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ABSTRACT

Diffusion models have achieved remarkable success in tasks ranging from image
generation to inverse problems. However, training diffusion models typically re-
quires clean ground-truth images, which are unavailable in many applications. We
introduce the Measurement Score-based diffusion Model (MSM), a novel frame-
work that learns partial measurement scores directly from noisy and subsampled
measurements. By aggregating these scores in expectation, MSM synthesizes fully
sampled measurements without requiring access to clean images. To make this
practical, we develop a stochastic sampling variant of MSM that approximates the
expectation efficiently and analyze its asymptotic equivalence to the exact formula-
tion. We further extend MSM to posterior sampling for linear inverse problems,
enabling accurate image reconstruction directly from partial scores. Experiments
on natural images and multi-coil MRI demonstrate that MSM achieves state-of-
the-art performance in unconditional generation and inverse problem solving—all
while being trained exclusively on degraded measurements.

1 INTRODUCTION

Score-based diffusion models are powerful generative methods that sample from high-dimensional
distributions by learning the score function—the gradient of the log-density—from training data.
They achieve state-of-the-art performance in generating natural images (Dhariwal & Nichol, 2021),
medical images (Khader et al., 2023), and more (Chung et al., 2024). Beyond generation, diffusion
models can be adapted for conditional sampling to solve inverse problems. However, training requires
a large set of clean data, which is often costly or difficult to obtain, such as from hardware limits for
high-resolution images or long MRI scan times that cause patient discomfort.

To overcome the need for clean training data, recent approaches train diffusion models on subsam-
pled (Daras et al., 2024c), noisy (Xiang et al., 2023; Daras et al., 2024b), or jointly subsampled and
noisy observations (Kawar et al., 2024), aiming to approximate the clean image score from degraded
measurements. However, this is an unnecessarily difficult objective: since measurements typically lie
in a structured subspace, recovering the full image score from degraded data is inherently challenging.

A more natural strategy is to learn partial measurement scores directly within these subspaces. This
perspective is closely related to the success of patch-based methods in imaging, where training on
local patches improves scalability (Alkinani & El-Sakka, 2017; Wang et al., 2023b; Hu et al., 2024a).
Our work extends this principle from the image domain to the measurement domain, enabling a new
framework for training diffusion models entirely from degraded measurements. Operating in the
measurement domain brings a key advantage: each subsampled measurement is uniquely defined by
the acquisition operator, whereas a corrupted image is not—infinitely many images may map to the
same measurement. Training in the measurement domain removes this ambiguity and ensures that
the model learns to denoise well-defined, physically meaningful inputs.

We introduce the Measurement Score-based diffusion Model (MSM), which extends the idea of
patch-based learning from the image domain to the measurement domain. Instead of recovering
full-image scores, MSM learns denoising score functions restricted to the observable regions of noisy,
subsampled measurements—enabling self-supervised training without clean data. By aggregating
these partial scores through randomized subsampling, MSM defines an effective framework for both
generating full measurements and solving inverse problems. To make MSM practical, we propose
efficient stochastic sampling algorithms for unconditional generation and posterior sampling in linear
inverse problems. Extensive experiments on natural images and multi-coil MRI demonstrate that
MSM matches or surpasses state-of-the-art performance.
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2 BACKGROUND

2.1 SCORE-BASED DIFFUSION MODELS

Score-based diffusion models (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021c; Park et al.,
2025) learn the score function using neural networks. Tweedie’s formula (Efron, 2011) relates
the score function to the minimum mean square error (MMSE) denoiser, allowing the score to be
estimated using only noisy inputs and their corresponding denoised outputs. Learning score function
is performed across varying noise levels, by considering noisy images xt = x+ σtn, where x is a
clean image, n ∼ N (0, I), and σt is the noise level at the timestep t.

Given a denoiser Dθ trained to minimize the mean squared error (MSE), Tweedie’s formula approxi-
mates the score function as ∇ log pσt

(xt) = (Dθ(xt)− xt) /σ
2
t . This relationship allows denoisers

to serve as practical estimators of the score function at varying noise levels, providing gradients that
guide reverse-time stochastic sampling (Robbins, 1956; Miyasawa, 1961; Vincent, 2011).

Sampling then proceeds through a sequence of random walks (Song et al., 2021c; Park et al., 2025) as
xt−1 = xt + τt∇ log pσt

(xt) +
√
2τtTtn, for t = T, T − 1, . . . , 1, where σt, τt, and Tt denote the

noise-level, step-size, and temperature parameters. These parameters can be derived from theoretical
frameworks (Ho et al., 2020; Song et al., 2021c) or tuned empirically (Park et al., 2025), and the
initial sampling iterate xT is drawn from a standard Gaussian to be consistent with the training input
of the denoiser.

2.2 TRAINING DIFFUSION MODELS WITHOUT CLEAN DATA

Training diffusion models to learn the score of clean images typically requires access to high-quality,
clean data. However, in many applications, data is often subsampled, noisy, or both.

Training with noiseless but subsampled measurements. Ambient diffusion (Daras et al., 2024c;
Aali et al., 2025) is a recent method for training diffusion models from subsampled measurements
by applying an additional subsampling operation during training. At each step, the model receives
a further subsampled and noise-perturbed input and learns to reconstruct the original subsampled
measurement. This procedure jointly encourages denoising and inpainting, guiding the model to
approximate the conditional expectation of the clean image given a noisy, partially observed input.

Training with noisy but fully-sampled measurements. SURE-score (Aali et al., 2023) enables
training score-based diffusion models without access to clean data by leveraging Stein’s unbiased
risk estimator (SURE) (Stein, 1981). SURE-score trains the diffusion model using only noisy mea-
surements, combining two loss functions: a SURE-based loss for denoising the measurements and a
denoising loss for the diffusion noise added on top of the denoised estimate. Another approach (Daras
et al., 2024b) considers two regimes based on the relationship between measurement noise and diffu-
sion noise. When measurement noise is relatively small, the method estimates the clean image using
Tweedie’s formula after predicting the noisy measurement from the diffusion iterate. Conversely,
if measurement noise exceeds diffusion noise, the model is trained with a consistency loss (Daras
et al., 2024a), which encourages stable denoising outputs across nearby timesteps by enforcing that
predictions remain consistent along the model’s reverse trajectory.

Training with noisy and subsampled measurements. GSURE diffusion (Kawar et al., 2024) trains
diffusion models using only noisy, subsampled data by adapting the Generalized SURE loss (Eldar,
2008) to the diffusion setting. It reformulates the training objective as a projected loss computable
without clean images. While this objective function is theoretically shown to be equivalent to the
supervised diffusion loss under the assumption that the sampling mask and the denoising error are
independent, GSURE diffusion has two limitations: it has so far only been demonstrated in the
single-coil setting and extending it to multi-coil MRI remains computationally challenging due
to the need for an SVD of the full measurement operator; it also requires the minimum diffusion
noise level σ0 to match the measurement noise level ρ. The latter can severely degrade sampling
performance when ρ exceeds typical value of σ0 (e.g., σ0 = 0.01 in (Ho et al., 2020; Dhariwal &
Nichol, 2021)). Other recent methods (Bai et al., 2024; 2025) address the same setting by alternating
between reconstructing clean images using diffusion priors pretrained on limited clean data and
refining the model to learn from noisy, subsampled measurements.
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Figure 1: Illustration of the Measurement Score-based diffusion Model (MSM) for training and
sampling using subsampled data. Training: MSM is trained solely on degraded measurements.
Diffusion noise is added to these measurements, and the model learns to denoise them. Sampling:
At each diffusion step, MSM randomly subsamples the current full-measurement iterate, denoises the
resulting partial measurement, and aggregates multiple outputs. A weighting vector compensates for
overlapping contributions across partial measurements. See Figure 4 for the MRI-specific version.

While these methods differ in how they handle subsampling and noise, they share a common
challenge: they attempt to directly approximate the full image score from degraded data. In contrast,
our approach leverages the partial measurement-based statistics to generate the full measurements by
directly learning measurement scores restricted to observed measurements. A detailed comparison of
our approach with related approaches is provided in Appendix E.1.

2.3 IMAGING INVERSE PROBLEMS

Inverse problems aim to recover an unknown image x ∈ Rp from noisy, undersampled measurements
y ∈ Rm, modeled as y = Ax+e, where A ∈ Rm×p is a known forward operator and e ∼ N (0, ηI)
is Gaussian noise with variance η.

When clean training data is unavailable, self-supervised learning is often used for training neural
networks directly on degraded measurements, without the need for clean ground-truth data (Chen
et al., 2021; 2022; Hu et al., 2024b; Yaman et al., 2020; Millard & Chiew, 2023). For example,
SSDU (Yaman et al., 2020; Millard & Chiew, 2023) is a widely-used approach for training end-to-end
restoration networks using distinct subsets of the measurements. In the context of score-based
diffusion models, Ambient Diffusion Posterior Sampling (A-DPS) (Aali et al., 2025) replacing the
clean-image-trained model in the popular DPS method (Chung et al., 2023) with an Ambient diffusion
model trained on subsampled measurements.

3 MEASUREMENT SCORE-BASED DIFFUSION MODEL

We present the training and sampling procedures for MSM. Our approach generalizes the idea of
patch-based learning—widely used to enable computationally efficient supervised training—to self-
supervised learning in the measurement domain. A key feature of MSM is that it operates solely on
subsampled measurements during training. This enables learning partial measurement scores without
access to clean ground-truth data and naturally extends self-supervised denoising to the challenging
setting of noisy, subsampled measurements. We also introduce a conditional sampling algorithm that
uses the pretrained MSM to solve linear inverse problems.
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3.1 LEARNING PARTIAL MEASUREMENT SCORES

We first consider the setting where MSM has access only to partial, noiseless observations of an
unknown fully-sampled measurement z ∈ Rn. Let s ∈ Rm denote subsampled measurement as

s = Sz ∈ Rm,

where S ∈ {0, 1}m×n, with m < n, is a subsampling mask drawn from distribution p(S). We
assume that in the absence of noise, the fully-sampled measurement z uniquely determines the
underlying image x. The definition of z depends on the application: for inpainting we set z = x,
where x ∈ Rp is the clean image; for MRI, we set z = FCx, where F is the Fourier transform
and C is coil-sensitivity operator (Fessler, 2020). More broadly, we suppose that fully-sampled
measurements are of form z = Tx, where T ∈ Rn×p (p ≥ n) is an invertible transformation. It is
important to note that MSM is designed to operate solely on partial measurements s = Sz, with
S ∼ p(S), without access to any fully-sampled z or clean image x.

We define a forward diffusion process that adds Gaussian noise to the subsampled measurement s

st = s+ σtn, n ∼ N (0, I),

where t ∈ {1, . . . , T}, s0 = s, and sT approaches a known distribution such as a standard Gaussian.
At each step t, the diffusion model Dθ takes as input the noisy subsampled measurement st and is
conditioned on the noise level σt, and outputs a denoised estimate of the subsampled measurement
ŝθ ∈ Rm as

ŝθ(st ; σt) = Dθ(st ; σt). (1)
The model is trained by minimizing the mean squared error (MSE) loss between the predicted and
true subsampled measurements:

L(θ) = Est,t

[
∥s− ŝθ(st ;σt)∥22

]
.

Once trained, the partial measurement score function can be approximated using Tweedie’s for-
mula (Efron, 2011), which estimates the gradient of the log-probability of the measurement iterate:

Sθ(st ; σt,S) =
1

σ2
t

(ŝθ(st ; σt)− st), (2)

where Sθ ∈ Rm denotes the learned partial measurement score, explicitly conditioned on the known
subsampling mask S that generated st. Illustrations for training are provided in Figure 1 and Figure 4.

3.2 UNCONDITIONAL SAMPLING WITH MSM

Implementing a diffusion model on the fully-sampled measurement requires access to the score
function ∇ log pσt(zt), where zt denotes the noisy version of the fully-sampled measurement z.
Instead, we train our model to approximate the partial measurement score∇ log pσt(st).

The goal of MSM sampling is to generate a fully-sampled measurement z given the partial measure-
ment scores in (2) for S ∼ p(S). To that end, we define the MSM score as the expectation over all
possible mask-conditioned partial scores

∇ log qσt
(zt) := W ES∼p(S)

[
S⊤∇ log pσt

(st| S)
∣∣∣
st=Szt

]
(3)

where each subsampling operator S ∈ Rm×n is drawn from distribution p(S), and W ∈ Rn is
a weighting vector that compensates for overlapping contributions across sampling masks. W is
defined as the reciprocal of the expected total coverage:

W :=
[
max

(
ES∼p(S)

[
diag(S⊤S)

]
, 1
)]−1

, (4)

where the maximum is applied elementwise to avoid division by zero in regions not covered by any
subsampled measurement. Note that the MSM score in (3) can also be interpreted as the score of
a product-of-experts (composite-likelihood) model, in which each expert corresponds to a mask-
conditioned partial score ∇ log pσt

(st | S), and the MSM score is obtained by aggregating these
partial scores across random masks.
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Algorithm 1 Measurement Score-Based Sampling

Require: T , p(S), {σt}Tt=1

1: Initialize zT ∼ N (0, I), ẑθ ← 0

2: for t = T to 1 do

3: for i = 1 to w do

4: S(i) ∼ p(S), s
(i)
t ← S(i)zt

5: ŝ
(i)
θ ← s

(i)
t + σ2

t Sθ(s
(i)
t ;σt,S

(i))

6: s
(i)
t ∼ p(s

(i)
t | ŝ

(i)
θ )

7: zt ← S(i)⊤s
(i)
t + (I − S(i)⊤S(i))zt

8: end for

9: C ←
∑w

i=1 diag(S
(i)⊤S(i))

10: W ← [max(C, 1)]−1

11: ẑθ ←W
∑w

i=1 S
(i)⊤ŝ

(i)
θ + 1C=0 · ẑθ

12: zt−1 ∼ p(zt−1 | zt, ẑθ)
13: end for

14: return z0

To efficiently approximate the expectation in (3), we propose a stochastic sampling algorithm that
uses a randomly selected subset of partial scores. Specifically, we stochastically sample w sampling
masks S(i) ∼ p(S) for i = 1, . . . , w, where S(i) ∈ Rmi×n denotes a subsampling operator i. The
corresponding subsampled measurements is obtained as s(i)t = S(i)zt. An unbiased estimator of the
MSM score is then defined as

∇ log q̂σt(zt) := W

[
1

w

w∑
i=1

S(i)⊤∇ log pσt(s
(i)
t | S(i))

∣∣∣
s
(i)
t =S(i)zt

]
, (5)

where each transpose operator S(i)⊤ ∈ Rn×mi maps the partial score from the subsampled measure-
ment space back to the fully-sampled measurement space. Note that the reweighting vector W in (4)
can be empirically estimated as: W ←

[
max

(∑w
i=1 diag

(
S(i)⊤S(i)

)
, 1
)]−1

.

Concretely, MSM performs sampling by iteratively reconstructing a fully-sampled measurement
iterate zt through a stochastic loop of w partial denoising operations. At each diffusion time t, the
algorithm draws w random subsampling masks S(i), each revealing a different subset of coordinates.
For mask S(i), the corresponding partial measurement s(i)t = S(i)zt is denoised using the pretrained
MSM model to obtain ŝ

(i)
θ .

Within this stochastic loop, MSM updates zt after each partial denoising step by (1) drawing a noisy
partial estimate s

(i)
t ∼ p(s

(i)
t | ŝ

(i)
θ ) and (2) reinserting the noisy partial estimate into the current

iterate: zt ← S(i)⊤s
(i)
t +

(
I − S(i)⊤S(i)

)
zt. This update ensures that every subsequent partial

denoiser operates on an iterate that already incorporates the information extracted in the previous
loops, enabling the w stochastic loops to refine complementary regions of zt.

After completing the w stochastic loops, MSM aggregates all partial denoised estimates to form an
MMSE estimate of the fully-sampled measurement:

ẑθ = W

w∑
i=1

S(i)⊤ŝ
(i)
θ + 1C=0 · ẑθ, (6)

where C =
∑w

i=1 diag(S
(i)⊤S(i)) records which coordinates were covered, and the indicator term

preserves previous values at coordinates that receive no coverage by the w stochastic loops.

5
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The estimate ẑθ is treated as the clean prediction for the reverse update zt−1 ∼ p(zt−1 | zt, ẑθ),
following the standard reverse-diffusion step (Ho et al., 2020, Equation 6). Repeating this process
from t = T down to 1 produces a fully-sampled measurement z0, which is mapped to the final
output image when relevant. The full sampling procedure is outlined in Algorithm 1, with illustrative
examples shown in Figure 1 and Figure 4.

In Appendix A, we provide a theoretical guarantee showing that the distribution q̂(z) obtained using
the stochastic MSM score converges to the ideal MSM distribution q(z) as the number of stochastic
iterations w increases. Specifically, under a bounded-variance assumption on the score estimator, the
KL divergence satisfies

DKL(q(z) ∥ q̂(z)) ≤
v2

w
C,

where C is a finite constant independent of w.

3.3 POSTERIOR SAMPLING WITH MSM

We extend MSM to sample from the posterior distribution for solving linear inverse problems
described in Section 2.3. We consider measurement operators A of the form A = HT , where
H ∈ Rm×n is the linear measurement operator—such as downsampling, blurring, box inpainting,
or random projection—and T ∈ Rn×p is an invertible transformation introduced in Section 3.1.
This allows us to express the measurement model as y = Hz + e, where z ∈ Rn is the unknown
fully-sampled measurement and e ∼ N (0, ηI) is Gaussian noise with variance η.

To estimate the posterior score, we combine the stochastic score estimate from (6) with its corre-
sponding fully-sampled prediction ẑθ. The posterior score is approximated as:

∇ log pσt(zt | y) = ∇ log pσt(zt) +∇ log pσt(y | zt)
≈ ∇ log q̂σt

(zt) +∇ log pσt
(y | ẑθ),

where the log-likelihood gradient is given by

∇ log pσt
(y | ẑθ) = γt∇∥y −Hẑθ∥22 , (7)

with γt denoting the step-size parameter. Note that H may differ from the randomized subsampling
operators S ∼ p(S) used during MSM training.

We incorporate the likelihood term by updating the denoised estimate via

ẑθ ← ẑθ − γt∇ẑθ
∥y −Hẑθ∥22 .

This update is inserted between lines 11 and 12 in Algorithm 1 to convert unconditional MSM
sampling into posterior sampling.

A related posterior sampling strategy, using diffusion models trained on clean data, was proposed
in (Wang et al., 2023a). Further simplification of our method for compressed-sensing MRI is presented
in Appendix D.3.

3.4 LEARNING PARTIAL MEASUREMENT SCORE FROM NOISY AND SUBSAMPLED
MEASUREMENTS

We now show how our MSM framework can be extended to train directly on noisy and subsampled
measurements by integrating with self-supervised denoising methods to address the noise on the
subsampled measurements.

We formulate our observed measurement as

s = Sz + ν, ν ∼ N (0, ρI),

where ρ is the measurement noise level, and the remaining notations follow Section 3.1. We first define
the sequence of diffusion noise level {σt}Tt=1. At each time step t, we compare the diffusion noise
level σt with the measurement noise level ρ, and apply one of the following strategies accordingly:

Case 1: σt > ρ. We add residual noise to match the diffusion level:

st ← s+
√
σ2
t − ρ2n.

6
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The training objective is:

L(θ) = Est,t

[
∥s− E[s | st]∥22

]
+ LSURE(θ ; s, ρ)

= Est,t

[∥∥∥∥s− (σ2
t − ρ2

σ2
t

(ŝθ(st;σt)− st) + st

)∥∥∥∥2
2

]
+ LSURE(θ ; s, ρ),

where the first term is inspired by (Daras et al., 2024b), which shows that a noisier image can be
denoised using a less noisy reference; we apply this idea to subsampled measurements. The second
term is the SURE loss, following (Chen et al., 2022, Equation 9), which enables the model to learn to
denoise measurement noise and plays a key role in the next case.

Case 2: σt ≤ ρ. We first denoise s using the MSM with the noise conditioned of ρ, then add diffusion
noise as

st ← ŝθ(s ; ρ) + σtn.

Training minimizes the discrepancy within the non-subsampled region:

L(θ) = Est,t[ŝθ(s ; ρ)− ŝθ(st ;σt)∥22] + LSURE(θ ; s, ρ).

Here, ŝθ(s; ρ) serves as a pseudo-clean reference. Its quality is crucial but improves naturally during
training, since the same prediction is refined in Case 1. In practice, most σt are larger than ρ,
making Case 1 more frequently sampled. As a result, the pseudo-clean reference used in Case 2 is
continuously improved, ensuring stable training across both cases.

4 NUMERICAL EVALUATIONS

We evaluated MSM on unconditional generation and conditional sampling for natural images and
multi-coil MRI. All models used the same diffusion architecture (Dhariwal & Nichol, 2021), trained
from scratch on a single NVIDIA A100 GPU for 1M iterations (see Appendix D.4 for architectural
details). Experiments used 69k FFHQ faces (128× 128 RGB) and 2k fastMRI T2-weighted slices
(256×256, complex-valued) (Zbontar et al., 2018; Knoll et al., 2020). We performed inverse problem
evaluations on 100 test images per domain.

4.1 RGB FACE IMAGE EXPERIMENT

Training data. We considered two training settings: (1) subsampling only and (2) subsampling with
added Gaussian noise ρ = 0.1. In both cases, the masked-pixel ratio p is set to 40% using 32× 32
patches, applied identically across RGB channels (see Figure 2 for an example). Full training details
of our method and baselines are provided in Appendix D.4 and Appendix D.5.

Unconditional sampling. MSM used a stochastic loop parameter w = 1 with 200 sampling steps.
We compared MSM to three baselines: an oracle diffusion model trained on clean images, Ambient
diffusion (Daras et al., 2024c) trained on noiseless masked inputs, and GSURE diffusion (Kawar et al.,
2024) trained on noisy masked inputs. All baselines used 200-step accelerated sampling (Song et al.,
2021a). As shown in Table 1, MSM achieves better FID scores than all baselines trained without
clean data, evaluated over 3,000 generated samples. Figure 2 further shows that MSM generates
clean images despite being trained without clean data. Additional results showing how w influences
sampling quality and time efficiency are provided in Appendix E.6.

Conditional sampling. We compared MSM with A-DPS (Aali et al., 2025), which is the most closely
related inverse-problem solver that also uses a pretrained diffusion model trained on incomplete
data. We evaluated two inverse problems: box inpainting with a 64 × 64 missing region and 4×
bicubic super-resolution. Both methods used models trained on the same noiseless 40% masked data
without retraining. A-DPS took 1000 steps, while MSM took 200 steps with w = 3, and step sizes
in (7) set to γt = 1.75 for both inpainting and super-resolution. As shown in Table 3 and Figure 3,
MSM outperforms A-DPS in PSNR, SSIM, and LPIPS. We also observe that A-DPS performs worse
than the input image in PSNR and SSIM, likely due to limitations of the Ambient diffusion prior in
generating fine details when trained on non-sparse subsampling patterns—such as box masks—rather
than more localized patterns (e.g., dust masks) mainly used in the original training setup of Am-
bient diffusion (Daras et al., 2024c). Detailed hyperparameter setups for A-DPS are provided in

7
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Table 1: FID scores for unconditional image samples
under different training scenarios on human face im-
ages. Best values are highlighted for each training
scenario, with comparisons shown when corresponding
baseline methods are available. Note how MSM con-
sistently achieves substantially lower FID scores than
alternative methods across the evaluated settings.

Training data Methods FID↓

No degradation Oracle diffusion 10.21

p = 0.4, ρ = 0
MSM 29.14

Ambient diffusion 55.90

p = 0.4, ρ = 0.1
MSM 37.14

GSURE diffusion 89.71

Table 2: FID scores for unconditional image sam-
ples under different training scenarios on multi-coil
brain MR images. Best values are highlighted for each
training scenario, with comparisons shown when cor-
responding baseline methods are available. Note how
MSM achieves a lower FID compared to the alternative
methods.

Training data Methods FID↓

No degradation Oracle diffusion 28.41

R = 4, ρ = 0
MSM 64.37

Ambient diffusion 70.07

R = 4, ρ = 0.1 MSM 82.17

Figure 2: Generated samples from MSM trained under three degradation settings (first row: training
data; second row: samples generated by models trained on the corresponding data). Note how despite
never seeing ground-truth data, MSM can generate high-quality images.

Appendix D.6. Additional experiments showing that MSM achieves comparable performance to
clean-data-trained diffusion-based inverse problem solvers are provided in Appendix E.5. Results
using an MSM prior trained on noisy and subsampled data are provided in Appendix E.3.

4.2 MULTI-COIL MRI EXPERIMENT

Training data. We considered two training settings: (1) subsampling only and (2) subsampling with
added Gaussian noise ρ = 0.1. We applied a 1-D Cartesian subsampling operation in k-space using
random masks with an acceleration rate of R = 4, while fully sampling all vertical lines and the
central 20 lines for autocalibration. Training details for our method and baselines are provided in
Appendix D.4 and D.5.

Unconditional sampling. MSM used a stochastic loop parameter of w = 1 with 200 sampling
steps (see Appendix E.6 for how w affects sampling quality). We compared it against an oracle
diffusion model trained on clean images and Ambient diffusion (Daras et al., 2024c) trained on
noiseless subsampled inputs; GSURE diffusion (Kawar et al., 2024) is omitted since its extension
from single-coil MRI to multi-coil MRI remains computationally infeasible and no practical approach
has been proposed. All baselines used accelerated sampling with 200 steps (Song et al., 2021a). As
shown in Table 2, MSM achieves better FID scores than Ambient diffusion, based on 3,000 generated
samples. Figure 2 further demonstrates that MSM generates realistic images, even when trained on
noisy and subsampled measurements. FID computation details are provided in Appendix D.7, and
generation results under extreme subsampling are shown in Appendix E.2.
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Table 3: Quantitative results on two natural im-
age inverse problems comparing methods using
diffusion priors trained without clean images. Best
values are highlighted per metric. MSM achieves
the best performance across both distortion-based
and perception-oriented metrics.

Setup Input A-DPS MSM

Inpainting
PSNR↑ 18.26 20.14 24.71

SSIM↑ 0.749 0.621 0.867

LPIPS↓ 0.304 0.305 0.076

SR (×4)
PSNR↑ 23.21 22.61 28.11

SSIM↑ 0.728 0.702 0.868

LPIPS↓ 0.459 0.277 0.117

Table 4: Quantitative results on multi-coil com-
pressed sensing MRI comparing diffusion-based and self-
supervised methods, all trained without clean data. Best
values are highlighted per metric. MSM outperforms
the baselines in both PSNR and LPIPS, including the
restoration-specific baseline SSDU.

Setup Input A-DPS SSDU MSM

CS-MRI (×4)
PSNR↑ 22.75 27.28 29.65 30.71

SSIM↑ 0.648 0.804 0.847 0.839

LPIPS↓ 0.306 0.173 0.160 0.145

CS-MRI (×6)
PSNR↑ 21.94 26.29 28.02 28.86

SSIM↑ 0.617 0.763 0.820 0.805

LPIPS↓ 0.342 0.201 0.186 0.168

Figure 3: Visual comparison of methods trained on subsampled data for inverse problems. Note how
MSM leads to the best results in both applications.

Conditional sampling. We evaluated accelerated MRI reconstruction using random masks with
acceleration rates R = 4 and R = 6, and measurement noise η = 0.01. We used stochastic
posterior sampling algorithm introduced in Appendix D.3 with MSM pretrained on noiseless R = 4
measurements without retraining, with step size γt = 2 in (19). We compared against two baselines
trained on the same subsampled data: a diffusion-based method (A-DPS (Aali et al., 2025)) and a
self-supervised end-to-end method (Robust SSDU (Millard & Chiew, 2024)). A-DPS used 1000 steps,
SSDU performed a single forward pass, and MSM used 200 steps with w = 3. As shown in Table 4
and Figure 3, MSM outperforms both baselines in PSNR and LPIPS. Detailed hyperparameter setups
for A-DPS and Robust SSDU are provided in Appendix D.6. Comparisons with clean-data-trained
diffusion-based inverse problem solvers are in Appendix E.5, and additional results using an MSM
prior trained on noisy and subsampled MRI data are in Appendix E.3.

5 CONCLUSION

We introduced the Measurement Score-based diffusion Model (MSM) framework for generating the
full measurements using score functions learned solely from noisy, subsampled measurements. Our
key idea is the MSM score, defined as an expectation over partial scores induced by randomized
subsampling. We develop a stochastic sampling algorithm for both prior and posterior inference
that efficiently approximates this expectation, enabling clean image generation and inverse problem
solving. We demonstrate that MSM achieves state-of-the-art performance among diffusion-based
methods trained without clean data, for both unconditional image generation and conditional sampling
in linear inverse problems. The framework applies broadly to settings where only subsampled
measurements are available but collectively cover the full data space, making it valuable for generative
modeling in limited-data regimes and high-dimensional sampling from low-dimensional observations.
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A THEORETICAL ANALYSIS

We have introduced the MSM framework, which can generate fully-sampled measurements using
partial measurement scores. To make the expectation of the MSM score (3) efficient, our algorithm
approximates it using a minibatch of w sampled operators in (5), where S(1), . . . ,S(w) are sampled
independently and identically from the distribution p(S). This implies that for a fixed W , we have
an unbiased estimator of the MSM score: E [∇ log q̂σt(zt)] = ∇ log qσt(zt), where the expectation
is over the randomness in the sampled minibatch.

Assumption 1. There exists v > 0 such that for all z ∈ Rn,

E
[
∥∇ log qσt(z)−∇ log q̂σt(z)∥22

]
≤ v2

w
,

where the expectation is taken over S(i) ∼ p(S).

This assumption implies that the gradient estimate of MSM score has a bounded variance, an
assumption commonly adopted in stochastic and online algorithms (Welling & Teh, 2011; Ghadimi
& Lan, 2016; Liu et al., 2022).

Theorem 1. Let q(z) and q̂(z) denote the distributions of samples generated by using the MSM score
∇ log qσt(zt) and its stochastic approximation ∇ log q̂σt(zt), respectively. Under Assumption 1, the
KL divergence between the two distributions is bounded as

DKL(q(z) ∥ q̂(z)) ≤
v2

w
C,

where C is a finite constant independent of w.

Proof. Our proof invokes Girsanov’s theorem, which characterizes how the distribution of a
Brownian-driven stochastic process transforms when we transition from one probability measure to
another (Chen et al., 2024; Baker et al., 2024; Huang et al., 2021; Song et al., 2021b).

Consider the two stochastic processes {z(t)}t∈[0,1] and {ẑ(t)}t∈[0,1], corresponding to the Eu-
ler–Maruyama discretizations of the following reverse-time SDEs

dz = ∇ log qσt
(z)dt+

√
2Ttdwt z(T ) = zT ∼ N (0, I),

dẑ = ∇ log q̂σt
(ẑ)dt+

√
2Ttdwt ẑ(T ) = ẑT ∼ N (0, I),

Let Q[z0:T ] and Q̂[ẑ0:T ] denote the path measures induced by the respective processes. The process
{z(t)}t∈[0,1] corresponds to the reverse diffusion trajectory driven by the true measurement score
∇ log qσt

(z), while {ẑ(t)}t∈[0,1] is generated by the reverse process using an approximate (stochastic)
measurement score∇ log q̂σt(z).

By using the chain rule of KL divergence from Lemma 3, we have

DKL(Q ∥ Q̂) = EzT∼N (0,I)

[
DKL(Q(.|z = zT ) ∥ Q̂(.|ẑ = ẑT ))

]
. (8)
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Using the definition of KL divergence and the fact that MT = dQ̂/dQ from Lemma 1, we have

DKL(Q(.|z = zT ) ∥ Q̂(.|ẑ = ẑT )) = −EQ

[
log

dQ̂
dQ

]
= −EQ [logMT ]

= EQ

[∫ T

0

[
∇ log qσt(zt)−∇ log q̂σt(zt)

]
√
2Tt

dwt +
1

2

∫ T

0

∥∇ log qσt
(zt)−∇ log q̂σt

(zt)∥22
2Tt

dt

]

= EQ

[∫ T

0

[
∇ log qσt

(zt)−∇ log q̂σt
(zt)

]
√
2Tt

dwt

]
+ EQ

[
1

2

∫ T

0

∥∇ log qσt(zt)−∇ log q̂σt(zt)∥22
2Tt

dt

]

= EQ

[∫ T

0

1√
2Tt

E
[
∇ log qσt(zt)−

1

w

w∑
i=1

∇ log qσt(s
(i)
t )
∣∣∣
s
(i)
t =S(i)zt

]
dwt

]

+ EQ

[∫ T

0

1

4Tt
E
[∥∥∥∇ log qσt

(zt)−
1

w

w∑
i=1

∇ log qσt
(s

(i)
t )
∣∣∣
s
(i)
t =S(i)zt

∥∥∥2
2

]
dt

]

= EQ

[∫ T

0

1

4Tt
E
[∥∥∥∇ log qσt

(zt)−
1

w

w∑
i=1

∇ log qσt
(s

(i)
t )
∣∣∣
s
(i)
t =S(i)zt

∥∥∥2
2

]
dt

]
≤ v2

w

∫ T

0

1

4Tt
dt ≤ v2

w
C,

where C :=
∫ T

0
1/(4Tt)dt is a finite constant. In the first line, we use the definition of KL divergence

between Q and Q̂ and the result from Lemma 1. In the third line, we use the law of iterated
expectations over w sampling masks S(i) ∼ p(S) for i = 1, . . . , w. Note that since E[∇ log q̂σt

(zt)]
is an unbiased estimator of MSM score ∇ log qσt

(zt), we have E[∇ log q̂σt
(zt)] = ∇ log qσt

(zt),
which yields the expectation in the fourth line to be 0. In the last line, we use the bounded variance in
Assumption 1.

Following this result with (8) and Lemma 2, we have

DKL(q0 ∥ q̂0) ≤ DKL(Q ∥ Q̂) ≤ v2

w
C. (9)

Lemma 1. (The Girsanov Theorem III.) Let {z(t)}0t=T and {ẑ(t)}0t=T be two Itô process of the
forms

dz = ∇ log qσt
(z)dt+

√
2Ttdwt z(T ) = zT ∼ N (0, I)

dẑ = ∇ log q̂σt(ẑ)dt+
√
2Ttdwt ẑ(T ) = ẑT ∼ N (0, I),

where 0 ≤ T ≤ ∞ is a given constant, and w ∈ Rn is a n−dimensional Brownian motion. Suppose
that there exist a process α(z, t) such that

α(z, t) =

[
∇ log qσt(zt)−∇ log q̂σt(zt)

]
√
2Tt

, (10)

which satisfies Novikov’s condition

E

[
exp

(
1

2

∫ T

0

α2(z, t)dt

)]
= E

[
exp

(
1

2

∫ T

0

∥∇ log qσt
(zt)−∇ log q̂σt

(zt)∥22
2Tt

dt

)]
<∞,

where E = EQ is the expectation with respect to Q, probability measure induced by the process
{zt}0t=T . Then, we can define MT and probability measure Q̂, induced by process {ẑt}0t=T as

MT :=

exp

(
−
∫ T

0

[
∇ log qσt

(zt)−∇ log q̂σt
(zt)

]
√
2Tt

dwt −
1

2

∫ T

0

∥∇ log qσt
(zt)−∇ log q̂σt

(zt)∥22
2Tt

dt

)
,

where
t ≤ T and dQ̂ := MTdQ. (11)
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Proof of the Girsanov Theorems can be found in (Oksendal, 2013, Theorems 8.6.3, 8.6.4, and 8.6.5).

Remark. Note that it can be shown that Novikov’s condition is satisfied for function α(z, t) in (10)
as

E

[
exp

(
1

2

∫ T

0

∥∇ log qσt
(zt)−∇ log q̂σt

(zt)∥22
2Tt

dt

)]

= E

[
exp

(
1

2

∫ T

0

E
[
∥∇ log qσt

(zt)−∇ log q̂σt
(zt)∥22

]
2Tt

dt

)]

≤ v2

w
· exp

(
1

2

∫ T

0

1

2Tt
dt

)
<∞,

where in the second line, we use the total law of expectation (i.e., E[a] = E[E[a|b]]) we use the
law of iterated expectations over w sampling masks S(i) ∼ p(S) for i = 1, . . . , w. Here, we use
Assumption 1and the fact the

∫ T

0
(1/(2Tt)) dt is a finite constant.

Lemma 2. Let Q and Q̂ be the path measure of two stochastic processes {z(t)}Tt=0 and {ẑ(t)}Tt=0.
We denote q0 and q̂0 as the marginal distribution of z(0) and ẑ(0). Then, we have

DKL(q0 ∥ q̂0) ≤ DKL(Q ∥ Q̂).

Proof. From the chain rule of KL divergence, we have

DKL(Q ∥ Q̂) = DKL(Qz(0)=z0
∥ Q̂ẑ(0)=z0

)

+

∫
z

DKL(Q(. | z(0) = z0) ∥ Q̂(. | ẑ(0) = z0))Qz(0)=z0
(dz)

= DKL(q0 ∥ q̂0) +
∫
z

DKL(Q(. | z(0) = z0) ∥ Q̂(. | ẑ(0) = z0))Qz(0)=z0
(dz).

From the non-negativity of KL divergence, we obtain the desired results.

Lemma 3. (Chain Rule of KL Divergence.)

Let Q and Q̂ be the path measure induced by the two following reverse-time SDEs

dz = ∇ log qσt
(z)dt+

√
2Ttdwt z(T ) = zT ∼ N (0, I)

dẑ = ∇ log q̂σt(ẑ)dt+
√
2Ttdwt ẑ(T ) = ẑT ∼ N (0, I).

From the chain rule of KL divergence, we have

DKL(Q ∥ Q̂) = DKL(Qz(T )=zT
∥ Q̂ẑ(T )=ẑT

)

+

∫
z

DKL(Q(.|z(T ) = zT ) ∥ Q̂(.|ẑ(T ) = ẑT ))Qz(T )=zT
(dz)

= DKL(Qz(T )=zT
∥ Q̂ẑ(T )=ẑT

) + EzT∼N (0,I)

[
DKL(Q(.|z = zT ) ∥ Q̂(.|ẑ = zT ))

]
= EzT∼N (0,I)

[
DKL(Q(.|z = zT ) ∥ Q̂(.|ẑ = zT ))

]
,

where in the last two equalities, we use the fact that QzT
= Q̂zT

= N (0, I).

B PROOF OF SYMMETRY PROPERTY OF THE MSM SCORE JACOBIAN

We now show that the MSM score has a symmetric Jacobian, as in the true score. Assuming the
underlying distribution is twice differentiable and well-behaved (Song & Ermon, 2019; Song et al.,
2021b), differentiating the MSM score expression in (3) with respect to zt gives

∇2 log qσt
(zt) = W ES∼p(S)

[
S⊤∇2 log pσt

(st| S)S
∣∣∣
st=Szt

]
. (12)
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Since ∇2 log pσt
(st| S) is symmetric by assumption, and both the transformation S⊤(·)S and

expectation preserve symmetry, the result remains symmetric; multiplying by the diagonal matrix W
also maintains symmetry, so the MSM score admits a symmetric Jacobian.
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C PRACTICAL RELEVANCE OF ASSUMPTIONS AND THEORY

C.1 PRACTICAL VALIDITY OF OUR ASSUMPTIONS ON FORWARD-OPERATOR

Our theory assumes two conditions: (i) the training measurements collectively cover the full mea-
surement domain, and (ii) the subsampling operators S used during image sampling are drawn
independently from a distribution p(S). Both conditions are realistic in many imaging modali-
ties. For (i), different acquisitions naturally provide complementary subsets of measurements. For
example, in magnetic resonance imaging (MRI), different k-space sampling masks are routinely
used across acquisitions; in computed tomography (CT), projection angles can be varied; in optical
tomography, source–detector positions or wavelengths can change; in positron emission tomography
(PET), detector configurations or energy windows may differ; in ultrasound imaging, one can vary
transducer firing patterns; and in light-field photography or electron microscopy, system parameters
such as aperture, focal length, sample orientation, or defocus levels can be adjusted. Beyond scientific
imaging, image-restoration settings also satisfy this condition when different samples reveal different
observable regions—for instance, box inpainting, random (dust-like) inpainting, or partially blurred
regions that vary across images. MSM can accommodate such scenarios because the observable
regions collectively cover the full domain. However, degradations that apply uniformly across the
entire image—such as global Gaussian blur, motion blur, or nonlinear measurement effects—do not
expose complementary regions and therefore are not handled by the current formulation. Extending
MSM to handle such globally applied degradations remains an interesting direction for future work.

For (ii), once the set of forward operators observed in the training data defines the empirical dis-
tribution p(S), MSM simply samples new operators independently from this distribution during
generation. Note that this assumption is only required during sampling and does not require the
physical hardware to acquire measurements independently; it simply reflects how MSM simulates
operator variability during generation. Importantly, sampling new operators in this way also ensures
that all measurement coordinates are repeatedly visited throughout the diffusion process. If each
stochastic loop drops a proportion p of coordinates, then the probability that a given coordinate is
never selected across all diffusion steps is p(#steps×w), which becomes negligibly small in practice.
For instance, with p = 0.4, 100 diffusion steps, and w = 1, this probability is 0.4100 ≈ 1.6× 10−40.
Thus, MSM effectively achieves full coverage of the measurement domain during sampling, avoiding
the undesirable case where any region is left untouched.

C.2 EMPIRICAL ACCESSIBILITY OF BOUND PARAMETERS IN THEORY

Theorem 1 establishes that the KL divergence between the true distribution q(z) and its stochastic
approximation q̂(z) is bounded as

DKL(q(z) ∥ q̂(z)) ≤
v2

w
C, (13)

where v quantifies the variance of the stochastic score approximation and C is a finite constant
determined by the diffusion process.

To estimate the range of v in practice, we computed the squared error between the MSM score,
approximated using w = 64 mini-batches, and its stochastic approximation:

n∑
i=1

∥∥∥∇ log qσt

(
z(i)
)
−∇ log q̂σt

(
z(i)
)∥∥∥2

2
, (14)

averaged over 3,000 training images perturbed at timesteps t = 200, 400, 600. By varying the number
of mini-batches w ∈ {1, 4, 16}, we directly observed that the approximation error with MSM score
(which is approximated with w = 64) decreases with w, consistent with the theoretical scaling v2/w
as in Table X for both FFHQ and fastMRI datasets.
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Table 5: Empirical squared error between the MSM score (reference w = 64) and its stochastic approximation
for different timesteps t and minibatch sizes w. Results are averaged over 3,000 training images for FFHQ and
fastMRI.

Time step t #Minibatches w
∑n

i=1 ∥∇ log qσt (z
(i)) − ∇ log q̂σt (z

(i))∥2
2

FFHQ fastMRI

200

16 3.57 × 10−3 4.15 × 10−5

4 5.80 × 10−2 1.15 × 10−4

1 6.17 × 10−1 4.05 × 10−4

400

16 8.20 × 10−4 4.65 × 10−6

4 5.70 × 10−3 1.12 × 10−5

1 3.20 × 10−2 2.79 × 10−5

600

16 5.60 × 10−4 1.42 × 10−6

4 2.70 × 10−3 4.17 × 10−6

1 3.70 × 10−3 6.21 × 10−6

For C, we recall from the proof of Theorem 1 that

C =

∫ T

0

1

4Tt
dt, (15)

where Tt is the temperature associated with the variance-preserving diffusion in our experiment setup.
Under this setting, Tt = 1

2 (1− αt)/αt in terms of the signal scaling factor αt that defines the noisy
image at diffusion step t, as specified in (Park et al., 2025, Table 1). Hence,

C =

∫ T

0

1− αt

4αt
dt. (16)

Using the schedule parameters from prior work, we obtain C = 101.01 for our unconditional MSM
setup.

These results demonstrate that both v and C are not abstract constants but measurable quantities. In
particular, v can be empirically estimated from score approximation error, and C admits a closed-form
expression based on the diffusion temperature schedule.
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D IMPLEMENTATION DETAILS

D.1 MSM FRAMEWORK IN MR IMAGES

The main manuscript illustrates the measurement score-based diffusion model (MSM) framework’s
training and sampling schemes, but omits domain-specific transformations for clarity. These trans-
formations are essential in the MRI setting, which requires conversions between measurement and
image spaces before and after denoising.

Specifically, we apply the inverse Fourier transform F⊤ followed by the adjoint coil-sensitivity
operator C⊤ to project the measurements into image space before denoising. After denoising, we
map the denoised image back to measurement space by applying the forward coil-sensitivity operator
C and the Fourier transform F .

This results in a modified version of (1), given by:

ŝθ(st ; σt)← SFC Dθ(C
⊤F⊤st ; σt), (17)

where S is the subsampling operator. A visual illustration is provided in Figure 4.

Figure 4: Illustration of the Measurement Score-based diffusion Model (MSM) for training and
sampling using subsampled MRI measurements. MSM operates directly on k-space measurements,
with minor domain transformations between k-space and image space only at the input and output of
the diffusion model Dθ.

D.2 DETAILED MSM POSTERIOR SAMPLING ALGORITHM

This appendix provides the dedicated algorithm for the MSM-based posterior sampling procedure
introduced in Section 3.3. Algorithm 2 extends the unconditional MSM sampler by inserting, at each
diffusion step, a data-consistency update derived from the posterior gradient. This makes explicit
how MSM transitions from unconditional sampling to solving inverse problems.

D.3 STOCHASTIC POSTERIOR SAMPLING FOR COMPRESSED-SENSING MRI

Our posterior sampling algorithm is described in Section 3.3. For compressed-sensing MRI, we apply
an additional simplification based on directly approximating the partial posterior score for each
partially subsampled measurement within the stochastic algorithm.
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Algorithm 2 Measurement Score-Based Posterior Sampling

Require: T , p(S), {σt}Tt=1,y,H

1: Initialize zT ∼ N (0, I), ẑθ ← 0

2: for t = T to 1 do

3: for i = 1 to w do

4: S(i) ∼ p(S), s
(i)
t ← S(i)zt

5: ŝ
(i)
θ ← s

(i)
t + σ2

t Sθ(s
(i)
t ;σt,S

(i))

6: s
(i)
t ∼ p(s

(i)
t | ŝ

(i)
θ )

7: zt ← S(i)⊤s
(i)
t + (I − S(i)⊤S(i))zt

8: end for

9: C ←
∑w

i=1 diag(S
(i)⊤S(i))

10: W ← [max(C, 1)]−1

11: ẑθ ←W
∑w

i=1 S
(i)⊤ŝ

(i)
θ + 1C=0 · ẑθ

12: ẑθ ← ẑθ − γt∇ẑθ
∥y −Hẑθ∥22

13: zt−1 ∼ p(zt−1 | zt, ẑθ)
14: end for

15: return z0

To perform posterior sampling for compressed-sensing MRI, we estimate the posterior score using a
stochastic ensemble, similar to the MSM score ensemble in Section 3.2:

∇ log pσt
(zt | y) = ∇ log pσt

(zt) +∇ log pσt
(y | zt)

≈W

[
1

w

w∑
i=1

S(i)⊤∇ log pσt
(s

(i)
t | y(i))

∣∣∣
s
(i)
t =S(i)zt

]

= W

[
1

w

w∑
i=1

S(i)⊤
(
∇ log pσt

(s
(i)
t ) +∇ log pσt

(y(i) | s(i)t )
) ∣∣∣

s
(i)
t =S(i)zt

]
,

(18)
where the second line replaces the partial prior score in the stochastic MSM approximation (5) with
the corresponding partial posterior score, and the third line expands this term using Bayes’ rule into
prior and likelihood components. All partial prior and likelihood distributions are conditioned on
the corresponding subsampling operator S(i); for notational simplicity, we omit this conditioning
in pσt

(s
(i)
t ) and pσt

(y(i) | s(i)t ). For each subsampling operator S(i) ∈ Rmi×n, we define y(i) =

S(i)H⊤y to project the observed measurement y into the same partial measurement space as s(i)t .
The log-likelihood gradient is approximated by

∇ log pσt
(y(i) | s(i)t ) ≈ ∇ log pσt

(y(i) | ŝ(i)θ )

= γt∇
∥∥∥y(i) − H̃(i)ŝ

(i)
θ

∥∥∥2
2
,

(19)

where γt is a tunable step size, and we define H̃(i) = S(i)H⊤HS(i)⊤ as the degradation operator
H⊤H restricted to the coordinates selected by S(i).

D.4 MODEL ARCHITECTURE AND TRAINING CONFIGURATION

We adopted the U-Net architecture (Ronneberger et al., 2015), following the design used in (Ho
et al., 2020; Dhariwal & Nichol, 2021), as our diffusion model backbone. Models were trained
with the AdamW optimizer (Loshchilov & Hutter, 2019) and used an exponential moving average
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(EMA) to stabilize training by averaging model weights over time, using a decay rate of 0.9999
for gradual updates. The diffusion process consisted of 1000 timesteps, with a linearly increasing
noise variance schedule starting from 0.0001 and reaching 0.2 at the final step. All diffusion models,
including diffusion-based baselines, were trained with the same architecture for each application.
The hyperparameter setup and architectural details are summarized in Table 6.

Table 6: Diffusion model architecture and training hyperparameters for each dataset.

RGB Face Images Multi-Coil MRI
Base channel width 128

Attention resolutions [32, 16, 8]

# Attention heads 4

# Residual blocks 2

Batch size 128 32

Learning rate 5e − 5 1e − 5

Channel multipliers [1, 1, 2, 3, 4] [1, 1, 2, 2, 4, 4]

# Input/Output channels 3 2

D.5 COMPARISON METHODS FOR UNCONDITIONAL SAMPLING

We now provide detailed setups for used baselines for unconditional sampling experiments.

Oracle diffusion. For both natural images and multi-coil MRI, we train the oracle diffusion model
using clean images without any degradation. The model is trained to predict the noise component of
noisy images for both data types.

Ambient diffusion (Daras et al., 2024c). For natural images, under the same training setup as MSM
in noiseless and subsampled data scenario, following the recommendation of (Daras et al., 2024c)
to apply minimal additional corruption, we define the further degradation operator S̃ by dropping
one additional 32× 32 pixel box. The model is trained to directly predict the clean image, which we
found to perform better than predicting the noise component.

For MRI data, under the same training setup as the noiseless and subsampled setting of MSM, to
define the further degradation operator S̃, we drop an additional 10% of the sampling pattern while
preserving the autocalibration signal region. Unlike the natural image case, the model is trained to
predict the noise component, which we found to perform better than direct clean image prediction.

During sampling, we use 200 steps of denoising diffusion implicit models (DDIM) (Song et al.,
2021a) and apply the same further degradation configuration used during training to subsample the
diffusion iterate.

GSURE diffusion (Kawar et al., 2024). We only apply this method to the RGB face data, not the
multi-coil MRI data, because GSURE diffusion’s extension from single-coil MRI to multi-coil MRI
remains computationally infeasible, and no practical approach has been proposed. Under the same
training setup of MSM’s noisy and subsampled training setup, we train the GSURE diffusion model
to predict the clean images and follow exactly the same training configuration as described in (Kawar
et al., 2024).

Note that we exclude recent expectation-maximization-based methods (Bai et al., 2024; 2025), as
their reliance on clean-image initialization is incompatible with our setting, where no clean images
are available.

D.6 COMPARISON METHODS FOR IMAGING INVERSE PROBLEMS

We now describe the baseline methods used for solving inverse problems.

Diffusion posterior sampling (DPS) (Chung et al., 2023). DPS estimates the gradient of the
log-likelihood using the MMSE estimate x̂θ(xt) from a pretrained diffusion model as

∇ log p(y | xt) ≈ ∇ log p(y | x̂θ(xt)), (20)
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where the gradient is taken with respect to xt.

Following the original implementation, we set the step size for the likelihood gradient as γt =
c

∥y−AE[x0|xt]∥2
, where c is selected via grid search within the recommended range [0.1, 10]. We used

c = 2 for the super-resolution experiment, c = 0.7 for box inpainting, and c = 10 for compressed
sensing MRI.

Ambient diffusion posterior sampling (A-DPS) (Aali et al., 2025). A-DPS follows the same
posterior sampling strategy as DPS but uses a diffusion model trained on noiseless subsampled
data. For natural-image experiments, we use the pretrained Ambient diffusion model trained with a
dropping ratio p = 0.4. For MRI experiments, we use the pretrained Ambient diffusion model trained
at acceleration rate R = 4, consistent with the standard setup in diffusion-based MRI reconstruction.
The step size is set in the same form as DPS: γt = c

∥y−AE[x0|xt]∥2
, with the constant c chosen

according to each inverse problem: c = 2 for super-resolution, c = 0.7 for box inpainting, and c = 10
for compressed sensing MRI.

Robust self-supervision via data undersampling (Robust SSDU) (Millard & Chiew, 2024).
Robust SSDU is designed to handle noisy, subsampled measurements by introducing additional sub-
sampling and noise to the observed measurements during training. In our implementation, the primary
sampling mask S1 exactly matches the test acquisition patterns (acceleration factors {2, 4, 6, 8}), and
the training noise level is set to the same value used at test time (σn ∈ {0.005, 0.01, 0.02, 0.03}).
Given the noisy subsampled input s = S1z + n, where n is additive Gaussian noise with standard
deviation σn, Robust SSDU forms a further corrupted input

s̃ = S2s+ ñ, (21)

where S2 has an acceleration factor of R = 2, and ñ is independent Gaussian noise with standard
deviation σn, matching the original measurement noise level, following the original implementation.

Denoising diffusion null-space model (DDNM) (Wang et al., 2023a). DDNM also uses a diffusion
model trained on clean data and introduces a projection-based update that blends the prior estimate
and the measurement:

E[x0 | xt,y] ≈ (I −ΣtA
†A)E[x0 | xt] +ΣtA

†y, (22)

where A† is the pseudoinverse and Σt is a weighting matrix, such as Σt = λtI or a spectrally tuned
version.

We followed the enhanced version of DDNM described in (Wang et al., 2023a, Section 3.3 and
Equation (19)) to specify weight matrix Σt in (22).

D.7 MEASURING FID SCORE

To compute the Fréchet Inception Distance (FID), we used the implementation provided in the
following repository1. For each method, we generated 10000 images, then computed FID using
features extracted from a pretrained inception network. For MRI images, which have complex-valued
channels, we converted them to magnitude images and replicated the single-channel magnitude three
times to form a 3-channel input compatible with the pretrained Inception network. Note that although
the pretrained FID model was trained on natural images, it still reflects perceptual quality on MRI
data (Bendel et al., 2023).

1https://github.com/mseitzer/pytorch-fid
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D.8 ILLUSTRATION OF SUBSAMPLED MEASUREMENTS AND THEIR SCORES

The main manuscript establishes that MSM learns the score of each subsampled measurement—
implicitly conditioned on the corresponding subsampling mask—and shows how these measurement
scores are leveraged to synthesize fully sampled measurements. The purpose of this section is to
visually illustrate how these measurement scores behave under different masks and to clarify the
dimensional structure underlying MSM sampling.

Recall that MSM operates on a subsampled measurement st ∈ Rm formed as st = S zt, where
zt ∈ Rn is not accessible fully sampled measurement and S ∈ {0, 1}m×n with m < n is a binary
subsampling mask. Because each st is produced by a specific mask S, the measurement score
∇ log pσt

(st) is implicitly mask-conditioned: it describes the distribution of st restricted to the
coordinates selected by that mask, rather than a score marginalized over all masks.

Figure 5 provides a concrete visual example using a 64 × 64 image. The figure illustrates: (i)
how different masks S produce different subsampled measurements st, (ii) how the dimensionality
changes from the fully sampled measurement to each subsampled measurement; and (iii) how MSM
performs score-based denoising under several predefined masks. This visualization makes explicit
how the measurement scores are inherently mask-conditioned and how MSM integrates them during
sampling to reconstruct the fully sampled measurement.

Figure 5: Visual illustration of subsampled measurements, their associated masks, and the corre-
sponding measurement scores used in MSM sampling.
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E ABLATION STUDIES AND DISCUSSIONS

E.1 PRIOR WORK AND DISTINCTION OF OUR APPROACH

Among recent approaches that train diffusion models without clean images, ambient diffusion (Daras
et al., 2024c) and its posterior-sampling extension A-DPS (Aali et al., 2025) are the most directly
related, as they also learn from degraded natural images and multi-coil MRI. However, both operate in
the image domain, approximating clean-image scores by further subsampling images and predicting
the original subsampled images. In contrast, MSM generalizes the idea of patch-based learning—
widely applied to enable computationally efficient supervised training—to self-supervised learning in
the measurement domain. It learns partial measurement scores restricted to observable regions from
only noisy, subsampled measurements, and combines them in expectation to form a full measurement
score. With our efficient stochastic algorithm, MSM enables both unconditional sampling and
posterior sampling for solving linear inverse problems. Table 7 highlights the key differences.

Table 7: Comparison of MSM with ambient diffusion (Daras et al., 2024c) and its direct extension
Ambient Diffusion Posterior Sampling (A-DPS) (Aali et al., 2025). MSM is the first to directly learn
measurement scores from noisy, subsampled measurements and to use them for both generating full
measurements and solving inverse problems.

Ambient Diffusion Ambient-DPS MSM (Ours)
Training data Subsampled data, with further random

subsampling in training
Only noisy, subsampled
measurements

Learned object Learns the approximation of the true
score by predicting the original

subsampled image from a further
subsampled input

Partial measurement
scores, restricted to
observable regions

Sampling domain Image domain Measurement domain:
stochastic generation of
the full measurements

Posterior sampling Limited: can only
solve inverse prob-
lems when the
test-time degradation
matches the training
degradation

Direct extension of
diffusion posterior
sampling (Chung
et al., 2023) applied
to pretrained ambient
diffusion

New posterior score
formulation using partial
measurement posterior
scores; stochastic condi-
tional sampling of full
measurements

Key novelty First diffusion frame-
work trained purely
on subsampled data

Extension of ambient
diffusion to posterior
sampling

First to directly learn
measurement scores and
use them in a stochastic
measurement-space dif-
fusion process for both
full measurement and
posterior sampling
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E.2 IMAGE SAMPLING WITH MSM USING EXTREMELY SUBSAMPLED DATA

We evaluated the unconditional sampling capability of our framework in a more challenging training
scenario with extremely subsampled data. Specifically, we used MRI data with k-space subsampling
via random masks at an acceleration factor of R = 8, including fully-sampled vertical lines and the
central 20 lines for autocalibration.

MSM was configured with a stochastic loop parameter w = 2 and took 200 sampling steps. As
a baseline, ambient diffusion took 200 sampling steps. As shown in Table 8 and Figure 6, MSM
achieves a lower FID score than the Ambient diffusion on the same data setup, demonstrating the
robustness of our approach under high subsampling rates.

Table 8: FID scores under different training settings on multi-coil brain MR images. Best values are highlighted
for each training scenario, with comparisons shown when corresponding baseline methods are available. Note
how MSM consistently achieves lower FID scores than the Ambient diffusion, even in extremely subsampled
data scenarios.

Training data Methods FID↓

No degradation Oracle diffusion 29.25

R = 4, ρ = 0
MSM 43.60

Ambient diffusion 47.80

R = 8, ρ = 0
MSM 74.92

Ambient diffusion 84.77

Figure 6: Visual comparison of MSM trained under extreme subsampling (R = 8) with MSM and
baseline methods trained under less degraded conditions.
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E.3 SOLVING INVERSE PROBLEMS WITH MSM TRAINED ON NOISY AND SUBSAMPLED DATA

We showed that MSM trained on subsampled data can solve inverse problems for both natural images
and multi-coil MRI. We further verified that MSM, when trained on noisy and subsampled data, can
achieve comparable performance using the same step size for the log-likelihood gradient as in the
subsampled-only scenario, as summarized in Table 9 and Figure 7.

Table 9: Results on two natural image inverse problems and two compressed sensing MRI tasks. MSM trained
on subsampled data is compared with MSM trained on noisy and subsampled data (training type shown in
parentheses). Both training setups yield comparable performance across all metrics.

Testing data Input MSM (Noisy & Subsampled) MSM (Noiseless & Subsampled)

Box Inpainting
PSNR↑ 18.26 24.16 24.71

SSIM↑ 0.749 0.864 0.867

LPIPS↓ 0.304 0.081 0.076

SR (×4)
PSNR↑ 23.21 27.99 28.11

SSIM↑ 0.728 0.868 0.868

LPIPS↓ 0.459 0.127 0.117

CS-MRI (×4)
PSNR↑ 22.75 29.74 30.71

SSIM↑ 0.648 0.826 0.839

LPIPS↓ 0.306 0.168 0.145

CS-MRI (×6)
PSNR↑ 21.94 28.11 28.86

SSIM↑ 0.617 0.795 0.805

LPIPS↓ 0.342 0.192 0.168

Figure 7: Visual comparison between MSM trained on noisy and subsampled data and MSM trained
on only subsampled data. Both models produce high-quality results on natural image and MRI tasks.

E.4 COMPARISON WITH CLASSICAL CS-MRI RECONSTRUCTION METHOD

We have shown that MSM outperforms diffusion-based and self-supervised methods in multi-coil
compressed sensing MRI, all trained without clean data. We now compare MSM with the classical
CS-MRI method: total variation (TV) regularization.

Table 10: Quantitative results on two compressed sensing MRI tasks. MSM, trained using only subsampled
data, is compared with the classical CS-MRI method: total variation (TV) regularization.

Setup Input TV MSM

CS-MRI (×4)
PSNR↑ 22.75 25.71 30.71

SSIM↑ 0.648 0.750 0.839

LPIPS↓ 0.306 0.238 0.145

CS-MRI (×6)
PSNR↑ 21.94 24.18 28.86

SSIM↑ 0.617 0.702 0.805

LPIPS↓ 0.342 0.282 0.168
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E.5 COMPARISON WITH DIFFUSION-BASED INVERSE PROBLEM SOLVERS TRAINED ON
CLEAN DATA

We compared MSM against diffusion-based inverse problem solvers—DPS (Chung et al., 2023)
and DDNM (Wang et al., 2023a)—that use diffusion priors trained on clean images, on both RGB
face images and multi-coil compressed sensing MRI. Detailed configurations of these methods are
provided in Section D.6.

The measurement noise level was set to η = 0.01, and all experimental setups for both MSM and
the baselines followed those described in Section 4.1 and Section 4.2. The results are summarized
in Table 11 and Figure 8. Notably, although MSM was trained only on subsampled measurements,
it performs comparably to the baselines that leverage clean data-based pretrained diffusion models
and even surpasses DPS on several inverse problems across multiple metrics. This result highlights
that reconstruction quality depends not only on the diffusion prior but also on the data consistency
strategy. Because DDNM employs a data consistency strategy similar to ours, it achieves slightly
better results than ours; in contrast, DPS relies on a different data consistency strategy, which leads to
its distinct and generally lower performance even when using the clean diffusion prior.

Table 11: Quantitative results on two natural image inverse problems and two compressed sensing MRI tasks.
MSM, trained using only subsampled data, is compared with methods that use pretrained diffusion models
trained on clean data. The number of iterations used for each method is shown in parentheses. Best and
second-best values are highlighted per metric (PSNR, SSIM, LPIPS). Note that despite not having access to the
clean data, MSM approaches the performance of the clean data-based methods.

Testing data Input DPS (1000) DDNM (200) MSM (200)

Box Inpainting
PSNR↑ 18.26 23.64 25.16 24.71

SSIM↑ 0.749 0.864 0.883 0.867

LPIPS↓ 0.304 0.077 0.071 0.076

SR (×4)
PSNR↑ 23.21 27.20 28.82 28.11

SSIM↑ 0.728 0.841 0.897 0.868

LPIPS↓ 0.459 0.128 0.126 0.117

CS-MRI (×4)
PSNR↑ 22.75 31.31 32.84 30.71

SSIM↑ 0.648 0.845 0.895 0.839

LPIPS↓ 0.306 0.112 0.104 0.145

CS-MRI (×6)
PSNR↑ 21.94 29.19 29.95 28.86

SSIM↑ 0.728 0.795 0.851 0.805

LPIPS↓ 0.459 0.149 0.141 0.168

Figure 8: Visual comparison of reconstructed images using diffusion-based inverse problem solvers.
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E.6 EFFECT OF STOCHASTIC LOOP ITERATIONS ON SAMPLE QUALITY

Our MSM framework includes a configurable parameter w, which controls the number of stochastic
iterations used to denoise the full measurement iterates. As theoretically justified in Appendix A,
using a larger w yields a closer convergence to the ideal MSM sampling algorithm that averages
infinitely many partial scores at each iteration.

To empirically validate this, we fixed the number of diffusion sampling steps to 10 and explored
three different values of w in {1, 2, 4}. We intentionally fixed the low number of sampling steps to
isolate the effect of w, as increasing the number of diffusion steps improves sample quality. Figure 9
illustrates that larger w leads to visually more plausible generations: while w = 1 can still produce
reasonable samples, it often results in artifacts, such as visible boundaries in some regions. As
w increases, the results become more stable and visually coherent. Table 12 and Table 13 further
support these observations quantitatively, showing that larger w achieves better FID scores across
both datasets.

Table 12: FID and average time per sampling for
MSM with varying stochastic loop iterations w on face
images. Note that the trade-off exists where larger w
reduces FID but increases sampling time.

Training data Methods FID↓ Time (s)

p = 0.4, ρ = 0

MSM (w = 4) 85.02 1.02

MSM (w = 2) 90.65 0.51

MSM (w = 1) 125.59 0.27

Table 13: FID and average time per sampling for
MSM with varying stochastic loop iterations w on MR
images. Similar to face images, increasing w reduces
FID at the cost of longer sampling time.

Training data Methods FID↓ Time (s)

R = 4, ρ = 0

MSM (w = 4) 75.08 2.18

MSM (w = 2) 81.97 1.12

MSM (w = 1) 102.89 0.57

Figure 9: Samples generated using different values of the stochastic loop parameter w.
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E.7 SOLVING INVERSE PROBLEMS UNDER DIFFERENT TEST NOISE LEVELS USING MSM

We additionally evaluate how MSM’s posterior solver behaves under varying measurement noise at
inference time by measuring reconstruction quality across multiple test noise levels while keeping the
pretrained measurement-domain diffusion model fixed. As summarized in Table 14, MSM maintains
strong performance across all noise levels and generally outperforms competing methods trained
without clean images.

Table 14: Reconstruction results across different test noise levels for inpainting, super-resolution, and CS-MRI.
Best values per metric are highlighted. MSM demonstrates robust performance across noise levels and generally
outperforms alternative methods trained without clean images.

Setup Noise

level

Input A-DPS SSDU MSM

Inpainting η = 0.005

PSNR↑ 18.29 19.26 N/A 24.75

SSIM↑ 0.757 0.654 N/A 0.874

LPIPS↓ 0.299 0.288 N/A 0.068

Inpainting η = 0.01

PSNR↑ 18.26 20.14 N/A 24.71

SSIM↑ 0.749 0.621 N/A 0.867

LPIPS↓ 0.304 0.305 N/A 0.076

Inpainting η = 0.02

PSNR↑ 18.19 19.16 N/A 24.68

SSIM↑ 0.726 0.657 N/A 0.854

LPIPS↓ 0.322 0.288 N/A 0.089

SR (×4) η = 0.005

PSNR↑ 23.27 22.13 N/A 28.29

SSIM↑ 0.734 0.696 N/A 0.880

LPIPS↓ 0.456 0.287 N/A 0.107

SR (×4) η = 0.01

PSNR↑ 23.21 22.61 N/A 28.11

SSIM↑ 0.728 0.702 N/A 0.868

LPIPS↓ 0.459 0.277 N/A 0.117

SR (×4) η = 0.02

PSNR↑ 23.09 22.41 N/A 27.59

SSIM↑ 0.711 0.702 N/A 0.836

LPIPS↓ 0.470 0.278 N/A 0.147

CS-MRI (×4) η = 0.005

PSNR↑ 22.67 27.01 29.70 31.00

SSIM↑ 0.652 0.777 0.855 0.858

LPIPS↓ 0.305 0.197 0.165 0.127

CS-MRI (×4) η = 0.01

PSNR↑ 22.62 27.28 29.65 30.71

SSIM↑ 0.648 0.804 0.847 0.839

LPIPS↓ 0.306 0.173 0.160 0.145

CS-MRI (×4) η = 0.02

PSNR↑ 22.52 27.12 28.99 29.07

SSIM↑ 0.623 0.792 0.833 0.769

LPIPS↓ 0.329 0.178 0.168 0.205

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

E.8 EFFECT OF NOISE REINJECTION IN MSM SAMPLING

As introduced in Section 3.2, MSM includes a noise-reinjection step inside each stochastic loop. At
every loop iteration, the diffusion noise is added back to the denoised subsampled estimate before
proceeding to the next update. This step helps ensure that coordinates updated in earlier iterations
remain compatible with the current iterate. In this section, we compare reconstruction performance
with and without this noise-reinjection step.

Table 15: Ablation study on the effect of noise reinjection in MSM sampling. We report quantitative results
on natural image inpainting, 4× super-resolution, and CS-MRI at acceleration rates 4 and 6. Best values are
highlighted per metric. MSM achieves the best performance across both distortion-based and perception-oriented
metrics.

Setup Input A-DPS MSM (w = 3 without noise reinject) MSM (w = 3 with noise reinject)

Inpainting
PSNR↑ 18.26 20.14 24.63 24.71

SSIM↑ 0.749 0.621 0.867 0.867

LPIPS↓ 0.304 0.305 0.076 0.076

SR (×4)

PSNR↑ 23.21 22.61 27.99 28.11

SSIM↑ 0.728 0.702 0.866 0.868

LPIPS↓ 0.459 0.277 0.117 0.117

CS-MRI (×4)

PSNR↑ 22.75 27.28 29.71 30.71

SSIM↑ 0.648 0.804 0.814 0.839

LPIPS↓ 0.306 0.173 0.164 0.145

CS-MRI (×6)

PSNR↑ 21.94 26.29 27.67 28.86

SSIM↑ 0.617 0.763 0.769 0.805

LPIPS↓ 0.342 0.201 0.193 0.168
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E.9 LEARNING PARTIAL MEASUREMENT SCORES FROM NOISY MEASUREMENTS WITH
INCORRECT NOISE ASSUMPTIONS

In practice, the noise level of the measurements is rarely known exactly, even though prior work
on training diffusion models from noisy or incomplete data typically assumes access to a noise
estimate (Aali et al., 2023; Chen et al., 2022; Daras et al., 2024b; Kawar et al., 2024). To assess MSM’s
sensitivity to this assumption, we evaluate the noisy-measurement training procedure from Section 3.4
under both a matched and mismatched setting. The model is trained assuming a measurement noise
level of ρassumed = 0.1 and we compare its performance when the true test-time noise matches this
value (ρtrue = 0.1) versus when it is lower (ρtrue = 0.05). As shown in Table 16, MSM exhibits only
a minor change in FID, indicating that it is robust to moderate mis-specification of the measurement
noise level during training.

Table 16: FID scores for unconditional generation under noise-level mis-specification. The model is trained
assuming ρassumed = 0.1, while the true noise level ρtrue may differ. MSM shows only minor degradation when
the assumed noise level does not match the actual one, demonstrating robustness to noise-level mis-specification.

Training data Methods FID↓

p = 0.4, ρassumed = 0.1, ρtrue = 0.1 MSM (Matched) 37.14

p = 0.4, ρassumed = 0.1, ρtrue = 0.05 MSM (Mismatched) 38.28
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E.10 COMPARISON OF INFERENCE EFFICIENCY FOR CONDITIONAL SAMPLING: MSM VS.
AMBIENT DPS

We compare the inference efficiency of MSM and Ambient DPS for conditional sampling in inverse
problems. Since MSM requires w stochastic loops per diffusion step while Ambient DPS does
not, it is important to assess this cost–performance trade-off. All methods are evaluated under the
200 diffusion sampling steps. We test MSM with w ∈ {1, 2, 3} across inpainting, super-resolution,
and compressed-sensing MRI. Even with the minimal configuration w = 1, MSM achieves higher
reconstruction quality than Ambient DPS while requiring only a single loop per diffusion step.
Increasing w provides the expected accuracy–efficiency trade-off characteristic of our stochastic
score aggregation. Results are summarized in Table 17.

Table 17: Inference efficiency comparison between Ambient DPS and MSM under different stochastic loop w.

Setup Input A-DPS MSM (w = 1) MSM (w = 2) MSM (w = 3)

Inpainting
PSNR↑ 18.26 20.14 24.48 24.64 24.70

SSIM↑ 0.749 0.621 0.868 0.867 0.868

LPIPS↓ 0.304 0.305 0.075 0.076 0.075

SR (×4)

PSNR↑ 23.21 22.61 28.27 28.15 28.09

SSIM↑ 0.728 0.702 0.872 0.870 0.869

LPIPS↓ 0.459 0.277 0.120 0.117 0.116

CS-MRI (×4)

PSNR↑ 22.75 27.28 29.12 30.50 30.71

SSIM↑ 0.648 0.804 0.806 0.828 0.839

LPIPS↓ 0.306 0.173 0.172 0.154 0.145

CS-MRI (×6)

PSNR↑ 21.94 26.29 27.20 28.21 28.86

SSIM↑ 0.617 0.763 0.759 0.789 0.805

LPIPS↓ 0.342 0.201 0.202 0.178 0.168
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F USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used large language models (LLMs) solely for minor editorial
assistance, such as correcting grammar and fixing typographical errors. LLMs were not used for
research ideation, methodological development, data analysis, or substantive writing. All scientific
contributions and writing decisions are entirely those of the authors.

G REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure reproducibility of our work. An anonymous supplementary
code package is provided, which fully reproduces our proposed method for both training and
unconditional sampling, as well as for solving inverse problems. Detailed descriptions of the models,
training configurations, and evaluation protocols are included in the main paper and Appendix D.4.
Additional implementation details and data preprocessing steps are provided in the supplementary
materials.
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