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Abstract

Humans continuously perceive and process visual signals. However, current video1

models typically either sample key frames sparsely or divide videos into chunks2

and densely sample within each chunk. This approach stems from the fact that most3

existing video benchmarks can be addressed by analyzing key frames or aggregating4

information from separate chunks. We anticipate that the next generation of vision5

models will emulate human perception by processing visual input continuously6

and holistically. To facilitate the development of such models, we propose the7

Continuous Perception Benchmark, a video question answering task that cannot8

be solved by focusing solely on a few frames or by captioning small chunks and9

then summarizing using language models. Extensive experiments demonstrate that10

existing vision models, whether commercial or open-source, struggle with these11

tasks, indicating the need for new technical advancements in this direction.12

1 Introduction13

Video understanding is a foundational task in computer vision that has been extensively studied for14

decades. Over the years, a variety of methods have been developed, utilizing architectures that range15

from temporal convolutions [1] to 3D convolutions [2, 3] and, more recently, transformers [4, 5]. The16

current trend towards scaling has led to the emergence of multi-modal foundation models [6, 7, 8],17

which represent the state-of-the-art in video understanding [9, 10, 11, 12, 13, 14]. These models are18

trained on massive amounts of web data, demonstrating exceptional generalization capabilities across19

different tasks. Additionally, they can engage in open-vocabulary, multi-round interactions with users,20

a capability that previous specialized models lacked [9, 12, 14]. This advancement holds significant21

promise for real-world applications, such as personal assistants.22

Despite the progress, current video foundation models process videos differently from humans.23

Typically, these models use one of two approaches. The first approach (top left of Figure 1) involves24

sparsely sampling frames from the input video and only processing those sampled frames [9, 10,25

11, 12, 13, 14]. The second approach (top right of Figure 1) divides the input video into separate26

chunks, processes each chunk independently by captioning it, and then summarizes the entire video’s27

information by using a large language model (LLM) to process the generated captions [15, 16, 17].28

In contrast, humans perceive and process visual signals densely and continuously. We anticipate that29

the next generation of visual foundation models should mimic this human approach, processing input30

video comprehensively without resorting to sparse sampling or dividing it into chunks. Firstly, sparse31

sampling or chunk processing can result in the loss of global temporal information across the entire32

video. More importantly, we believe that the ability to continuously process visual signals efficiently33

is crucial for learning critical concepts such as compositionality [18], intuitive physics [19], and34
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Figure 1: (Top) Existing video understanding models process videos in one of two ways: either by
sparsely processing the entire video or by densely processing it in chunks. Similarly, most existing
video benchmarks can be addressed using these approaches, as the information needed to answer
questions can either be sparsely extracted from the entire video or found within a local region of the
video. (Bottom) We propose the Continuous Perception Benchmark, a task that requires models to
densely process input videos to answer questions correctly. We hope this task could facilitate the
development of the next generation of vision models that emulate human ability to continuously
perceive and process visual signals.

object permanence [20], as processing only a small number of frames may lead to learning superficial35

or spurious shortcut signals [21]. Additionally, such models could leverage the massive amount of36

available online video content for learning, which existing video models cannot do effectively due to37

excessive costs.38

To facilitate the development of this envisioned next generation of vision models, we propose a39

new benchmark, called Continuous Perception Benchmark. This benchmark differs from existing40

video benchmarks [22, 23] by requiring models to continuously analyze the entire video stream for41

optimal performance (bottom of Figure 1). Most existing video benchmarks can often be tackled42

by analyzing just key frames [24, 25, 26, 11] or processing the video in segments [4, 22, 23].43

However, the Continuous Perception Benchmark pushes models to develop a more comprehensive44

and uninterrupted understanding of the video. We evaluated several state-of-the-art foundational45

video models [15, 27, 11, 12, 15, 10, 11], both open-sourced and commercial, and found that none of46

them performed well on this newly proposed task. For instance, the best-performing model could47

only correctly answer 12% of the questions without any errors. This highlights the limitations of48

existing models and underscores the need for developing new techniques in this area.49

2 Related Work50

2.1 Multi-modal Foundational Models51

The advent of multi-modal foundational models has marked a significant breakthrough in the field52

of artificial intelligence, enabling the integration of diverse data modalities such as text, images,53

and videos. In this paper we benchmark the open-sourced models and models with a public API:54

Video-ChatGPT [9], VideoLLaVa [10], LLoVi [15], PLLaVA [12], VideoChat2 [11], and Gemini [27].55

Video-ChatGPT [9] computes spatiotemporal features from the videos by averaging frame-level56

features across temporal and spatial features, as input to the LLM through a learnable linear layer.57

VideoLLaVa [10] aligns images and videos before projection, enabling the LLM to learn from a58

unified visual representation. This process allows the LLM to comprehend both images and videos59

simultaneously. LLoVi [15] employs short-term visual captioners (such as LaViLa and BLIP2) to60

create textual descriptions for brief video segments. An LLM then compiles these detailed, short-term61

captions to perform the long-range reasoning necessary for LVQA. This approach enables LLoVI to62

effectively manage long-duration videos. PLLaVA [12] employs a simple pooling strategy to smooth63
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the feature distribution along the temporal dimension as input to the LLM. VideoChat2 [11] bridges64

LLM with a powerful vision foundational model [28], and trains the model on diverse instruction-65

tuning data with a novel progressive training paradigm. Gemini [27] is jointly trained across image,66

audio, video, and text data for the purpose of building a model with strong generalist capabilities67

across modalities.68

2.2 Video Benchmarks69

Various video benchmarks have been introduced over the years to advance video understanding70

technologies [25, 29, 30]. Early benchmarks focused on specific tasks such as activity classifica-71

tion [24, 25, 26], motion understanding [31], or movie analysis [32]. With the advent of visual72

foundation models [8, 6, 7, 9, 10], recent benchmarks have become more comprehensive, evaluating73

a wide range of model capabilities [33, 11] and often sourcing data from multiple existing video74

benchmarks [11, 34]. Another trend in benchmarking focuses on assessing long-form video under-75

standing abilities [4, 22, 23]. Despite these diverse approaches, most existing benchmarks fall into76

two categories, where the information for answering the question can be extracted by either sparsely77

sampling several key frames [24, 25, 26, 11], or by captioning each small segments independently and78

then summarizing the resulting captions with language models [4, 22, 23]. Our proposed benchmark79

stands apart, as it requires the model to continuously process the entire input video. The information80

needed to answer the questions is densely distributed throughout the video, demanding continuous81

perception of visual stimuli as humans do.82

2.3 Synthetic Datasets in Computer Vision83

Our work, which involves synthetically generated data, is closely related to other research in computer84

vision. Their primary focus is to employ synthetic training data for real-world applications such as85

optical flow [35], point tracking [36], scene understanding [37, 38], and human pose understand-86

ing [39, 40, 41]. Another use of synthetic datasets is to investigate model capabilities in controlled87

environments. For spatial reasoning, some studies [42] render predefined objects using softwares88

like Blender [43]. More recently, research focusing on embodied agents has leveraged advanced89

simulators [44, 45] to create realistic environments. These simulators are equipped with a wide90

variety of assets and use physics engines like PyBullet [46] to generate more accurate and physically91

plausible scenes. This approach allows for a detailed examination of models’ abilities in settings that92

closely mimic real-world conditions.93

3 Continuous Perception Benchmark94

To fill in the gap of existing benchmarks, Continuous Perception Benchmark (CPB) aims to build a95

video question and answering dataset that requires continuous processing of video frames. We use it96

to benchmark multi-modal foundational models to assess their capabilities for continuous perception.97

3.1 Generation Method98

We curate the dataset using OmniGibson [45] (MIT License), a simulation environment built upon99

NVIDIA’s Omniverse platform. We select a 3D scene and populate it with furniture such as chairs and100

tables, then randomly place objects on the tables. Then videos are rendered with a moving camera101

following a specific trajectory (Figure 2). The task is simply asking how many of a specific objects102

are shown in the input video. Despite its simplicity, in the experiment section we show none of the103

existing state-of-the-art video models can perform well on the task.104

The basic version of the dataset is created by having a camera move at a consistent speed across a room,105

maintaining a fixed direction to capture a panoramic view. This process results in a 20-second video106

at 30 fps for each instance. This method ensures that the visual data encompasses a continuous and107

seamless sweep of the entire room, providing comprehensive spatial context. To answer questions like108
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Prompt: As a proficient video understanding model, your task is to closely 
observe the objects within the scene in the provided video and determine the 
total count of {category} present. Please provide your response as a single 
numerical value, indicating the quantity of {category} observed, without any 
other word.

Multi-modal Foundational Model

5

Camera trajectory

Video:

Ego-Centric View With OcclusionPan View

Figure 2: Top: Data generation (left) and benchmarking (right) illustration. Bottom: different
variations of the benchmark.

CakeBook Chair Computer Cup

PhoneDesk Teddy Volleyball Watermelon

Count

In
st
an
ce
s

Figure 3: Groundtruth count distribution for different target categories.

"how many desks are there in the room?", the model must thoroughly understand spatial relationships109

and environmental context, which requires processing the input video densely and continuously.110

We select 10 object categories from the Behavior-1K database [45]: book, cake, chair, computer, cup,111

desk, phone, teddy bear, volleyball, and watermelon. For each category, we randomly sample 20112

different scene configurations with different number of target object present at different locations,113

resulting a total of 200 test instances. Figure 3 shows the distributions of the ground truth count for114

different categories, which are roughly evenly represented across counts ranging from 1 to 30.115

3.2 Evaluation Method116

Following previous repetition counting works [47, 48, 49, 50], we use Mean Absolute Error (MAE),117

Root-Mean-Square-Error (RMSE), Off-By-One accuracy (OBO), Off-By-Zero (OBZ) as evaluation118

metrics, calculated as Eqs. 1 and 2 respectively. We additionally report Off-By-Five (OBF) accuracy119

(Eq. 3). The metrics OBF, OBO, and OBZ exhibit increasing levels of stringency for precise count120

accuracy. RMSE is more robust for evaluating diverse counts, as it is less biased towards smaller121
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counts compared to MAE.122

MAE =
1

|Ω|
∑
i∈Ω

|ci − c̃i|
ci

; RMSE =

√
1

|Ω|
∑
i∈Ω

(ci − c̃i)2 (1)

123

OBZ =
1

|Ω|
∑
i∈Ω

1(|ci − c̃i| ≤ 0) ; OBO =
1

|Ω|
∑
i∈Ω

1(|ci − c̃i| ≤ 1) (2)

124

OBF =
1

|Ω|
∑
i∈Ω

1(|ci − c̃i| ≤ 5) (3)

ci, c̃i are the ground-truth and predicted counts for ith video in the dataset Ω. 1 is the indicator125

function.126

4 Experiments127

In this section, we will first introduce the various baseline models we evaluated on the proposed128

continuous perception benchmark. Then, we will present the experiment results and provide a detailed129

analysis of the model predictions.130

4.1 Baselines131

We evaluated several models aimed at video understanding. Specifically, Video-LLaVA [10],132

PLLaVA [12], VideoChat2 [11], and Video-ChatGPT [9] represent open-source multimodal models133

that generate answers directly from input video and question descriptions. LLoVi [15] represents134

models that first caption small, separate chunks of the input video, then summarize the captions of135

all chunks, and answer the question using a large language model (LLM). For commercial models,136

we evaluated Gemini [27] from Google. For all the open-source models, we utilized the inference137

code and released checkpoints from the official implementations. Figure 4 summarizes prompts138

used for different models, we used the ‘VLM Prompt’ for Video-LLaVA, PLLaVA, VideoChat2,139

Video-ChatGPT, and Gemini, and ‘Captioning Prompt’, ‘LLM Prompt’ for captioning part and140

answer generation part for LLoVi respectively. Note that we made small changes to the captioning141

prompt for LLoVi to deliberately instruct the captioning to output specific quantities of the target142

object. All open-source models are evaluated on an A6000 server.143

Video-LLaVA [10]. Video-LLaVA represents a simple and robust multi-modal foundation model144

baseline where the visual representation is aligned with feature space of a large language model145

resulting in a unified large vision-language model. The model is trained on a mixed of image and146

video datasets where the image and video are first aligned before projecting to language feature space.147

It operates on input videos by sampling eight frames.148

PLLaVA [12]. PLLaVA employs a simple pooling strategy to smooth the feature distribution along149

the temporal dimension as input to the LLM. This is shown to effectively reduce the dominant impacts150

from the extreme features. Our experiments were conducted using the 7B version of the model. When151

processing videos, PLLaVA samples 16 frames at a resolution of 336.152

VideoChat2 [11]. VideoChat2 introduces a progressive training approach that incorporates a diverse153

range of multimodal instructions. This method effectively aligns video and language modalities.154

Our experiment utilized the 7B version of the model, processing input videos with 16 frames at a155

resolution of 224.156

Video-ChatGPT [9]. Video-ChatGPT leverages CLIP-L/14 as the visual encoder to extract both157

spatial and temporal video features and the spatiotemporal features are computed through averaging158

frame-level features across temporal and spatial dimenions respectively. It sample the input video159

with 100 frames at resolution 224.160
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As a proficient video understanding model, 
your task is to closely observe the objects 
within the scene in the provided video and 
determine the total count of {target 
category} present. Please provide your 
response as a single numerical value, 
indicating the quantity of {target category} 
observed, without any other word.

Provide a concise description of the image within 30 
words, emphasizing the objects present and their 
respective quantities.

You are a helpful expert in video analysis. You are 
given some language descriptions of a video. The 
video is {total length} long. Each sentence describes a 
{chuck length} clip. Here are the descriptions: {chuck 
captions}. You are going to answer a question based on 
the descriptions. Here is the question: What is the total 
count of {target category} present? Please provide the 
answer with a single numerical value without any other 
word. Answer: 

Captioning Prompt

LLM Prompt

VLM Prompt

Figure 4: Prompts used for different models.

LLoVi [15]. LLoVi is a framework designed for Long-Range Video Question Answering (LVQA).161

This method consists of two stages: initially, short-term visual captioners (such as LaViLa and BLIP2)162

generate textual descriptions for brief video segments spanning from 0.5 to 8 seconds. Subsequently,163

a Large Language Model (LLM) consolidates these short-term captions and conducts long-range164

reasoning. In our experiment, we employed BLIP2 for captioning and Llama-7B for summarizing the165

captions and answering the questions.166

Gemini [27]. Gemini is a family of highly capable multimodal models developed by Google.167

Gemini models are trained jointly across image, audio, video and text data for strong generalist168

capabilities across modalities. We tested Gemini-1.5-Flash and Gemini-1.5-Pro version on our169

proposed benchmark.170

4.2 Experiment Results171

Table 1 summarizes the overall evaluation results across different metrics. Notably, all models172

perform poorly on the proposed benchmark. Specifically, the best model, Gemini-1.5-Flash, correctly173

answers the questions only 12% of the time (OBZ). The predicted count is within one of the ground174

truth (OBO) only 20% of the time, and within five (OBF) 52% of the time. The mean absolute175

error (MAE) and root mean square error (RMSE) are also high, at 0.5 and 8.54, respectively. The176

performance of other open-source models is even worse, with OBO as low as 6% and RMSE as high177

as 14 (Video-LLaVA). This indicates that none of the existing video models can successfully complete178

the proposed task, which requires continuously modeling the entire input video and aggregating179

information perceived over time. Among the open-source models, LLoVi performs the best, with180

an OBF greater than 50% (compared to less than 45% for the others) and an RMSE lower than181

9 (while others are higher than 11.5). This superior performance may be attributed to LLoVi’s182

approach of dividing the input video into chunks and captioning each chunk, allowing it to process183

more input frames than the other models. Table 2 details the MAE for each object category. It184

shows that performance of different models varies across categories. For instance, LLoVi performs185

relatively better on ’watermelon’ (0.28) than on ’cake’ (0.44), while Gemini-1.5-Flash shows better186

performance on ’cake’ (0.28) than on ’watermelon’ (0.40).187

Distribution of predicted counts. To further understand the models’ predictions, we plot the188

distribution of predicted counts for each model, as shown in Figure 5. For Video-LLaVA and189

PLLaVA, most predicted counts are under 5, including cases where the model outputs a sentence190

without a valid number, which we set to 0. Video-ChatGPT’s answers mostly fall under 2 and between191

10-15. LLoVi predicts most answers under 20, while Gemini predicts most answers under 15. Most192

surprisingly, VideoChat2 almost always predicts counts within the 10-12 range. The striking disparity193
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Table 1: Overall results for different models.

Model OBZ OBO OBF MAE RMSE CORR

Video-LLaVA 0.01 0.06 0.23 0.87 14.07 0.43
PLLaVA 0.03 0.10 0.29 0.76 12.64 0.45
VideoChat2 0.04 0.12 0.43 1.03 12.17 0.31
Video-ChatGPT 0.02 0.10 0.33 1.04 11.86 0.11
LLoVi 0.04 0.17 0.53 0.78 8.86 0.45
Gemini-1.5-Flash 0.12 0.20 0.52 0.50 8.54 0.72
Gemini-1.5-Pro 0.06 0.15 0.45 0.52 9.01 0.83

Table 2: Mean Absolute Error (MAE) of different models for all categories.

Model BO CA CH CO CU DE PH TE VO WA All

Video-LLaVA 0.98 0.87 0.68 1.03 0.93 0.65 0.89 0.89 0.90 0.91 0.87
PLLaVA 1.00 0.79 0.54 0.79 0.90 0.45 0.95 0.59 0.82 0.77 0.76
VideoChat2 1.29 0.88 1.39 1.25 1.08 1.39 0.89 0.99 0.62 0.54 1.03
Video-ChatGPT 1.42 0.83 1.09 1.01 1.25 0.68 1.35 1.01 0.61 1.16 1.04
LLoVi 0.87 0.44 0.95 1.60 1.08 0.76 1.06 0.30 0.47 0.28 0.78
Gemini-1.5-Flash 0.22 0.28 0.77 0.76 0.81 0.51 0.51 0.30 0.46 0.40 0.50
Gemini-1.5-Pro 0.45 0.39 0.76 0.72 0.49 0.38 0.60 0.38 0.55 0.45 0.52

between the predicted count distribution and the ground truth count distribution (shown on the left194

side of Figure 3) raises the question: "Does the model ever make predictions based on the input195

video?" To investigate this, we calculate the correlation between predicted counts and ground truth196

counts and summarize the results in the rightmost column of Table 1. The analysis reveals that,197

except for two Gemini models, which show a correlation of 0.72 and 0.83 for 1.5-Flash and 1.5-Pro198

respectively, all other models’ predictions have a correlation with the ground truth of less than 0.5.199

This is the case despite LLoVi demonstrating similar performance to Gemini models on OBF and200

RMSE metrics.201

Distribution of correct predictions. Figure 6 illustrates the percentage of correct predictions made202

by Gemini-1.5-Flash for each ground-truth count, as measured by OBZ, OBO, and OBF. The model203

demonstrates relatively better accuracy when the ground-truth count is low. However, when there are204

more than 8 target objects, the best OBO is less than 30%. This is understandable because higher205

ground-truth counts imply that objects are likely spread across different times rather than being206

Video-ChatGPT LLoVi Gemini-1.5-Flash

Video-LLaVA PLLaVA VideoChat2

Count

In
st
an
ce
s

Gemini-1.5-Pro

Ground Truth

Figure 5: Predicted count distribution for different models.
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Figure 6: Distribution of correct prediction for Gemini-1.5-Flash. It shows that the model performs
well when the ground truth count is low but struggles when there are more than 10 target objects in
the scene.
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PLLaVA

Video-Chat2

Gemini 1.5 - Flash
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Video-ChatGPT

Video-LLaVA

LLoVI

2
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There are 3 computers 
visible in the scene. 

Office1_computer 6

Model outputs

The video shows a room with a 
total of 10 computers present. 

6Ground Truth:

Input video

3

4

PLLaVA

Video-Chat2

Gemini 1.5 - Flash

Gemini 1.5 - Pro

Video-ChatGPT

Video-LLaVA

LLoVI

0

2

2 0

There are 12 books 
present in the scene.

The number of books visible in 
the video is 12.

7Ground Truth:

office1_book_4

Input video Model outputs

Figure 7: Examples from the proposed benchmark as well as the models’ generated answer. Despite
explicit instructions to output only a single number, some models still produce a complete sentence.
When this occurs, we extract the first number from the output sentence as the model’s prediction. If
no number is present in the sentence, we set the prediction to zero.

concentrated in a local region. This situation requires the integration of a longer temporal context,207

which the model struggles to achieve effectively.208

4.3 Additional Experiments209

All experiments presented in the previous sections were conducted on the base version of the dataset,210

where the total length of the video is 20 seconds and the camera moves at a uniform speed. In this211

section, we conduct experiments with different variations of the base dataset. Table 3 summarizes the212

results of the Gemini-1.5-Flash model.213

With occlusion. To simulate real-world scenarios where objects or structures can temporarily block214

the line of sight, we place pillars within the room. As the camera moves across the room, these pillars215

periodically obstruct the view, resulting in some frames being occluded (Bottom right of Figure 2).216

The occlusions challenge models to infer and reason about the environment despite partial visibility,217

testing their robustness and capability to handle incomplete or obstructed visual data. Despite the218

added difficulty, Gemini-1.5-Flash shows similar performance to the base version, indicating that219

additional occlusion does not influence the model’s predictions.220

Nonuniform camera speed. Furthermore, to explicitly discourage models from employing sparse221

uniform sampling, we introduce variations in the speed of the camera movement. Specifically, instead222

of using a uniform camera speed, we randomly sample from one of three movement patterns: starting223

fast and then slowing down, starting slow and then speeding up, or starting with a speedup followed224
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Table 3: Performance of Gemini-1.5-Flash on different variations of the dataset. ‘Base’ is the setting
where the camera moves at a constant speed and captures a 20-second third-person view. ‘Occlusion’
introduces an additional foreground object, resulting in occlusion. ‘Nonuniform’ varies the camera
speed. ‘5s Length’ and ‘2min Length’ are versions with total video lengths of 5 seconds and 2
minutes, respectively. "Egocentric" is the setting where the camera captures the first-person view.
The model is not sensitive to foreground occlusion. It performs worse on the nonuniform 5s and 20s
settings, but shows better results on the egocentric and nonuniform 2min settings.

Model OBZ OBO OBF MAE RMSE CORR

Base 0.12 0.20 0.52 0.50 8.54 0.72
Occlusion 0.10 0.21 0.52 0.50 8.48 0.77
Nonuniform Speed 0.09 0.17 0.48 0.51 8.92 0.75
5s Length 0.04 0.11 0.37 0.65 10.70 0.74
2min Length 0.10 0.23 0.59 0.45 7.59 0.75
Egocentric 0.10 0.27 0.64 0.54 6.16 0.70

by a slowdown. Compared to base version, Gemini performs slightly worse in this setting, with the225

OBF droppoing from 54% to 48%, and the RMSE increasing from 8.54 to 8.92.226

Video lengths. The base version of the dataset has a fixed length of 20 seconds. We also experimented227

with two versions with different total lengths: one at 5 seconds and one at 2 minutes. Note that228

for both of the versions, the camera speed is not constant as in the ‘nonuniform speed’ version.229

Gemini shows a relatively large performance degradation on the 5-second version, with the OBF230

decreasing from 52% to 37% and the MAE increasing from 0.5 to 0.65. This might indicate that231

Gemini processes videos with a fixed frames-per-second rate, resulting in insufficient frame sampling232

for the 5-second dataset. For the 2-minute version, the model shows a slight decrease in performance233

in OBZ but improved performance in all other metrics.234

Egocentric view. Finally, we created a variation of the dataset with an egocentric view instead of a235

third-person view, as this is common in many real-world applications such as home robots. On this236

dataset, Gemini shows improved OBF (from 52% to 64%) and RMSE (from 8.54 to 6.16). This could237

suggest that the model might have a better spatial understanding when processing an egocentric view238

compared to a third-person view.239

5 Conclusion240

In summary, we introduce a novel benchmark called the Continuous Perception Benchmark. The241

key distinction of this benchmark is that, to answer questions correctly, models must densely process242

the entire video, in contrast to existing benchmarks where sparse sampling or processing video in243

chunks is sufficient. Evaluation of multiple state-of-the-art video foundation models demonstrates244

that none of them excel at this task, indicating the need for new techniques. We hope this benchmark245

could facilitate developing the next generation of vision models that mimic human capabilities to246

continuously perceive and process visual stimuli. This advancement could be crucial for acquiring247

essential knowledge such as compositionality, intuitive physics, and object permanence.248

Limitations and future work. One limitation of the dataset is its synthetic nature, which may249

present challenges when transferring models from simulation to real-world scenarios. However, our250

experiments indicate that existing models struggle to handle even synthetic data effectively. Future251

work could consider collecting more real-world data to improve the diversity of the datasets.252

Potential negative societal impacts. This paper introduces a challenging task along with bench-253

marked performance of multi-modal foundational models, aiming to enhance the continuous percep-254

tion capabilities of video foundational models. While we emphasize responsible use, we acknowledge255

the potential for these powerful video understanding models to be exploited for malicious purposes,256

such as unauthorized surveillance and automated profiling.257
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A Appendix432

Due to space limit, we only included the performance of Gemini-1.5-Flash for variations of the433

benchmarks in Section 4.3. Below we present the full evaluation results for all models.434

Table 4: Overall results for different models on occlusion version.

Model OBZ OBO OBF MAE RMSE CORR

Video-LLaVA 0.02 0.06 0.23 0.87 14.08 0.44
PLLaVA 0.01 0.10 0.30 0.76 12.60 0.46
VideoChat2 0.04 0.12 0.41 1.29 11.63 -0.04
Video-ChatGPT 0.02 0.07 0.30 1.02 12.41 0.08
LLoVi 0.07 0.22 0.52 0.74 8.74 0.51
Gemini-1.5-Flash 0.10 0.21 0.52 0.50 8.48 0.77
Gemini-1.5-Pro 0.06 0.16 0.45 0.55 9.45 0.85

Table 5: Overall results for different models on nonuniform version.

Model OBZ OBO OBF MAE RMSE CORR

Video-LLaVA 0.01 0.06 0.25 0.89 14.34 0.30
PLLaVA 0.01 0.07 0.27 0.79 13.07 0.45
VideoChat2 0.04 0.11 0.43 1.04 9.13 0.19
Video-ChatGPT 0.04 0.09 0.30 1.09 12.38 0.09
LLoVi 0.05 0.16 0.53 0.69 9.06 0.50
Gemini-1.5-Flash 0.09 0.17 0.48 0.51 8.92 0.75
Gemini-1.5-Pro 0.06 0.15 0.45 0.54 9.43 0.81

Table 6: Overall results for different models on 5-second version.

Model OBZ OBO OBF MAE RMSE CORR

Video-LLaVA 0.01 0.08 0.23 0.90 14.24 0.27
PLLaVA 0.01 0.09 0.29 0.79 13.14 0.43
VideoChat2 0.04 0.13 0.42 1.06 9.05 0.19
Video-ChatGPT 0.03 0.10 0.35 0.95 11.76 0.22
LLoVi 0.04 0.11 0.33 0.77 12.29 0.28
Gemini-1.5-Flash 0.04 0.11 0.37 0.65 10.70 0.74
Gemini-1.5-Pro 0.03 0.09 0.33 0.65 11.14 0.82

14



Table 7: Overall results for different models on 2-minute version.

Model OBZ OBO OBF MAE RMSE CORR

Video-LLaVA 0.01 0.07 0.23 0.86 14.05 0.40
PLLaVA 0.03 0.08 0.27 0.80 13.29 0.44
VideoChat2 0.04 0.11 0.46 1.02 9.76 0.29
Video-ChatGPT 0.02 0.12 0.36 0.96 12.39 0.09
LLoVi 0.06 0.19 0.53 0.73 8.92 0.42
Gemini-1.5-Flash 0.10 0.23 0.59 0.45 7.59 0.75
Gemini-1.5-Pro 0.09 0.18 0.50 0.47 8.52 0.83

Table 8: Overall results for different models on egocentric version.

Model OBZ OBO OBF MAE RMSE CORR

Video-LLaVA 0.03 0.09 0.30 0.71 11.32 0.64
PLLaVA 0.05 0.16 0.48 0.62 9.45 0.49
VideoChat2 0.06 0.14 0.46 1.06 8.32 0.25
Video-ChatGPT 0.03 0.10 0.33 0.99 12.87 0.00
LLoVi 0.06 0.14 0.47 0.98 9.84 0.31
Gemini-1.5-Flash 0.10 0.27 0.64 0.54 6.16 0.70
Gemini-1.5-Pro 0.09 0.22 0.50 0.42 8.52 0.82
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