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Abstract. A reliable/trustworthy image segmentation pipeline plays a
central role in deploying AI medical image analysis systems in clinical
practice. Given a segmentation map produced by a segmentation model,
it is desired to have an automatic, accurate, and reliable method in the
pipeline for segmentation quality assessment (SQA) when the ground
truth is absent. In this paper, we present a novel holistic consistency
based method for assessing at the subject-level the quality of segmenta-
tion produced by state-of-the-art segmentation models. Our method does
not train a dedicated model using labeled samples to assess segmentation
quality; instead, it systematically explores the segmentation consistency
in an unsupervised manner. Our approach examines the consistency of
segmentation results across three major aspects: (1) consistency across
sub-models; (2) consistency across models; (3) consistency across dif-
ferent runs with random dropouts. For a given test image, combining
consistency scores from the above mentioned aspects, we can generate
an overall consistency score that is highly correlated with the true seg-
mentation quality score (e.g., Dice score) in both linear correlation and
rank correlation. Empirical results on two public datasets demonstrate
that our proposed method outperforms previous unsupervised methods
for subject-level SQA.

Keywords: Segmentation Quality Assessment · Unsupervised Methods
· Segmentation Consistency · Trustworthy Medical AI.

1 Introduction

Computer-aided diagnosis and image-based surgical navigation require accurate,
fast, and reliable image segmentation for objects of interest such as tumor re-
gions [2, 16], surgical tools [4], and high-risk regions (e.g., polyps in endoscopic
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images [8]). The reliability and trustworthiness of the segmentation model in-
volved are key factors in deploying medical AI systems in clinical practice. Model
ensemble [14] and Monte Carlo Dropout (MC Dropout) [10] are popular meth-
ods for estimating the prediction uncertainty (segmentation quality) of well-
trained segmentation models. Model ensemble measures the consistency among
segmentation models, and such consistency (or discrepancy) suggests how cer-
tain (or uncertain) the segmentation results could be. In the same spirit, MC
Dropout measures how consistent the segmentation outputs are among differ-
ent runs when random dropouts are applied, and higher consistency of outputs
across runs indicates higher certainty (better quality) of the segmentation out-
put. Jungo and Reyes [12] showed that ensemble and MC Dropout methods
can fail at the subject (sample) level due to calibration errors that can average
out among subjects. To improve subject-level segmentation quality assessment
(SQA), in this paper, we demonstrate a new process that inspects consistency
at the sub-model level for SQA, beyond the above-mentioned cross-model con-
sistency and cross-run consistency. Further, we propose a new method called
Holistic Consistency (HC) for SQA that measures consistency across segmenta-
tion sub-models, segmentation models, and multiple runs of segmentation mod-
els in a systematic and unified way. The main contributions of this work are
highlighted below.

– We show that segmentation quality can be assessed according to consistency
expectations induced by popular training objectives (see Sec. 3.2). Utilizing
a widely adopted deep supervision training objective [15], we propose to
measure the segmentation consistency at the sub-model level for SQA.

– We generalize the consistency measure by combining cross-model and cross-
run consistencies with cross-sub-models consistency. This process provides a
new unified and robust consistency measure for SQA (see Sec. 3.3).

– Our work suggests a promising direction that applies systematic consistency
measures for SQA. Without the need for an additional dedicated quality
assessment (QA) model that relies on extra labeled samples and by using
only consistency, we can compute effective subject-level segmentation quality
(SQ) scores that correlate well with true SQ scores (see Sec. 4).

2 Related Work

2.1 Supervised Methods for SQA

Huang et al. [11] proposed a learning-based method for estimating segmentation
quality using deep learning (DL) networks. Three options were developed for
constructing the network, mostly focused on where the segmentation masks are
fused with the features/images in the process of estimating the SQ score. In
a similar fashion, Zhou et al. [26] proposed to use two sequential networks for
SQA. Devries et al. [5] utilized uncertainty maps to aid the estimation of the
quality score; raw images, segmentation maps, and uncertainty maps were com-
bined and fed to a DL-based network for SQA. Rottmann et al. [19] proposed
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aggregating the dispersion of softmax probabilities to infer the true segmenta-
tion IoU. Rahman et al. [17] proposed using an encoder-decoder architecture to
detect segmentation failure cases at the pixel level; multi-scale features of the
segmentation model were extracted and fed to the decoder for generating a map
highlighting mis-classified/mis-segmented pixels. Valindria et al. [21] proposed
Reverse Classification Accuracy (RCA) for SQA. A reference database with im-
age and ground-truth map pairs is required for performing RCA. Robinson et
al. [18] built convolutional neural networks (CNNs) to directly predict Dice score
for a pair of an image and segmentation map. A large collection of image samples
with ground-truth labels is used to train a CNN for this prediction task.

2.2 Unsupervised Methods for SQA

Jungo and Reyes [12] investigated uncertainty measures (e.g., ensemble method [14],
MC Dropout [10]) for medical image segmentation and found that while these
measures are well-calibrated at the dataset level, they often fail at the subject
(sample) level due to calibration errors that can average out among subjects.
No overall best uncertainty measure (quality assessment) was identified in this
study, and methods aggregating voxel-wise uncertainty for subject-level estima-
tions were considered unreliable for detecting failed segmentations at the subject
level. Notably, the ensemble method was found to be the best among the tested
methods. Audelan et al. [1] estimated segmentation quality by comparing each
segmentation with the output of a probabilistic segmentation model that relies
on intensity and smoothness assumptions. Chen et al. [3] utilized 14 pre-defined
metrics under different assumptions to evaluate the quality of cell segmenta-
tion. While many hand-crafted metrics successfully capture various facets of
segmentation quality, in more realistic and complex scenarios, hand-crafted sim-
ple measures are inadequate for comprehensive assessment of segmentation qual-
ity. Recently, Layer Ensembles [13] proposed to measure the agreement among
outputs from a model’s internal layers for segmentation uncertainty estimation.

2.3 Comparison of Supervised and Unsupervised Methods

Supervised SQA methods, due to their use of labeled samples, generate SQA
scores that are often aimed to match the true SQ scores (e.g., Dice scores). A
common issue arises when test samples are not collected from the same distri-
bution as samples used for building the learning-based SQA model. The learned
SQA model might be familiar with errors seen in the labeled data but unaware of
new types of errors in the test samples, leading to inaccurate quality assessment.

For unsupervised SQA methods, due to the absence of labeled samples, they
usually cannot directly generate scores that are (ideally) equal to the true SQ
scores. Consequently, a slightly easier goal is often established to generate SQA
scores that correlate with the true quality scores (in rank and/or linear correla-
tions). Our proposed method falls into the unsupervised SQA category. In the
experiments, we demonstrate the advantages of our proposed method compared
to a range of popular and recently proposed unsupervised SQA methods.
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Fig. 1. Logical flow that connects the proposed Holistic Consistency (HC) to Segmen-
tation Quality Assessment (SQA).

3 Methodology

3.1 Principles

In SQA, a key aspect that we aim to measure is the “familiarity” of a test
sample to the trained segmentation model. If a sample is familiar to the model,
then there is a high chance that the segmentation produced by the model for
this sample is of high quality. On the other hand, if a sample is unfamiliar to
the model, it is very likely that the model produces a less ideal segmentation
output for this sample. A central problem of SQA is then reduced to measuring
the familiarity of a given sample to the trained segmentation model.

Proposition: A test sample is familiar to the trained segmentation model if
the “surprise” during processing this sample is small.

How to model the surprise during processing a test sample is thus a key
issue to the success of SQA. Below, we show that some previously known meth-
ods such as the ensemble and MC Dropout methods fall into this paradigm –
measuring consistency and surprise. In addition, we propose a new cross-sub-
model consistency measure and combine this new consistency measure and the
previously known measures to form a new Holistic Consistency (HC) measure
to better model the familiarity of a sample to a trained segmentation model. An
overview of the logical flow that connects HC to SQA is illustrated in Fig. 1.

3.2 Consistency Expectations Induced by Training Objectives

Empirical risk minimization aims to update the parameters of a segmentation
model to produce segmentation results that are very close to the ground truths.
For two models that are initialized differently, they are trained to produce the
same segmentation output (i.e., ground truth masks) for samples in the training
set. Consequently, at the end of the training session, ideally each model gives
predictions close to each other for those samples used in training. During testing,
one expects these models to give similar results for an image sample that is
familiar to the models. If the two models give significantly different results for
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a test sample, then it means that the surprise of processing this test sample is
large, and the sample is unfamiliar to the models.

Similarly, a segmentation model is trained to produce the same ground truth
segmentation masks for a given training sample with random dropouts applied
to the internal feature channels. As a result, one expects the model to give
similar results for a familiar test sample across runs with random dropouts. If
a model gives significantly different results across two (or more than two) times
of inference with different randomly dropped features, then it means that the
surprise of processing this test sample is large, and the sample is unfamiliar.

We propose to utilize a widely adopted training objective, deep supervi-
sion [15], for developing a new consistency expectation, Cross-Sub-Model Con-
sistency (CSMC), which aims to enhance the process of surprise quantification
during test sample inference. The CSMC expectation is described below, together
with the other two known consistency expectations mentioned above.

– Cross-Sub-Models: If an image sample x is familiar to a segmentation
model M , then for any sub-model M∗ addressed in the deep supervision
training objective, one expects to have τ(M∗(x),M(x)) < ϵcsm.

– Cross-Models: If an image sample x is familiar to a segmentation model
M , then for another segmentation model M ′ trained using the same training
objective but with different randomly initialized weights, one expects to have
τ(M ′(x),M(x)) < ϵcm.

– Cross-Runs: If an image sample x is familiar to a segmentation model M ,
then for M t1 and M t2, which are two model versions obtained by indepen-
dently applying random dropouts to the feature channels of the model M ,
one expects to have τ(M t1(x),M t2(x)) < ϵcr.

τ() is a segmentation similarity metric (e.g., Dice). The exact values of ϵcsm,
ϵcm, and ϵcr can vary depending on the segmentation model and training data.
As a rule of thumb, since the values of the training loss at the end of a training
session are often very small, ϵcsm, ϵcm, and ϵcr should be small values. According
to contra-position, based on the above “If . . . , then . . . ” statements, we can infer
that if the measured values mentioned above are not small, then the image
sample x under inference is unfamiliar. Next, we provide detailed formulas for
utilizing these consistency expectations in assessing segmentation quality.

3.3 Formulas of Holistic Consistency

We define Holistic Consistency (HC) across multiple sub-models and multiple
models below. The input of HC consists of a test sample x, a segmentation result
map ŷ (the target of SQA), and a set of P models {M1, . . . ,MP } trained with
different randomly initialized weights.

HCcore(x, ŷ,M
1, . . . ,MP ) =

P∑
p=1

Q∑
q=1

τ(Mp
q (x), ŷ)︸ ︷︷ ︸

Cross-Sub-Model Consistency

+ λ

P∑
p=1

τ(Mp(x), ŷ)︸ ︷︷ ︸
Cross-Model Consistency

.

(1)
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Each model Mp of the P segmentation models has Q sub-models that are origi-
nally trained with deep supervision [15]. A simple way to set up τ() is to use the
same metric when comparing segmentation predictions with the ground truth
(e.g., Dice score). λ is a hyper-parameter controling the balance between the
two consistency terms in Eq. (1); by default, λ is set to 0.1. Eq. (1) is the core
formula of our HC. To further integrate the merit of the MC Dropout method,
which has been shown to be useful [10], we further propose an MC version of
HC, termed HCmc, which performs MC dropouts on top of the HCcore formula.

HCmc(x, ŷ,M
1, . . . ,MP ) =

T∑
t=1

(

P∑
p=1

Q∑
q=1

τ(Mp,t
q (x), ŷ)︸ ︷︷ ︸

Cross-Sub-Model Consistency

+ λ

P∑
p=1

τ(Mp,t(x), ŷ)︸ ︷︷ ︸
Cross-Model Consistency

)

︸ ︷︷ ︸
Multiple Runs with Dropouts (denoted by T )

.

(2)
The parameter T controls how many times that HCcore is applied with random
dropouts. T is set to 10 by default. If one can afford more time and energy when
applying the model inference step, a higher value of T is recommended (e.g., 50).

4 Experiments and Results

4.1 Correlations with True Segmentation Quality Scores

We investigate how well the SQA scores which our method generates correlate
with true segmentation quality scores (e.g., Dice scores) that are obtained using
ground truth masks. We employ the Spearman’s rank correlation [22] and the
Pearson linear correlation [20] to measure the rank and linear correlations be-
tween the generated SQA scores and true SQ scores. Two segmentation tasks are
considered in the experiments: polyp segmentation in endoscopic images [8] and
lung infection segmentation in CT scans [9]. We compare the proposed HC with
widely used methods: the Entropy-based method [12], Ensemble method [14],
MC Dropout [10], and the recently proposed Layer Ensembles [13]. Note that,
specifically, the Ensemble method employs two models (one inference pass for
each model per sample), MC Dropout applies two passes of model inference
(with dropout) using a single model, and the Entropy-based method and Layer
Ensembles method use a single model with one pass of inference. HCcore utilizes
two models (the same as those used in the Ensemble method), while HCmc ap-
plies 50 passes of inference on the two models per sample. Therefore, the total
passes per sample are: 2 for the Ensemble method, the core version of HC, and
MC Dropout; 1 for the Entropy-based method and Layer Ensembles; 100 for the
MC version of HC. For fair comparison, the segmentation results (the targets of
SQA) are generated by the same model for all the compared SQA methods.

Polyp Segmentation in Endoscopic Images. The training and test sets
are from [8], where the test set consists of five datasets. We employ state-of-
the-art (SOTA) models, namely, HSNet [25] and Polyp-PVT [6], for the ex-
periments. The segmentation results (targets of SQA) are generated using the
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Table 1. Correlation between SQA scores and true Dice coefficient scores for polyp
segmentation (higher numbers are better for SQA). Segmentation Model: HSNet.

Evaluation Method CVC-300 ClinicDB Kvasir ColonDB ETIS Overall

Spearman’s rank

correlation
with

true Dice scores

Entropy-based [12] 0.03 0.38 0.19 0.27 0.30 0.16
Ensemble [14] 0.46 0.43 0.64 0.79 0.74 0.75

MC Dropout [10] 0.34 0.71 0.44 0.66 0.65 0.66
Layer Ensembles [13] 0.44 0.60 0.67 0.68 0.76 0.72

HCcore (ours) 0.45 0.61 0.72 0.79 0.80 0.79
HCMC (ours) 0.47 0.73 0.72 0.81 0.80 0.81

Pearson
correlation

with
true Dice scores

Entropy-based [12] 0.52 0.28 0.28 0.41 0.64 0.41
Ensemble [14] 0.66 0.64 0.62 0.82 0.59 0.74

MC Dropout [10] 0.32 0.66 0.38 0.58 0.28 0.50
Layer Ensembles [13] 0.53 0.66 0.50 0.65 0.40 0.59

HCcore (ours) 0.68 0.70 0.64 0.82 0.59 0.75
HCMC (ours) 0.68 0.75 0.63 0.82 0.59 0.75

Table 2. Correlation between SQA scores and true Dice coefficient scores for polyp
segmentation (higher numbers are better for SQA). Segmentation Model: Polyp-PVT.

Evaluation Method CVC-300 ClinicDB Kvasir ColonDB ETIS Overall

Spearman’s rank

correlation
with

true Dice scores

Entropy-based [12] 0.11 0.33 0.21 0.28 0.32 0.18
Ensemble [14] 0.33 0.60 0.67 0.73 0.78 0.73

MC Dropout [10] 0.41 0.59 0.71 0.74 0.74 0.74
Layer Ensembles [13] 0.32 0.48 0.60 0.67 0.75 0.68

HCcore (ours) 0.33 0.62 0.69 0.76 0.80 0.77
HCMC (ours) 0.45 0.81 0.73 0.80 0.82 0.80

Pearson
correlation

with
true Dice scores

Entropy-based [12] 0.57 0.10 0.20 0.46 0.42 0.40
Ensemble [14] 0.69 0.65 0.49 0.71 0.79 0.74

MC Dropout [10] 0.64 0.49 0.65 0.70 0.71 0.71
Layer Ensembles [13] 0.70 0.66 0.68 0.63 0.77 0.69

HCcore (ours) 0.71 0.67 0.53 0.75 0.83 0.78
HCMC (ours) 0.73 0.75 0.58 0.77 0.83 0.80

well-trained HSNet and Polyp-PVT as provided in [23] and [7]. For both the En-
semble method and our proposed method, we train additional model instances
of HSNet and Polyp-PVT using the official codes in [23] and [7]. As shown in
Table 1, it is evident that the proposed HC yields the overall best performance in
generating SQA scores that correlate with the true Dice scores. Similarly, from
the results in Table 2, a similar conclusion can be drawn, affirming that HC
produces the best results in generating scores for assessing segmentation quality.

Lung Infection Segmentation in CT Scans. We utilize an attention-
based model, Inf-Net [9], for the experiments. The training and test sets, along
with the well-trained model, are obtained from its official code and model weights
released in [24]. Additionally, we train the model instances of Inf-Net for the En-
semble method and our proposed method. From the results in Table 3, it is
evident that our method exhibits the best performance in generating segmenta-
tion quality scores that correlate well with the true segmentation quality scores.

Ablation Study. Table 4 presents the results of the ablation study on the
proposed Cross-Sub-Model Consistency (CSMC) and Cross-Model Consistency
(CMC), which are the two components constituting the core version of our HC
method in Eq. (1). Notably, CSMC outperforms CMC overall. Notably, setting
λ to 0 reduces the Holistic Consistency, Eq. (1), to CSMC.
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Table 3. Correlation between SQA scores and true Dice coefficient scores for COVID-
19 infection segmentation in CT images (higher numbers are better for SQA). Segmen-
tation Model: Inf-Net.

Method

Spearman’s rank

correlation
Pearson

correlation
Entropy-based [12] 0.24 0.31

Ensemble [14] 0.59 0.74
MC Dropout [10] 0.74 0.79

Layer Ensembles [13] 0.81 0.82
HCcore (ours) 0.85 0.87
HCMC (ours) 0.87 0.88

Table 4. Ablation study of comparing Cross-Sub-Model Consistency and Cross-Model
Consistency for SQA on polyp segmentation using the HSNet and Polyp-PVT models.

Model Evaluation Consistency CVC-300 ClinicDB Kvasir ColonDB ETIS Overall

HSNet

Spearman’s rank

correlation
Cross-Models 0.46 0.43 0.64 0.79 0.74 0.75

Cross-Sub-Models 0.44 0.62 0.73 0.79 0.80 0.79
Pearson

correlation
Cross-Models 0.66 0.64 0.62 0.82 0.59 0.74

Cross-Sub-Models 0.68 0.70 0.64 0.82 0.59 0.75

Polyp-PVT

Spearman’s rank

correlation
Cross-Models 0.33 0.60 0.67 0.73 0.78 0.73

Cross-Sub-Models 0.33 0.62 0.70 0.77 0.80 0.76
Pearson

correlation
Cross-Models 0.69 0.65 0.49 0.71 0.79 0.74

Cross-Sub-Models 0.71 0.67 0.53 0.75 0.83 0.79

Table 5. Accuracies of SQA methods for detecting the bottom K% of test samples in
segmentation quality on polyp segmentation using the HSNet and Polyp-PVT models.

Model Bottom K% Entropy [12] Ensemble [14] MC Dropout [10] Layer Ensembles [13] HCcore

HSNet
K = 20 55.6% 70.0% 53.8% 65.6% 73.1%
K = 50 54.7% 80.3% 73.7% 79.5% 83.0%

Polyp-PVT
K = 20 52.5% 71.8% 63.8% 68.8% 73.2%
K = 50 57.1% 78.9% 79.4% 73.2% 84.2%

4.2 Detecting Samples with Low Segmentation Quality

We conduct further experiments using our SQA scores to detect samples with
lower segmentation quality. The experiments involve all the test samples (with
generated segmentation results) used in the polyp segmentation task (the five
datasets combined). We generate the SQA scores and retrieve samples from
the bottom K percents according to these scores. We then test how well the
retrieved samples match with the bottom K percents retrieved using the true
segmentation quality scores (i.e., Dice scores computed using ground truth). The
detection accuracies of the previously known SQA methods and our proposed
method are reported in Table 5, from which clear advantages of the proposed
HC for detecting lower quality segmentation can be observed.

5 Conclusion

In this paper, we proposed a new SQA method that unifies consistency mea-
sures across sub-models, models, and runs to assess subject-level segmentation
quality without relying on ground truth annotations. For a set of test samples,
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our method generates segmentation quality scores that correlate well with the
true Dice scores, exhibiting both the rank and linear correlations. Our method
can be employed to identify test samples with low segmentation quality, thereby
enhancing the reliability of the segmentation pipeline. Future research may con-
sider incorporating labeled samples to further enhance SQA for medical images.
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