

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MEASUREMENT SCORE-BASED DIFFUSION MODEL

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion models have achieved remarkable success in tasks ranging from image generation to inverse problems. However, training diffusion models typically requires clean ground-truth images, which are unavailable in many applications. We introduce the *Measurement Score-based diffusion Model (MSM)*, a novel framework that learns *partial* measurement scores directly from noisy and subsampled measurements. By aggregating these scores in expectation, MSM synthesizes fully sampled measurements without requiring access to clean images. To make this practical, we develop a *stochastic sampling* variant of MSM that approximates the expectation efficiently and analyze its asymptotic equivalence to the exact formulation. We further extend MSM to posterior sampling for linear inverse problems, enabling accurate image reconstruction directly from partial scores. Experiments on natural images and multi-coil MRI demonstrate that MSM achieves state-of-the-art performance in unconditional generation and inverse problem solving—all while being trained exclusively on degraded measurements.

1 INTRODUCTION

Score-based diffusion models are powerful generative methods that sample from high-dimensional distributions by learning the score function—the gradient of the log-density—from training data. They achieve state-of-the-art performance in generating natural images (Dhariwal & Nichol, 2021), medical images (Khader et al., 2023), and more (Chung et al., 2024). Beyond generation, diffusion models can be adapted for conditional sampling to solve inverse problems. However, training requires a large set of clean data, which is often costly or difficult to obtain, such as from hardware limits for high-resolution images or long MRI scan times that cause patient discomfort.

To overcome the need for clean training data, recent approaches train diffusion models on subsampled (Daras et al., 2024c), noisy (Xiang et al., 2023; Daras et al., 2024b), or jointly subsampled and noisy observations (Kawar et al., 2024), aiming to approximate the *clean image score* from degraded measurements. However, this is an unnecessarily difficult objective: since measurements typically lie in a structured subspace, recovering the *full image score* from degraded data is inherently challenging.

A more natural strategy is to learn *partial measurement scores* directly within these subspaces. This perspective is closely related to the success of *patch-based methods* in imaging, where training on local patches improves scalability (Alkinani & El-Sakka, 2017; Wang et al., 2023b; Hu et al., 2024a). Our work extends this principle from the image domain to the measurement domain, enabling a new framework for training diffusion models entirely from degraded measurements. *Operating in the measurement domain brings a key advantage: each subsampled measurement is uniquely defined by the acquisition operator, whereas a corrupted image is not—infinitely many images may map to the same measurement.* Training in the measurement domain removes this ambiguity and ensures that the model learns to denoise well-defined, physically meaningful inputs.

We introduce the *Measurement Score-based diffusion Model (MSM)*, which extends the idea of patch-based learning from the image domain to the measurement domain. Instead of recovering full-image scores, MSM learns denoising score functions restricted to the observable regions of noisy, subsampled measurements—enabling self-supervised training without clean data. By aggregating these partial scores through randomized subsampling, MSM defines an effective framework for both generating full measurements and solving inverse problems. To make MSM practical, we propose efficient stochastic sampling algorithms for unconditional generation and posterior sampling in linear inverse problems. Extensive experiments on natural images and multi-coil MRI demonstrate that MSM matches or surpasses state-of-the-art performance.

054
055

2 BACKGROUND

056
057

2.1 SCORE-BASED DIFFUSION MODELS

058
059 Score-based diffusion models (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021c; Park et al.,
060 2025) learn the score function using neural networks. Tweedie’s formula (Efron, 2011) relates
061 the score function to the minimum mean square error (MMSE) denoiser, allowing the score to be
062 estimated using only noisy inputs and their corresponding denoised outputs. Learning score function
063 is performed across varying noise levels, by considering noisy images $\mathbf{x}_t = \mathbf{x} + \sigma_t \mathbf{n}$, where \mathbf{x} is a
064 clean image, $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, and σ_t is the noise level at the timestep t .065 Given a denoiser D_θ trained to minimize the mean squared error (MSE), Tweedie’s formula approxi-
066 mates the score function as $\nabla \log p_{\sigma_t}(\mathbf{x}_t) = (D_\theta(\mathbf{x}_t) - \mathbf{x}_t) / \sigma_t^2$. This relationship allows denoisers
067 to serve as practical estimators of the score function at varying noise levels, providing gradients that
068 guide reverse-time stochastic sampling (Robbins, 1956; Miyasawa, 1961; Vincent, 2011).069 Sampling then proceeds through a sequence of random walks (Song et al., 2021c; Park et al., 2025) as
070 $\mathbf{x}_{t-1} = \mathbf{x}_t + \tau_t \nabla \log p_{\sigma_t}(\mathbf{x}_t) + \sqrt{2\tau_t \mathcal{T}_t} \mathbf{n}$, for $t = T, T-1, \dots, 1$, where σ_t , τ_t , and \mathcal{T}_t denote the
071 noise-level, step-size, and temperature parameters. These parameters can be derived from theoretical
072 frameworks (Ho et al., 2020; Song et al., 2021c) or tuned empirically (Park et al., 2025), and the
073 initial sampling iterate \mathbf{x}_T is drawn from a standard Gaussian to be consistent with the training input
074 of the denoiser.075
076

2.2 TRAINING DIFFUSION MODELS WITHOUT CLEAN DATA

077
078 Training diffusion models to learn the score of clean images typically requires access to high-quality,
079 clean data. However, in many applications, data is often subsampled, noisy, or both.080 **Training with noiseless but subsampled measurements.** Ambient diffusion (Daras et al., 2024c;
081 Aali et al., 2025) is a recent method for training diffusion models from subsampled measurements
082 by applying an additional subsampling operation during training. At each step, the model receives
083 a further subsampled and noise-perturbed input and learns to reconstruct the original subsampled
084 measurement. This procedure jointly encourages denoising and inpainting, guiding the model to
085 approximate the conditional expectation of the clean image given a noisy, partially observed input.086 **Training with noisy but fully-sampled measurements.** SURE-score (Aali et al., 2023) enables
087 training score-based diffusion models without access to clean data by leveraging Stein’s unbiased
088 risk estimator (SURE) (Stein, 1981). SURE-score trains the diffusion model using only noisy mea-
089 surements, combining two loss functions: a SURE-based loss for denoising the measurements and a
090 denoising loss for the diffusion noise added on top of the denoised estimate. Another approach (Daras
091 et al., 2024b) considers two regimes based on the relationship between measurement noise and diffu-
092 sion noise. When measurement noise is relatively small, the method estimates the clean image using
093 Tweedie’s formula after predicting the noisy measurement from the diffusion iterate. Conversely,
094 if measurement noise exceeds diffusion noise, the model is trained with a consistency loss (Daras
095 et al., 2024a), which encourages stable denoising outputs across nearby timesteps by enforcing that
096 predictions remain consistent along the model’s reverse trajectory.097 **Training with noisy and subsampled measurements.** GSURE diffusion (Kawar et al., 2024) trains
098 diffusion models using only noisy, subsampled data by adapting the Generalized SURE loss (Eldar,
099 2008) to the diffusion setting. It reformulates the training objective as a projected loss computable
100 without clean images. While this objective function is theoretically shown to be equivalent to the
101 supervised diffusion loss under the assumption that the sampling mask and the denoising error are
102 independent, GSURE diffusion has two limitations: it has so far only been demonstrated in the
103 single-coil setting and extending it to multi-coil MRI remains computationally challenging due
104 to the need for an SVD of the full measurement operator; it also requires the minimum diffusion
105 noise level σ_0 to match the measurement noise level ρ . The latter can severely degrade sampling
106 performance when ρ exceeds typical value of σ_0 (e.g., $\sigma_0 = 0.01$ in (Ho et al., 2020; Dhariwal &
107 Nichol, 2021)). Other recent methods (Bai et al., 2024; 2025) address the same setting by alternating
108 between reconstructing clean images using diffusion priors pretrained on limited clean data and
109 refining the model to learn from noisy, subsampled measurements.

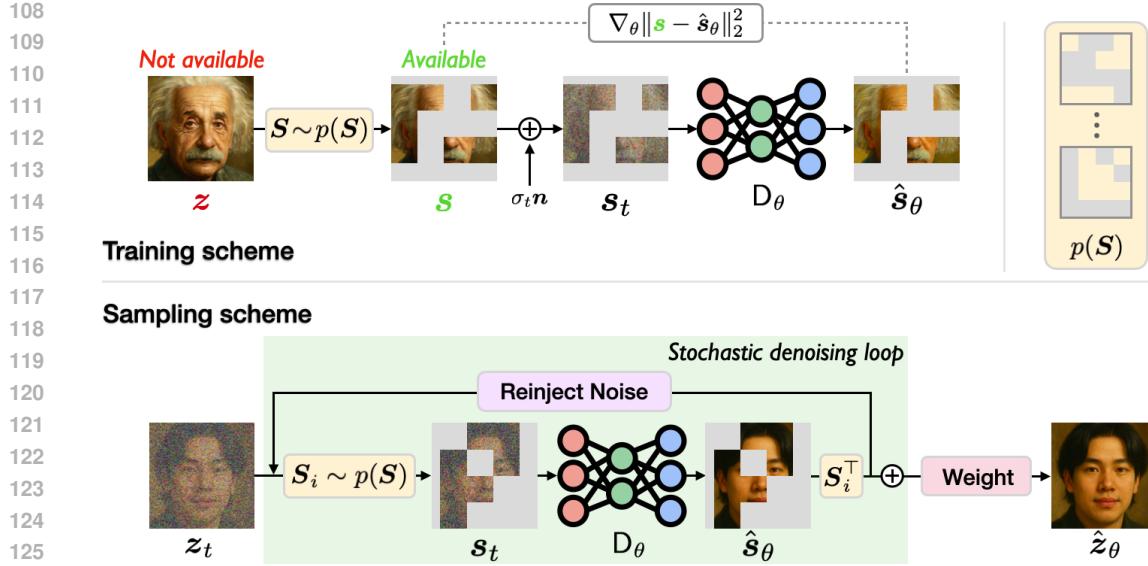


Figure 1: Illustration of the *Measurement Score-based diffusion Model (MSM)* for training and sampling using subsampled data. **Training:** MSM is trained solely on degraded measurements. Diffusion noise is added to these measurements, and the model learns to denoise them. **Sampling:** At each diffusion step, MSM randomly subsamples the current full-measurement iterate, denoises the resulting partial measurement, and aggregates multiple outputs. A weighting vector compensates for overlapping contributions across partial measurements. See Figure 4 for the MRI-specific version.

While these methods differ in how they handle subsampling and noise, they share a common challenge: they attempt to directly approximate the full image score from degraded data. In contrast, our approach leverages the partial measurement-based statistics to generate the full measurements by directly learning measurement scores restricted to observed measurements. A detailed comparison of our approach with related approaches is provided in Appendix E.1.

2.3 IMAGING INVERSE PROBLEMS

Inverse problems aim to recover an unknown image $\mathbf{x} \in \mathbb{R}^p$ from noisy, undersampled measurements $\mathbf{y} \in \mathbb{R}^m$, modeled as $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$, where $\mathbf{A} \in \mathbb{R}^{m \times p}$ is a known forward operator and $\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \eta\mathbf{I})$ is Gaussian noise with variance η .

When clean training data is unavailable, *self-supervised learning* is often used for training neural networks directly on degraded measurements, without the need for clean ground-truth data (Chen et al., 2021; 2022; Hu et al., 2024b; Yaman et al., 2020; Millard & Chiew, 2023). For example, SSDU (Yaman et al., 2020; Millard & Chiew, 2023) is a widely-used approach for training end-to-end restoration networks using distinct subsets of the measurements. In the context of score-based diffusion models, Ambient Diffusion Posterior Sampling (A-DPS) (Aali et al., 2025) replacing the clean-image-trained model in the popular DPS method (Chung et al., 2023) with an Ambient diffusion model trained on subsampled measurements.

3 MEASUREMENT SCORE-BASED DIFFUSION MODEL

We present the training and sampling procedures for MSM. Our approach generalizes the idea of patch-based learning—widely used to enable computationally efficient supervised training—to self-supervised learning in the measurement domain. A key feature of MSM is that it operates solely on subsampled measurements during training. This enables learning partial measurement scores without access to clean ground-truth data and naturally extends self-supervised denoising to the challenging setting of noisy, subsampled measurements. We also introduce a conditional sampling algorithm that uses the pretrained MSM to solve linear inverse problems.

162 3.1 LEARNING PARTIAL MEASUREMENT SCORES
163164 We first consider the setting where MSM has access only to partial, noiseless observations of an
165 unknown fully-sampled measurement $\mathbf{z} \in \mathbb{R}^n$. Let $\mathbf{s} \in \mathbb{R}^m$ denote subsampled measurement as

166
$$\mathbf{s} = \mathbf{S}\mathbf{z} \in \mathbb{R}^m,$$

167

168 where $\mathbf{S} \in \{0, 1\}^{m \times n}$, with $m < n$, is a subsampling mask drawn from distribution $p(\mathbf{S})$. We
169 assume that in the absence of noise, the fully-sampled measurement \mathbf{z} uniquely determines the
170 underlying image \mathbf{x} . The definition of \mathbf{z} depends on the application: for inpainting we set $\mathbf{z} = \mathbf{x}$,
171 where $\mathbf{x} \in \mathbb{R}^p$ is the clean image; for MRI, we set $\mathbf{z} = \mathbf{FCx}$, where \mathbf{F} is the Fourier transform
172 and \mathbf{C} is coil-sensitivity operator (Fessler, 2020). More broadly, we suppose that fully-sampled
173 measurements are of form $\mathbf{z} = \mathbf{T}\mathbf{x}$, where $\mathbf{T} \in \mathbb{R}^{n \times p}$ ($p \geq n$) is an invertible transformation. It is
174 important to note that MSM is designed to operate solely on partial measurements $\mathbf{s} = \mathbf{S}\mathbf{z}$, with
175 $\mathbf{S} \sim p(\mathbf{S})$, without access to any fully-sampled \mathbf{z} or clean image \mathbf{x} .
176177 We define a forward diffusion process that adds Gaussian noise to the subsampled measurement \mathbf{s}
178

179
$$\mathbf{s}_t = \mathbf{s} + \sigma_t \mathbf{n}, \quad \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$$

180

181 where $t \in \{1, \dots, T\}$, $\mathbf{s}_0 = \mathbf{s}$, and \mathbf{s}_T approaches a known distribution such as a standard Gaussian.
182 At each step t , the diffusion model D_θ takes as input the noisy subsampled measurement \mathbf{s}_t and is
183 conditioned on the noise level σ_t , and outputs a denoised estimate of the subsampled measurement
184 $\hat{\mathbf{s}}_\theta \in \mathbb{R}^m$ as
185

186
$$\hat{\mathbf{s}}_\theta(\mathbf{s}_t; \sigma_t) = D_\theta(\mathbf{s}_t; \sigma_t). \quad (1)$$

187

188 The model is trained by minimizing the mean squared error (MSE) loss between the predicted and
189 true subsampled measurements:
190

191
$$\mathcal{L}(\theta) = \mathbb{E}_{\mathbf{s}_t, t} [\|\mathbf{s} - \hat{\mathbf{s}}_\theta(\mathbf{s}_t; \sigma_t)\|_2^2].$$

192

193 Once trained, the partial measurement score function can be approximated using Tweedie's formula
194 (Efron, 2011), which estimates the gradient of the log-probability of the measurement iterate:
195

196
$$S_\theta(\mathbf{s}_t; \sigma_t, \mathbf{S}) = \frac{1}{\sigma_t^2} (\hat{\mathbf{s}}_\theta(\mathbf{s}_t; \sigma_t) - \mathbf{s}_t), \quad (2)$$

197

198 where $S_\theta \in \mathbb{R}^m$ denotes the learned partial measurement score, explicitly conditioned on the known
199 subsampling mask \mathbf{S} that generated \mathbf{s}_t . Illustrations for training are provided in Figure 1 and Figure 4.
200201 3.2 UNCONDITIONAL SAMPLING WITH MSM
202203 Implementing a diffusion model on the fully-sampled measurement requires access to the score
204 function $\nabla \log p_{\sigma_t}(\mathbf{z}_t)$, where \mathbf{z}_t denotes the noisy version of the fully-sampled measurement \mathbf{z} .
205 Instead, we train our model to approximate the partial measurement score $\nabla \log p_{\sigma_t}(\mathbf{s}_t)$.
206207 The goal of MSM sampling is to generate a fully-sampled measurement \mathbf{z} given the partial measurement
208 scores in (2) for $\mathbf{S} \sim p(\mathbf{S})$. To that end, we define the *MSM score* as the expectation over all
209 possible mask-conditioned partial scores
210

211
$$\nabla \log q_{\sigma_t}(\mathbf{z}_t) := \mathbf{W} \mathbb{E}_{\mathbf{S} \sim p(\mathbf{S})} \left[\mathbf{S}^\top \nabla \log p_{\sigma_t}(\mathbf{s}_t | \mathbf{S}) \Big|_{\mathbf{s}_t = \mathbf{S}\mathbf{z}_t} \right] \quad (3)$$

212

213 where each subsampling operator $\mathbf{S} \in \mathbb{R}^{m \times n}$ is drawn from distribution $p(\mathbf{S})$, and $\mathbf{W} \in \mathbb{R}^n$ is
214 a weighting vector that compensates for overlapping contributions across sampling masks. \mathbf{W} is
215 defined as the reciprocal of the expected total coverage:
216

217
$$\mathbf{W} := [\max(\mathbb{E}_{\mathbf{S} \sim p(\mathbf{S})} [\text{diag}(\mathbf{S}^\top \mathbf{S})], 1)]^{-1}, \quad (4)$$

218

219 where the maximum is applied elementwise to avoid division by zero in regions not covered by any
220 subsampled measurement. Note that the MSM score in (3) can also be interpreted as the score of
221 a product-of-experts (composite-likelihood) model, in which each expert corresponds to a mask-
222 conditioned partial score $\nabla \log p_{\sigma_t}(\mathbf{s}_t | \mathbf{S})$, and the MSM score is obtained by aggregating these
223 partial scores across random masks.
224

216 **Algorithm 1** Measurement Score-Based Sampling

217 **Require:** $T, p(\mathbf{S}), \{\sigma_t\}_{t=1}^T$

218 1: Initialize $\mathbf{z}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \hat{\mathbf{z}}_\theta \leftarrow \mathbf{0}$

219 2: **for** $t = T$ **to** 1 **do**

220 3: **for** $i = 1$ **to** w **do**

221 4: $\mathbf{S}^{(i)} \sim p(\mathbf{S}), \mathbf{s}_t^{(i)} \leftarrow \mathbf{S}^{(i)} \mathbf{z}_t$ Partial score-based denoising

222 5: $\hat{\mathbf{s}}_\theta^{(i)} \leftarrow \mathbf{s}_t^{(i)} + \sigma_t^2 \mathbf{S}_\theta(\mathbf{s}_t^{(i)}; \sigma_t, \mathbf{S}^{(i)})$

223 6: $\mathbf{s}_t^{(i)} \sim p(\mathbf{s}_t^{(i)} | \hat{\mathbf{s}}_\theta^{(i)})$ Reinject noise & update iterate

224 7: $\mathbf{z}_t \leftarrow \mathbf{S}^{(i)\top} \mathbf{s}_t^{(i)} + (\mathbf{I} - \mathbf{S}^{(i)\top} \mathbf{S}^{(i)}) \mathbf{z}_t$

225 8: **end for**

226 9: $\mathbf{C} \leftarrow \sum_{i=1}^w \text{diag}(\mathbf{S}^{(i)\top} \mathbf{S}^{(i)})$ Compute weight for aggregation

227 10: $\mathbf{W} \leftarrow [\max(\mathbf{C}, 1)]^{-1}$

228 11: $\hat{\mathbf{z}}_\theta \leftarrow \mathbf{W} \sum_{i=1}^w \mathbf{S}^{(i)\top} \hat{\mathbf{s}}_\theta^{(i)} + \mathbb{1}_{\mathbf{C}=0} \cdot \hat{\mathbf{z}}_\theta$ Aggregate partial denoised results

229 12: $\mathbf{z}_{t-1} \sim p(\mathbf{z}_{t-1} | \mathbf{z}_t, \hat{\mathbf{z}}_\theta)$

230 13: **end for**

231 14: **return** \mathbf{z}_0

240 To efficiently approximate the expectation in (3), we propose a stochastic sampling algorithm that
241 uses a randomly selected subset of partial scores. Specifically, we stochastically sample w sampling
242 masks $\mathbf{S}^{(i)} \sim p(\mathbf{S})$ for $i = 1, \dots, w$, where $\mathbf{S}^{(i)} \in \mathbb{R}^{m_i \times n}$ denotes a subsampling operator i . The
243 corresponding subsampled measurements is obtained as $\mathbf{s}_t^{(i)} = \mathbf{S}^{(i)} \mathbf{z}_t$. An unbiased estimator of the
244 MSM score is then defined as

245
$$\nabla \log \hat{q}_{\sigma_t}(\mathbf{z}_t) := \mathbf{W} \left[\frac{1}{w} \sum_{i=1}^w \mathbf{S}^{(i)\top} \nabla \log p_{\sigma_t}(\mathbf{s}_t^{(i)} | \mathbf{S}^{(i)}) \Big|_{\mathbf{s}_t^{(i)} = \mathbf{S}^{(i)} \mathbf{z}_t} \right], \quad (5)$$

246 where each transpose operator $\mathbf{S}^{(i)\top} \in \mathbb{R}^{n \times m_i}$ maps the partial score from the subsampled measurement
247 space back to the fully-sampled measurement space. Note that the reweighting vector \mathbf{W} in (4)
248 can be empirically estimated as: $\mathbf{W} \leftarrow [\max(\sum_{i=1}^w \text{diag}(\mathbf{S}^{(i)\top} \mathbf{S}^{(i)}), 1)]^{-1}$.

249 Concretely, MSM performs sampling by iteratively reconstructing a fully-sampled measurement
250 iterate \mathbf{z}_t through a stochastic loop of w partial denoising operations. At each diffusion time t , the
251 algorithm draws w random subsampling masks $\mathbf{S}^{(i)}$, each revealing a different subset of coordinates.
252 For mask $\mathbf{S}^{(i)}$, the corresponding partial measurement $\mathbf{s}_t^{(i)} = \mathbf{S}^{(i)} \mathbf{z}_t$ is denoised using the pretrained
253 MSM model to obtain $\hat{\mathbf{s}}_\theta^{(i)}$.

254 Within this stochastic loop, MSM updates \mathbf{z}_t after each partial denoising step by (1) drawing a noisy
255 partial estimate $\mathbf{s}_t^{(i)} \sim p(\mathbf{s}_t^{(i)} | \hat{\mathbf{s}}_\theta^{(i)})$ and (2) reinserting the noisy partial estimate into the current
256 iterate: $\mathbf{z}_t \leftarrow \mathbf{S}^{(i)\top} \mathbf{s}_t^{(i)} + (\mathbf{I} - \mathbf{S}^{(i)\top} \mathbf{S}^{(i)}) \mathbf{z}_t$. This update ensures that every subsequent partial
257 denoiser operates on an iterate that already incorporates the information extracted in the previous
258 loops, enabling the w stochastic loops to refine complementary regions of \mathbf{z}_t .

259 After completing the w stochastic loops, MSM aggregates all partial denoised estimates to form an
260 MMSE estimate of the fully-sampled measurement:

261
$$\hat{\mathbf{z}}_\theta = \mathbf{W} \sum_{i=1}^w \mathbf{S}^{(i)\top} \hat{\mathbf{s}}_\theta^{(i)} + \mathbb{1}_{\mathbf{C}=0} \cdot \hat{\mathbf{z}}_\theta, \quad (6)$$

262 where $\mathbf{C} = \sum_{i=1}^w \text{diag}(\mathbf{S}^{(i)\top} \mathbf{S}^{(i)})$ records which coordinates were covered, and the indicator term
263 preserves previous values at coordinates that receive no coverage by the w stochastic loops.

270 The estimate \hat{z}_θ is treated as the clean prediction for the reverse update $z_{t-1} \sim p(z_{t-1} | z_t, \hat{z}_\theta)$,
 271 following the standard reverse-diffusion step (Ho et al., 2020, Equation 6). Repeating this process
 272 from $t = T$ down to 1 produces a fully-sampled measurement z_0 , which is mapped to the final
 273 output image when relevant. The full sampling procedure is outlined in Algorithm 1, with illustrative
 274 examples shown in Figure 1 and Figure 4.

275 In Appendix A, we provide a theoretical guarantee showing that the distribution $\hat{q}(z)$ obtained using
 276 the stochastic MSM score converges to the ideal MSM distribution $q(z)$ as the number of stochastic
 277 iterations w increases. Specifically, under a bounded-variance assumption on the score estimator, the
 278 KL divergence satisfies

$$279 \quad D_{\text{KL}}(q(z) \parallel \hat{q}(z)) \leq \frac{v^2}{w} C,$$

281 where C is a finite constant independent of w .

283 3.3 POSTERIOR SAMPLING WITH MSM

285 We extend MSM to sample from the posterior distribution for solving linear inverse problems
 286 described in Section 2.3. We consider measurement operators \mathbf{A} of the form $\mathbf{A} = \mathbf{H}\mathbf{T}$, where
 287 $\mathbf{H} \in \mathbb{R}^{m \times n}$ is the **linear measurement operator**—such as downsampling, blurring, box inpainting,
 288 or random projection—and $\mathbf{T} \in \mathbb{R}^{n \times p}$ is an invertible transformation introduced in Section 3.1.
 289 This allows us to express the measurement model as $\mathbf{y} = \mathbf{H}\mathbf{z} + \mathbf{e}$, where $\mathbf{z} \in \mathbb{R}^n$ is the unknown
 290 fully-sampled measurement and $\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \eta\mathbf{I})$ is Gaussian noise with variance η .

291 To estimate the posterior score, we combine the stochastic score estimate from (6) with its corre-
 292 sponding fully-sampled prediction \hat{z}_θ . The posterior score is approximated as:

$$293 \quad \nabla \log p_{\sigma_t}(\mathbf{z}_t | \mathbf{y}) = \nabla \log p_{\sigma_t}(\mathbf{z}_t) + \nabla \log p_{\sigma_t}(\mathbf{y} | \mathbf{z}_t) \\ 294 \quad \approx \nabla \log \hat{q}_{\sigma_t}(\mathbf{z}_t) + \nabla \log p_{\sigma_t}(\mathbf{y} | \hat{z}_\theta),$$

296 where the log-likelihood gradient is given by

$$297 \quad \nabla \log p_{\sigma_t}(\mathbf{y} | \hat{z}_\theta) = \gamma_t \nabla \|\mathbf{y} - \mathbf{H}\hat{z}_\theta\|_2^2, \quad (7)$$

299 with γ_t denoting the step-size parameter. Note that \mathbf{H} may differ from the randomized subsampling
 300 operators $\mathbf{S} \sim p(\mathbf{S})$ used during MSM training.

301 We incorporate the likelihood term by updating the denoised estimate via

$$302 \quad \hat{z}_\theta \leftarrow \hat{z}_\theta - \gamma_t \nabla_{\hat{z}_\theta} \|\mathbf{y} - \mathbf{H}\hat{z}_\theta\|_2^2.$$

304 This update is inserted between lines 11 and 12 in Algorithm 1 to convert unconditional MSM
 305 sampling into posterior sampling.

306 A related posterior sampling strategy, using diffusion models trained on clean data, was proposed
 307 in (Wang et al., 2023a). Further simplification of our method for compressed-sensing MRI is presented
 308 in Appendix D.3.

310 3.4 LEARNING PARTIAL MEASUREMENT SCORE FROM NOISY AND SUBSAMPLED 311 MEASUREMENTS

313 We now show how our MSM framework can be extended to train directly on noisy and subsampled
 314 measurements by integrating with self-supervised denoising methods to address the noise on the
 315 subsampled measurements.

316 We formulate our observed measurement as

$$317 \quad \mathbf{s} = \mathbf{S}\mathbf{z} + \boldsymbol{\nu}, \quad \boldsymbol{\nu} \sim \mathcal{N}(\mathbf{0}, \rho\mathbf{I}),$$

319 where ρ is the measurement noise level, and the remaining notations follow Section 3.1. We first define
 320 the sequence of diffusion noise level $\{\sigma_t\}_{t=1}^T$. At each time step t , we compare the diffusion noise
 321 level σ_t with the measurement noise level ρ , and apply one of the following strategies accordingly:

322 **Case 1:** $\sigma_t > \rho$. We add residual noise to match the diffusion level:

$$323 \quad \mathbf{s}_t \leftarrow \mathbf{s} + \sqrt{\sigma_t^2 - \rho^2} \mathbf{n}.$$

324 The training objective is:
 325

$$\begin{aligned} 326 \quad \mathcal{L}(\theta) &= \mathbb{E}_{s_t, t} \left[\|s - \mathbb{E}[s | s_t]\|_2^2 \right] + \mathcal{L}_{\text{SURE}}(\theta; s, \rho) \\ 327 \\ 328 \quad &= \mathbb{E}_{s_t, t} \left[\left\| s - \left(\frac{\sigma_t^2 - \rho^2}{\sigma_t^2} (\hat{s}_\theta(s_t; \sigma_t) - s_t) + s_t \right) \right\|_2^2 \right] + \mathcal{L}_{\text{SURE}}(\theta; s, \rho), \\ 329 \\ 330 \end{aligned}$$

331 where the first term is inspired by (Daras et al., 2024b), which shows that a noisier image can be
 332 denoised using a less noisy reference; we apply this idea to subsampled measurements. The second
 333 term is the SURE loss, following (Chen et al., 2022, Equation 9), which enables the model to learn to
 334 denoise measurement noise and plays a key role in the next case.

335 **Case 2:** $\sigma_t \leq \rho$. We first denoise s using the MSM with the noise conditioned of ρ , then add diffusion
 336 noise as

$$337 \quad s_t \leftarrow \hat{s}_\theta(s; \rho) + \sigma_t n.$$

338 Training minimizes the discrepancy within the non-subsampled region:

$$339 \quad \mathcal{L}(\theta) = \mathbb{E}_{s_t, t} [\hat{s}_\theta(s; \rho) - \hat{s}_\theta(s_t; \sigma_t)]^2 + \mathcal{L}_{\text{SURE}}(\theta; s, \rho). \\ 340$$

341 Here, $\hat{s}_\theta(s; \rho)$ serves as a pseudo-clean reference. Its quality is crucial but improves naturally during
 342 training, since the same prediction is refined in **Case 1**. In practice, most σ_t are larger than ρ ,
 343 making **Case 1** more frequently sampled. As a result, the pseudo-clean reference used in **Case 2** is
 344 continuously improved, ensuring stable training across both cases.

345 4 NUMERICAL EVALUATIONS

348 We evaluated MSM on unconditional generation and conditional sampling for natural images and
 349 multi-coil MRI. All models used the same diffusion architecture (Dhariwal & Nichol, 2021), trained
 350 from scratch on a single NVIDIA A100 GPU for 1M iterations (see Appendix D.4 for architectural
 351 details). Experiments used 69k FFHQ faces (128×128 RGB) and 2k fastMRI T2-weighted slices
 352 (256×256 , complex-valued) (Zbontar et al., 2018; Knoll et al., 2020). We performed inverse problem
 353 evaluations on 100 test images per domain.

354 4.1 RGB FACE IMAGE EXPERIMENT

356 **Training data.** We considered two training settings: (1) subsampling only and (2) subsampling with
 357 added Gaussian noise $\rho = 0.1$. In both cases, the masked-pixel ratio p is set to 40% using 32×32
 358 patches, applied identically across RGB channels (see Figure 2 for an example). Full training details
 359 of our method and baselines are provided in Appendix D.4 and Appendix D.5.

361 **Unconditional sampling.** MSM used a stochastic loop parameter $w = 1$ with 200 sampling steps.
 362 We compared MSM to three baselines: an oracle diffusion model trained on clean images, Ambient
 363 diffusion (Daras et al., 2024c) trained on noiseless masked inputs, and GSURE diffusion (Kawar et al.,
 364 2024) trained on noisy masked inputs. All baselines used 200-step accelerated sampling (Song et al.,
 365 2021a). As shown in Table 1, MSM achieves better FID scores than all baselines trained without
 366 clean data, evaluated over 3,000 generated samples. Figure 2 further shows that MSM generates
 367 clean images despite being trained without clean data. Additional results showing how w influences
 368 sampling quality and time efficiency are provided in Appendix E.6.

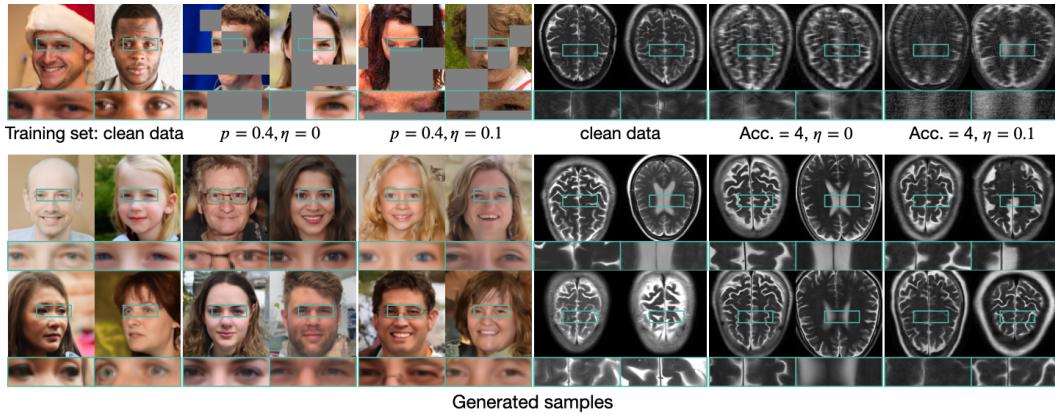
369 **Conditional sampling.** We compared MSM with A-DPS (Aali et al., 2025), which is the most closely
 370 related inverse-problem solver that also uses a pretrained diffusion model trained on incomplete
 371 data. We evaluated two inverse problems: box inpainting with a 64×64 missing region and $4 \times$
 372 bicubic super-resolution. Both methods used models trained on the same noiseless 40% masked data
 373 without retraining. A-DPS took 1000 steps, while MSM took 200 steps with $w = 3$, and step sizes
 374 in (7) set to $\gamma_t = 1.75$ for both inpainting and super-resolution. As shown in Table 3 and Figure 3,
 375 MSM outperforms A-DPS in PSNR, SSIM, and LPIPS. We also observe that A-DPS performs worse
 376 than the input image in PSNR and SSIM, likely due to limitations of the Ambient diffusion prior in
 377 generating fine details when trained on non-sparse subsampling patterns—such as box masks—rather
 378 than more localized patterns (e.g., dust masks) mainly used in the original training setup of Am-
 379 bient diffusion (Daras et al., 2024c). Detailed hyperparameter setups for A-DPS are provided in

378
 379 Table 1: FID scores for unconditional image samples
 380 under different training scenarios on human face images. **Best values** are highlighted for each training
 381 scenario, with comparisons shown when corresponding
 382 baseline methods are available. Note how MSM con-
 383 stantly achieves substantially lower FID scores than
 384 alternative methods across the evaluated settings.

Training data	Methods	FID↓
No degradation	Oracle diffusion	10.21
$p = 0.4, \rho = 0$	MSM	29.14
$p = 0.4, \rho = 0$	Ambient diffusion	55.90
$p = 0.4, \rho = 0.1$	MSM	37.14
	GSURE diffusion	89.71

385
 386 Table 2: FID scores for unconditional image sam-
 387 ples under different training scenarios on multi-coil
 388 brain MR images. **Best values** are highlighted for each
 389 training scenario, with comparisons shown when cor-
 390 responding baseline methods are available. Note how
 391 MSM achieves a lower FID compared to the alternative
 392 methods.

Training data	Methods	FID↓
No degradation	Oracle diffusion	28.41
$R = 4, \rho = 0$	MSM	64.37
$R = 4, \rho = 0$	Ambient diffusion	70.07
$R = 4, \rho = 0.1$	MSM	82.17



407 Figure 2: Generated samples from MSM trained under three degradation settings (first row: training
 408 data; second row: samples generated by models trained on the corresponding data). Note how despite
 409 never seeing ground-truth data, MSM can generate high-quality images.

410
 411
 412 Appendix D.6. Additional experiments showing that MSM achieves comparable performance to
 413 clean-data-trained diffusion-based inverse problem solvers are provided in Appendix E.5. Results
 414 using an MSM prior trained on noisy and subsampled data are provided in Appendix E.3.

416 4.2 MULTI-COIL MRI EXPERIMENT

417
 418 **Training data.** We considered two training settings: (1) subsampling only and (2) subsampling with
 419 added Gaussian noise $\rho = 0.1$. We applied a **1-D Cartesian subsampling operation in k-space using**
 420 **random masks with an acceleration rate of $R = 4$** , while fully sampling all vertical lines and the
 421 central 20 lines for autocalibration. Training details for our method and baselines are provided in
 422 Appendix D.4 and D.5.

423
 424 **Unconditional sampling.** MSM used a stochastic loop parameter of $w = 1$ with 200 sampling
 425 steps (see Appendix E.6 for how w affects sampling quality). We compared it against an oracle
 426 diffusion model trained on clean images and Ambient diffusion (Daras et al., 2024c) trained on
 427 noiseless subsampled inputs; GSURE diffusion (Kawar et al., 2024) is omitted since its extension
 428 from single-coil MRI to multi-coil MRI remains computationally infeasible and no practical approach
 429 has been proposed. All baselines used accelerated sampling with 200 steps (Song et al., 2021a). As
 430 shown in Table 2, MSM achieves better FID scores than Ambient diffusion, based on 3,000 generated
 431 samples. Figure 2 further demonstrates that MSM generates realistic images, even when trained on
 432 noisy and subsampled measurements. FID computation details are provided in Appendix D.7, and
 433 generation results under extreme subsampling are shown in Appendix E.2.

432
 433 Table 3: Quantitative results on two natural im-
 434 age inverse problems comparing methods using
 435 diffusion priors trained without clean images. **Best**
 436 **values** are highlighted per metric. MSM achieves
 437 the best performance across both distortion-based
 and perception-oriented metrics.

Setup	Input	A-DPS	MSM
	PSNR↑	18.26	20.14
Inpainting	SSIM↑	0.749	0.621
	LPIPS↓	0.304	0.305
	PSNR↑	23.21	22.61
SR (x4)	SSIM↑	0.728	0.702
	LPIPS↓	0.459	0.277

Table 4: Quantitative results on multi-coil com-
 pressed sensing MRI comparing diffusion-based and self-
 supervised methods, all trained without clean data. **Best**
values are highlighted per metric. MSM outperforms
 the baselines in both PSNR and LPIPS, including the
 restoration-specific baseline SSDU.

Setup	Input	A-DPS	SSDU	MSM
	PSNR↑	22.75	27.28	29.65
CS-MRI (x4)	SSIM↑	0.648	0.804	0.847
	LPIPS↓	0.306	0.173	0.160
	PSNR↑	21.94	26.29	28.02
CS-MRI (x6)	SSIM↑	0.617	0.763	0.820
	LPIPS↓	0.342	0.201	0.186

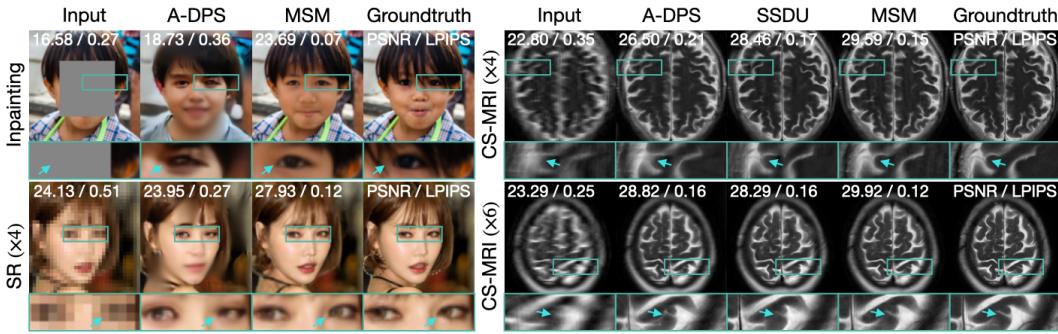


Figure 3: Visual comparison of methods trained on subsampled data for inverse problems. Note how MSM leads to the best results in both applications.

Conditional sampling. We evaluated accelerated MRI reconstruction using random masks with acceleration rates $R = 4$ and $R = 6$, and measurement noise $\eta = 0.01$. We used stochastic posterior sampling algorithm introduced in Appendix D.3 with **MSM pretrained on noiseless $R = 4$ measurements without retraining**, with step size $\gamma_t = 2$ in (19). We compared against two baselines trained on the same subsampled data: a diffusion-based method (A-DPS (Aali et al., 2025)) and a self-supervised end-to-end method (Robust SSDU (Millard & Chiew, 2024)). A-DPS used 1000 steps, SSDU performed a single forward pass, and MSM used 200 steps with $w = 3$. As shown in Table 4 and Figure 3, MSM outperforms both baselines in PSNR and LPIPS. Detailed hyperparameter setups for A-DPS and Robust SSDU are provided in Appendix D.6. Comparisons with clean-data-trained diffusion-based inverse problem solvers are in Appendix E.5, and additional results using an MSM prior trained on noisy and subsampled MRI data are in Appendix E.3.

5 CONCLUSION

We introduced the *Measurement Score-based diffusion Model (MSM)* framework for generating the full measurements using score functions learned solely from noisy, subsampled measurements. Our key idea is the MSM score, defined as an expectation over partial scores induced by randomized subsampling. We develop a stochastic sampling algorithm for both prior and posterior inference that efficiently approximates this expectation, enabling clean image generation and inverse problem solving. We demonstrate that MSM achieves state-of-the-art performance among diffusion-based methods trained without clean data, for both unconditional image generation and conditional sampling in linear inverse problems. The framework applies broadly to settings where only subsampled measurements are available but collectively cover the full data space, making it valuable for generative modeling in limited-data regimes and high-dimensional sampling from low-dimensional observations.

486 REFERENCES
487

488 Asad Aali, Marius Arvinte, Sidharth Kumar, and Jonathan I. Tamir. Solving inverse problems with
489 score-based generative priors learned from noisy data. In *2023 57th Asilomar Conference on*
490 *Signals, Systems, and Computers*, pp. 837–843. IEEE, 2023.

491 Asad Aali, Giannis Daras, Brett Levac, Sidharth Kumar, Alexandros G. Dimakis, and Jonathan I.
492 Tamir. Ambient diffusion posterior sampling: Solving inverse problems with diffusion models
493 trained on corrupted data. In *The Thirteenth International Conference on Learning Representations*,
494 2025. URL <https://openreview.net/forum?id=qeXcMutEZY>.

495 Monagi H. Alkinani and Mahmoud R. El-Sakka. Patch-based models and algorithms for image
496 denoising: a comparative review between patch-based image denoising methods for additive noise
497 reduction. *EURASIP Journal on Image and Video Processing*, 2017(1):58, 2017.

498 Weimin Bai, Yifei Wang, Wenzheng Chen, and He Sun. An expectation-maximization algorithm for
499 training clean diffusion models from corrupted observations. In *Thirty-Eighth Annual Conference*
500 *on Neural Information Processing Systems*, 2024. URL <https://neurips.cc/virtual/2024/poster/93958>.

501 Weimin Bai, Weiheng Tang, Enze Ye, Siyi Chen, Wenzheng Chen, and He Sun. Learning diffusion
502 model from noisy measurement using principled expectation-maximization method. In *ICASSP*
503 2025–2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

504 pp. 1–5. IEEE, 2025. doi: 10.1109/ICASSP2025.2025.1234567.

505 Elizabeth Louise Baker, Gefan Yang, Michael L. Severinsen, Christy Anna Hipsley, and Stefan
506 Sommer. Conditioning non-linear and infinite-dimensional diffusion processes. In *Advances in*
507 *Neural Information Processing Systems*, volume 37, pp. 10801–10826. Curran Associates, Inc.,
508 2024.

509 Matthew C. Bendel, Rizwan Ahmad, and Philip Schniter. A regularized conditional gan for posterior
510 sampling in image recovery problems. In *Advances in Neural Information Processing Systems*,
511 volume 36, pp. 68673–68684, 2023. URL <https://arxiv.org/abs/2210.13389>.

512 Dongdong Chen, Julián Tachella, and Mike E Davies. Equivariant imaging: Learning beyond the
513 range space. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
514 4379–4388, October 2021.

515 Dongdong Chen, Julián Tachella, and Mike E Davies. Robust equivariant imaging: a fully unsupervised
516 framework for learning to image from noisy and partial measurements. In *Proceedings of the*
517 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2022.

518 Haoxuan Chen, Yinuo Ren, Lexing Ying, and Grant Rotskoff. Accelerating diffusion models with
519 parallel sampling: Inference at sub-linear time complexity. *Advances in Neural Information*
520 *Processing Systems*, 37:133661–133709, 2024.

521 Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul Ye.
522 Diffusion posterior sampling for general noisy inverse problems. In *The Eleventh International*
523 *Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=OnD9zGAGT0k>.

524 Hyungjin Chung, Hyelin Nam, and Jong Chul Ye. Review of diffusion models: Theory and ap-
525 plications. *Journal of the Korean Society for Industrial and Applied Mathematics*, 28(1):1–21,
526 2024.

527 Giannis Daras, Yuval Dagan, Alexandros G. Dimakis, and Constantinos Daskalakis. Consistent
528 diffusion models: Mitigating sampling drift by learning to be consistent. *Advances in Neural Infor-*
529 *mation Processing Systems*, 36, 2024a. URL <https://arxiv.org/abs/2302.09057>.

530 Giannis Daras, Alexandros G. Dimakis, and Constantinos Daskalakis. Consistent diffusion meets
531 tweedie: Training exact ambient diffusion models with noisy data. In *Proceedings of the 41st*
532 *International Conference on Machine Learning (ICML)*, 2024b.

540 Giannis Daras, Kulin Shah, Yuval Dagan, Aravind Gollakota, Alexandros G. Dimakis, and Adam
 541 Klivans. Ambient diffusion: Learning clean distributions from corrupted data. *Advances in Neural*
 542 *Information Processing Systems*, 36, 2024c.

543

544 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In
 545 *Advances in Neural Information Processing Systems*, volume 34, pp. 8780–8794, 2021.

546 Bradley Efron. Tweedie’s formula and selection bias. *Journal of the American Statistical Association*,
 547 106(496):1602–1614, 2011.

548

549 Yonina C. Eldar. Generalized sure for exponential families: Applications to regularization. *IEEE*
 550 *Transactions on Signal Processing*, 57(2):471–481, 2008. doi: 10.1109/TSP.2008.2008212. URL
 551 <https://doi.org/10.1109/TSP.2008.2008212>.

552 Jeffrey A. Fessler. Optimization methods for magnetic resonance image reconstruction: Key models
 553 and optimization algorithms. *IEEE Signal Processing Magazine*, 37(1):33–40, 2020. doi: 10.1109/
 554 MSP.2019.2943645. URL <https://doi.org/10.1109/MSP.2019.2943645>.

555

556 Saeed Ghadimi and Guanghui Lan. Accelerated gradient methods for nonconvex nonlinear
 557 and stochastic programming. *Mathematical Programming*, 156(1):59–99, 2016. doi: 10.
 558 1007/s10107-015-0871-8. URL <https://link.springer.com/article/10.1007/s10107-015-0871-8>.

559

560 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in*
 561 *Neural Information Processing Systems*, volume 33, pp. 6840–6851, 2020.

562

563 Jason Hu, Bowen Song, Xiaojian Xu, Liyue Shen, and Jeffrey A. Fessler. Learning image priors
 564 through patch-based diffusion models for solving inverse problems. In *Advances in Neural*
 565 *Information Processing Systems*, volume 37, pp. 1625–1660, 2024a.

566

567 Yuyang Hu, Weijie Gan, Chunwei Ying, Tongyao Wang, Cihat Eldeniz, Jiaming Liu, Yasheng
 568 Chen, Hongyu An, and Ulugbek S. Kamilov. Spicer: Self-supervised learning for mri with
 569 automatic coil sensitivity estimation and reconstruction. *Magnetic Resonance Medicine*, 2024b.
 DOI:10.1002/mrm.30121.

570

571 Chin-Wei Huang, Jae Hyun Lim, and Aaron Courville. A variational perspective on diffusion-
 572 based generative models and score matching. In A. Beygelzimer, Y. Dauphin, P. Liang, and
 573 J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, 2021. URL
 574 <https://openreview.net/forum?id=bXehDYUjjXi>.

575

576 Bahjat Kawar, Noam Elata, Tomer Michaeli, and Michael Elad. Gsure-based diffusion model training
 577 with corrupted data. *Transactions on Machine Learning Research*, 2024.

578

579 Firas Khader, Gustav Müller-Franzes, Soroosh Tayebi Arasteh, Tianyu Han, Christoph Haarburger,
 580 Maximilian Schulze-Hagen, Philipp Schad, Sandy Engelhardt, Bettina Baeßler, Sebastian Foersch,
 581 Johannes Stegmaier, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather, and Daniel Truhn.
 582 Denoising diffusion probabilistic models for 3d medical image generation. *Scientific Reports*,
 583 13(1):7303, 2023. doi: 10.1038/s41598-023-34341-2. URL <https://www.nature.com/articles/s41598-023-34341-2>.

584

585 Florian Knoll, Jure Zbontar, Anuroop Sriram, Matthew J. Muckley, Mary Bruno, Aaron Defazio, Marc
 586 Parente, Krzysztof J. Geras, Joe Katsnelson, Hersh Chandarana, Zizhao Zhang, Michal Drozdzał,
 587 Adriana Romero, Michael Rabbat, Pascal Vincent, James Pinkerton, Duo Wang, Nafissa Yakubova,
 588 Erich Owens, C. Lawrence Zitnick, Michael P. Recht, Daniel K. Sodickson, and Yvonne W. Lui.
 589 fastmri: A publicly available raw k-space and dicom dataset of knee images for accelerated mr
 590 image reconstruction using machine learning. *Radiology: Artificial Intelligence*, 2(1):e190007,
 591 2020. doi: 10.1148/ryai.2020190007. URL <https://pubs.rsna.org/doi/full/10.1148/ryai.2020190007>.

592

593 Jiaming Liu, Xiaojian Xu, Weijie Gan, Ulugbek Kamilov, et al. Online deep equilibrium learning for
 594 regularization by denoising. *Advances in Neural Information Processing Systems*, 35:25363–25376,
 2022.

594 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *The Seventh Interna-*
 595 *tional Conference on Learning Representations*, 2019. URL [https://openreview.net/](https://openreview.net/forum?id=Bkg6RiCqY7)
 596 [forum?id=Bkg6RiCqY7](https://openreview.net/forum?id=Bkg6RiCqY7).

597 Charles Millard and Mark Chiew. A theoretical framework for self-supervised mr image re-
 598 construction using sub-sampling via variable density noisier2noise. *IEEE Transactions on*
 599 *Computational Imaging*, 9:707–720, 2023. doi: 10.1109/TCI.2023.3299212. URL <https://doi.org/10.1109/TCI.2023.3299212>.

600 Charles Millard and Mark Chiew. Clean self-supervised mri reconstruction from noisy, sub-
 601 sampled training data with robust ssdu. *Bioengineering*, 11(12):1305, 2024. doi: 10.3390/
 602 [bioengineering11121305](https://www.mdpi.com/2306-5354/11/12/1305). URL <https://www.mdpi.com/2306-5354/11/12/1305>.

603 Koichi Miyasawa. An empirical bayes estimator of the mean of a normal population. *Bulletin of the*
 604 *International Statistical Institute*, 38:181–188, 1961.

605 Bernt Oksendal. *Stochastic differential equations: an introduction with applications*. Springer
 606 Science & Business Media, 2013.

607 Chicago Y. Park, Michael T. McCann, Cristina Garcia-Cardona, Brendt Wohlberg, and Ulugbek S.
 608 Kamilov. Random walks with tweedie: A unified view of score-based diffusion models. *IEEE*
 609 *Signal Processing Magazine*, 42(3):40–51, 2025. doi: 10.1109/MSP.2025.3590608. URL <https://doi.org/10.1109/MSP.2025.3590608>.

610 Herbert Robbins. An empirical bayes approach to statistics. In *Proceedings of the Third Berkeley*
 611 *Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of*
 612 *Statistics*, pp. 157–163. The Regents of the University of California, 1956.

613 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 614 image segmentation. In *Medical Image Computing and Computer-Assisted Intervention–MICCAI*
 615 2015, pp. 234–241. Springer, 2015. doi: 10.1007/978-3-319-24574-4_28. URL https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28.

616 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Internation-*
 617 *al Conference on Learning Representations*, 2021a.

618 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 619 In *Advances in Neural Information Processing Systems*, volume 32, 2019.

620 Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
 621 score-based diffusion models. In *Advances in Neural Information Processing Systems*, volume 34,
 622 2021b.

623 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 624 Poole. Score-based generative modeling through stochastic differential equations. In *The Ninth*
 625 *International Conference on Learning Representations*, 2021c.

626 Charles M. Stein. Estimation of the mean of a multivariate normal distribution. *The Annals of*
 627 *Statistics*, pp. 1135–1151, 1981.

628 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computa-*
 629 *tion*, 23(7):1661–1674, 2011.

630 Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
 631 null-space model. *The Eleventh International Conference on Learning Representations*, 2023a.

632 Zhendong Wang, Yifan Jiang, Huangjie Zheng, Peihao Wang, Pengcheng He, Zhangyang Wang,
 633 Weizhu Chen, and Mingyuan Zhou. Patch diffusion: Faster and more data-efficient training
 634 of diffusion models. In *Advances in Neural Information Processing Systems*, volume 36, pp.
 635 72137–72154, 2023b.

636 Max Welling and Yee W. Teh. Bayesian learning via stochastic gradient langevin dynamics. In
 637 *Proceedings of the 28th International Conference on Machine Learning (ICML-11)*, pp. 681–688,
 638 2011.

648 Tiange Xiang, Mahmut Yurt, Ali B Syed, Kawin Setsompop, and Akshay Chaudhari. Ddm²: Self-
649 supervised diffusion mri denoising with generative diffusion models. In *The Eleventh International*
650 *Conference on Learning Representations*, 2023.

651
652 Burhaneddin Yaman, Seyed Amir Hossein Hosseini, Steen Moeller, Jutta Ellermann, Kamil Ugurbil,
653 and Mehmet Akcakaya. Self-Supervised Learning of Physics-Guided Reconstruction Neural
654 Networks without Fully-Sampled Reference Data. *Magnetic Resonance in Medicine*, 84(6):
655 3172–3191, Dec 2020.

656 Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang, Matthew J. Muckley,
657 Aaron Defazio, Ruben Stern, Patricia Johnson, Mary Bruno, Marc Parente, Krzysztof J. Geras,
658 Joe Katsnelson, Hersh Chandarana, Zizhao Zhang, Michal Drozdzal, Adriana Romero, Michael
659 Rabbat, Pascal Vincent, Nafissa Yakubova, James Pinkerton, Duo Wang, Erich Owens, C. Lawrence
660 Zitnick, Michael P. Recht, Daniel K. Sodickson, and Yvonne W. Lui. fastmri: An open dataset and
661 benchmarks for accelerated mri. *arXiv preprint arXiv:1811.08839*, 2018.

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A THEORETICAL ANALYSIS**
 703
 704

705 We have introduced the MSM framework, which can generate fully-sampled measurements using
 706 *partial measurement scores*. To make the expectation of the MSM score (3) efficient, our algorithm
 707 approximates it using a minibatch of w sampled operators in (5), where $\mathbf{S}^{(1)}, \dots, \mathbf{S}^{(w)}$ are sampled
 708 independently and identically from the distribution $p(\mathbf{S})$. This implies that for a fixed \mathbf{W} , we have
 709 an unbiased estimator of the MSM score: $\mathbb{E}[\nabla \log \hat{q}_{\sigma_t}(\mathbf{z}_t)] = \nabla \log q_{\sigma_t}(\mathbf{z}_t)$, where the expectation
 710 is over the randomness in the sampled minibatch.

711 **Assumption 1.** *There exists $v > 0$ such that for all $\mathbf{z} \in \mathbb{R}^n$,*
 712
 713

$$714 \mathbb{E}[\|\nabla \log q_{\sigma_t}(\mathbf{z}) - \nabla \log \hat{q}_{\sigma_t}(\mathbf{z})\|_2^2] \leq \frac{v^2}{w},$$

717 where the expectation is taken over $\mathbf{S}^{(i)} \sim p(\mathbf{S})$.
 718

719 This assumption implies that the gradient estimate of MSM score has a bounded variance, an
 720 assumption commonly adopted in stochastic and online algorithms (Welling & Teh, 2011; Ghadimi
 721 & Lan, 2016; Liu et al., 2022).
 722

723 **Theorem 1.** *Let $q(\mathbf{z})$ and $\hat{q}(\mathbf{z})$ denote the distributions of samples generated by using the MSM score
 724 $\nabla \log q_{\sigma_t}(\mathbf{z}_t)$ and its stochastic approximation $\nabla \log \hat{q}_{\sigma_t}(\mathbf{z}_t)$, respectively. Under Assumption 1, the
 725 KL divergence between the two distributions is bounded as*
 726

$$727 D_{\text{KL}}(q(\mathbf{z}) \parallel \hat{q}(\mathbf{z})) \leq \frac{v^2}{w} C,$$

731 where C is a finite constant independent of w .
 732
 733
 734
 735

736 *Proof.* Our proof invokes Girsanov's theorem, which characterizes how the distribution of a
 737 Brownian-driven stochastic process transforms when we transition from one probability measure to
 738 another (Chen et al., 2024; Baker et al., 2024; Huang et al., 2021; Song et al., 2021b).
 739

740 Consider the two stochastic processes $\{\mathbf{z}(t)\}_{t \in [0,1]}$ and $\{\hat{\mathbf{z}}(t)\}_{t \in [0,1]}$, corresponding to the Eu-
 741 ler–Maruyama discretizations of the following reverse-time SDEs
 742

$$743 d\mathbf{z} = \nabla \log q_{\sigma_t}(\mathbf{z}) dt + \sqrt{2\mathcal{T}_t} d\bar{\mathbf{w}}_t \quad \mathbf{z}(T) = \mathbf{z}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$$

$$744 d\hat{\mathbf{z}} = \nabla \log \hat{q}_{\sigma_t}(\hat{\mathbf{z}}) dt + \sqrt{2\mathcal{T}_t} d\bar{\mathbf{w}}_t \quad \hat{\mathbf{z}}(T) = \hat{\mathbf{z}}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$$

748 Let $\mathbb{Q}[\mathbf{z}_{0:T}]$ and $\hat{\mathbb{Q}}[\hat{\mathbf{z}}_{0:T}]$ denote the path measures induced by the respective processes. The process
 749 $\{\mathbf{z}(t)\}_{t \in [0,1]}$ corresponds to the reverse diffusion trajectory driven by the true measurement score
 750 $\nabla \log q_{\sigma_t}(\mathbf{z})$, while $\{\hat{\mathbf{z}}(t)\}_{t \in [0,1]}$ is generated by the reverse process using an approximate (stochastic)
 751 measurement score $\nabla \log \hat{q}_{\sigma_t}(\mathbf{z})$.
 752

753 By using the chain rule of KL divergence from Lemma 3, we have
 754

$$755 D_{\text{KL}}(\mathbb{Q} \parallel \hat{\mathbb{Q}}) = \mathbb{E}_{\mathbf{z}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[D_{\text{KL}}(\mathbb{Q}(.|\mathbf{z} = \mathbf{z}_T) \parallel \hat{\mathbb{Q}}(.|\hat{\mathbf{z}} = \hat{\mathbf{z}}_T)) \right]. \quad (8)$$

756 Using the definition of KL divergence and the fact that $M_T = d\hat{\mathbb{Q}}/d\mathbb{Q}$ from Lemma 1, we have
 757

$$\begin{aligned}
 758 D_{\text{KL}}(\mathbb{Q}(\cdot | \mathbf{z} = \mathbf{z}_T) \| \hat{\mathbb{Q}}(\cdot | \hat{\mathbf{z}} = \hat{\mathbf{z}}_T)) &= -\mathbb{E}_{\mathbb{Q}} \left[\log \frac{d\hat{\mathbb{Q}}}{d\mathbb{Q}} \right] = -\mathbb{E}_{\mathbb{Q}} [\log M_T] \\
 759 &= \mathbb{E}_{\mathbb{Q}} \left[\int_0^T \frac{[\nabla \log q_{\sigma_t}(\mathbf{z}_t) - \nabla \log \hat{q}_{\sigma_t}(\mathbf{z}_t)]}{\sqrt{2\mathcal{T}_t}} d\bar{\mathbf{w}}_t + \frac{1}{2} \int_0^T \frac{\|\nabla \log q_{\sigma_t}(\mathbf{z}_t) - \nabla \log \hat{q}_{\sigma_t}(\mathbf{z}_t)\|_2^2}{2\mathcal{T}_t} dt \right] \\
 760 &= \mathbb{E}_{\mathbb{Q}} \left[\int_0^T \frac{[\nabla \log q_{\sigma_t}(\mathbf{z}_t) - \nabla \log \hat{q}_{\sigma_t}(\mathbf{z}_t)]}{\sqrt{2\mathcal{T}_t}} d\bar{\mathbf{w}}_t \right] + \mathbb{E}_{\mathbb{Q}} \left[\frac{1}{2} \int_0^T \frac{\|\nabla \log q_{\sigma_t}(\mathbf{z}_t) - \nabla \log \hat{q}_{\sigma_t}(\mathbf{z}_t)\|_2^2}{2\mathcal{T}_t} dt \right] \\
 761 &= \mathbb{E}_{\mathbb{Q}} \left[\int_0^T \frac{1}{\sqrt{2\mathcal{T}_t}} \mathbb{E} \left[\nabla \log q_{\sigma_t}(\mathbf{z}_t) - \frac{1}{w} \sum_{i=1}^w \nabla \log q_{\sigma_t}(\mathbf{s}_t^{(i)}) \Big|_{\mathbf{s}_t^{(i)} = \mathbf{S}^{(i)} \mathbf{z}_t} \right] d\bar{\mathbf{w}}_t \right] \\
 762 &\quad + \mathbb{E}_{\mathbb{Q}} \left[\int_0^T \frac{1}{4\mathcal{T}_t} \mathbb{E} \left[\left\| \nabla \log q_{\sigma_t}(\mathbf{z}_t) - \frac{1}{w} \sum_{i=1}^w \nabla \log q_{\sigma_t}(\mathbf{s}_t^{(i)}) \Big|_{\mathbf{s}_t^{(i)} = \mathbf{S}^{(i)} \mathbf{z}_t} \right\|_2^2 \right] dt \right] \\
 763 &= \mathbb{E}_{\mathbb{Q}} \left[\int_0^T \frac{1}{4\mathcal{T}_t} \mathbb{E} \left[\left\| \nabla \log q_{\sigma_t}(\mathbf{z}_t) - \frac{1}{w} \sum_{i=1}^w \nabla \log q_{\sigma_t}(\mathbf{s}_t^{(i)}) \Big|_{\mathbf{s}_t^{(i)} = \mathbf{S}^{(i)} \mathbf{z}_t} \right\|_2^2 \right] dt \right] \leq \frac{v^2}{w} \int_0^T \frac{1}{4\mathcal{T}_t} dt \leq \frac{v^2}{w} C,
 764 \\
 765 &766 \\
 766 &767 \\
 767 &768 \\
 768 &769 \\
 769 &770 \\
 770 &771 \\
 771 &772 \\
 772 &773 \\
 773 &774
 \end{aligned}$$

775 where $C := \int_0^T 1/(4\mathcal{T}_t) dt$ is a finite constant. In the first line, we use the definition of KL divergence
 776 between \mathbb{Q} and $\hat{\mathbb{Q}}$ and the result from Lemma 1. In the third line, we use the law of iterated
 777 expectations over w sampling masks $\mathbf{S}^{(i)} \sim p(\mathbf{S})$ for $i = 1, \dots, w$. Note that since $\mathbb{E}[\nabla \log \hat{q}_{\sigma_t}(\mathbf{z}_t)]$
 778 is an unbiased estimator of MSM score $\nabla \log q_{\sigma_t}(\mathbf{z}_t)$, we have $\mathbb{E}[\nabla \log \hat{q}_{\sigma_t}(\mathbf{z}_t)] = \nabla \log q_{\sigma_t}(\mathbf{z}_t)$,
 779 which yields the expectation in the fourth line to be 0. In the last line, we use the bounded variance in
 780 Assumption 1.

781 Following this result with (8) and Lemma 2, we have
 782

$$D_{\text{KL}}(q_0 \| \hat{q}_0) \leq D_{\text{KL}}(\mathbb{Q} \| \hat{\mathbb{Q}}) \leq \frac{v^2}{w} C. \quad (9)$$

785 \square

786 **Lemma 1. (The Girsanov Theorem III.)** Let $\{\mathbf{z}(t)\}_{t=T}^0$ and $\{\hat{\mathbf{z}}(t)\}_{t=T}^0$ be two Itô process of the
 787 forms

$$\begin{aligned}
 788 d\mathbf{z} &= \nabla \log q_{\sigma_t}(\mathbf{z}) dt + \sqrt{2\mathcal{T}_t} d\bar{\mathbf{w}}_t & \mathbf{z}(T) = \mathbf{z}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\
 789 d\hat{\mathbf{z}} &= \nabla \log \hat{q}_{\sigma_t}(\hat{\mathbf{z}}) dt + \sqrt{2\mathcal{T}_t} d\bar{\mathbf{w}}_t & \hat{\mathbf{z}}(T) = \hat{\mathbf{z}}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),
 790
 \end{aligned}$$

792 where $0 \leq T \leq \infty$ is a given constant, and $\bar{\mathbf{w}} \in \mathbb{R}^n$ is a n -dimensional Brownian motion. Suppose
 793 that there exist a process $\alpha(\mathbf{z}, t)$ such that

$$\alpha(\mathbf{z}, t) = \frac{[\nabla \log q_{\sigma_t}(\mathbf{z}_t) - \nabla \log \hat{q}_{\sigma_t}(\mathbf{z}_t)]}{\sqrt{2\mathcal{T}_t}}, \quad (10)$$

794 which satisfies Novikov's condition

$$795 \mathbb{E} \left[\exp \left(\frac{1}{2} \int_0^T \alpha^2(\mathbf{z}, t) dt \right) \right] = \mathbb{E} \left[\exp \left(\frac{1}{2} \int_0^T \frac{\|\nabla \log q_{\sigma_t}(\mathbf{z}_t) - \nabla \log \hat{q}_{\sigma_t}(\mathbf{z}_t)\|_2^2}{2\mathcal{T}_t} dt \right) \right] < \infty,$$

802 where $\mathbb{E} = \mathbb{E}_{\mathbb{Q}}$ is the expectation with respect to \mathbb{Q} , probability measure induced by the process
 803 $\{\mathbf{z}_t\}_{t=T}^0$. Then, we can define M_T and probability measure $\hat{\mathbb{Q}}$, induced by process $\{\hat{\mathbf{z}}_t\}_{t=T}^0$ as

804 $M_T :=$

$$805 \exp \left(- \int_0^T \frac{[\nabla \log q_{\sigma_t}(\mathbf{z}_t) - \nabla \log \hat{q}_{\sigma_t}(\mathbf{z}_t)]}{\sqrt{2\mathcal{T}_t}} d\bar{\mathbf{w}}_t - \frac{1}{2} \int_0^T \frac{\|\nabla \log q_{\sigma_t}(\mathbf{z}_t) - \nabla \log \hat{q}_{\sigma_t}(\mathbf{z}_t)\|_2^2}{2\mathcal{T}_t} dt \right),$$

806 where

$$t \leq T \quad \text{and} \quad d\hat{\mathbb{Q}} := M_T d\mathbb{Q}. \quad (11)$$

Proof of the Girsanov Theorems can be found in (Oksendal, 2013, Theorems 8.6.3, 8.6.4, and 8.6.5).

Remark. Note that it can be shown that Novikov's condition is satisfied for function $\alpha(\mathbf{z}, t)$ in (10) as

$$\begin{aligned} & \mathbb{E} \left[\exp \left(\frac{1}{2} \int_0^T \frac{\|\nabla \log q_{\sigma_t}(\mathbf{z}_t) - \nabla \log \hat{q}_{\sigma_t}(\mathbf{z}_t)\|_2^2}{2\mathcal{T}_t} dt \right) \right] \\ &= \mathbb{E} \left[\exp \left(\frac{1}{2} \int_0^T \mathbb{E} \left[\|\nabla \log q_{\sigma_t}(\mathbf{z}_t) - \nabla \log \hat{q}_{\sigma_t}(\mathbf{z}_t)\|_2^2 \right] dt \right) \right] \\ &\leq \frac{v^2}{w} \cdot \exp \left(\frac{1}{2} \int_0^T \frac{1}{2\mathcal{T}_t} dt \right) < \infty, \end{aligned}$$

where in the second line, we use the total law of expectation (i.e., $\mathbb{E}[\mathbf{a}] = \mathbb{E}[\mathbb{E}[\mathbf{a}|\mathbf{b}]]$) we use the law of iterated expectations over w sampling masks $\mathbf{S}^{(i)} \sim p(\mathbf{S})$ for $i = 1, \dots, w$. Here, we use Assumption 1 and the fact the $\int_0^T (1/(2\mathcal{T}_t)) dt$ is a finite constant.

Lemma 2. Let \mathbb{Q} and $\hat{\mathbb{Q}}$ be the path measure of two stochastic processes $\{\mathbf{z}(t)\}_{t=0}^T$ and $\{\hat{\mathbf{z}}(t)\}_{t=0}^T$. We denote q_0 and \hat{q}_0 as the marginal distribution of $\mathbf{z}(0)$ and $\hat{\mathbf{z}}(0)$. Then, we have

$$D_{\text{KL}}(q_0 \parallel \hat{q}_0) \leq D_{\text{KL}}(\mathbb{Q} \parallel \hat{\mathbb{Q}}).$$

Proof. From the chain rule of KL divergence, we have

$$\begin{aligned} D_{\text{KL}}(\mathbb{Q} \parallel \hat{\mathbb{Q}}) &= D_{\text{KL}}(\mathbb{Q}_{\mathbf{z}(0)=\mathbf{z}_0} \parallel \hat{\mathbb{Q}}_{\hat{\mathbf{z}}(0)=\mathbf{z}_0}) \\ &\quad + \int_{\mathbf{z}} D_{\text{KL}}(\mathbb{Q}(\cdot | \mathbf{z}(0) = \mathbf{z}_0) \parallel \hat{\mathbb{Q}}(\cdot | \hat{\mathbf{z}}(0) = \mathbf{z}_0)) \mathbb{Q}_{\mathbf{z}(0)=\mathbf{z}_0}(d\mathbf{z}) \\ &= D_{\text{KL}}(q_0 \parallel \hat{q}_0) + \int_{\mathbf{z}} D_{\text{KL}}(\mathbb{Q}(\cdot | \mathbf{z}(0) = \mathbf{z}_0) \parallel \hat{\mathbb{Q}}(\cdot | \hat{\mathbf{z}}(0) = \mathbf{z}_0)) \mathbb{Q}_{\mathbf{z}(0)=\mathbf{z}_0}(d\mathbf{z}). \end{aligned}$$

From the non-negativity of KL divergence, we obtain the desired results. \square

Lemma 3. (Chain Rule of KL Divergence.)

Let \mathbb{Q} and $\hat{\mathbb{Q}}$ be the path measure induced by the two following reverse-time SDEs

$$\begin{aligned} d\mathbf{z} &= \nabla \log q_{\sigma_t}(\mathbf{z}) dt + \sqrt{2\mathcal{T}_t} d\mathbf{w}_t \quad \mathbf{z}(T) = \mathbf{z}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ d\hat{\mathbf{z}} &= \nabla \log \hat{q}_{\sigma_t}(\hat{\mathbf{z}}) dt + \sqrt{2\mathcal{T}_t} d\mathbf{w}_t \quad \hat{\mathbf{z}}(T) = \hat{\mathbf{z}}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \end{aligned}$$

From the chain rule of KL divergence, we have

$$\begin{aligned} D_{\text{KL}}(\mathbb{Q} \parallel \hat{\mathbb{Q}}) &= D_{\text{KL}}(\mathbb{Q}_{\mathbf{z}(T)=\mathbf{z}_T} \parallel \hat{\mathbb{Q}}_{\hat{\mathbf{z}}(T)=\hat{\mathbf{z}}_T}) \\ &\quad + \int_{\mathbf{z}} D_{\text{KL}}(\mathbb{Q}(\cdot | \mathbf{z}(T) = \mathbf{z}_T) \parallel \hat{\mathbb{Q}}(\cdot | \hat{\mathbf{z}}(T) = \hat{\mathbf{z}}_T)) \mathbb{Q}_{\mathbf{z}(T)=\mathbf{z}_T}(d\mathbf{z}) \\ &= D_{\text{KL}}(\mathbb{Q}_{\mathbf{z}(T)=\mathbf{z}_T} \parallel \hat{\mathbb{Q}}_{\hat{\mathbf{z}}(T)=\hat{\mathbf{z}}_T}) + \mathbb{E}_{\mathbf{z}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[D_{\text{KL}}(\mathbb{Q}(\cdot | \mathbf{z} = \mathbf{z}_T) \parallel \hat{\mathbb{Q}}(\cdot | \hat{\mathbf{z}} = \mathbf{z}_T)) \right] \\ &= \mathbb{E}_{\mathbf{z}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[D_{\text{KL}}(\mathbb{Q}(\cdot | \mathbf{z} = \mathbf{z}_T) \parallel \hat{\mathbb{Q}}(\cdot | \hat{\mathbf{z}} = \mathbf{z}_T)) \right], \end{aligned}$$

where in the last two equalities, we use the fact that $\mathbb{Q}_{\mathbf{z}_T} = \hat{\mathbb{Q}}_{\mathbf{z}_T} = \mathcal{N}(\mathbf{0}, \mathbf{I})$.

B PROOF OF SYMMETRY PROPERTY OF THE MSM SCORE JACOBIAN

We now show that the MSM score has a symmetric Jacobian, as in the true score. Assuming the underlying distribution is twice differentiable and well-behaved (Song & Ermon, 2019; Song et al., 2021b), differentiating the MSM score expression in (3) with respect to \mathbf{z}_t gives

$$\nabla^2 \log q_{\sigma_t}(\mathbf{z}_t) = \mathbf{W} \mathbb{E}_{\mathbf{S} \sim p(\mathbf{S})} \left[\mathbf{S}^\top \nabla^2 \log p_{\sigma_t}(\mathbf{s}_t | \mathbf{S}) \mathbf{S} \Big|_{\mathbf{s}_t = \mathbf{S}\mathbf{z}_t} \right]. \quad (12)$$

864 Since $\nabla^2 \log p_{\sigma_t}(s_t | \mathcal{S})$ is symmetric by assumption, and both the transformation $\mathcal{S}^\top(\cdot)\mathcal{S}$ and
865 expectation preserve symmetry, the result remains symmetric; multiplying by the diagonal matrix \mathcal{W}
866 also maintains symmetry, so the MSM score admits a symmetric Jacobian.
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 C PRACTICAL RELEVANCE OF ASSUMPTIONS AND THEORY
919920 C.1 PRACTICAL VALIDITY OF OUR ASSUMPTIONS ON FORWARD-OPERATOR
921

923 Our theory assumes two conditions: (i) the training measurements collectively cover the full measurement domain, and (ii) the **subsampling operators** \mathbf{S} used during image sampling are drawn independently from a distribution $p(\mathbf{S})$. Both conditions are realistic in many imaging modalities. For (i), different acquisitions naturally provide complementary subsets of measurements. For example, in magnetic resonance imaging (MRI), different k-space sampling masks are routinely used across acquisitions; in computed tomography (CT), projection angles can be varied; in optical tomography, source-detector positions or wavelengths can change; in positron emission tomography (PET), detector configurations or energy windows may differ; in ultrasound imaging, one can vary transducer firing patterns; and in light-field photography or electron microscopy, system parameters such as aperture, focal length, sample orientation, or defocus levels can be adjusted. **Beyond scientific imaging, image-restoration settings also satisfy this condition when different samples reveal different observable regions—for instance, box inpainting, random (dust-like) inpainting, or partially blurred regions that vary across images.** MSM can accommodate such scenarios because the observable regions collectively cover the full domain. However, degradations that apply uniformly across the entire image—such as global Gaussian blur, motion blur, or nonlinear measurement effects—do not expose complementary regions and therefore are not handled by the current formulation. Extending MSM to handle such globally applied degradations remains an interesting direction for future work.

939 For (ii), once the set of forward operators observed in the training data defines the empirical distribution $p(\mathbf{S})$, MSM simply samples new operators independently from this distribution during generation. **Note that this assumption is only required during sampling and does not require the physical hardware to acquire measurements independently; it simply reflects how MSM simulates operator variability during generation.** Importantly, sampling new operators in this way also ensures that all measurement coordinates are repeatedly visited throughout the diffusion process. If each stochastic loop drops a proportion p of coordinates, then the probability that a given coordinate is never selected across all diffusion steps is $p^{(\#\text{steps} \times w)}$, which becomes negligibly small in practice. For instance, with $p = 0.4$, 100 diffusion steps, and $w = 1$, this probability is $0.4^{100} \approx 1.6 \times 10^{-40}$. Thus, MSM effectively achieves full coverage of the measurement domain during sampling, avoiding the undesirable case where any region is left untouched.

950 C.2 EMPIRICAL ACCESSIBILITY OF BOUND PARAMETERS IN THEORY
951

953 Theorem 1 establishes that the KL divergence between the true distribution $q(\mathbf{z})$ and its stochastic
954 approximation $\hat{q}(\mathbf{z})$ is bounded as
955

$$956 D_{\text{KL}}(q(\mathbf{z}) \parallel \hat{q}(\mathbf{z})) \leq \frac{v^2}{w} C, \quad (13)$$

959 where v quantifies the variance of the stochastic score approximation and C is a finite constant
960 determined by the diffusion process.
961

962 To estimate the range of v in practice, we computed the squared error between the MSM score,
963 approximated using $w = 64$ mini-batches, and its stochastic approximation:
964

$$965 \sum_{i=1}^n \left\| \nabla \log q_{\sigma_t} \left(z^{(i)} \right) - \nabla \log \hat{q}_{\sigma_t} \left(z^{(i)} \right) \right\|_2^2, \quad (14)$$

969 averaged over 3,000 training images perturbed at timesteps $t = 200, 400, 600$. By varying the number
970 of mini-batches $w \in \{1, 4, 16\}$, we directly observed that the approximation error with MSM score
971 (which is approximated with $w = 64$) decreases with w , consistent with the theoretical scaling v^2/w
as in Table X for both FFHQ and fastMRI datasets.

972 Table 5: Empirical squared error between the MSM score (reference $w = 64$) and its stochastic approximation
 973 for different timesteps t and minibatch sizes w . Results are averaged over 3,000 training images for FFHQ and
 974 fastMRI.

Time step t	#Minibatches w	$\sum_{i=1}^n \ \nabla \log q_{\sigma_t}(\mathbf{z}^{(i)}) - \nabla \log \hat{q}_{\sigma_t}(\mathbf{z}^{(i)})\ _2^2$	
		FFHQ	fastMRI
200	16	3.57×10^{-3}	4.15×10^{-5}
	4	5.80×10^{-2}	1.15×10^{-4}
	1	6.17×10^{-1}	4.05×10^{-4}
400	16	8.20×10^{-4}	4.65×10^{-6}
	4	5.70×10^{-3}	1.12×10^{-5}
	1	3.20×10^{-2}	2.79×10^{-5}
600	16	5.60×10^{-4}	1.42×10^{-6}
	4	2.70×10^{-3}	4.17×10^{-6}
	1	3.70×10^{-3}	6.21×10^{-6}

991 For C , we recall from the proof of Theorem 1 that

$$992 \quad C = \int_0^T \frac{1}{4\mathcal{T}_t} dt, \quad (15)$$

993 where \mathcal{T}_t is the temperature associated with the variance-preserving diffusion in our experiment setup.
 994 Under this setting, $\mathcal{T}_t = \frac{1}{2}(1 - \alpha_t)/\alpha_t$ in terms of the signal scaling factor α_t that defines the noisy
 995 image at diffusion step t , as specified in (Park et al., 2025, Table 1). Hence,

$$996 \quad C = \int_0^T \frac{1 - \alpha_t}{4\alpha_t} dt. \quad (16)$$

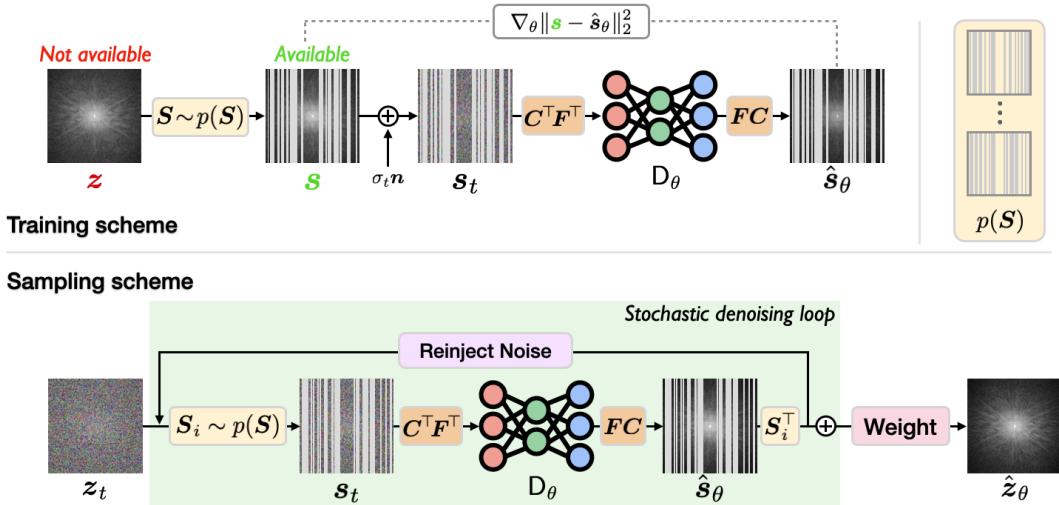
1001 Using the schedule parameters from prior work, we obtain $C = 101.01$ for our unconditional MSM
 1002 setup.

1003 These results demonstrate that both v and C are not abstract constants but measurable quantities. In
 1004 particular, v can be empirically estimated from score approximation error, and C admits a closed-form
 1005 expression based on the diffusion temperature schedule.

1026 **D IMPLEMENTATION DETAILS**
10271028 **D.1 MSM FRAMEWORK IN MR IMAGES**
10291030
1031 The main manuscript illustrates the measurement score-based diffusion model (*MSM*) framework's
1032 training and sampling schemes, but omits domain-specific transformations for clarity. These trans-
1033 formations are essential in the MRI setting, which requires conversions between measurement and
1034 image spaces before and after denoising.1035 Specifically, we apply the inverse Fourier transform \mathbf{F}^\top followed by the adjoint coil-sensitivity
1036 operator \mathbf{C}^\top to project the measurements into image space before denoising. After denoising, we
1037 map the denoised image back to measurement space by applying the forward coil-sensitivity operator
1038 \mathbf{C} and the Fourier transform \mathbf{F} .1039 This results in a modified version of (1), given by:
1040

1041
$$\hat{s}_\theta(s_t; \sigma_t) \leftarrow \mathbf{S} \mathbf{F} \mathbf{C} \mathbf{D}_\theta(\mathbf{C}^\top \mathbf{F}^\top s_t; \sigma_t), \quad (17)$$

1042

1043 where \mathbf{S} is the subsampling operator. A visual illustration is provided in Figure 4.
10441045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
10791068 **D.2 DETAILED MSM POSTERIOR SAMPLING ALGORITHM**
10691070 This appendix provides the dedicated algorithm for the MSM-based posterior sampling procedure
1071 introduced in Section 3.3. Algorithm 2 extends the unconditional MSM sampler by inserting, at each
1072 diffusion step, a data-consistency update derived from the posterior gradient. This makes explicit
1073 how MSM transitions from unconditional sampling to solving inverse problems.1076 **D.3 STOCHASTIC POSTERIOR SAMPLING FOR COMPRESSED-SENSING MRI**
10771078 Our posterior sampling algorithm is described in Section 3.3. For compressed-sensing MRI, we apply
1079 an additional simplification based on directly approximating the *partial posterior score* for each
partially subsampled measurement within the stochastic algorithm.

To perform posterior sampling for compressed-sensing MRI, we estimate the posterior score using a stochastic ensemble, similar to the MSM score ensemble in Section 3.2:

$$\begin{aligned}
\nabla \log p_{\sigma_t}(\mathbf{z}_t \mid \mathbf{y}) &= \nabla \log p_{\sigma_t}(\mathbf{z}_t) + \nabla \log p_{\sigma_t}(\mathbf{y} \mid \mathbf{z}_t) \\
&\approx \mathbf{W} \left[\frac{1}{w} \sum_{i=1}^w \mathbf{S}^{(i)\top} \nabla \log p_{\sigma_t}(\mathbf{s}_t^{(i)} \mid \mathbf{y}^{(i)}) \Big|_{\mathbf{s}_t^{(i)} = \mathbf{S}^{(i)} \mathbf{z}_t} \right] \\
&= \mathbf{W} \left[\frac{1}{w} \sum_{i=1}^w \mathbf{S}^{(i)\top} \left(\nabla \log p_{\sigma_t}(\mathbf{s}_t^{(i)}) + \nabla \log p_{\sigma_t}(\mathbf{y}^{(i)} \mid \mathbf{s}_t^{(i)}) \right) \Big|_{\mathbf{s}_t^{(i)} = \mathbf{S}^{(i)} \mathbf{z}_t} \right], \tag{18}
\end{aligned}$$

where the second line replaces the partial prior score in the stochastic MSM approximation (5) with the corresponding partial posterior score, and the third line expands this term using Bayes' rule into prior and likelihood components. All partial prior and likelihood distributions are conditioned on the corresponding subsampling operator $S^{(i)}$; for notational simplicity, we omit this conditioning in $p_{\sigma_t}(s_t^{(i)})$ and $p_{\sigma_t}(y^{(i)} | s_t^{(i)})$. For each subsampling operator $S^{(i)} \in \mathbb{R}^{m_i \times n}$, we define $y^{(i)} = S^{(i)} H^\top y$ to project the observed measurement y into the same partial measurement space as $s_t^{(i)}$. The log-likelihood gradient is approximated by

$$\begin{aligned} \nabla \log p_{\sigma_t}(\mathbf{y}^{(i)} \mid \mathbf{s}_t^{(i)}) &\approx \nabla \log p_{\sigma_t}(\mathbf{y}^{(i)} \mid \hat{\mathbf{s}}_{\theta}^{(i)}) \\ &= \gamma_t \nabla \left\| \mathbf{y}^{(i)} - \tilde{\mathbf{H}}^{(i)} \hat{\mathbf{s}}_{\theta}^{(i)} \right\|_2^2, \end{aligned} \quad (19)$$

where γ_t is a tunable step size, and we define $\tilde{\mathbf{H}}^{(i)} = \mathbf{S}^{(i)} \mathbf{H}^\top \mathbf{H} \mathbf{S}^{(i)\top}$ as the degradation operator $\mathbf{H}^\top \mathbf{H}$ restricted to the coordinates selected by $\mathbf{S}^{(i)}$.

D.4 MODEL ARCHITECTURE AND TRAINING CONFIGURATION

We adopted the U-Net architecture (Ronneberger et al., 2015), following the design used in (Ho et al., 2020; Dhariwal & Nichol, 2021), as our diffusion model backbone. Models were trained with the AdamW optimizer (Loshchilov & Hutter, 2019) and used an exponential moving average

(EMA) to stabilize training by averaging model weights over time, using a decay rate of 0.9999 for gradual updates. The diffusion process consisted of 1000 timesteps, with a linearly increasing noise variance schedule starting from 0.0001 and reaching 0.2 at the final step. All diffusion models, including diffusion-based baselines, were trained with the same architecture for each application. The hyperparameter setup and architectural details are summarized in Table 6.

Table 6: Diffusion model architecture and training hyperparameters for each dataset.

	RGB Face Images	Multi-Coil MRI
Base channel width	128	
Attention resolutions	[32, 16, 8]	
# Attention heads	4	
# Residual blocks	2	
Batch size	128	32
Learning rate	$5e - 5$	$1e - 5$
Channel multipliers	[1, 1, 2, 3, 4]	[1, 1, 2, 2, 4, 4]
# Input/Output channels	3	2

D.5 COMPARISON METHODS FOR UNCONDITIONAL SAMPLING

We now provide detailed setups for used baselines for unconditional sampling experiments.

Oracle diffusion. For both natural images and multi-coil MRI, we train the oracle diffusion model using clean images without any degradation. The model is trained to predict the noise component of noisy images for both data types.

Ambient diffusion (Daras et al., 2024c). For natural images, under the same training setup as MSM in noiseless and subsampled data scenario, following the recommendation of (Daras et al., 2024c) to apply minimal additional corruption, we define the further degradation operator \tilde{S} by dropping one additional 32×32 pixel box. The model is trained to directly predict the clean image, which we found to perform better than predicting the noise component.

For MRI data, under the same training setup as the noiseless and subsampled setting of MSM, to define the further degradation operator \tilde{S} , we drop an additional 10% of the sampling pattern while preserving the autocalibration signal region. Unlike the natural image case, the model is trained to predict the noise component, which we found to perform better than direct clean image prediction.

During sampling, we use 200 steps of denoising diffusion implicit models (DDIM) (Song et al., 2021a) and apply the same further degradation configuration used during training to subsample the diffusion iterate.

GSURE diffusion (Kawar et al., 2024). We only apply this method to the RGB face data, not the multi-coil MRI data, because GSURE diffusion’s extension from single-coil MRI to multi-coil MRI remains computationally infeasible, and no practical approach has been proposed. Under the same training setup of MSM’s noisy and subsampled training setup, we train the GSURE diffusion model to predict the clean images and follow exactly the same training configuration as described in (Kawar et al., 2024).

Note that we exclude recent expectation-maximization-based methods (Bai et al., 2024; 2025), as their reliance on clean-image initialization is incompatible with our setting, where no clean images are available.

D.6 COMPARISON METHODS FOR IMAGING INVERSE PROBLEMS

We now describe the baseline methods used for solving inverse problems.

Diffusion posterior sampling (DPS) (Chung et al., 2023). DPS estimates the gradient of the log-likelihood using the MMSE estimate $\hat{x}_\theta(x_t)$ from a pretrained diffusion model as

$$\nabla \log p(\mathbf{y} | \mathbf{x}_t) \approx \nabla \log p(\mathbf{y} | \hat{x}_\theta(\mathbf{x}_t)), \quad (20)$$

1188 where the gradient is taken with respect to \mathbf{x}_t .
 1189

1190 Following the original implementation, we set the step size for the likelihood gradient as $\gamma_t =$
 1191 $\frac{c}{\|\mathbf{y} - \mathbf{A}\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]\|_2}$, where c is selected via grid search within the recommended range [0.1, 10]. We used
 1192 $c = 2$ for the super-resolution experiment, $c = 0.7$ for box inpainting, and $c = 10$ for compressed
 1193 sensing MRI.

1194 **Ambient diffusion posterior sampling (A-DPS)** (Aali et al., 2025). A-DPS follows the same
 1195 posterior sampling strategy as DPS but uses a diffusion model trained on noiseless subsampled
 1196 data. For natural-image experiments, we use the pretrained Ambient diffusion model trained with a
 1197 dropping ratio $p = 0.4$. For MRI experiments, we use the pretrained Ambient diffusion model trained
 1198 at acceleration rate $R = 4$, consistent with the standard setup in diffusion-based MRI reconstruction.
 1199 The step size is set in the same form as DPS: $\gamma_t = \frac{c}{\|\mathbf{y} - \mathbf{A}\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]\|_2}$, with the constant c chosen
 1200 according to each inverse problem: $c = 2$ for super-resolution, $c = 0.7$ for box inpainting, and $c = 10$
 1201 for compressed sensing MRI.

1202 **Robust self-supervision via data undersampling (Robust SSDU)** (Millard & Chiew, 2024).
 1203 Robust SSDU is designed to handle noisy, subsampled measurements by introducing additional sub-
 1204 sampling and noise to the observed measurements during training. In our implementation, the primary
 1205 sampling mask S_1 exactly matches the test acquisition patterns (acceleration factors {2, 4, 6, 8}), and
 1206 the training noise level is set to the same value used at test time ($\sigma_n \in \{0.005, 0.01, 0.02, 0.03\}$).
 1207 Given the noisy subsampled input $\mathbf{s} = S_1 \mathbf{z} + \mathbf{n}$, where \mathbf{n} is additive Gaussian noise with standard
 1208 deviation σ_n , Robust SSDU forms a further corrupted input

$$\tilde{\mathbf{s}} = S_2 \mathbf{s} + \tilde{\mathbf{n}}, \quad (21)$$

1209 where S_2 has an acceleration factor of $R = 2$, and $\tilde{\mathbf{n}}$ is independent Gaussian noise with standard
 1210 deviation σ_n , matching the original measurement noise level, following the original implementation.
 1211

1212 **Denoising diffusion null-space model (DDNM)** (Wang et al., 2023a). DDDM also uses a diffusion
 1213 model trained on clean data and introduces a projection-based update that blends the prior estimate
 1214 and the measurement:

$$\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t, \mathbf{y}] \approx (\mathbf{I} - \Sigma_t \mathbf{A}^\dagger \mathbf{A}) \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] + \Sigma_t \mathbf{A}^\dagger \mathbf{y}, \quad (22)$$

1215 where \mathbf{A}^\dagger is the pseudoinverse and Σ_t is a weighting matrix, such as $\Sigma_t = \lambda_t \mathbf{I}$ or a spectrally tuned
 1216 version.

1217 We followed the enhanced version of DDDM described in (Wang et al., 2023a, Section 3.3 and
 1218 Equation (19)) to specify weight matrix Σ_t in (22).

1223 D.7 MEASURING FID SCORE

1224 To compute the Fréchet Inception Distance (FID), we used the implementation provided in the
 1225 following repository¹. For each method, we generated 10000 images, then computed FID using
 1226 features extracted from a pretrained inception network. For MRI images, which have complex-valued
 1227 channels, we converted them to magnitude images and replicated the single-channel magnitude three
 1228 times to form a 3-channel input compatible with the pretrained Inception network. Note that although
 1229 the pretrained FID model was trained on natural images, it still reflects perceptual quality on MRI
 1230 data (Bendel et al., 2023).

1¹<https://github.com/mseitzer/pytorch-fid>

1242
1243

D.8 ILLUSTRATION OF SUBSAMPLED MEASUREMENTS AND THEIR SCORES

1244
1245
1246
1247
1248

The main manuscript establishes that MSM learns the score of each subsampled measurement—implicitly conditioned on the corresponding subsampling mask—and shows how these measurement scores are leveraged to synthesize fully sampled measurements. The purpose of this section is to visually illustrate how these measurement scores behave under different masks and to clarify the dimensional structure underlying MSM sampling.

1249
1250
1251
1252
1253

Recall that MSM operates on a subsampled measurement $s_t \in \mathbb{R}^m$ formed as $s_t = S z_t$, where $z_t \in \mathbb{R}^n$ is not accessible fully sampled measurement and $S \in \{0, 1\}^{m \times n}$ with $m < n$ is a binary subsampling mask. Because each s_t is produced by a specific mask S , the measurement score $\nabla \log p_{\sigma_t}(s_t)$ is implicitly mask-conditioned: it describes the distribution of s_t restricted to the coordinates selected by that mask, rather than a score marginalized over all masks.

1254
1255
1256
1257
1258
1259

Figure 5 provides a concrete visual example using a 64×64 image. The figure illustrates: (i) how different masks S produce different subsampled measurements s_t , (ii) how the dimensionality changes from the fully sampled measurement to each subsampled measurement; and (iii) how MSM performs score-based denoising under several predefined masks. This visualization makes explicit how the measurement scores are inherently mask-conditioned and how MSM integrates them during sampling to reconstruct the fully sampled measurement.

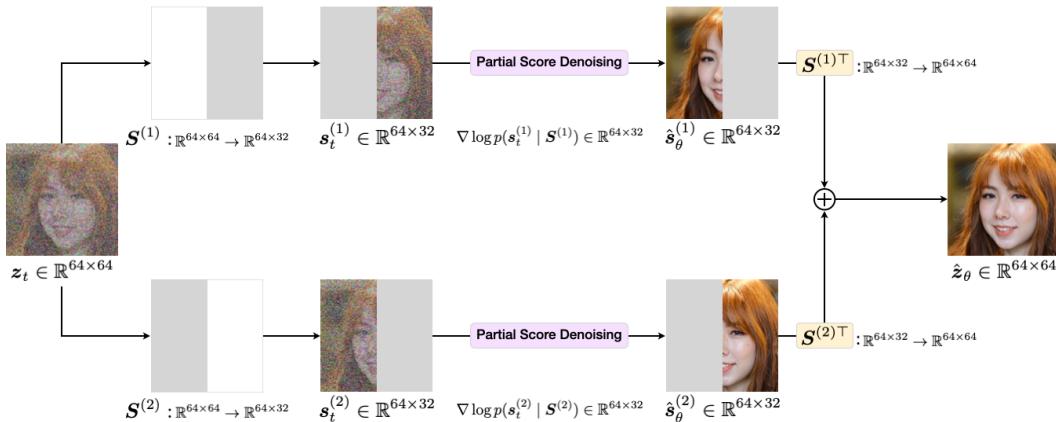
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

Figure 5: Visual illustration of subsampled measurements, their associated masks, and the corresponding measurement scores used in MSM sampling.

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 **E ABLATION STUDIES AND DISCUSSIONS**
12971298 **E.1 PRIOR WORK AND DISTINCTION OF OUR APPROACH**
1299

1300 Among recent approaches that train diffusion models without clean images, ambient diffusion (Daras
1301 et al., 2024c) and its posterior-sampling extension A-DPS (Aali et al., 2025) are the most directly
1302 related, as they also learn from degraded natural images and multi-coil MRI. However, both operate in
1303 the *image domain*, approximating clean-image scores by further subsampling images and predicting
1304 the original subsampled images. In contrast, MSM generalizes the idea of patch-based learning—
1305 widely applied to enable computationally efficient supervised training—to self-supervised learning in
1306 the measurement domain. It learns partial *measurement scores* restricted to observable regions from
1307 only noisy, subsampled measurements, and combines them in expectation to form a full measurement
1308 score. With our efficient stochastic algorithm, MSM enables both unconditional sampling and
1309 posterior sampling for solving linear inverse problems. Table 7 highlights the key differences.
1310

1310 Table 7: Comparison of MSM with ambient diffusion (Daras et al., 2024c) and its direct extension
1311 Ambient Diffusion Posterior Sampling (A-DPS) (Aali et al., 2025). MSM is the first to directly learn
1312 measurement scores from noisy, subsampled measurements and to use them for both generating full
1313 measurements and solving inverse problems.
1314

	Ambient Diffusion	Ambient-DPS	MSM (Ours)
Training data	Subsampled data, with further random subsampling in training	Only noisy, subsampled measurements	
Learned object	Learns the approximation of the true score by predicting the original subsampled image from a further subsampled input	<i>Partial measurement scores</i> , restricted to observable regions	
Sampling domain	Image domain	Measurement domain: stochastic generation of the full measurements	
Posterior sampling	Limited: can only solve inverse problems when the test-time degradation matches the training degradation	Direct extension of diffusion posterior sampling (Chung et al., 2023) applied to pretrained ambient diffusion	New posterior score formulation using partial measurement posterior scores; stochastic conditional sampling of full measurements
Key novelty	First diffusion framework trained purely on subsampled data	Extension of ambient diffusion to posterior sampling	First to <i>directly learn measurement scores</i> and use them in a stochastic measurement-space diffusion process for both full measurement and posterior sampling

1350
1351

E.2 IMAGE SAMPLING WITH MSM USING EXTREMELY SUBSAMPLED DATA

1352
1353
1354
1355

We evaluated the unconditional sampling capability of our framework in a more challenging training scenario with extremely subsampled data. Specifically, we used MRI data with k-space subsampling via random masks at an acceleration factor of $R = 8$, including fully-sampled vertical lines and the central 20 lines for autocalibration.

1356
1357
1358
1359

MSM was configured with a stochastic loop parameter $w = 2$ and took 200 sampling steps. As a baseline, ambient diffusion took 200 sampling steps. As shown in Table 8 and Figure 6, MSM achieves a lower FID score than the Ambient diffusion on the same data setup, demonstrating the robustness of our approach under high subsampling rates.

1360
1361
1362
1363
1364

Table 8: FID scores under different training settings on multi-coil brain MR images. **Best values** are highlighted for each training scenario, with comparisons shown when corresponding baseline methods are available. Note how MSM consistently achieves lower FID scores than the Ambient diffusion, even in extremely subsampled data scenarios.

1365
1366
1367
1368
1369
1370
1371
1372
1373

Training data	Methods	FID \downarrow
No degradation	Oracle diffusion	29.25
$R = 4, \rho = 0$	MSM	43.60
$R = 8, \rho = 0$	Ambient diffusion	47.80
	MSM	74.92
	Ambient diffusion	84.77

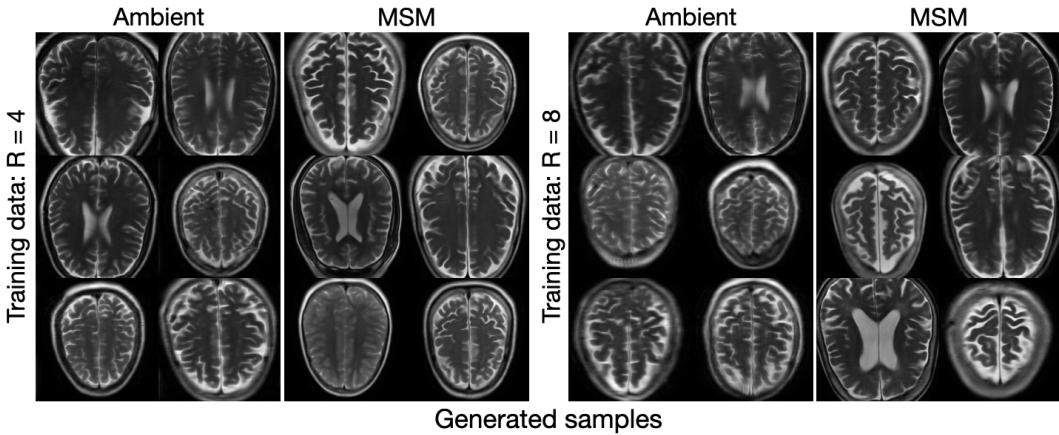


Figure 6: Visual comparison of MSM trained under extreme subsampling ($R = 8$) with MSM and baseline methods trained under less degraded conditions.

1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404 E.3 SOLVING INVERSE PROBLEMS WITH MSM TRAINED ON NOISY AND SUBSAMPLED DATA
1405

1406 We showed that MSM trained on subsampled data can solve inverse problems for both natural images
1407 and multi-coil MRI. We further verified that MSM, when trained on noisy and subsampled data, can
1408 achieve comparable performance using the same step size for the log-likelihood gradient as in the
1409 subsampled-only scenario, as summarized in Table 9 and Figure 7.

1410 Table 9: Results on two natural image inverse problems and two compressed sensing MRI tasks. MSM trained
1411 on subsampled data is compared with MSM trained on noisy and subsampled data (training type shown in
1412 parentheses). Both training setups yield comparable performance across all metrics.

1414	Testing data	Input	MSM (Noisy & Subsampled)	MSM (Noiseless & Subsampled)
1415	Box Inpainting	PSNR↑	18.26	24.16
		SSIM↑	0.749	0.864
		LPIPS↓	0.304	0.081
1418	SR (×4)	PSNR↑	23.21	27.99
		SSIM↑	0.728	0.868
		LPIPS↓	0.459	0.127
1421	CS-MRI (×4)	PSNR↑	22.75	29.74
		SSIM↑	0.648	0.826
		LPIPS↓	0.306	0.168
1424	CS-MRI (×6)	PSNR↑	21.94	28.11
		SSIM↑	0.617	0.795
		LPIPS↓	0.342	0.192
1427	Inpainting	Input	MSM ^{noisy} _{subsampled}	MSM ^{noiseless} _{subsampled}
		18.04 / 0.33	22.33 / 0.08	23.20 / 0.05
		20.62 / 0.48	25.59 / 0.13	25.80 / 0.11
	SR (×4)			
		23.47 / 0.28	29.47 / 0.14	29.56 / 0.12

1439 Figure 7: Visual comparison between MSM trained on noisy and subsampled data and MSM trained
1440 on only subsampled data. Both models produce high-quality results on natural image and MRI tasks.

1441 E.4 COMPARISON WITH CLASSICAL CS-MRI RECONSTRUCTION METHOD
1442

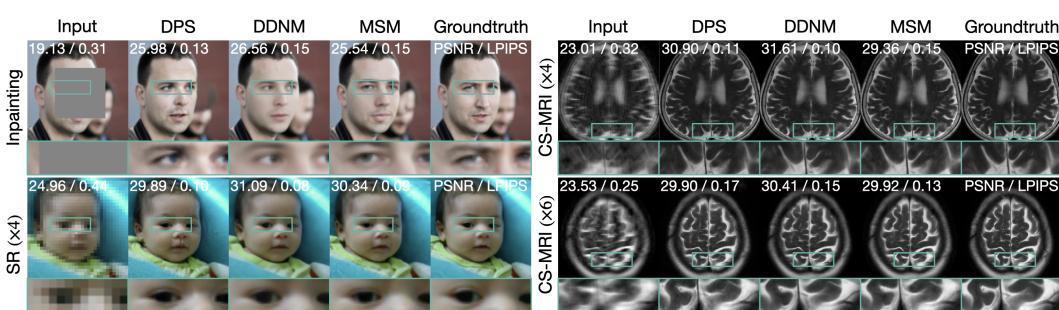
1443 We have shown that MSM outperforms diffusion-based and self-supervised methods in multi-coil
1444 compressed sensing MRI, all trained without clean data. We now compare MSM with the classical
1445 CS-MRI method: total variation (TV) regularization.

1447 Table 10: Quantitative results on two compressed sensing MRI tasks. MSM, trained using only subsampled
1448 data, is compared with the classical CS-MRI method: total variation (TV) regularization.

1450	Setup	Input	TV	MSM
1452	CS-MRI (×4)	PSNR↑	22.75	25.71 30.71
		SSIM↑	0.648	0.750 0.839
		LPIPS↓	0.306	0.238 0.145
1455	CS-MRI (×6)	PSNR↑	21.94	24.18 28.86
		SSIM↑	0.617	0.702 0.805
		LPIPS↓	0.342	0.282 0.168

1458 E.5 COMPARISON WITH DIFFUSION-BASED INVERSE PROBLEM SOLVERS TRAINED ON
1459 CLEAN DATA
14601461 We compared MSM against diffusion-based inverse problem solvers—DPS (Chung et al., 2023)
1462 and DDNM (Wang et al., 2023a)—that use diffusion priors trained on clean images, on both RGB
1463 face images and multi-coil compressed sensing MRI. Detailed configurations of these methods are
1464 provided in Section D.6.1465 The measurement noise level was set to $\eta = 0.01$, and all experimental setups for both MSM and
1466 the baselines followed those described in Section 4.1 and Section 4.2. The results are summarized
1467 in Table 11 and Figure 8. Notably, although MSM was trained only on subsampled measurements,
1468 it performs comparably to the baselines that leverage clean data-based pretrained diffusion models
1469 and even surpasses DPS on several inverse problems across multiple metrics. This result highlights
1470 that reconstruction quality depends not only on the diffusion prior but also on the data consistency
1471 strategy. Because DDNM employs a data consistency strategy similar to ours, it achieves slightly
1472 better results than ours; in contrast, DPS relies on a different data consistency strategy, which leads to
1473 its distinct and generally lower performance even when using the clean diffusion prior.1474 Table 11: Quantitative results on two natural image inverse problems and two compressed sensing MRI tasks.
1475 MSM, trained using only subsampled data, is compared with methods that use pretrained diffusion models
1476 trained on clean data. The number of iterations used for each method is shown in parentheses. **Best** and
1477 **second-best** values are highlighted per metric (PSNR, SSIM, LPIPS). Note that despite not having access to the
1478 clean data, MSM approaches the performance of the clean data-based methods.

Testing data	Input	DPS (1000)	DDNM (200)	MSM (200)
Box Inpainting	PSNR↑	18.26	23.64	25.16 24.71
	SSIM↑	0.749	0.864	0.883 0.867
	LPIPS↓	0.304	0.077	0.071 0.076
SR (×4)	PSNR↑	23.21	27.20	28.82 28.11
	SSIM↑	0.728	0.841	0.897 0.868
	LPIPS↓	0.459	0.128	0.126 0.117
CS-MRI (×4)	PSNR↑	22.75	31.31	32.84 30.71
	SSIM↑	0.648	0.845	0.895 0.839
	LPIPS↓	0.306	0.112	0.104 0.145
CS-MRI (×6)	PSNR↑	21.94	29.19	29.95 28.86
	SSIM↑	0.728	0.795	0.851 0.805
	LPIPS↓	0.459	0.149	0.141 0.168

1504 Figure 8: Visual comparison of reconstructed images using diffusion-based inverse problem solvers.
1505

1512
1513

E.6 EFFECT OF STOCHASTIC LOOP ITERATIONS ON SAMPLE QUALITY

1514
1515
1516
1517

Our MSM framework includes a configurable parameter w , which controls the number of stochastic iterations used to denoise the full measurement iterates. As theoretically justified in Appendix A, using a larger w yields a closer convergence to the ideal MSM sampling algorithm that averages infinitely many partial scores at each iteration.

1518
1519
1520
1521
1522
1523
1524
1525

To empirically validate this, we fixed the number of diffusion sampling steps to 10 and explored three different values of w in $\{1, 2, 4\}$. We intentionally fixed the low number of sampling steps to isolate the effect of w , as increasing the number of diffusion steps improves sample quality. Figure 9 illustrates that larger w leads to visually more plausible generations: while $w = 1$ can still produce reasonable samples, it often results in artifacts, such as visible boundaries in some regions. As w increases, the results become more stable and visually coherent. Table 12 and Table 13 further support these observations quantitatively, showing that larger w achieves better FID scores across both datasets.

1526
1527
1528
1529
1530

Table 12: FID and average time per sampling for MSM with varying stochastic loop iterations w on face images. Note that the trade-off exists where larger w reduces FID but increases sampling time.

1531
1532
1533
1534
1535
1536

Training data	Methods	FID \downarrow	Time (s)
	MSM ($w = 4$)	85.02	1.02
$p = 0.4, \rho = 0$	MSM ($w = 2$)	90.65	0.51
	MSM ($w = 1$)	125.59	0.27

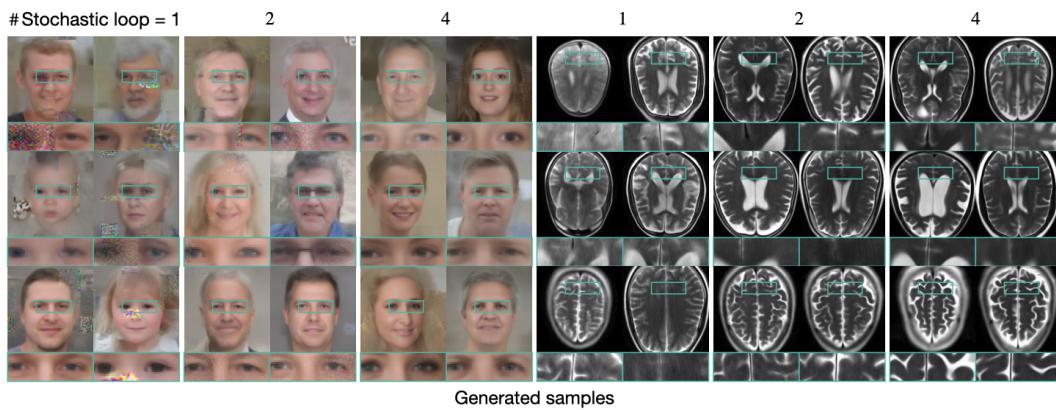
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
15491550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 9: Samples generated using different values of the stochastic loop parameter w .

1566
1567

E.7 SOLVING INVERSE PROBLEMS UNDER DIFFERENT TEST NOISE LEVELS USING MSM

1568
1569
1570
1571
1572

We additionally evaluate how MSM’s posterior solver behaves under varying measurement noise at inference time by measuring reconstruction quality across multiple test noise levels while keeping the pretrained measurement-domain diffusion model fixed. As summarized in Table 14, MSM maintains strong performance across all noise levels and generally outperforms competing methods trained without clean images.

1573
1574
1575
1576

Table 14: Reconstruction results across different test noise levels for inpainting, super-resolution, and CS-MRI. **Best values** per metric are highlighted. MSM demonstrates robust performance across noise levels and generally outperforms alternative methods trained without clean images.

1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Setup	Noise level		Input	A-DPS	SSDU	MSM
Inpainting	$\eta = 0.005$	PSNR \uparrow	18.29	19.26	N/A	24.75
		SSIM \uparrow	0.757	0.654	N/A	0.874
		LPIPS \downarrow	0.299	0.288	N/A	0.068
	$\eta = 0.01$	PSNR \uparrow	18.26	20.14	N/A	24.71
		SSIM \uparrow	0.749	0.621	N/A	0.867
		LPIPS \downarrow	0.304	0.305	N/A	0.076
Inpainting	$\eta = 0.02$	PSNR \uparrow	18.19	19.16	N/A	24.68
		SSIM \uparrow	0.726	0.657	N/A	0.854
		LPIPS \downarrow	0.322	0.288	N/A	0.089
	SR ($\times 4$)	PSNR \uparrow	23.27	22.13	N/A	28.29
		SSIM \uparrow	0.734	0.696	N/A	0.880
		LPIPS \downarrow	0.456	0.287	N/A	0.107
SR ($\times 4$)	$\eta = 0.01$	PSNR \uparrow	23.21	22.61	N/A	28.11
		SSIM \uparrow	0.728	0.702	N/A	0.868
		LPIPS \downarrow	0.459	0.277	N/A	0.117
	$\eta = 0.02$	PSNR \uparrow	23.09	22.41	N/A	27.59
		SSIM \uparrow	0.711	0.702	N/A	0.836
		LPIPS \downarrow	0.470	0.278	N/A	0.147
CS-MRI ($\times 4$)	$\eta = 0.005$	PSNR \uparrow	22.67	27.01	29.70	31.00
		SSIM \uparrow	0.652	0.777	0.855	0.858
		LPIPS \downarrow	0.305	0.197	0.165	0.127
	$\eta = 0.01$	PSNR \uparrow	22.62	27.28	29.65	30.71
		SSIM \uparrow	0.648	0.804	0.847	0.839
		LPIPS \downarrow	0.306	0.173	0.160	0.145
CS-MRI ($\times 4$)	$\eta = 0.02$	PSNR \uparrow	22.52	27.12	28.99	29.07
		SSIM \uparrow	0.623	0.792	0.833	0.769
		LPIPS \downarrow	0.329	0.178	0.168	0.205

1620 E.8 EFFECT OF NOISE REINJECTION IN MSM SAMPLING
16211622 As introduced in Section 3.2, MSM includes a noise-reinjection step inside each stochastic loop. At
1623 every loop iteration, the diffusion noise is added back to the denoised subsampled estimate before
1624 proceeding to the next update. This step helps ensure that coordinates updated in earlier iterations
1625 remain compatible with the current iterate. In this section, we compare reconstruction performance
1626 with and without this noise-reinjection step.1627 **Table 15:** Ablation study on the effect of noise reinjection in MSM sampling. We report quantitative results
1628 on natural image inpainting, 4× super-resolution, and CS-MRI at acceleration rates 4 and 6. **Best values** are
1629 highlighted per metric. MSM achieves the best performance across both distortion-based and perception-oriented
1630 metrics.

Setup	Input	A-DPS	MSM ($w = 3$ without noise reinject)	MSM ($w = 3$ with noise reinject)
Inpainting	PSNR↑	18.26	20.14	24.63
	SSIM↑	0.749	0.621	0.867
	LPIPS↓	0.304	0.305	0.076
SR ($\times 4$)	PSNR↑	23.21	22.61	28.11
	SSIM↑	0.728	0.702	0.868
	LPIPS↓	0.459	0.277	0.117
CS-MRI ($\times 4$)	PSNR↑	22.75	27.28	30.71
	SSIM↑	0.648	0.804	0.839
	LPIPS↓	0.306	0.173	0.145
CS-MRI ($\times 6$)	PSNR↑	21.94	26.29	28.86
	SSIM↑	0.617	0.763	0.805
	LPIPS↓	0.342	0.201	0.168

1674 **E.9 LEARNING PARTIAL MEASUREMENT SCORES FROM NOISY MEASUREMENTS WITH**
 1675 **INCORRECT NOISE ASSUMPTIONS**

1677 In practice, the noise level of the measurements is rarely known exactly, even though prior work
 1678 on training diffusion models from noisy or incomplete data typically assumes access to a noise
 1679 estimate (Aali et al., 2023; Chen et al., 2022; Daras et al., 2024b; Kawar et al., 2024). To assess MSM’s
 1680 sensitivity to this assumption, we evaluate the noisy-measurement training procedure from Section 3.4
 1681 under both a matched and mismatched setting. The model is trained assuming a measurement noise
 1682 level of $\rho_{\text{assumed}} = 0.1$ and we compare its performance when the true test-time noise matches this
 1683 value ($\rho_{\text{true}} = 0.1$) versus when it is lower ($\rho_{\text{true}} = 0.05$). As shown in Table 16, MSM exhibits only
 1684 a minor change in FID, indicating that it is robust to moderate mis-specification of the measurement
 1685 noise level during training.

1686 **Table 16:** FID scores for unconditional generation under noise-level mis-specification. The model is trained
 1687 assuming $\rho_{\text{assumed}} = 0.1$, while the true noise level ρ_{true} may differ. MSM shows only minor degradation when
 1688 the assumed noise level does not match the actual one, demonstrating robustness to noise-level mis-specification.

Training data	Methods	FID \downarrow
$p = 0.4, \rho_{\text{assumed}} = 0.1, \rho_{\text{true}} = 0.1$	MSM (Matched)	37.14
$p = 0.4, \rho_{\text{assumed}} = 0.1, \rho_{\text{true}} = 0.05$	MSM (Mismatched)	38.28

1728 **E.10 COMPARISON OF INFERENCE EFFICIENCY FOR CONDITIONAL SAMPLING: MSM VS.**
1729 **AMBIENT DPS**
1730

1731 We compare the inference efficiency of MSM and Ambient DPS for conditional sampling in inverse
1732 problems. Since MSM requires w stochastic loops per diffusion step while Ambient DPS does
1733 not, it is important to assess this cost–performance trade-off. All methods are evaluated under the
1734 200 diffusion sampling steps. We test MSM with $w \in \{1, 2, 3\}$ across inpainting, super-resolution,
1735 and compressed-sensing MRI. Even with the minimal configuration $w = 1$, MSM achieves higher
1736 reconstruction quality than Ambient DPS while requiring only a single loop per diffusion step.
1737 Increasing w provides the expected accuracy–efficiency trade-off characteristic of our stochastic
1738 score aggregation. Results are summarized in Table 17.
1739
1740 **Table 17: Inference efficiency comparison between Ambient DPS and MSM under different stochastic loop w .**
1741

Setup	Input	A-DPS	MSM ($w = 1$)	MSM ($w = 2$)	MSM ($w = 3$)
Inpainting	PSNR↑	18.26	20.14	24.48	24.64
	SSIM↑	0.749	0.621	0.868	0.867
	LPIPS↓	0.304	0.305	0.075	0.076
SR ($\times 4$)	PSNR↑	23.21	22.61	28.27	28.15
	SSIM↑	0.728	0.702	0.872	0.870
	LPIPS↓	0.459	0.277	0.120	0.117
CS-MRI ($\times 4$)	PSNR↑	22.75	27.28	29.12	30.50
	SSIM↑	0.648	0.804	0.806	0.828
	LPIPS↓	0.306	0.173	0.172	0.154
CS-MRI ($\times 6$)	PSNR↑	21.94	26.29	27.20	28.21
	SSIM↑	0.617	0.763	0.759	0.789
	LPIPS↓	0.342	0.201	0.202	0.178

1782 **F USE OF LARGE LANGUAGE MODELS**
17831784 In preparing this manuscript, we used large language models (LLMs) solely for minor editorial
1785 assistance, such as correcting grammar and fixing typographical errors. LLMs were not used for
1786 research ideation, methodological development, data analysis, or substantive writing. All scientific
1787 contributions and writing decisions are entirely those of the authors.
17881789 **G REPRODUCIBILITY STATEMENT**
17901791 We have made significant efforts to ensure reproducibility of our work. An anonymous supplementary
1792 code package is provided, which fully reproduces our proposed method for both training and
1793 unconditional sampling, as well as for solving inverse problems. Detailed descriptions of the models,
1794 training configurations, and evaluation protocols are included in the main paper and Appendix D.4.
1795 Additional implementation details and data preprocessing steps are provided in the supplementary
1796 materials.
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835