 2017) is central to generative models, including large
language models (LLMs) (Mistral AI team, 2024; Llama team, 2024) and image generation algorithms (Ho
et al., 2020; Esser et al., 2024; Rombach et al., 2022; Podell et al., 2024). FlashAttention fuses the steps
of attention. It computes all sequential steps on low-level memory, avoiding unnecessary intermediate data
transfers. It achieves a ×6 increase in throughput compared to standard PyTorch, arguably making large
contemporary models possible.

1

https://openreview.net/forum?id=pF2ukh7HxA


Published in Transactions on Machine Learning Research (03/2025)

However, the conditions under which fusion is possible are not generally exploited. Simple cases like element-
wise functions can be compiled into matrix multiplications (?Paszke et al., 2019; Sabne, 2020), but the
bespoke techniques of FlashAttention required manual derivation and three iterations over three years to
take full advantage of Hopper hardware (NVIDIA, 2022) features. Triton (Tillet et al., 2019) offers some
compilation for hardware features but has lagged behind new FlashAttention algorithms (Dao, 2023; Shah
et al., 2024). The current best technique for generating IO-aware algorithms that exploit hardware features
remains slow, manual derivation.

Innovating new optimized algorithms is essential to efficient model deployment. In addition to FlashAtten-
tion, methods like grouped query attention (Ainslie et al., 2023), KV-caching (Shazeer, 2019), and quantiza-
tion (Frantar et al., 2023; Gholami et al., 2022) all reduce transfer costs while having minimal impact on the
function we implement or the quality of model outputs. Much like fusion, the success of these approaches
relies on understanding the compositional structure of algorithms so that similar but less costly algorithms
can be executed. A systematic approach to innovating optimized algorithms will require a mechanism for
understanding the compositional structure of algorithms along with a performance model which compares
varying means of executing the same operation.

The hardware characteristics of GPUs have a significant impact on performance which varies depending on
the target algorithm. When choosing between A100s, H100 SXM5s, or H100 PCIes (NVIDIA, 2022, p.39),
we must consider the varying compute, bandwidth, intermediate hierarchies, architecture features, and low-
level memory, for which we pay in environmental and economic resources. The application of these features
is often non-obvious, FlashAttention-2 (Dao, 2023) was released while the hardware for FlashAttention-3
already existed (Shah et al., 2024), which achieved ∼ 75% improvement in forward speed. Understanding
the impact of GPU features is a necessary component of innovating optimized approaches and making full
use of deployed resources.

1.2 Contributions

This paper contributes a representational scheme for deep learning algorithms based on Neural Circuit
Diagrams that shows the distribution of tasks across a GPU hierarchy and associated resource usages (Section
2). This scheme incorporates theorems about the compositional properties of fused algorithms (Appendix
A.1), allowing for the rapid derivation of high-level sketches of GPU optimized matrix multiplication and
attention, along with performance models (Section 3). This performance model can consider quantization
and multi-level hierarchies (Section 4), bolstered by theorems (Appendix A.2). With a model corresponding
to a Hopper-like architecture, we use a step-by-step process to derive hardware-aware algorithms (Section 5).
These derivations can consider coalesced memory access, tensor-core operations, and overlapping operations,
and reveal the degrees of freedom in the algorithm’s configuration. Our methodology can be used to analyse
the bottlenecks of existing methods like FlashAttention (Section 6).

The main value of this work is providing a potential framework for relating assumptions about GPU behavior
to claims about performance. This allows future empirical work to address and improve specific assumptions,
thereby iteratively improving the model. This contrasts with the prevailing “tinkering” approach within deep
learning that develops post-hoc intuition based on past experiments. Post-hoc intuition is trained on the
“test set” of prior successful approaches, weakening generalizability and scientific value. Our diagrammatic
scheme allows the rapid application of the framework to algorithms used in practice, distinguishing it from
descriptive theory and toy model approaches. Diagrams leverage human visual comprehension and enable
complex theorems and underlying implications to be encapsulated with simple notation.

2



Published in Transactions on Machine Learning Research (03/2025)

2 Diagramming Deep Learning Algorithms

2.1 Diagramming Functions and Data Types

Diagrams have alternating columns of data types and functions. Data type columns are shown in Figure
1. Arrays such as Ra×b×c are represented by a wire for each axis labeled with the size. Data types may be
tuples of arrays, such as Ra×b×c×Rd×e×c, and are represented by placing a dashed line between constituent
arrays.

Figure 1: We represent arrays, of forms such
as Ra×b×c, by labeling stacked wires in a column
with a, b, and c. To represent data types that
consist of lists of arrays, such as Ra×b×c ×Rd×e,
we place a dashed line between them.

Functions between data types are represented by labeled boxes or pictograms with their input/output shapes
to the left/right. Sequential execution (composition) of functions is shown by horizontal placement (Figure
2, creating a diagram with alternating columns representing data types and functions. Parallel execution
(concatenation) of functions stacks them with a dashed line in between (Figure 3). A concatenated function
takes concatenated inputs and provides concatenated outputs. The change in the input/output is reflected
by the diagram.

Figure 2: Functions are represented by la-
beled boxes or pictograms, which aid intuition.
These representations can be horizontally com-
posed, which represents sequential execution and
yields a diagram with alternating data type and
function columns. We represent composition by
F ; G = G ◦ F .

Figure 3: Functions can also be stacked with a
separating dashed line, which concatenates their
inputs and outputs. Concatenating tuples ⊗ is
considered to be associative. For concatenated
functions F ⊗ G, if F (x) = x′ and G(y) = y′

then (F ⊗G)(x⊗ y) = F (x)⊗G(y).

We represent identity functions that leave inputs unchanged by extending the data type. This reflects that
composition with identities leaves a function unchanged. Functions are stateless and are defined by how they
map inputs to outputs. Therefore, we concatenate with identities to represent a function acting on some
data but leaving the rest unchanged and available. With these tools, we can build compound diagrams such
as Figure 4.

3



Published in Transactions on Machine Learning Research (03/2025)

Figure 4: A compound diagram can be dis-
assembled into columns representing alternating
functions and data types. Stacked functions and
data types can be further decomposed to find the
core units concatenated to construct them. Iden-
tities are represented by continuing the represen-
tation of data types.

Functions can be mapped over an additional axis, represented by weaving the axis over the function’s outputs
and a choice of the inputs (Figure 5). This diagrammatic implementation naturally updates the input and
output sizes for the mapped function. When an input segment is not weaved, its data is copied to evaluate
each index along the outputs of the new axis. The axis can be weaved into any location of the target
segments.

Figure 5: A function can be weaved, which adds an axis to the outputs and some of the inputs. The
function is mapped over this axis. When we weave the “item” R array represented by a thick dotted wire,
we can remove it. Here, we provide a weaving for SoftMax, represented by a triangle, to have it act over
each row of an array, and of linear contraction (dot/inner product), which provides matrix multiplication.

Weaving a function allows for complex mappings to be represented and avoids the ambiguity of typical
expressions. We can weave primitives defined on items, such as multiplication, addition, and copying. We
use weaving to represent the splitting and joining of shared axes, which overcomes the typical difficulties of
expressing how arrays are partitioned and concatenated. We show this in Figure 6.

Figure 6: Weaving primitive functions let us express the addition of vectors to each row of an array,
multiplication over a specific axis, and the copying of arrays. We can use weaving to split an array along
slices of an axis or show the axes over which arrays are joined.

4



Published in Transactions on Machine Learning Research (03/2025)

2.2 Representing Deep Learning Algorithms

We have so far expressed functions — maps between inputs and outputs — diagrammatically. Deep learning
models employ algorithms, which implement a function but have resource usages and inputs/outputs located
at different levels. We embed algorithms in a hierarchy. A hierarchy consists of levels connected with pipes
(as in Figure 7), which allow for memory sharing with a family of cores located at the level below. The
available algorithms are restricted to those provided at each level of the hierarchy.

H100 SXM5 GPUs consists of 132 streaming multiprocessors (SM), each with compute capabilities. The
GPU has global GMEM memory, two L2 caches, and shared memory/register files (SMEM/RMEM) per
SM. Logically, this is organized as a grid (device-wide) of threadblocks (limited to an SM) consisting of warps
(which pipeline instructions) each with 32 threads. Threadblocks have independent allocations of SMEM, and
threads have independent allocations of RMEM. We abstract these details away for our hierarchy, focusing
on the logical organization and memory sharing capabilities.

Figure 7: We can diagram hierarchies
using a graph showing the available
levels and their connections. These
hierarchies model real GPU, and pro-
vide levels corresponding to logical ab-
stractions.

We use colors to represent levels, and color arrays to diagram where they are located. In this section, we use
a two-level model where higher level ℓ0 arrays are colored black and lower level ℓ1 arrays are colored orange.
This lets us diagram algorithms as in Figure 8.

Figure 8: Here, we diagram an algorithm which takes a SoftMax
over a q × x array and contracts it over a x × d array. We per-
form transfers to move data to lower levels for computation. This
diagram shows sequential execution, concatenation, and weaving of
algorithms diagrammatically.

We are interested in algorithms’ total transfer cost Hℓ and maximum memory usage per core Mℓ (memory
usage). These resource usages are defined per level and measured in number of values, and can be determined
from diagrams as in Figure 9. Total transfer costs are equal to the total size of data loaded to and saved
from a level, equal to the sum of the size of arrays changing colors. Memory usage is lower bounded by
the maximum size of data at a level for any column. We aim to minimize the total transfers while keeping
memory usage below a hardware limit per level, Mmax

ℓ .

Figure 9: The SoftMax-Contraction algorithm from
Figure 8 can have its transfer cost derived from the total
size of data changing colors and its memory usage lower
bound determined by the maximum data present at the
lower level at any point. We assume that x > d.

5



Published in Transactions on Machine Learning Research (03/2025)

As diagrams show all data types, operations, and their arrangement, we can adapt our performance model to
consider all aspects of an algorithm’s performance. Using diagrams, we can approximate compute by taking
the compute required to execute an algorithm multiplied by the size of axes it is weaved over. A k-size
contraction requires 2k FLOPs; therefore, m× k by k × n matrix multiplication requires 2mkn FLOPs. In
Section 5.7, this is used to find the clock cycles required per column to overlap computation.

2.3 Group Partitioning

The first optimization strategy we introduce is group partitioning (tiling) a mapped algorithm (Figure 10).
If an algorithm is weaved over an axis, then the axis can be split, the mapped function applied, and the axis
rejoined to yield the same result. Each sub-algorithm acts on a batch of the data in a separate core with
reduced low-level memory usage.

Figure 10: A weaved algorithm is functionally
equivalent to sub-algorithms acting on partitions
of the weaved axis. We use ≡ to indicate func-
tional equivalence, meaning algorithms map the
same inputs to outputs but may have distinct
resource consumption profiles, and therefore are
not strictly equivalent. These partitions can be
of any size, which we write as ga. We can recur-
sively expand the expression on the right until
a′ ≤ ga. The unweaved segment of the data must
be loaded by each sub-algorithm.

We can diagram this strategy by labeling the weaved axis a with the target group size ga while at the lower
level as in Figure 11. The low-level memory usage Mℓ for the diagram is then calculated using this group
size, not the full size of the axis. Each sub-algorithm needs to load and save its batch input and output
data. The per-group transfer cost Hℓ,g is calculated using the ga group size for the partitioned axis which is
multiplied by Nℓ,g = a/ga batches to attain Hℓ = Nℓ,gHℓ,g.

Non-grouped inputs are sent to all active cores at the lower level, meaning their transfer costs are multiplied
by Nℓ,g without reduced per-group transfer costs. Smaller group sizes ga decrease memory usage but increase
Nℓ,g, increasing Hℓ if there is an unweaved input. To reduce total transfer costs, we must find the maximum
ga value that does not exceed maximum memory usage Mmax

ℓ .

Figure 11: Group partitioning can be represented by
relabeling an algorithm with the partition batch size
(group size) at the lower level. The group size is used for
memory usage and per-group transfer cost calculations
for the lower level. Per-group transfer costs are then
multiplied by the number of groups Nℓ,g = a/ga to give
the overall transfer costs.

If multiple weaves are relabeled, the data is batched over each as in Figure 12. The total number of sub-
algorithms is the product of the number of batches for each axis, Nℓ,g = ab/gagb. The relabeled sub-algorithm
represents the memory usage and per-group transfer costs of each sub-algorithm, using the group sizes ga and
gb for resource usage calculations. We then multiply the transfer costs by Nℓ,g. We can use this to determine
the optimal group sizes for an algorithm grouped over multiple axes, such as matrix multiplication (see
Section 3.1), and to determine whether it is worth grouping a small axis or transferring its full size.

6



Published in Transactions on Machine Learning Research (03/2025)

Figure 12: A function with multiple weaves can
have a relabeling applied to each of its weaves.
The relabeled sub-algorithm provides the mem-
ory usage and per-group transfer costs using the
group sizes.

2.4 Stream Partition

Stream partitions (recomputation) exploit recursively decomposable polymorphic functions to feed data in
batches while maintaining intermediate outputs on-chip, reducing low-level memory usage. Functions can
be streamed if they are polymorphic for a specific axis (defined for that axis being of any size) and have an
accumulator that can incorporate incoming data to recompute the maintained output, as shown in Figure
13. This allows for a recursive expansion (see Figure 14) that maintains minimum data on-chip at any point.

Figure 13: The condition for streaming re-
quires that a function F be polymorphic along
the axis a and can be decomposed in the man-
ner above, requiring the existence of another
polymorphic function B called the accumula-
tor.

Figure 14: If the condition in Fig-
ure 13 is met, the function can be re-
cursively decomposed until a′ ≤ sa.
This allows the function to be evalu-
ated from batches of the input data.

If an axis originates from a transfer and is fed to a recursively decomposable polymorphic function, then it
can be relabeled with the streaming batch size (stream size) sb as in Figure 15. This creates a representation
of the sub-algorithm B which is repeatedly applied to process the data. We need to add the output size y in
parentheses at the input to consider its contribution to memory usage. The memory usage of the algorithm
is then determined using the stream size sb instead of the full axis size b. As we eventually stream the entire
axis, we use the full axis size b to evaluate transfer costs. Typically, we strictly benefit from limiting the
stream size to 1 as this reduces memory usage while imposing no increase in transfer costs.

Figure 15: We can relabel a streamable axis with the batch
size sb as it is transferred. We are required to add the y
output array shape at the input to the streamed algorithm.
This lets the relabeled diagram derive the memory usage at
the lower level using the stream size sb. As all data along
the axis is transferred to the chip, the full axis size b must
be used for transfer costs.

Per the fusion theorems of Appendix A.1, streamable axes are resistant to modifications. The streamable
axis may be a single axis of an array, and composing or weaving a streamable algorithm while maintaining
this axis yields a streamable algorithm. This allows the stream labeling to be maintained for resource usage
evaluation as in Figure 16, and allows the streamability of complex functions like attention to be derived
from a streamable kernel as in Figure 21. In Figure 17, we apply group partitioning to a mapped streamable
algorithm. We use gq for per-group transfer evaluations, and both gq and sb to evaluate memory usage.

7



Published in Transactions on Machine Learning Research (03/2025)

Figure 16: For a modified streamed algorithm,
we can continue to use the stream batch size sb

for memory usage evaluations. As the function
generates q×r distinct y values, it needs to main-
tain each on memory, resulting in y×q×r main-
tained memory before and after the repeated E
algorithm.

Figure 17: We can apply multiple relabelings
to an algorithm. This lets us find the per-group
memory usage and transfer cost. As the func-
tion is mapped within each group, it needs to
maintain gq copies of the maintained y data, in-
creasing its memory usage.

3 Examples

3.1 Matrix Multiplication

As contraction (dot product) is streamable (see Appendix A.3.1), we can use it as a kernel for deriving the
streamability of matrix multiplication, its weaved form. This provides a diagram that supplies a performance
model. We then optimize for the batch sizes to minimize total transfers given some maximum lower-level
memory usage M .

Ng = ac

gagc
H = NgHg

Hg = gab + bgc + gagc = ac

gagc
(gab + bgc + gagc)

M ⩾ gagc + gasb + sbgc = abc(g−1
c + g−1

a ) + ac
√

M ⩾ gc = ga ⩾ 2abc M−0.5 + ac

Figure 18: The dot product is a streamable function. Therefore, matrix multiplication, which is the weaved
form of it, is also streamable and can be group partitioned.

This simple derivation reveals an immense deal about matrix multiplication and its associated performance
model. Firstly, we have derived that ga should equal gc, corresponding to a square tiling shown in Figure 18.
We see that bandwidth increases with b at a rate dependent on the size of memory. A standard approach
would effectively assume that M →∞. This would cap ga at a and gc at c, not the memory limit, yielding
H = ab + bc + ac (Gholami et al., 2024; Ootomo & Yokota, 2023). Considering the tiling size and memory
constraints, we get H ≥ 2abcM−0.5 + ac. In Appendix B.1, we examine the arithmetic intensity.

Furthermore, we can use matrix multiplication as an instructive preview of the next section which focuses on
multi-level performance models. We can compute each ga × sb × gc matrix multiplication at a lower, green
level. As square tiling of ga = gc is optimal for sizes a and c, square tiling of ha = hc is optimal for sizes
ga and gc. This generates a recursive tiling pattern which allows the two-level model generated by simple
diagrams like Figure 18 to be extended to complex GPU hierarchies.

8



Published in Transactions on Machine Learning Research (03/2025)

Figure 19: Figure 18 represents a tiling process where we split
the a × b matrix into tiles of size ga × sb and the b × c matrix
into tiles of size sb × gc. Each lower-level processor is assigned
responsibility for a ga×gc of the output, for which it accumulates
outputs by iterating down sb. The effect of ga and gc on total
transfers is reflected in the corresponding equations of Figure 18,
implying a square tiling is optimal.

Figure 20: If there is a green level below the orange, then the ga×gc

responsibility tiles are further split into blocks of size ha × hc, each
assigned to a lower-level processor. Each sb stream loaded to the
orange level can be split into ub streams for the lower level. Re-
sponsibility assignment from the black to orange levels is similar to
responsibility assignment from the orange to green levels, allowing
us to recursively extend the two-level model. This algorithm is dia-
grammed in Figure 24.

3.2 Attention

We derive the streamability of attention from the fusion theorems. We begin with the fact that SoftMax-
Contraction is streamable (Appendix A.3.2). Then, we can compose with a contraction over the queries as
an E algorithm from Figure 16. This generates a streamable algorithm, which we weave with the q and
d axes. This generates Figure 21. Correctness is ensured as the diagram gives the typical expression for
attention, O = SoftMax

(
Q ·KT

)
· V , with axes clearly indicated. We can then label q to distribute the

queries across processors, yielding the FlashAttention algorithm. Figure 21, then, can be seen as deriving
and providing a performance model for FlashAttention.

Ng = q/gq H = NgHg

Hg = 2gqd + 2xd = q

gq
(2gqd + 2xd)

M ⩾ 2gqd + 2sxd = 2qd + 2xdq g−1
q

∴ gq ⩽ M/2d ⩾ 2qd + 4xqd2 M−1

Figure 21: SoftMax followed by a contraction is streamable. We precompose with a contraction E weaved
by sx and provide weavings by q at the top and d at the bottom to construct attention.

We can apply a similar technique to find the transfer cost of grouped query attention (Ainslie et al., 2023)
(Figure 23) and multi-head attention (Vaswani et al., 2017) (Figure 22). These use additional weaves, but
their evaluation remains straightforward. This shows how diagrams can be used to both derive optimizations
and experiment with modifications to the algorithm, motivating further innovation.

9



Published in Transactions on Machine Learning Research (03/2025)

Figure 22: Multi-head
attention conducts multi-
ple attention algorithms in
parallel. It is represented
by an additional h axis
weaved over every opera-
tion. Notice how scaling
h leads to a linear change
in costs, while d leads to a
quadratic change.

Ng = qh/(gqgh) H = NgHg

Hg = 2gqghd + 2xd = qh

gqgh
(2gqghd + 2xd)

M ⩾ 2gqghd + 2sxd = 2qhd + 2xqhd/(gqgg)
∴ gqgh ⩽ M/2d ⩾ 2hqd + 4hxqd2 M−1

Figure 23: Grouped
query attention has
an additional weave
accompanying the
queries. This reduces
the required parameters
and compute to gener-
ate the keys and values.
However, we observe
that the required trans-
fers are similar to full
multi-head attention.

Ng = gq/(gqgg) H = NgHg

Hg = 2gqggd + 2xd = gq

gqgg
(2gqggd + 2xd)

M ⩾ 2gqggd + 2sxd = 2gqd + 2gxqd/(gqgg)
∴ gqgg ⩽ M/2d ⩾ 2gqd + 4gxqd2 M−1

4 Analysis of Performance Models

Once a two-level model optimization of an algorithm is found, we can extend it to consider a multi-level
hierarchy. Each lower level has tiles which fit into the level above (Figure 24), meaning the optimal strategy
and performance model extend in a generalizable manner. We can create universal performance model for
transfer costs which considers the impact of the GPU hierarchy and the transfer rate and memory caches
at different levels. This allows us to make informed choices between different GPU architectures given their
energy and capital costs, levels of quantization we employ, and the configuration of GPU hierarchies.

4.1 Optimal Transfers H∗(⃗a, M)

Applying the two-layer model to diagrams provides optimal transfer costs H∗(⃗a, M) given some configuration
of axis sizes a⃗ and lower-level memory M . So far, these expressions have a standard form given by the sum
of power functions which solves for Equation 4 in Appendix A.2:

H∗(⃗a, M) =
∑

t

αt(⃗a) M−βt (1)

The index t iterates over terms, the coefficient αt(⃗a) is dependent on the axis sizes, and βt ⩾ 0 is an exponent
greater than zero as transfers necessarily decrease with increased memory size. The exponents βt indicate
the sensitivity of performance to memory size and indicate how data is distributed. For attention, the M−1

factor indicates the data is broadcast to all groups, while for matrix multiplication the M−0.5 factor indicates
square tile distribution.

10



Published in Transactions on Machine Learning Research (03/2025)

4.2 Multi-Level Performance Models

An algorithm with multiple levels requires H∗(⃗a, Mℓ) transfers for each. Even though data cannot be directly
transferred from the highest to lowest levels, lower levels can utilize the data loaded and saved by intermediate
levels. The execution of H∗(⃗a, Mℓ1) intermediate level transfers makes data available for the lower level ℓ2
and accounts for saving it back. Each intermediate-level tile fits a larger number of low-level tiles (see Figure
20), among which it distributes its data. This fitting process has a negligible error with large M . We assign
a weighted transfer cost Ḣ−1

ℓ to each level. For the highest level, we assume Mℓ0 → ∞ and Ḣ−1
ℓ0 = 0, as

data is already present. This means that the total weighted transfer cost of an algorithm can be expressed
by:

H∗ =
∑

ℓ

Ḣ−1
ℓ H∗(⃗a, Mℓ) =

(∑
t

α(⃗a)
∑

ℓ

Ḣ−1
ℓ M−βt

ℓ

)
(2)

Therefore, the relative performance of GPUs is determined not just by the raw transfer rates but also by
the memory size of available levels and the specific algorithm being implemented. For attention, the key
factor per level is ∼ Ḣ−1/M , while matrix multiplication has Ḣ−1/M0.5. This implies that attention is more
sensitive to the size of lower-level memory and that less lower-level memory (smaller tile sizes) is required to
avoid bandwidth constraints.

4.3 Quantization

Equation 2 and the two-level model consider transfers and storage limits in terms of number of values.
However, GPUs are restricted by the number of bytes we can transfer and store. If we have q bytes per
value, then the maximum number of values Mℓ = MBytes

ℓ /q and the transfer weight is Ḣ−1
ℓ = (ḢBytes

ℓ /q)−1.
Substituting these expressions into the total transfer cost, we get:

H∗Bytes =
∑

ℓ

(ḢBytes
ℓ /q)−1 H∗

(
a⃗, MBytes

ℓ /q
)

=
(∑

t

α(⃗a)
∑

ℓ

(ḢBytes
ℓ )−1 (MBytes

ℓ )−β q1+β

)
(3)

As 1 + β ⩾ 1, total transfers are superlinear to the degree of quantization. Halving the quantization from
FP32 to FP16 can accelerate attention by up to ×4, and improves large matrix multiplication by a factor
of 21.5 ≈ 2.83. This indicates that a generous use of quantization and specialized kernels is critical to
high-throughput implementations of models.

4.4 Intermediate Caching

We can choose to store output data at lower levels, and save it up in chunks. This changes the level
immediately above the lower level to a caching level, which we indicate by adding asterisks to its output
data as in Figure 24. The size of this column is not memory restricted by the intermediate level which is
only used to temporarily store data as it is sent up. However, the lower levels must remain active to store
data, and this imposes the restriction that Ng,ℓ2/Ng,ℓ1 ⩽ Nmax

ℓ2 which is a hardware limit. With an output
restricted algorithm, this results in H∗ (⃗a, Nmax

ℓ2 Mℓ2) transfers being required for the intermediate level ℓ1,
using the total lower level memory Nmax

ℓ2 Mℓ2 instead of its own hardware maximum memory Mmax
ℓ1 . This is

elaborated in Appendix A.2.1.

4.5 Cross-Transfer Levels

Our model can encompass levels that perform inter-core communication instead of providing shared memory
by using modified weighted transfer weights. These cross-transfer levels encompass H100 thread block clusters
(Luo et al., 2024), multi-GPU systems, and intra-warp communication. We set up h as a higher level, x as a
cross-transfer level, and c as a child level composed of linked processors. Instead of sending H∗(⃗a, Mc) data
directly to children, we send H∗(⃗a, McNmax

c ) data to any of the interconnected children and cross-transfer

11



Published in Transactions on Machine Learning Research (03/2025)

Figure 24: With multiple levels in a hierarchy,
we can maintain output or streamed data at the
lowest levels and use the intermediate levels as
a cache. The cache size does not contribute to
the Mmax

ℓ1 restriction. Instead, we require that
Nℓ2,g/Nℓ1,g ⩽ Nmax

ℓ2 . If an algorithm is output
restricted, we can implement this by the cache
size being less than Mℓ = Mℓ1Nmax

ℓ2 .

the remaining data as in Figure 25. This results in a performance model with modified transfer weights
and levels, adding a level x between h and c with transfer weight Ḣ−1

h→c − Ḣ−1
x→c and memory McNmax

c , and
replacing the transfer weight of level c with Ḣ−1

x→c. We outline this derivation in the Appendix A.2.2.

Figure 25: To send data to children, we
directly transfer H∗(⃗a, McNmax

c ) distributed
across the child processors, treating the cross-
transfer level as having memory of size
McNmax

c . We then perform the remaining
H∗(⃗a, Mc) − H∗(⃗a, McNmax

c ) transfers as fast
cross-transfers.

5 Pseudocode and Hardware Optimizations

So far, we have focused on abstract models that represent the generic assignment of tasks across a GPU
hierarchy and investigated the accompanying performance model. This systematic methodology provides
the same level of detail as the theorems from FlashAttention (Dao et al., 2022).

The aim of the diagrammatic approach is to quickly develop optimized kernels. The success of
FlashAttention-2 (Dao, 2023) and FlashAttention-3 (Shah et al., 2024) relied on considering specialized
hardware features; tensor core operations and asynchronous compute (in the case of Hopper). Standard
methods required years of exploration to incorporate these aspects. With diagrams, we can systematically
identify the contexts in which hardware features can be applied and quickly derive kernels.

In this section, we develop the tools to go from generic, abstract analysis to developing an algorithm for a
specific hardware architecture. In this section, we provide a systematic procedure to go from an abstract
two-level model to an algorithm configured for a specific GPU architecture. We will work with a toy hierarchy
which imitates Hopper, with levels for the different modes in which memory can be stored; SMEM, registers,
or tensor cores. Available subalgorithms will be dictated by the functionalities of the respective levels. The
aim of this section is to not focus on Hopper specifically, as many aspects of implementation will be missed.
Instead, it is to show how diagrams can be used to systematically derive a hardware-aware algorithm. This
methodology can be extended to Ampere, Blackwell, and non-NVIDIA architectures.

Coalesced Memory Transfer

Between the device and SMEM memory, GPUs move data in chunks of 128B of consecutive memory. This
is remarkably straightforward to represent with diagrams. Arrays represent how data is distributed across
each stride, so the lowermost axis of an array represents consecutively stored memory. If we enforce that the
lowermost axis is divisible by 128B/q when assembled in the device and transferred between GMEM and
SMEM, then we can assure coalesced memory access. This may require that each thread block stream loads

12



Published in Transactions on Machine Learning Research (03/2025)

data for multiple lower-level streams. If using SMEM as a cache, there is usually plentiful memory available
for larger streams.

A floating divisor in the superscript of an axis/batch size is used to indicate a value it is divisible by (see
Figure 26). This is done at the point where the restriction is imposed and along the immediately weaved
axis. Multiple divisors impose the least common multiple.

Tensor Core Operations

Tensor cores provide very fast matrix multiplication, and their consideration was the major contribution
of FlashAttention-2 (Dao, 2023). Modern GPUs have far more FLOPs available for tensor cores than
general-purpose register operations (NVIDIA, 2020; 2022). However, tensor cores require memory to be
fragmented in an incoherent manner across warps (groups of 32 threads) or warpgroups (groups of 128
threads, Hopper only) which makes data unsuitable for general-purpose operations. We can still perform
element-wise operations, as these do not require information about the location of data. As a result, tensor
cores act like a distinct level of the memory hierarchy, having access to a different set of algorithms than
general-purpose thread data. Coherent SMEM data can be fragmented for tensor cores, providing a pipe
between the threadblock and tensor core levels.

Tensor cores (wmma or wgmma) can only manage data at certain sizes and quantizations (NVIDIA, 2024)
(wmma, wgmma). Quantization can be represented by a floating tag. Matrix multiplications of larger sizes can
be implemented by adding multiple smaller matrix multiplications, making divisibility the critical factor.
We can enforce this restriction by placing superscripts for tensor core axes, as shown in Figure 26.

Figure 26: Multi-level matrix multiplication
uses the SMEM level to cache data for lower-level
tensor core operations. We enforce the divisibil-
ity restrictions for coalesced SMEM transfers and
tensor cores using superscripts.

5.1 From Diagrams to Pseudocode

We can expand streamed algorithms into looped pseudocode forms where all variables are explicitly shown
as in Figure 27. The columns of pseudocode diagrams provide the size of variables required in memory
and the transfers/operations we need to apply. This allows us to pre-allocate memory to derive the exact
memory usages, as well as per-group transfer and compute costs. Columns act like lines of code but more
clearly express the details of axes and available optimization strategies than textual/symbolic methods. As
polymorphic streamed algorithms are defined for the stream axis being of any size, we can begin the algorithm
with a head F taking an axis of size 0, initializing the maintained output to incorporate further information.
As this expansion is built from the recursively expanded definition of a streamable function, correctness is
ensured.

Figure 27: A streamed algorithm can be re-expressed with an explicit loop. The diagram illustrates how
axes are partitioned, which variables are maintained, and what operations are applied iteratively.

13

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-shape
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#asynchronous-warpgroup-level-matrix-multiply-accumulate-instructions


Published in Transactions on Machine Learning Research (03/2025)

By substituting the subalgorithms in Figure 27 with operations relevant to a particular algorithm, we can
develop detailed pseudocode expansions for any streamed algorithm. This expansion is the first step in
developing a hardware-aware algorithm. SoftMax-contraction, for example, can be expanded by substituting
B for the SoftMax-contraction accumulator from Appendix A.3.2, shown in Figure 28.

Figure 28: An example of pseudocode expansion. We re-express SoftMax-contraction using the accumulator
derived in Appendix A.3.2.

Pseudocode expansion applied to attention involves substituting E with query-key matrix multiplication,
F with SoftMax-contraction and, therefore, B with the accumulator of SoftMax-contraction. We are also
required to weave the top q (which is partitioned) and the bottom d axes, deriving the two-level model
pseudocode expansion for attention in a systematic manner. The outcome of this process is shown in Figure
29, which provides a two-level model expansion.

Figure 29: Step 1 of deriving a hardware-aware algorithm is expanding the two-level model into a pseudocode
expression. We can apply the fusion theorems to attach E and weave over the q and d axes.

5.2 Subloops

Pseudocode expansions allow for streamable and split subalgorithms to be identified, which allow increased
flexibility. Streamable subalgorithms are identified by inner parentheses (subloops). Note how accumulators
are streamable, and therefore, the B component of Figure 27 always allows for a subloop that streams sa

along chunks of size ua. Furthermore, matrix multiply-add operations can be split along any axis and linearly
accumulated. We represent this by placing a dotted box around the operation. Shown in Figure 30, this
is the second step in systematically developing a hardware-aware algorithm. At this point, we still have a
hardware-independent two-level abstract representation of the algorithm.

14



Published in Transactions on Machine Learning Research (03/2025)

Figure 30: Step 2 requires identifying the subalgorithms and, hence, the degrees of freedom in axis sizes.
5.3 Recoloring Diagrams to Utilize Tensor Cores

We can impose hardware features by recoloring matrix multiplication and associated data as blue, and
general-purpose operations as green. Tensor cores and thread levels are partitioned into groups within the
gq SMEM blocks, and we relabel gq to tq for threads and wq for warpgroups. Transferring between these
levels requires piping through orange SMEM. We also impose quantization labels. This generates Figure 31.
At this point, the diagram only assumes the presence of tensor cores, and is therefore applicable to Volta,
Ampere, Hopper, and similar non-NVIDIA architectures. Note that the second matrix-multiply add involves
a scaling by δ weaved over the gq axis. This is not possible with tensor cores, without a complex diagonal
matrix approach which falls outside the standard paradigm of a systematic, diagrammatic derivation. This
distinguishes our approach from FlashAttention.

Figure 31: Step 3 involves assigning operations/data to specific cores and quantization levels.

5.4 Applying Divisor Constraints

Next, we impose the divisor constraints of specialized hardware features, including coalesced memory access
and tensor cores. The divisor constraints come from the specific architecture being used. By imposing that
w

(128)
q is divisible by 128, we indicate that we are working with warpgroups. We draw the axis sizes for

tensor core operations from the specifications of Hopper.

15

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#asynchronous-warpgroup-level-matrix-multiply-accumulate-instructions


Published in Transactions on Machine Learning Research (03/2025)

Figure 32: Step 4 has us impose divisor constraints, configuring the algorithm for a specific architecture.
In this case, Hopper.
5.5 Identifying Variables

The data type-columns of diagrams indicate the location and size of variables simultaneously required in
memory to execute the algorithm. Performance is best achieved by pre-allocating all required variables.
From Figure 33, we identify all the required variable sizes. In some cases, we can reuse a variable at two
points where it is not simultaneously required.

Figure 33: Step 5 identifies the required variables for accurate memory assessment and pre-allocation.

5.6 Configuration Table

Our aim is to find a configuration of axis sizes that maximizes performance while conforming to memory
constraints. The memory limits are given by Hopper’s specifications, which limits the SMEM and register
memory per thread block. In Table 1, we list all the variables, the memory they use, and how they scale
with the number of warpgroups, NW G = gq/128. This allows us to find the maximum warpgroups per thread
block given the configuration by Nmax = (Mmax−MTB)/MWG (see Table 2). In the attached document, we
provide this table with tools to alter values (see Appendix B.2.1).

We configure the axis sizes in Table 1 to improve performance. Lower axis sizes allow for more warpgroups.
This increases the degree of memory sharing, akin to increasing gq in Figure 44. However, with gq ≥ 295,
we are not bandwidth bottlenecked on H100 (see Appendix B.0.1), even assuming no caching. Larger tiles

16

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#features-and-technical-specifications-technical-specifications-per-compute-capability


Published in Transactions on Machine Learning Research (03/2025)

Variable Size Q. Level MT B

(Bytes)
MW G

(Bytes)
Q Queries w

(128)
q ×d(128) FP8 SMEM 16384

K Keys s
(32)
x ×d(128) FP8 SMEM 16384*

V Values s
(32)
x ×d(128) FP16 SMEM 32768*

S Attention Scores w
(128)
q ×s

(32)
x FP16 Registers 16384

P Weighted Scores g
(128)
q × s

(32)
x FP16 SMEM 16384

P ′ Weighted Scores (Registers) tq × u
(8)
x FP16 Registers 16384

A Weighted Scores (Tensor Core) w
(128)
q ×u

(8)
x FP16 SMEM 8192

α Auxiliary tq×3 FP16 Registers 768
O′ Output (Registers) tq×d(128) FP16 Registers 32768
D Delta Output (Tensor Core) w

(128)
q ×d′(16) FP16 Registers 8192

∆O Delta Output (SMEM) g
(128)
q × d′(16) FP16 SMEM 8192

∆O′ Delta Output (Registers) tq×d′′ FP16 Registers 2048
Total (KB=1024B) SMEM 48 48
Total (KB) Registers 74.75

Table 1: The configuration table lists all the required variables and the memory they occupy. We set
wq = 128, tq = 1, sx = ux = 64, d = 128, d′ = 32, and d′′ = 8. Alternative configurations can be explored
in the linked document. *Keys and values are asynchronously loaded, doubling their memory usage.
allow for greater parallelism and simplify the code, motivating the compiler to cooperate. The number of
non-tensor FP16 multiply-add operations is dependent on the number of sub-loops, which we reduce to 1 by
setting ux = sx. If we were working with FP16 queries and keys, we would have to aim for a more memory
conservative configuration, possible decreasing the size of subloops. Configuration tables allow us to explore
these possibilities in a systematic manner. In the associated document (Sheet “Configuration”), we include
a file that allows configurations to be quickly assessed.

Excess at N = 3
Mmax MT B MW G Nmax Per TB. Per WG. Per thread

(Bytes)
SMEM 227 48 48 3.7 35 11.67
Registers 256 0 74.75 3.4 31.75 10.58 85

Table 2: We find the maximum number of warpgroups given our configuration using a simple linear expres-
sion, Nmax = (Mmax −MTB)/MWG. The excess registers per thread provides a buffer to prevent register
spills which devastate performance.

5.7 Throughput Optimization

We can use diagrams to identify the bottlenecks of algorithms to guide optimized overlapping strategies.
Each SM has specialized cores and pipelines for different operations which execute in parallel each clock
cycle. GPUs will naturally implement a degree of overlapped execution, however, FlashAttention-3 (Shah
et al., 2024) showed that explicit barriers can improve asynchrony.

From Figure 29, we find the ops per thread for each column. We take the baseline ops (eg. 2d for matrix
multiplication) and multiply by the weaved axes. We ignore gq, to normalize for the number of active threads.
In Table 3, we notate the pipeline each operation uses, the normalized ops, and the ops per clock cycle. We
use these values to find the required clock cycle per column. These values are given per sx subloop. The
compute analysis is provided as Table 3 in the attached document for various algorithms (see Appendix
B.2.1).

Table 3 indicates that clock cycles per iteration are lower bound by the 6 clock cycles per thread required
for tensor cores. Waiting on any other actions will deviate performance from this lower bound. We can use

17

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#id27


Published in Transactions on Machine Learning Research (03/2025)

Operation Q-K MatMul SoftMax (expo-
nent)

P -V MatMul FP16 Accumu-
late

Pipeline Tensor Special Func-
tion Unit

Tensor FP16

Ops/Th 2dsx = 16384 sx + sx/ux = 65 2sxd = 16384 2d(sx/ux) =
256

Ops/Clk 8192 16 4096 512
Clk/Th 2 4.06 4 0.5

Table 3: We outline the clock cycles per thread required to execute different stages of the algorithm. The
total clock cycles required are given by (Clk/Th)*(Number of Active Threads).

this lower bound to find the required warp groups to avoid being bandwidth limited. Assuming no caching,
we find that gq must be greater than 295. This is elaborated in Appendix B.0.1, where we also find the ideal
tensor-core bottlenecked throughput to be 1.32 PFLOPs.

Hopper provides synchronization mechanisms between warp groups, which we exploit to shadow non-tensor
core operations. Optimal performance is achieved by having barriers wait on tensor cores. We diagram a
representation of the algorithm in Figure 34, with widths corresponding to required clock cycles per thread.
We classify costs not considered in Table 3 as overhead. For example, type conversions are extremely
slow, and exponential operations must occur in FP32. We represent overhead accommodation with hatched
regions.

Figure 34: We can diagram the clock cycles of Figure 33 with a specific configuration (ux = sx, d′ = d/2)
by symbolic blocks, with width proportional to the clock cycles per thread. We use d′ = d/4, but the
strategy remains similar. Hatched areas indicate overhead, which we assume to be significant for non-tensor
core operations. The ruler width is equal to the Q-K FP8 tensor core matrix multiplication, and therefore
represents 1 clock cycle per active thread.

We expand the diagram into three warpgroups. Each warpgroup acts independently, not relying on data
from others, allowing us to shift operations forwards or backwards to wait on tensor cores. Furthermore,
we can split the Q-K tensor core matrix multiplication as it forms a linear subloop (see Figure 30). This
allows us to construct a highly overlapped algorithm with two active iterations, shown in Figure 35. This
algorithm will achieve optimal performance if the realized overhead is less than the accommodation sizes.

Figure 35: Three warpgroup pipelining strategy. Hatched areas indicate accommodation for overhead of
non-tensor core operations. We have 50% overhead for SoftMax, and 100% for FP16 multiply-add. The ruler
separates blocks of 128 clock cycles. Thick dotted lines indicate barriers. In the ideal case, these should all
wait on tensor cores. We have two iterations active at once.

18

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#arithmetic-instructions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#arithmetic-instructions


Published in Transactions on Machine Learning Research (03/2025)

5.8 Conclusion of Derivation

In this section, we introduced a systematic method for deriving, configuring, and analyzing algorithms for our
toy Hopper hierarchy. The utility of this approach is in quickly deriving sketches of optimized algorithms with
a clear idea of expected performance and how the algorithm can fall short. The diagrammatic methodology
can be extended to simulate additional architectures for which kernels have not yet been developed, including
new releases like Blackwell (NVIDIA, 2025) and non-NVIDIA hardware (AMD, 2023).

The toy model, however, overlooks certain features of GPU algorithms. Though diagrams provide accom-
modation for overhead, we have ignored the overhead of tensor core operations and assumed that latency is
completely hidden. In practice, latency may delay algorithm execution, and tensor core operations may incur
overhead from small tile sizes (Bikshandi & Shah, 2023). The aim of this work is to develop a theoretical
framework that allows specific assumptions (like tensor core overhead) to be improved by empirical testing.
Rather than generally stating “larger tensor core tile sizes improve performance”, we may be able to claim
that “the overhead of tensor core operations is Y given a tile size X”.

A major concern is our lack of utilization of tensor core-fragmented register-level operations. We have
modeled tensor core memory as incoherent, however, methods exist to find how fragments are stored across
registers, which can be exploited to avoid intermediate communications with SMEM (Bikshandi et al., 2023).
This requires special treatment, as we would have to consider reindexing operations which manipulate how
data is accessed without changing values. This can be encompassed by a reindexing weaves (Abbott, 2023),
which can capture the implementation details of CUTLASS layouts and swizzled memory (Shah, 2024).

6 Comparison to FlashAttention

Our diagrammatic approach and “ideal” algorithm provide insight into FlashAttention-3. The key difference
in the operations employed is that FlashAttention-3 manipulates tensor core data thread-wise. This allows
it to use less variables than our approach, as we document in Appendix B.2. This functionality is not
currently provided by diagrams, meaning our algorithm resorts to using SMEM data. Properly considering
the manipulation of tensor core data would require investigating indexing with diagrams in-depth. An ad-
hoc treatment would detract from the emphasis on systematic methods of this work. However, the value
of diagrams lies in the systematic methodology and analytical tools, which we can be applied to better
understand FlashAttention.

6.1 FP16 FlashAttention-3

FP16 FlashAttention-3 uses FP32 auxiliary variables and intra-warp group overlapping. We outline its
configuration in Appendix B.2.4, linking to the attached document. Large tile sizes are used, with effective
gq = 128 and sx = 128. Intra-warp group overlapping requires a single warpgroup to hold Snext, overloading
the limited number of per register threads, causing spillage1.

We diagram the intra-warpgroup strategy and a hypothetical alternative inter-warpgroup approach for d =
128 in Figure 36. We see that the intra-warpgroup approach does not accommodate overhead for SoftMax,
potentially delaying the algorithm. The inter-warpgroup strategy provides 100% overhead for SoftMax.
This invites empirical testing where we reduce the tile size to fit multiple warpgroups per SM. If an intra-
warpgroup strategy remains superior, we can update the assumptions of our toy hierarchy based on the
empirical results.

The choice of a large sx is the result of empirical testing and a trade-off between register pressure and the
performance benefits of large tiles. This indicates our model can be improved by considering the overhead
of tensor core operations, especially for small tile sizes. Without caching, the algorithm will be bandwidth-
bound. Nonetheless, the algorithm is performant, achieving 740 of the maximum 989 TFLOPs of compute
(75%). Diagrams like Figure 32 show quantization changes more clearly than code, and we note that it is
likely the case that much of the value of FP32 accumulators is lost in the second matrix multiplication.

1Exceeding register limits causes local memory to be used. Despite its name, it is located off the SM.

19

https://github.com/NVIDIA/cutlass
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html?highlight=clock%2520cycles#operand-costs


Published in Transactions on Machine Learning Research (03/2025)

Figure 36: FP16 inter and intra warpgroup overlapping strategies. Hatched regions indicate SoftMax
overhead.
6.2 FP8 FlashAttention-3

FP8 FlashAttention-3 uses FP16 auxiliary variables and inter-warpgroup overlapping in the original version,
documented in Appendix B.2.2. However, newer versions seem to use the intra-warpgroup overlapping
operation (see Appendix B.2.3). This strategy allows a single warpgroup to store a large sx value, which seems
to have an immense benefit. FP8 FlashAttention-3 is bound by the slow special function unit required for
the SoftMax function. In empirical testing, it achieves 1.2 PFLOPs of the maximum 1.98 (60% utilization).

In Figure 37, we diagram the overlapping strategies for FP8. We use our clock cycle assessments to show
overlapping operations and assess the impact of function overhead. We provide diagrams for both an inter-
warpgroup strategy (original version) and an intra-warpgroup approach (mimicking the GitHub). The clock
cycle analysis shows that the strategies are both delayed by the overhead of the SoftMax operation. As the
SoftMax operation utilizes as many clock cycles as tensor core operations, this can not be improved upon.
Delays from unit conversions and other factors will delay the algorithm, reducing the maximum achievable
FLOPs. Furthermore, the FP8 intra-warpgroup strategy has the special function unit (the limiting factor)
inactive for much of the cycle, reducing performance by a minimum of 33%, which explains much of the
underutilization.

Figure 37: FP8 is bottlenecked by the SoftMax operation, and therefore has no accommodation for its
overhead, no matter the overlapping strategy employed.

20

https://github.com/Dao-AILab/flash-attention/blob/22c0358f4ba7999a15dbe27989ce163e5edb5693/hopper/tile_size.h


Published in Transactions on Machine Learning Research (03/2025)

6.3 Further Comments

The aim of this analysis is to see how our assumptions and predictions can be compared to a prior successful
kernel. The choices made for FlashAttention-3, especially in the latest releases, of intra-warpgroup strategies,
large sx tiles, and a small number of warpgroups gq, suggests that there is a significant benefit to large inner
dimensions for tensor core operations. If this is the case, our model would need to be updated. This does
not detract from this work’s main goal — we aim to propose a theoretical framework that can be updated
and tested in exactly this manner. In the long term, the exact details are secondary to the mechanism that
allows them to be updated. By positing certain assumptions about constructing an optimal algorithm as in
Section 5, and seeing how it falls short, we can inform future development.

Our model predicts that FlashAttention-3 is bottlenecked by the SoftMax operation. Interestingly, if we
assume a 66% overhead in SoftMax, we would expect FP16 intra-warpgroup to take 4/3 as long as necessary
and FP8 inter warpgroup to take 5/3 as long as necessary, explaining both the 75% utilization for FP16 and
the 60% utilization for FP8 in the original paper. This is an alternative hypothesis from delays originating
from the overhead of small tile sizes, and invites empirical testing.

7 Conclusion and Future Work

In this work, we have contributed a diagrammatic method for representing deep learning algorithms. In
Section 3, we showed how this allows for the rapid derivation of high-level optimization strategies, with an
in-depth associated performance model shown in Section 4. In Section 5, we used this framework to develop
a systematic methodology for deriving hardware-aware algorithm. In Section 6, we use our methodology to
better understand FlashAttention, making testable claims about the factors that limit performance.

This work is a zero-to-one attempt at creating a systematic approach to understanding IO-Awareness, and
invites a scientific approach to GPU optimizations. Diagrams rely on assumptions about GPU behaviour
to predict real-world performance. By separating theory from empirical results, we are able to treat these
assumptions as scientific hypotheses. Experiments can be run, with their failure or success guiding im-
provements in the framework. The diagrammatic framework can therefore avoid post-hoc rationalization.
Furthermore, diagrams reveal the many possible configurations of algorithms as in Figure 30 and 32. These
configurations can act as templates over which a host of experiments can be run. As the framework becomes
increasingly capable of predicting performance, the cost of empirically testing various configurations can
decrease.

This work focuses on attention. However, diagrams can provide value by extending to other algorithms.
Mixture-of-expert models (Mistral AI team, 2024) use immense resources, making optimizations particularly
impactful. Additional strategies can be formalized. Convolution and sliding window attention (Beltagy et al.,
2020) reindex weavings (Abbott, 2023), operations which change how data is accessed without changing the
data itself. Reindex weavings can integrate CUTLASS’ tensor storage system, linking diagrams to CUTLASS
implementations and providing access to tensor core-level weaved operations.

Diagrams conform to a category-theoretic description, which is not covered in this paper. A categorical
perspective would have diagrams encoded as a formal syntax (Piedeleu & Zanasi, 2025) which opens up
automated compilation tools (Wilson, 2023), consideration of backpropagation (Fong et al., 2019; Cruttwell
et al., 2022), and estimating error accumulation (Perrone, 2024). A formal treatment would streamline
our theorems, and provide access to tools that allow additional strategies to be considered. Convolution
and sliding window attention (Beltagy et al., 2020) use reindexings on weavings. These operations change
how data is accessed without changing the data itself, and correspond to Yoneda natural transformations
from category theory (Abbott, 2023). Reindexings would allow CUTLASS’ tensor storage system to be
incorporated into diagrams, and introduce a systematic method for optimizing convolution-like algorithms.
Furthermore, we can develop methods to distribute streams across cores and use accumulators as multi-core
reduction operations (Osama et al., 2023). Accumulators-as-reductions requires special treatment of transfer
costs, but would allow wave quantization to be considered which is outside the scope of this paper.

21

https://github.com/NVIDIA/cutlass


Published in Transactions on Machine Learning Research (03/2025)

Furthermore, we can use our framework to develop a systematic approach to optimization that considers
hardware design, capabilities, and algorithm configuration to performance. This can be constructed by
adapting the framework of categorical co-design (Zardini, 2023), which relates functionalities to requirements
in a compositional manner. Given the categorical nature of diagrams, this would the development of a holistic
approach across the engineering stack of optimizing deep learning deployment, relating hardware, algorithms,
and configuration choices towards optimal performance and minimal resource usage.

References
Vincent Abbott. Robust Diagrams for Deep Learning Architectures: Applications and Theory. Honours

thesis, The Australian National University, 2023. URL https://www.vtabbott.io/content/files/2023/11/
Robust-Diagrams-for-Deep-Learning-Architectures.pdf.

Alok Aggarwal and Jeffrey Vitter, S. The input/output complexity of sorting and related problems. Commun.
ACM, 31(9):1116–1127, 1988. ISSN 0001-0782. doi: 10.1145/48529.48535. URL https://dl.acm.org/doi/
10.1145/48529.48535.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, et al. GQA: Training Generalized Multi-Query Trans-
former Models from Multi-Head Checkpoints. In The 2023 Conference on Empirical Methods in Natural
Language Processing, 2023. URL https://openreview.net/forum?id=hmOwOZWzYE.

AMD. AMD CDNA 3 architecture, 2023. URL https://www.amd.com/content/dam/amd/en/documents/
instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The Long-Document Transformer. arXiv
preprint, 2020. URL https://arxiv.org/abs/2004.05150.

Ganesh Bikshandi and Jay Shah. Developing CUDA Kernels for Accelerated Matrix Multiplication on
NVIDIA Hopper Architecture using the CUTLASS Library. Colfax Research, 2023. URL https://research.
colfax-intl.com/wp-content/uploads/2023/12/colfax-gemm-kernels-hopper.pdf.

Ganesh Bikshandi, Jay Shah, and Colfax Research. A Case Study in CUDA Kernel Fusion: Implementing
FlashAttention-2 on NVIDIA Hopper Architecture using the CUTLASS Library. Colfax Research, 2023.
URL https://research.colfax-intl.com/wp-content/uploads/2023/12/colfax-flashattention.pdf.

Geoffrey S. H. Cruttwell, Bruno Gavranović, Neil Ghani, et al. Categorical Foundations of Gradient-
Based Learning. In Ilya Sergey (ed.), Programming Languages and Systems, pp. 1–28, Cham, 2022.
Springer International Publishing. ISBN 978-3-030-99336-8. URL https://link.springer.com/chapter/10.
1007/978-3-030-99336-8_1.

Tri Dao. FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning. In The Twelfth
International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
mZn2Xyh9Ec.

Tri Dao, Daniel Y Fu, Stefano Ermon, et al. FlashAttention: Fast and Memory-Efficient Exact Attention with
IO-Awareness. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances
in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=H4DqfPSibmx.

Patrick Esser, Sumith Kulal, Andreas Blattmann, et al. Scaling rectified flow transformers for high-resolution
image synthesis. In Proceedings of the 41st International Conference on Machine Learning, ICML’24.
JMLR.org, 2024. URL https://dl.acm.org/doi/10.5555/3692070.3692573.

Brendan Fong, David I. Spivak, and Rémy Tuyéras. Backprop as Functor: A compositional perspective on
supervised learning. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019,
Vancouver, BC, Canada, June 24-27, 2019, pp. 1–13. IEEE, 2019. doi: 10.1109/LICS.2019.8785665. URL
https://dl.acm.org/doi/10.5555/3470152.3470163.

22

https://www.vtabbott.io/content/files/2023/11/Robust-Diagrams-for-Deep-Learning-Architectures.pdf
https://www.vtabbott.io/content/files/2023/11/Robust-Diagrams-for-Deep-Learning-Architectures.pdf
https://dl.acm.org/doi/10.1145/48529.48535
https://dl.acm.org/doi/10.1145/48529.48535
https://openreview.net/forum?id=hmOwOZWzYE
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://arxiv.org/abs/2004.05150
https://research.colfax-intl.com/wp-content/uploads/2023/12/colfax-gemm-kernels-hopper.pdf
https://research.colfax-intl.com/wp-content/uploads/2023/12/colfax-gemm-kernels-hopper.pdf
https://research.colfax-intl.com/wp-content/uploads/2023/12/colfax-flashattention.pdf
https://link.springer.com/chapter/10.1007/978-3-030-99336-8_1
https://link.springer.com/chapter/10.1007/978-3-030-99336-8_1
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=H4DqfPSibmx
https://dl.acm.org/doi/10.5555/3692070.3692573
https://dl.acm.org/doi/10.5555/3470152.3470163


Published in Transactions on Machine Learning Research (03/2025)

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate Quantization for Gen-
erative Pre-trained Transformers. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=tcbBPnfwxS.

Amir Gholami, Sehoon Kim, Zhen Dong, et al. A Survey of Quantization Methods for Efficient Neural
Network Inference. In Low-power computer vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Amir Gholami, Zhewei Yao, Sehoon Kim, et al. AI and Memory Wall . IEEE Micro, 44(03):33–39, May
2024. ISSN 1937-4143. doi: 10.1109/MM.2024.3373763. URL https://doi.ieeecomputersociety.org/10.
1109/MM.2024.3373763.

Saugata Ghose, Abdullah Giray Yaglikçi, Raghav Gupta, et al. What Your DRAM Power Models Are Not
Telling You: Lessons from a Detailed Experimental Study. Proc. ACM Meas. Anal. Comput. Syst., 2(3),
December 2018. doi: 10.1145/3224419. URL https://doi.org/10.1145/3224419.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, et al. (eds.), Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html.

Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, et al. Data Movement Is All You Need: A Case Study on
Optimizing Transformers, 2021. URL http://arxiv.org/abs/2007.00072.

Llama team. The Llama 3 Herd of Models, 2024. URL http://arxiv.org/abs/2407.21783.

Weile Luo, Ruibo Fan, Zeyu Li, et al. Benchmarking and Dissecting the Nvidia Hopper GPU Architecture
. In 2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 656–667, Los
Alamitos, CA, USA, May 2024. IEEE Computer Society. doi: 10.1109/IPDPS57955.2024.00064. URL
https://doi.ieeecomputersociety.org/10.1109/IPDPS57955.2024.00064.

Mistral AI team. Mixtral of experts, 2024. URL https://mistral.ai/news/mixtral-of-experts.

NVIDIA. NVIDIA A100 Tensor Core GPU Architecture Overview, 2020. URL https://docs.nvidia.com/
cuda/pdf/ptx_isa_8.5.pdf.

NVIDIA. NVIDIA H100 Tensor Core GPU Architecture Overview, 2022. URL https://resources.nvidia.
com/en-us-tensor-core.

NVIDIA. PTX ISA 8.5, 2024. URL https://docs.nvidia.com/cuda/pdf/ptx_isa_8.5.pdf.

NVIDIA. NVIDIA Blackwell Architecture Technical Overview, 2025. URL https://resources.nvidia.com/
en-us-blackwell-architecture/blackwell-architecture-technical-brief.

Hiroyuki Ootomo and Rio Yokota. Reducing shared memory footprint to leverage high throughput on
Tensor Cores and its flexible API extension library. In Proceedings of the International Conference on
High Performance Computing in Asia-Pacific Region, HPCAsia ’23, pp. 1–8, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9781450398053. doi: 10.1145/3578178.3578238. URL https:
//doi.org/10.1145/3578178.3578238.

Muhammad Osama, Duane Merrill, Cris Cecka, et al. Stream-K: Work-Centric Parallel Decomposition for
Dense Matrix-Matrix Multiplication on the GPU. In Proceedings of the 28th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming, PPoPP ’23, pp. 429–431, New York, NY,
USA, 2023. Association for Computing Machinery. ISBN 9798400700156. doi: 10.1145/3572848.3577479.
URL https://doi.org/10.1145/3572848.3577479.

Adam Paszke, Sam Gross, Francisco Massa, et al. PyTorch: an imperative style, high-performance deep
learning library. In Proceedings of the 33rd International Conference on Neural Information Processing
Systems, Red Hook, NY, USA, 2019. Curran Associates Inc. URL https://pytorch.org/.

23

https://openreview.net/forum?id=tcbBPnfwxS
https://doi.ieeecomputersociety.org/10.1109/MM.2024.3373763
https://doi.ieeecomputersociety.org/10.1109/MM.2024.3373763
https://doi.org/10.1145/3224419
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
http://arxiv.org/abs/2007.00072
http://arxiv.org/abs/2407.21783
https://doi.ieeecomputersociety.org/10.1109/IPDPS57955.2024.00064
https://mistral.ai/news/mixtral-of-experts
https://docs.nvidia.com/cuda/pdf/ptx_isa_8.5.pdf
https://docs.nvidia.com/cuda/pdf/ptx_isa_8.5.pdf
https://resources.nvidia.com/en-us-tensor-core
https://resources.nvidia.com/en-us-tensor-core
https://docs.nvidia.com/cuda/pdf/ptx_isa_8.5.pdf
https://resources.nvidia.com/en-us-blackwell-architecture/blackwell-architecture-technical-brief
https://resources.nvidia.com/en-us-blackwell-architecture/blackwell-architecture-technical-brief
https://doi.org/10.1145/3578178.3578238
https://doi.org/10.1145/3578178.3578238
https://doi.org/10.1145/3572848.3577479
https://pytorch.org/


Published in Transactions on Machine Learning Research (03/2025)

Paolo Perrone. Markov Categories and Entropy. IEEE Trans. Inf. Theor., 70(3):1671–1692, March 2024.
ISSN 0018-9448. doi: 10.1109/TIT.2023.3328825. URL https://doi.org/10.1109/TIT.2023.3328825.

Robin Piedeleu and Fabio Zanasi. An Introduction to String Diagrams for Computer Scientists. Elements
in Applied Category Theory. Cambridge University Press, 2025. URL http://arxiv.org/abs/2305.08768.

Dustin Podell, Zion English, Kyle Lacey, et al. SDXL: Improving Latent Diffusion Models for High-Resolution
Image Synthesis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=di52zR8xgf.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, et al. High-Resolution Image Synthesis with Latent
Diffusion Models . In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 10674–10685, Los Alamitos, CA, USA, June 2022. IEEE Computer Society. doi: 10.1109/CVPR52688.
2022.01042. URL https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01042.

Amit Sabne. XLA : Compiling Machine Learning for Peak Performance. Google Res, 2020. URL http:
//research.google/pubs/xla-compiling-machine-learning-for-peak-performance/.

Jay Shah. A note on the algebra of CuTe layouts. Colfax Research, 2024. URL https://research.colfax-intl.
com/wp-content/uploads/2024/01/layout_algebra.pdf.

Jay Shah, Ganesh Bikshandi, Ying Zhang, et al. FlashAttention-3: Fast and Accurate Attention with
Asynchrony and Low-precision. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=tVConYid20.

Noam Shazeer. Fast Transformer Decoding: One Write-Head is All You Need. arXiv preprint,
(arXiv:1911.02150), 2019. doi: 10.48550/arXiv.1911.02150. URL http://arxiv.org/abs/1911.02150.

Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate language and compiler for tiled neural
network computations. In Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages, MAPL 2019, pp. 10–19. Association for Computing Machinery,
2019. ISBN 978-1-4503-6719-6. doi: 10.1145/3315508.3329973. URL https://dl.acm.org/doi/10.1145/
3315508.3329973.

Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. Attention is All you Need. In Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, et al. (eds.), Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pp. 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Paul William Wilson. Category-theoretic data structures and algorithms for learning polynomial circuits.
phdthesis, University of Southampton, 2023. URL https://eprints.soton.ac.uk/483757/.

Gioele Zardini. Co-Design of Complex Systems: From Autonomy to Future Mobility Systems, 2023. URL
https://www.research-collection.ethz.ch/handle/20.500.11850/648075. Accepted: 2023-12-19T10:03:57Z.

A Appendix

A.1 Fusion Theorem

Theorem 1 (Fusion Theorem) Composition and weaving of a streamable algorithm which does not re-
move the streamed axis yields a streamable algorithm.

Streamable algorithms satisfies the form in Figure 38, allowing the recursive expansion of Figure 39. Stream-
ability depends on polymorphism over the a axis, meaning the function/algorithm is defined for the axis
being of any size, and the existence of an accumulator B, which allows the streamed input data to be split.

24

https://doi.org/10.1109/TIT.2023.3328825
http://arxiv.org/abs/2305.08768
https://openreview.net/forum?id=di52zR8xgf
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01042
http://research.google/pubs/xla-compiling-machine-learning-for-peak-performance/
http://research.google/pubs/xla-compiling-machine-learning-for-peak-performance/
https://research.colfax-intl.com/wp-content/uploads/2024/01/layout_algebra.pdf
https://research.colfax-intl.com/wp-content/uploads/2024/01/layout_algebra.pdf
https://openreview.net/forum?id=tVConYid20
http://arxiv.org/abs/1911.02150
https://dl.acm.org/doi/10.1145/3315508.3329973
https://dl.acm.org/doi/10.1145/3315508.3329973
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://eprints.soton.ac.uk/483757/
https://www.research-collection.ethz.ch/handle/20.500.11850/648075


Published in Transactions on Machine Learning Research (03/2025)

Figure 38: A streamable algorithm re-
quires an accumulator B which allows
the polymorphic streamable axis to be
split. We can fuse the algorithm with a
head and tail, which do not require ad-
ditional loads and saves if their memory
usage is sufficiently small.

This allows for recursive decomposition, reducing the size of the remainder a′ axis to a′ ≤ sa as in Figure 39.
Here, we add a head and a tail, which are not expanded but can be executed without an additional transfer
and are hence fused. This requires their memory usage to be sufficiently small to not exceed hardware
limitations. Composition on G or K simply replaces those algorithms with the composed form, yielding a
modified head/tail for the streamable algorithm.

Figure 39: If Figure 38 is satisfied, then the algorithm can be recursively decomposed. This reduces the size
of chunks until the on-chip memory is sufficiently small.

Composing by E on the b-axis with an algorithm weaved by the streamable sa axis, we can exploit a partition
copy (see Figure 10) to show that the composed F ′ has an accumulator B′.

Finally, we are required to show that weaving preserves streamability. This exploits a characteristic of map-
ping composed functions. Mapping a composed function over an additional axis is equivalent to composing

25



Published in Transactions on Machine Learning Research (03/2025)

the individual functions mapped over that axis. Therefore, we can show that a weaved B is an accumulator
for a weaved F as in Figure 40.

Figure 40: Weaving over F composed with E and G at its inputs is equivalent to weaving over the smaller
F and B algorithms which, when composed, give F . This weaves need to trace over the inputs which they
target.

We can combine all the above expressions into the single form of Figure 41, where we also apply group
partitioning. This separates the mapped axis into groups of size gq distributed across processors. We can
iteratively apply these rules; an algorithm can be composed with an algorithm E weaved over the streamable
axis. This generates a streamable algorithm, which can be weaved over one of the inputs introduced by E.
This is used to construct streamable (flash) attention from a SoftMax-Contraction kernel.

Figure 41: We can combine the streaming theorems into a single expression. Given that the algorithm F is
streamable along the a/sa axis, we can add modifications to generate a new streamable algorithm. We can
group partition along the streamed axes, mapping groups of size gq × gr to different processors.

A.2 Multi-Level Performance Models

We define for a two-level model diagram the optimal transfers H∗(⃗a, M), where a⃗ are the axis sizes and M
is the maximum memory available at the lower level. We use g⃗ to indicate some configuration of group sizes.
We are interested in memory usage in the limit of large M and g⃗, in which case the limiting factor is some
y Πi gi weaved by all grouped axes, with y typically being the output. For smaller M , we aim for a specific
configuration as in Section 5. Two-level diagrams derived optimal transfers solve for Equation 4, where i
iterates over the grouped axes:

H∗(⃗a, M) = min
g⃗

Πi ai

Πi gi
Hg (⃗a, g⃗) given M ⩾ y Πi gi (4)

We extend this to multiple levels be assigning a memory Mℓ to each level and a weighted transfer cost Ḣ−1
ℓ ,

which represents bandwidth. As described in Section 4, this conforms to;

26



Published in Transactions on Machine Learning Research (03/2025)

H∗ =
∑

ℓ

Ḣ−1
ℓ H∗(⃗a, Mℓ) (5)

How additional levels are used, either as intermediate caches or cross-transfer levels, use the same general
performance model of Equation 5 but with altered weighted transfer costs Ḣ−1

ℓ and per-level effective memory
Mℓ. Using Mmax

ℓ to indicate the maximum memory per level, Nmax
ℓ to indicate the maximum number of

child nodes per higher level node, h for the immediately higher level and c for the immediately lower, and
Ḣ−1

ℓ→ℓ′ as the raw weighted transfer cost between ℓ and ℓ′, we adapt our performance model to get;

Ḣ−1
ℓ =

{
Ḣ−1

h→c − Ḣ−1
ℓ→c ℓ is a cross-transfer level

Ḣ−1
h→ℓ else

Mℓ =
{

Nmax
c Mc ℓ is a cross-transfer or intermediate cache

Mmax
ℓ else

Therefore, using cross-transfer or caching levels conforms to our standard performance models. This lets
Equation 2 act as a universal performance model for multi-level GPUs, and ensures that Ḣ−1

ℓ M−β
ℓ is the

characteristic property for comparing the performance of algorithms for different low-level memory sizes.

A.2.1 Intermediate Caching

Theorem 2 An intermediate caching level ℓ1 for an output restricted algorithm with a number restric-
tion Nmax

ℓ2 ⩾ Ng,ℓ2/Ng,ℓ1 conforms to the standard performance model with Mℓ1 = Mℓ2Nmax
ℓ2 , requiring

H∗(⃗a, Mℓ2Nmax
ℓ2 ) total transfers.

For an intermediate caching model which is output limited, we have the standard constraint for the lower
level, Mℓ2 ⩾ y Πi gℓ2,i, and the number restriction, Nmax

ℓ2 ⩾ Ng,ℓ2/Ng,ℓ1 = Πi gℓ1,i/Πi gℓ2,i. We aim to find
the configuration of g⃗ℓ1 and g⃗ℓ2 which minimizes the number of transferred values. Assuming the algorithm
is output limited, the effective size of the caching column is y Πi gℓ1

i . This lets us express the restrictions as:

H∗
ℓ1 = min

g⃗

Πi ai

Πi gℓ1,i
Hg (⃗a, g⃗ℓ1) given Nmax

ℓ2 ⩾ Πi gℓ1,i/Πi gℓ2,i (6)

H∗
ℓ2 = min

g⃗

Πi ai

Πi gℓ2,i
Hg (⃗a, g⃗ℓ2) given Mℓ2 ⩾ y Πi gℓ2,i (7)

We can multiply the restriction of (6) by the restriction of (7) to get (8). Assuming that the inequalities are
sufficiently close to equalities, we outline the new problem to solve:

H∗
ℓ1 = min

g⃗

Πi ai

Πi gℓ1,i
Hg (⃗a, g⃗ℓ1) given Mℓ2Nmax

ℓ2 ⩾ y Πi gℓ1.i (8)

H∗
ℓ2 = min

g⃗

Πi ai

Πi gℓ2,i
Hg (⃗a, g⃗ℓ2) given Mℓ2 ⩾ y Πi gℓ2

i (9)

These restrictions correspond to Equation 4, so we can substitute in H∗(⃗a, Mℓ) for both levels, but using
Mℓ2Nmax

ℓ2 for the intermediate level instead of its own maximum memory, Mmax
ℓ1 . We therefore have;

H∗
ℓ1 = H∗(⃗a, Mℓ2Nmax

ℓ2 )
H∗

ℓ2 = H∗(⃗a, Mℓ2)

A caching level therefore conforms to our standard multi-level performance model derived from a two-level
diagram, but with the intermediate level using total lower level memory instead of its own.

27



Published in Transactions on Machine Learning Research (03/2025)

A.2.2 Cross-Transfer Level

Theorem 3 Introducing a cross-transfer level x between a higher level h and a lower level c allows us to
replace the weighted transfer cost of an output-limited algorithm;

H∗ = . . . + Ḣ−1
h→cH∗(⃗a, Mc) + . . .

With,
H∗ = . . . + (Ḣ−1

h→c − Ḣ−1
x→c) H∗(⃗a, Nmax

c Mc) + Ḣ−1
x→cH∗(⃗a, Mc) + . . .

Where Ḣ−1
h→c is the weighted transfer cost of sending data to children, and Ḣ−1

x→c is the weighted transfer cost
of sending data between children.

The child level c requires a total of H∗(⃗a, Mc) data transfers from the higher level, typically incurring a
weighted transfer cost per value of Ḣ−1

h→c. With a cross-transfer level x between h and c, we can send some
data H∗

x to any of the children and cross-transfer the remaining at a weighted transfer cost of Ḣ−1
x→c per

value. We need to derive the optimal configuration of g⃗x to minimize H∗
x . This configuration incurs a number

restriction, as the child processors need to remain active. We therefore have,

H∗
x = min

g⃗

Πi ai

Πi gx,i
Hg (⃗a, g⃗x) given Nmax

c ⩾ Πi gx,i/Πi gc,i

H∗
c = min

g⃗

Πi ai

Πi gc,i
Hg (⃗a, g⃗c) given Mc ⩾ y Πi gc,i

We perform a similar substitution to Section A.2.1, yielding a new set of restrictions;

H∗
x = min

g⃗

Πi ai

Πi gx,i
Hg (⃗a, g⃗x) given McNmax

c ⩾ y Πi gx,i

H∗
c = min

g⃗

Πi ai

Πi gc,i
Hg (⃗a, g⃗c) given Mc ⩾ y Πi gc,i

These restrictions conform to the two-level model optimal, with required transfers being H∗
x =

H∗(⃗a, McNmax
c ) and H∗

c = H∗(⃗a, Mc). When considering transfers for the total weighted transfer cost
calculation, we can subtract the required transfers to x from the transfers required to c. This is because
data is transferred from the higher level to the cross-transfer level by sending it to children, so much of the
data is already available. This results in the substituting the total weighted transfer costs (10) with (11):

H∗ = . . . + Ḣ−1
h→cH∗(⃗a, Mc) + . . . (10)

7→ H∗ = . . . + Ḣ−1
h→cH∗(⃗a, Nmax

c Mc) + Ḣ−1
x→c (H∗(⃗a, Mc)−H∗(⃗a, Nmax

c Mc)) + . . . (11)

We can rearrange (11) so that we have the standard format of each level having H∗(⃗a, Mℓ) transfers by
instead modifying the transfer cost:

H∗ = . . . +
(
Ḣ−1

h→c − Ḣ−1
x→c

)
H∗(⃗a, Nmax

c Mc) + Ḣ−1
x→c H∗(⃗a, Mc) + . . . (12)

Therefore, a cross-transfer level conforms to the standard performance model. Instead of using the weighted
transfer cost of sending data to the children Ḣ−1

h→c for the cross-transfer level, we set Ḣ−1
x = Ḣ−1

h→c − Ḣ−1
x→c

and we remap Ḣc = Ḣ−1
x→c. This lets us express (12) as the expression below, which conforms to the standard

multi-level performance model of (5):

H∗ = . . . + Ḣ−1
x H∗(⃗a, Nmax

c Mc) + Ḣ−1
c H∗(⃗a, Mc) + . . .

A.2.3 Additional Notes

In the case of a multi-GPU hierarchy, the interconnected topology is a cross-transfer level x which distributes
data among child GPUs c at a weighted transfer cost of Ḣ−1

x→c. If we assume data is already distributed
across GPUs, then the number of GPU cross-transfers is H∗(⃗a, Mmax

c ) − H∗(⃗a, Nmax
c Mmax

c ). So far, we

28



Published in Transactions on Machine Learning Research (03/2025)

have considered the highest level to have unlimited memory and zero weighted transfer cost. We can model
multi-GPU systems by the highest level (the multi-GPU level x) as having a memory equal to Nmax

c Mmax
c

and negative weighted transfer cost −Ḣ−1
x→c, which assumes data is already distributed among GPUs. This

provides a rough model, which can be refined by aligning the group sizes used in diagrams.

Often, we can configure the number of cross-transfer level children to alter the cross-transfer bandwidth. In
(Luo et al., 2024), it was found that the bandwidth of H800 (Chinese market Hopper GPUs) SM-SM transfers
varies from 3.27TB/s with a cluster size N = 2 to 2.65TB/s with a cluster size of N = 4, compared to
2.04TB/s of GMEM-SMEM bandwidth. This imposes a trade-off; smaller cluster sizes improve effective
Ḣc but reduce the cross-transfer discount H∗(⃗a, Nmax

c Mmax
c ). (Luo et al., 2024) notes that balancing this

trade-off is an important direction for exploration. We can use our model to find the difference in weighted
transfer costs with (11) and without (10) a cross-transfer level, providing an equation to optimize for N .

∆H∗ =
(
. . . + Ḣ−1

h→cH∗(⃗a, Mc) + . . .
)

−
(
. . . +

(
Ḣ−1

h→c − Ḣ−1
x→c

)
H∗(⃗a, N Mc) + Ḣ−1

x→c H∗(⃗a, Mc) + . . .
)

=
(
Ḣ−1

h→c − Ḣ−1
x→c

)
H∗(⃗a, Mc)−

(
Ḣ−1

h→c − Ḣ−1
x→c

)
H∗(⃗a, N Mc)

=
(
Ḣ−1

h→c − Ḣ−1
x→c

)
(H∗(⃗a, Mc)−H∗(⃗a, N Mc))

∆H∗ = ∆Ḣ−1(N)
∑

t

αt(⃗a) M−β
c

(
1−N−β

)

A.3 Streamability

A.3.1 Contraction

The streamability of contraction (a dot product) requires that an accumulator exists of the form in Figure
38. Contraction for vectors v, w ∈ Ra is given by v · w = Σn−1

i=0 vi · wi, which can be expressed as v · w =
Σs′−1

i=0 vi · wi + Σa−1
i=s′ vi · wi, where the underlined portion is the accumulator. We diagrammatically show

this in Figure 42, highlighting the accumulator in blue.

Figure 42: We can re-express contraction as an initial
function followed by the accumulator. Any size can be
chosen for s and s′, and the expression can be recursively
expanded until s′ ≤ sa for some target stream batch size
sa.

A.3.2 Fusion of SoftMax-Contraction

SoftMax-Contraction is streamable by maintaining a running maximum and sum on chip as auxiliary vari-
ables. We express this by streaming unscaled SoftMax-Contraction with the initialization of the auxiliary
variables as the head and scaling by the sum as a tail as in Figure 43.

Figure 43: Streamable SoftMax-
Contraction is implemented by accumu-
lating the results of unscaled SoftMax-
Contraction applied to segments, adjusting
the baseline relative to the current maxi-
mum value. We apply the normalization by
z as a tail for the expression.

29



Published in Transactions on Machine Learning Research (03/2025)

We can derive streamable SoftMax-Contraction by taking recursively expanded Auxiliary SoftMax (Figure
44) and contracting its output. Recursively expanded Auxiliary SoftMax is not streamable as the memory
usage increases with the input size. However, it terminates in a join, allowing it to be fused with a contraction.

Figure 44: Auxiliary SoftMax (defined in
Table 4), where we maintain auxiliary vari-
ables, can be recursively expanded.

Base SoftMax Auxiliary SoftMax Unscaled SoftMax

SoftMax(x⃗) :
µ← max(βxi)
si ← exp(βxi − µ)
z ← Σi si

yi ← si/z
Return y⃗

Initialize() :
Return (−∞, 0, 0)

SoftMax0(x⃗, (µ′, δz′, z′)) :
µ← max(βxi, µ′)
si ← exp(βxi − µ)
δ ← exp(µ′ − µ)
z ← δz′ + Σi si

yi ← si/z
Return y⃗, (µ, δz′, z)

Scaling (on prior values),
y⃗′ ∗ = y⃗′ δz′/z

Initialize() :
Return (−∞, 0, 0)

SoftMax1(s⃗, (µ′, δ′, z′)) :
µ← max(βxi, µ′)
si ← exp(βxi − µ)
δ ← exp(µ′ − µ)
z ← δ ∗ z′ + Σi si

Return s⃗, (µ, δ, z)
Scaling (on prior values),
y⃗′ ∗ = y⃗′ δ
Scaling (at tail),
y⃗ ∗ = y⃗/z

Table 4: We provide diagrams and code for various forms of SoftMax. β is the inverse tempurature parameter,
and is set to d−0.5.

Fusing SoftMax with a contraction limits the output size. The join tail allows it to be fused with a contraction.
This limits the size of the output, yielding a streamable algorithm. To streamline the derivation, we do not
explicitly draw the updated maintained variables as in Figure 44. We can then apply rearrangements to
recover a streamable form of the composed function.

30



Published in Transactions on Machine Learning Research (03/2025)

We can then replace SoftMax with unscaled SoftMax, which is done in FlashAttention-2. This lets us move
the shared “/z” factor to the end of the expression, producing the numerically stable form we use. We forego
drawing the auxiliary variables lines to streamline the derivation but add them later.

This analysis derives the streamability of SoftMax and its fusion with contraction as a standard procedure
using diagrams. Diagrams, by showing the structure of constituent algorithms, act as algebraic tools for
deriving fusion.

B Performance Analysis

The performance analysis is assisted by an Excel spreadsheet we developed, available at github.com/mit-
zardini-lab/Napkin. In the future, additional tools will be provided at that repository.

B.0.1 Lower Bound on Compute Time

The lower bound on compute time is given by the clock cycles per thread for tensor cores kTC times the
number of threads gq divided by the clock frequency fK . This must be larger than the transfer time, which
is equal to the bytes per iteration H times the per SM bandwidth B/NSM. We assume no caching and a
sufficiently large x. These assessments are given in Table 4 for different algorithms in the linked document.
We artificially set “Num. of Th” to 999 for the FlashAttention algorithms to simulate not being memory
bound by using caches.

31

https://github.com/mit-zardini-lab/Napkin
https://github.com/mit-zardini-lab/Napkin


Published in Transactions on Machine Learning Research (03/2025)

TK ⩾ TH

kTC gq/fK ⩾ H B/NSM

gq ⩾ fK H B/(fK NSM )
⩾ 295 (for H100 SXM5)

B.1 Arithmetic Intensity of Matrix Multiplication

With FLOPs K = 2abc, we are required to perform M−0.5 + (2b)−1 transfers per FLOP, H/K. These
computations and transfers occur across the GPU, meaning we use GPU-wide bandwidth. Each compute
requires a transfer from GMEM to the L2 cache (at 3352 GB/s) and a transfer from the L2 cache to SMEM
(at 12 TB/s) (Shah et al., 2024). This translates to a bandwidth of 1.7e12 and 6.0e12 FP16 values per
second, respectively. As the L2 cache uses an intermediate caching strategy, its effective memory is given by
the total memory of child processors where data is ultimately stored (see Appendix A.2.1). Therefore, we
use ML2 = NSM MSM .

To avoid a bandwidth bottleneck, we require that M−0.5 + (2b)−1 < Ḣ/K̇. We assemble these values and
subsequent calculations in the attached document’s “MatMul Bandwidth” sheet. The absolute minimum
values indicate the M and b values that, if not exceeded, will ensure the algorithm is bottlenecked, indepen-
dent of other factors. The Min b values indicate the size of the inner-dimension we must exceed, given the
GPU memory, to not be bandwidth bottlenecked. Note that these expressions give minimums, larger sb and
imperfect caching will slow down the algorithm.

32



Published in Transactions on Machine Learning Research (03/2025)

B.2 Configuration Tables

B.2.1 Derived Attention

33



Published in Transactions on Machine Learning Research (03/2025)

B.2.2 FlashAttention-3 FP8 Inter-Warpgroup

B.2.3 FlashAttention-3 FP8 Intra-Warpgroup

34



Published in Transactions on Machine Learning Research (03/2025)

B.2.4 FlashAttention-3 FP16 Intra-Warpgroup

35


	Introduction
	Background
	Contributions

	Diagramming Deep Learning Algorithms
	Diagramming Functions and Data Types
	Representing Deep Learning Algorithms
	Group Partitioning
	Stream Partition

	Examples
	Matrix Multiplication
	Attention

	Analysis of Performance Models
	Optimal Transfers H*(, M)
	Multi-Level Performance Models
	Quantization
	Intermediate Caching
	Cross-Transfer Levels

	Pseudocode and Hardware Optimizations
	From Diagrams to Pseudocode
	Subloops
	Recoloring Diagrams to Utilize Tensor Cores
	Applying Divisor Constraints
	Identifying Variables
	Configuration Table
	Throughput Optimization
	Conclusion of Derivation

	Comparison to FlashAttention
	FP16 FlashAttention-3
	FP8 FlashAttention-3
	Further Comments

	Conclusion and Future Work
	Appendix
	Fusion Theorem
	Multi-Level Performance Models
	Intermediate Caching
	Cross-Transfer Level
	Additional Notes

	Streamability
	Contraction
	Fusion of SoftMax-Contraction


	Performance Analysis
	Lower Bound on Compute Time
	Arithmetic Intensity of Matrix Multiplication
	Configuration Tables
	Derived Attention
	FlashAttention-3 FP8 Inter-Warpgroup
	FlashAttention-3 FP8 Intra-Warpgroup
	FlashAttention-3 FP16 Intra-Warpgroup



