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Abstract

Modern machine learning algorithms, especially deep learning-based techniques,
typically involve careful hyperparameter tuning to achieve the best performance.
Despite the surge of intense interest in practical techniques like Bayesian opti-
mization and random search-based approaches to automating this laborious and
compute-intensive task, the fundamental learning-theoretic complexity of tuning
hyperparameters for deep neural networks is poorly understood. Inspired by this
glaring gap, we initiate the formal study of hyperparameter tuning complexity in
deep learning through a recently introduced data-driven setting. We assume that we
have a series of learning tasks, and we have to tune hyperparameters to do well on
average over the distribution of tasks. A major difficulty is that the utility function
as a function of the hyperparameter is very volatile and furthermore, it is given
implicitly by an optimization problem over the model parameters. To tackle this
challenge, we introduce a new technique to characterize the discontinuities and
oscillations of the utility function on any fixed problem instance as we vary the
hyperparameter; our analysis relies on subtle concepts including tools from alge-
braic geometry, differential geometry and constrained optimization. We use this to
show that the learning-theoretic complexity of the corresponding family of utility
functions is bounded. We instantiate our results and provide sample complexity
bounds for concrete applications—tuning a hyperparameter that interpolates neural
activation functions and setting the kernel parameter in graph neural networks.

1 Introduction

Developing deep neural networks that work best for a given application typically corresponds to a
tedious selection of hyperparameters and architectures over extremely large search spaces. This pro-
cess of adapting a deep learning algorithm or model to a new application domain takes up significant
engineering and research resources, and often involves unprincipled techniques with limited or no
theoretical guarantees on their effectiveness. While the success of pre-trained (foundation) models
have shown the usefulness of transferring effective parameters (weights) of learned deep models
across tasks [1, 2], it is less clear how to leverage prior experience of “good” hyperparameters to new
tasks. In this work, we develop a principled framework for tuning continuous hyperparameters in
deep networks by leveraging similar problem instances and obtain sample complexity guarantees for
learning provably good hyperparameter values.
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The vast majority of practitioners still use a naive “grid search" based approach which involves
selecting a finite grid of (often continuous-valued) hyperparameters and selecting the one that
performs the best. A lot of recent literature has been devoted to automating and improving this
hyperparameter tuning process, prominent techniques include Bayesian optimization [3, 4, 5, 6] and
random search based methods [7, 8]. While these approaches work well in practice, they either lack a
formal basis or enjoy limited theoretical guarantees only under strong assumptions. For example,
Bayesian optimization analysis assumes that the performance of the deep network as a function of
the hyperparameter can be approximated as a noisy evaluation of an expensive function, typically
making assumptions on the form of this noise, and requires setting several hyperparameters and
other design choices including the amount of noise, the acquisition function which determines the
hyperparameter search space, the type of kernel and its bandwidth parameter. Other techniques,
including random search methods and spectral approaches [9] make fewer assumptions but only
work for a discrete and finite grid of hyperparameters. This necessitates the need of analyzing the
landscape of hyperparameter loss (utility) landscape.

In this work, we consider the problem of tuning neural network hyperparameters in a multi-task setting.
We assume there is a fixed but unknown distribution over the learning tasks, and we have access to
tasks drawn from that distribution at the training time. We want to learn the hyperparameters to use
on future tasks from the same distribution, i.e. on any future task we use the learned hyperparameter,
and then we find the best network weights for that task. To address this question, we observe a
parallel to prior work on data-driven algorithm design [10, 11]. Despite a similar formulation, our
goal is to learn the network hyperparameters, and not configure the training algorithm that learns
the network weights. The best weights learned during training for a fixed task ultimately depend
on the hyperparameter selected in a complex way, making our setting more challenging than those
previously studied under this paradigm.

Mathematically, we aim to analyze the learning-theoretic complexity of a specific function class
U = {uα : X → [0, H] | α ∈ A}, where A = [α1, α2] ⊂ R is the hyperparameter space and
X is the set of problem instances. We note that each problem instance x ∈ X corresponds to a
training dataset for a single task (e.g. a dataset of images, as opposed to a single image). We assume
there is an application-specific problem problem distribution D over the datasets (tasks) in X . Each
function uα(x) in U is defined as: uα(x) = supw:(α,w)∈A×W f(x, α,w), where uα(x) measures
the performance of the deep network on a problem instance x and hyperparameter α using the
best parameter w. Here W = [wmin, wmax]

d ⊂ Rd represents a d-dimensional parameter space.
Our goal is to establish an upper bound on the learning-theoretic complexity of U , leveraging the
structural properties of f(x, α,w). We introduce two key notations in our analysis: the parameter-
dependent dual function fx(α,w) := f(x, α,w), describing the performance corresponding to
hyperparameter α and parameter w for a fixed problem instance x, and the dual utility function
u∗x(α) := uα(x) = maxw∈W fx(α,w). Inspired by model hyperparameter tuning applications (see
Section 5), we assume that the parameter-dependent dual fx(α,w) is a the piecewise polynomial
function in α and w (see Section 2 for details). Based on this structure of fx(α,w), we aim to
understand the structure of u∗x(α) which by the earlier work of Balcan et al. [12]1 , would imply
learnability of U = {uα : X → [0, H] | α ∈ A}.
The major difficulty we have to overcome is that even if fx(α,w) is a nicely structured piecewise
polynomial function, the function u∗x(α) = supw:(α,w)∈A×W fx(α,w) appears to be less structured;
in particular, the function u∗x(α) is not necessarily piecewise polynomial2, and might not even have
a closed form3. Our key technical innovation is to show that for the case of one hyperparameter α
we can still find enough structure in the dual functions u∗x; specifically by leveraging the structure of
parameter-dependent dual functions fx(α,w) we show how to bound the number of discontinuities
and local maxima of u∗x, which in turn implies that they have bounded oscillations (defined in
Section 2.1), which then imply a bound on the pseudo-dimension of U (using results from [12]).

1This work introduces the relation between the structure of the dual u∗
x and the learnability of the primal

class U in a different context of algorithm configuration, but the approach is useful for our setting.
2Consider the case where fx(α,w) = wα− w3

3
for α,w ≥ 0, and define u∗

x(α) = supw≥0 fx(α,w). One

can easily show that in this case, u∗
x(α) =

2
3
α

3
2 , which is not a polynomial in α.

3As another example, consider fx(α,w) = wα3 + (1/4)w4 − (3/2)αw2 for α,w ∈ [0, 1]2. In this case,
u∗
x(α) = supw∈[0,1] fx(α,w) has pieces corresponding to w = 1 and ∂fx/∂w = α3 + w3 − 3αw = 0. The

latter is the Folium of Descartes, and does not admit a closed-form expression in terms of elementary functions.
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Our proposed framework implies generalization guarantees for data-driven model hyperparameter
tuning across various applications. We demonstrate this through two concrete examples including the
following. Our first application is to tuning an interpolation hyperparameter for the activation function
used at each node of the neural network. Different activation functions perform well on different
datasets [13, 14]. We analyze the sample complexity of tuning the best combination from a pair of acti-
vation functions by learning a real-valued hyperparameter that interpolates between them. We tune the
hyperparameter across multiple problem instances, an important setting for multi-task learning. Our
contribution is related to neural architecture search (NAS, [15, 16, 17]). NAS automates the discovery
and optimization of neural network architectures, replacing human-led design with computational
methods. Several techniques have been proposed [18, 19, 20], but they lack principled theoretical
guarantees (see additional related work in Appendix A), and multi-task learning is a known open
research direction [21]. We also instantiate our framework for tuning the graph kernel parameter in
Graph Neural Networks (GNNs) [22] designed for more effectively deep learning with structured data.
Hyperparameter tuning for graph kernels has been studied in the context of classical non-neural mod-
els [23, 24], in this work we provide the first provable guarantees for tuning the graph hyperparameter
for the more effective modern approach of graph neural networks. While we focus on these specific
applications, our proposed framework’s generality makes it applicable to many other scenarios.

Our contributions. In this work, we provide an analysis for the learnability of parameterized
algorithms involving both parameters and hyperparameters, when the learner has access to problem in-
stances drawn from a fixed, unknown distribution. Our analysis captures model hyperparameter tuning
in deep networks with a piecewise polynomial parameter-dependent dual function. Concretely,

1. We introduce general tools which connect the number of discontinuities and local maxima of
a piecewise continuous function with its learning-theoretic complexity (Section 2.1).

2. We show that when the parameter-dependent dual function fx(α,w) computed by a deep network
f on a fixed dataset x is piecewise constant, the function u∗x is also piecewise constant. This
structure occurs in classification tasks with a 0-1 loss objective. We then establish an upper-bound
for the pseudo-dimension of U , which translates to learning guarantees for U (Theorem 3.2).

3. As our main contribution, we prove that when the parameter-dependent dual function fx(α,w)
exhibits a piecewise polynomial structure, under mild regularity assumptions, we can establish
an upper bound for the number of discontinuities and local extrema of the dual utility function u∗x.
We use tools from differential geometry to identify the smooth 1-manifolds in the space A×W
corresponding to the derivative curves which determine u∗x and results from algebraic geometry
and constrained optimization to bound the number of local extrema of u∗x along such manifolds.
We then translate the structure of u∗x to learning guarantees for U (Theorem 4.1).

4. Finally, we investigate data-driven algorithm configuration problems for deep networks, including
tuning interpolation parameters for neural activation functions (Theorem 5.1) and hyperparameter
tuning for semi-supervised learning with graph convolutional networks (Theorem H.2). We
first uncover the underlying piecewise structure relevant for our framework, and then use this
structure to obtain learnability guarantees for tuning the hyperparameters for both classification
and regression problems.

Related work. Data-driven algorithm design has been successfully applied to tune fundamental
algorithms in machine learning and beyond (Appendix A). Our work is the first work to focus on
tuning hyperparameters for deep networks using a data-driven lens. A key technical challenge that
we overcome is that varying the hyperparameter even slightly can lead to a significantly different
learned deep network (even for the same training set) with completely different parameters (weights)
which is hard to characterize directly. This is very different from a typical data-driven problem where
one is able to show closed forms or precise structural properties for the variation of the learning
algorithm’s behavior as a function of the hyperparameter [12]. We elaborate further on our technical
novelties below. Our theoretical advances are potentially useful beyond deep networks, to algorithms
with a tunable hyperparameter and several learned parameters. We discuss the challenges in our
setting and explain why developing novel techniques is required. We also provide a brief technical
overview of our approach. See Appendix B for further discussion.

Technical challenges and novelty. In typical prior work on data-driven hyperparameter tuning
[25, 26, 27, 28], the hyperparameter tuning process does not involve the parameter w. In such
cases, the approach is to show that the utility function u∗x(α) admits a specific piecewise structure
in α, typically piecewise polynomial or rational. Some works involve the parameter w [29, 30],
but the optimal parameter w∗

x(α) ∈ argmaxw∈W fx(α,w) either has a closed analytical form
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or can be approximated by a function ŵx(α) with bounded error. In contrast, in our setting,
u∗x(α) = maxw∈W fx(α,w) is defined via an optimization problem involving the parameter w and
no closed form solution for w∗

x(α) is known. This difference highlights the challenges of our setting,
overcoming which requires the development of novel techniques.

Technical overview. We show in Section 2.1 that if u∗x(α) is piecewise continuous, we can bound
Pdim(U) via bounding the number of discontinuities and local extrema of u∗x(α). We then show
in Section 3 that if f∗x(α,w) is piecewise constant, u∗x(α) is also piecewise constant with finitely
many discontinuities. We then present our main technical contribution in Section 4: if f∗x(α,w) is
piecewise polynomial, then we can bound the pseudo-dimension of U . Concretely, we propose the
notion of monotonic curves and study their relevant properties (Appendix F.3). We show that the
domain A of u∗x(α) can be partitioned into multiple intervals, over each of which u∗x(α) is given by
the pointwise maximum of f∗x(α,w) along some fixed set of monotonic curves. Leveraging tools
from algebraic and differential geometry, we show that by bounding the number of local maxima of
fx(α,w) along monotonic curves, we can bound the number of discontinuities and local extrema of
u∗x(α,w) in A, thereby establishing learning-theoretic guarantees for U .

2 Problem setting and preliminaries

Models with hyperparameters. We introduce the data-driven model hyperparameter tuning
framework for models with hyperparameters α and trainable parameters w. Concretely, let
f : X ×A×W → [0, H] be the parameter-dependent utility function that represents the model’s
performance, where f(x, α,w) measures the performance corresponding to problem instance x ∈ X ,
parameters w ∈ W = [wmin, wmax]

d, and hyperparameter α ∈ [αmin, αmax]. Here each problem
instance x ∈ X in our hyperparameter tuning framework represents the complete training dataset for
a single task, unlike single-task machine learning setting where x ∈ X typically represents a single
example. For example, in the problem of tuning the interpolation parameter of neural activation
functions (Section 5), each problem instance x = (X,Y ) consists of a set X of T examples, and the
corresponding labels Y . We define the utility function uα(x) quantifying the model’s performance
with hyperparameter α on problem instance x as uα(x) = supw:(α,w)∈A×W f(x, α,w). This for-
mulation can be interpreted as follows: for a given hyperparameter α and problem instance x, we
determine the optimal model parameters w that maximize performance.

The dual utility function. For a fixed problem instance x ∈ X , we can define the dual utility function
u∗x : A → [0, H], representing the performance of the network corresponding to the hyperparameter α
and the best parameter w, as u∗x(α) = supw:(α,w)∈A×W fx(α,w), where fx(α,w) := f(x, α,w)
is called the parameter-dependent dual function.

Data-driven model hyperparameter tuning problem. Let U = {uα : X → [0, H] | α ∈ A}
be the utility function class. In the data-driven setting, we assume an application-specific problem
distribution D over the set of problem instances X . Here, D represents a fixed but unknown
distribution of over datasets or tasks. Our goal here is find a good hyperparameter α̂ given a small
sample of tasks drawn from D, that achieves nearly the same utility on average as the optimal
hyperparameter α∗ ∈ argmaxα∈A Ex∼D[uα(x)]. Our approach is to bound the pseudo-dimension
and the Rademacher complexity of the function class U , given the structure of the parameter-
dependent dual function fx(α,w).

We consider two situations where fx(α,w) is either piecewise constant (Section 3) or piecewise
polynomial (Section 4). For the piecewise constant case, we assume that for any x, there is a finite
partition P of the domain A×W consisting of connected components such that fx(α,w) remains
constant over each connected component in P . For the second case, we assume that there are
algebraic sets Zhx,i

= {(α,w) ∈ A×W | hx,i(α,w) = 0} partitioning the domain A×W , where
hx,i(α,w) is a polynomial in α and w. In each connected component of the partition, the piece
function fx,i which equals fx(α,w) in the component is also a polynomial of α and w.

2.1 Discontinuities, local extrema and the pseudo-dimension

In this section, we establish a connection between the structure of the dual utility function u∗x and
the pseudo-dimension of U = {uα : X → R | α ∈ R}. Concretely, we show that if u∗x has bounded
number of discontinuities and local extrema, then U has bounded pseudo-dimension.
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Lemma 2.1. Consider a real-valued function class U = {uα : X → R | α ∈ R}, of which each
dual function u∗x(α) is piecewise continuous, with at most B1 discontinuities and B2 local maxima.
Then Pdim(U) = O(log(B1 +B2)).

The detailed proof of Lemma 2.1 can be found in Appendix D.2. The idea is to show that u∗x(α)
has bounded oscillations (Definition 4, Lemma D.2), which is defined as the maximum number of
discontinuities that the function I{h(α)≥z} can have, for any real threshold z. We then use a result
by Balcan et al. [12] (Theorem D.1) connecting the oscillations and Pdim(U). Note that Lemma
2.1 does not apply to piecewise constant functions, which have an infinite number of local extrema.
However, we can still give an analogous result for this case as follows (see Appendix D.2 for proof).
Lemma 2.2. Consider a real-valued function class U = {uα : X → R | α ∈ R}, of which each dual
function u∗x(α) is piecewise constant with at most B discontinuities. Then Pdim(U) = O(logB).

3 Piecewise constant parameter-dependent dual function

We first examine the case where fx(α,w) is piecewise constant. Concretely, we assume there
exists a partition Px = {Rx,1, . . . , Rx,N} of the domain A × W of fx, where each Rx,i is a
connected component (Definition 6), and the function fx(α,w) restricted on Rx,i is constant, i.e.,
fx,i(α,w) = cx,i for any (α,w) ∈ Rx,i. Consequently, we can rewrite u∗x(α) as follows:
u∗x(α) = sup

w∈W
fx(α,w) = max

i∈{1,...,N}
sup

w:(α,w)∈Rx,i

fx,i(α,w) = max
i∈{1,...,N}:∃w s.t. (α,w)∈Rx,i

cx,i.

We first show Lemma 3.1, which asserts that u∗x(α) is a piecewise constant function and provides an
upper bound for the number of discontinuities in u∗x(α).
Lemma 3.1. Assume that the piece functions fx,i(α,w) = cx,i are constant for all i ∈ [N ] and
all problem instances x. Then u∗x(α) has O(N) discontinuity points, partitioning A into O(N)
intervals. In each interval, u∗x(α) is a constant function.

Proof. The proof idea of Lemma 3.1 is demonstrated in Figure 3. For each connected set Rx,i

corresponding to a piece function fx,i(α,w) = cx, i, let
αRx,i,inf = inf

α
{α : ∃w, (α,w) ∈ Rx,i}, αRx,i,sup = sup

α
{α : ∃w, (α,w) ∈ Rx,i}.

There are N connected components, and therefore 2N such points. Reordering those points and
removing duplicate points as αmin = α0 < α1 < α2 < · · · < αt = αmax, where t = O(N) we
claim that for any interval Ii = (αi, αi+1) where i = 0, . . . , t− 1, the function u∗x remains constant.

Consider any interval Ii. By the above construction of αi, for any α ∈ Ii, there exists a fixed set of
regions Rx,Ii = {Rx,Ii,1, . . . , Rx,Ii,n} ⊆ Px = {Rx,1, . . . , Rx,N}, such that for any connected set
R ∈ Rx,Ii , there exists w such that (α,w) ∈ R. Besides, for any R ̸∈ Rx,Ii , there does not exist w
such that (α,w) ∈ R. This implies that for any α ∈ Ii, we can write u∗x(α) as

u∗x(α) = sup
w∈W

fx(α,w) = sup
R∈Rx,Ii

sup
w:(α,w)∈R

fx(α,w) = max
c∈Cx,Ii

c,

where Cx,Ii = {cRx,j
| Rx,j ∈ Rx,Ii} contains the constant value that fx(α,w) takes over R.

Since the set Cx,Ii is fixed, u∗x(α) remains constant over Ii.

Hence, we conclude that over any interval Ii = (αi, αi+1), for i = 1, . . . , t− 1, the function u∗x(α)
remains constant. Therefore, there are only the points αi, for i = 0, . . . , t− 1, at which the function
u∗x may not be continuous. Since t = O(N), we have the conclusion.

By combining Lemma 3.1 and Corollary 2.2, we have the following result, which establishes learning
guarantees for the utility function class U when fx(α,w) admits piecewise constant structure.
Theorem 3.2. Consider the utility function class U = {uα : X → [0, H] | α ∈ A}. Assume that for
any x ∈ X there is a partition Px = {Rx,1, . . . , Rx,N} of A×W , over each of which fx,i remains
constant. Then for any distribution D over X , and any δ ∈ (0, 1), with probability at least 1− δ over
the draw of S = {x1, . . . ,xm} ∼ Dm, we have that

|Ex∼D[uα̂S
(x)]− Ex∼D[uα∗(x)]| = O

(√
1

m
log(N/δ)

)
.
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(a) The piecewise structure of u∗
x(α) and piecewise

polynomial surface of fx(α,w) in sheer view.
(b) Removing the surface fx(α,w) for better view
of u∗

x(α), the boundaries, and the derivative curves.

Figure 1: A demonstration of the proof idea for Theorem 4.1 in 2D (w ∈ R). Here, the domain of
f∗x(α,w) is partitioned into four regions by two boundaries: a circle (blue line) and a parabola (green
line). In each region i, the function fx(α,w) is a polynomial fx,i(α,w), of which the derivative
curve ∂fx,i

∂w = 0 is demonstrated by the black dot in the plane of (α,w). The value of u∗x(α) is
demonstrated in the red line, and the red dots in the plane (α,w) corresponds to the position where
fx(α,w) = u∗x(α). We can see that it occurs in either the derivative curves or in the boundary. Our
goal is to leverage this property to control the number of discontinuities and local maxima of u∗x(α),
which can be converted to the generalization guarantee of the utility function class U .

Here, α̂S ∈ argminα∈A
1
m

∑m
i=1 uα(xi), and α∗ ∈ maxα∈A Ex∼D[uα(x)].

Proof. From Lemma 3.1, we know that any dual utility function u∗x is piecewise constant and has at
mostO(N) discontinuities. Combining with Corollary 2.2, we conclude that Pdim(U) = O(log(N)).
Finally, a standard result from learning theory (Theorem C.1) gives us the final guarantee.

In many applications, the partition of fx(α,w) into connected components is typically defined by
M boundary functions hx,1(α,w), . . . , hx,M (α,w). When the boundary functions are polynomials
with bounded degree, we have the following concrete result for such a case, which is a direct
consequence of Theorem 3.2.

Corollary 3.3. Consider the utility function class U = {uα : X → [0, H] | α ∈ A}. Assuming
that for any x, there are M boundary functions hx,1, . . . , hx,M partitioning the domain A×W into
Px = {Rx,1, . . . , Rx,N}, over each of which fx,i remains constant. Assuming that the boundary
functions hx,i, where i = 1, . . . ,M , are polynomials in α,w of degree at most ∆. Then for
any distribution D over X , and any δ ∈ (0, 1), with probability at least 1 − δ over the draw of
S = {x1, . . . ,xm} ∼ Dm, we have that

|Ex∼D[uα̂S
(x)]− Ex∼D[uα∗(x)]| = O

(√
d log(M∆) + log(1/δ)

m

)

Proof. From Theorem F.9, there are at most N ≤ O
(

M∆
d+1

)d+1

connected components created by
M polynomial boundary functions in x and α of degree at most ∆. Combining with Theorem 3.2,
we have the final conclusion.

Remark 1. Theorem 3.2 can be applied beyond polynomial boundaries, for example, settings where
the boundary functions consist of Pfaffian functions (which is a generalization of polynomial functions
that includes exponential and logarithmic functions). See Appendix J for a detailed discussion.
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4 Piecewise polynomial parameter-dependent dual function

We examine the case where fx(α,w) exhibits a piecewise polynomial structure. Concretely, the
domain A ×W = [αmin, αmax] × [wmin, wmax]

d is partitioned into N connected components by
M algebraic sets Zhx,j

= {(α,w) ∈ A ×W | hx,j(α,w) = 0}, for j = 1, . . . ,M . Here, each
boundary function hx,j(α,w) is a polynomial in α and w of degree at most ∆b. The resulting parti-
tion Px = {Rx,1, . . . , Rx,N} consists of connected components Rx,i, each formed by a connected
component ofA×W−∪Mj=1Zhx,j

and its adjacent boundaries (Definition 8). Within each connected
component Rx,i, the function fx(α,w) is a polynomial fx,i(α,w) of degree at most ∆p. We call
fx,i the piece function. The dual utility function u∗x(α) can then be written as:
u∗x(α) = sup

w:(α,w)∈A×W
fx(α,w) = max

i∈{1,...,N}
sup

w:(α,w)∈Rx,i

fx,i(α,w) = max
i∈{1,...,N}

u∗x,i(α),

where u∗x,i(α) = supw:(α,w)∈Rx,i
fx,i(α,w).

For a better understanding of the proof techniques used for the main results (Theorem 4.1), we
encourage the reader to consider the simpler case where d = 1 (see Appendix F.4). Figure 1
demonstrates the piecewise structure of the dual function in this case. We can see that for any α
the value of the dual u∗x(α) is given by the value of fx(α,w) on some point (α̃, w̃) that lies either
on some derivative curve or on one of the boundaries. Our proof obtains a bound on the number
of all such points (α̃, w̃) that are “critical”, i.e. where a switch may occur between boundaries and
derivative curves (or between pairs of boundaries, or pairs of derivative curves). Between such critical
points, we use the Lagrange’s multiplier theorem (Theorem F.3) to express the locations of the local
extrema of u∗x as intersections of algebraic varieties. In summary, we use the above arguments to
bound the number of discontinuities and local maxima of u∗x(α), which can be converted to the
generalization guarantee of the utility function class U .

Our main result in this section applies to the general multidimensional case, w ∈ Rd. While the
overall proof strategy is similar, it needs significant extensions and refinements (Remark 4). We
begin with the following regularity assumption on the piece and boundary functions fx,i and hx,j .
Assumption 1. Given any dual utility functions u∗x(α) with corresponding boundary functions hx,j ,
for j = 1, . . . ,M , and piece functions fx,i, for i = 1, . . . , N , satisfying the following property: for
any set of S boundary functions h1, . . . , hS chosen from the set of boundaries {hx,1, . . . , hx,M},
and any piece function f chosen from the set of piece functions {fx,1, . . . , fx,N}, we assume

1. Extended linearly independent constraints qualification (ELICQ): The Jacobian Jh(α,w) has
full row rank when evaluated at (α,w) ∈ h−1(0). Moreover, if S ≤ d, we assume that Jh(w)
has full row rank hen evaluated at (α,w) ∈ h−1(0).

2. Non-degeneracy (ND): the polynomial function P (α,w,λ) = det(J(h,∇wL)(w,λ)) is not
identically zero on any (d + 1)-dimensional irreducible component of the real algebraic set
Zh = {(α,w,λ) ∈ RS+d+1 | h(α,w,λ) = 0}. Here, L(α,w,λ) = f(α,w) + λ⊤h(α,w).

Remark 2. 1. The ELICQ assumption consists of two parts. The LICQ part is a standard assumption
in parametric optimization literature (or in constraint optimization in general, see e.g., [31, 32])
and corresponds to assuming that Jh(w) has full row rank when evaluated at (α,w) ∈ h−1(0),
for S ≤ d. The second part, assuming that the Jacobian Jh(α,w) has full row rank when
evaluated at (α,w) ∈ h−1(0), essentially says that 0 is a regular value of h. This assumption
is directly implied by LICQ when S ≤ d. For S ≥ d + 1 (where LICQ is inapplicable as
rank(Jh(w)) ≤ d) this assumption implies that the solutions that satisfy h(α,w) = 0 are
isolated points for S = d + 1, or the solution set is empty for S > d + 1. We note that this
assumption is relatively mild since Sard’s theorem (Theorem F.15) asserts that the set of a regular
value of a smooth map (h in this case) has Lebesgue measure 0 in the co-domain.

2. The ND assumption is also relatively mild. Roughly speaking, it requires that there is at least one
point (α,w,λ) satisfying h(α,w) = 0, where P (α,w,λ) is non-zero. Intuitively, we use this
assumption to show that the intersection of derivative curves with boundaries can be decomposed
into a bounded number of monotonic curves (Definition 19), which we show to have favorable
structure (Lemma F.19), playing an important role in our analysis.

We now state our main structural result, and provide a brief proof sketch (full proof in Appendix F.5).
Theorem 4.1. Consider the utility function class U = {uα : X → [0, H] |
α ∈ [αmin, αmax]}. Assume that fx(α,w) admits piecewise polynomial structure with
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N piece functions fx,i (for i = 1, . . . , N ) and M boundaries functions hx,j (for j =
1, . . . ,M ) satisfying Assumption 1. Then for any distribution D over X , for any δ ∈
(0, 1), w.p. at least 1 − δ over the draw of S = {x1, . . . ,xm} ∼ Dm, we

have |Ex∼D[uα̂ERM(x)]− Ex∼D[uα∗(x)]| = O
(√

logN+d log(∆M)+log(1/δ)
m

)
. Here, α̂S ∈

argminα∈A
1
m

∑m
i=1 uα(xi), α∗ ∈ maxα∈A Ex∼D[uα(x)], and ∆ = max{∆p,∆d} is the maxi-

mum degree of piece functions fx,i and boundaries hx,j .

Proof Sketch. The proof consists of three main steps. Step 1: bound the number of possible
discontinuities and local maxima of v∗x(α) under Assumption 3, a stronger assumption compared to
Assumption 1. Step 2: we show that, for any u∗x(α) that satisfies Assumption 1, we can construct
v∗x(α) satisfies Assumption 3 and is arbitrarily close to u∗x(α). Step 3: we can use this property to
recover the learning guarantee for U . The key ideas of each step are sketched below.

1. We show that if the piece functions fx,i and boundaries hx,i satisfy a stronger assumption
(Assumption 3), we can bound the pseudo-dimension of U (Theorem F.25). The steps are:

(a) From Lemma 2.1, we know that it suffices to bound the number of discontinuities and local
maxima of u∗x. From Lemma F.1 and Proposition F.2, we can bound the number of discontinuities
and local maxima of u∗x by bounding those of u∗x,i for any piece i. Hence, in the next few steps,
our main object of study is u∗x,i.

(b) We first demonstrate that the hyperparameter domain A can be partitioned into intervals using

the set of points A1 ⊂ A that has at most O
(
(2∆)d+1

(
eM
d+1

)d+1
)

elements. For each interval

It, there exists a set of subsets of boundaries S1
x,t ⊂ 2Hx,i such that for any set of boundaries

S = {hS,1, . . . , hS,S} ∈ S1
x,t, the intersection of boundaries {(α,w) | h(α,w) = 0, h ∈ S}

in S contains a feasible point (α,w) for any α in that interval. The key idea of this step is to
upper bound the number of α-extreme points (Definition 7) of connected components of such
intersections, using Warren’s theorem (Lemma F.8). In words, the goal of this step is to partition
the hyperparameter space A into intervals, that over any interval It in the partition, there is some
set of set of boundaries S1

x,t such that for any α′ ∈ It, there is at least one point that lies in the
intersection of set of boundaries S ∈ S1

x,t that has α-coordinate equal to α′.
(c) Now note that, for any wα that maximizes fx,i(α,w) for any fixed α, due to the Lagrangian

multipliers theorem (Theorem F.3), there is a set of boundaries S = {hS,1, . . . , hS,S} such that
hS(α,wα) = 0, ∇wLS(α,wα,λα) = 0, for some λα. Here, hS = (hS,1, . . . , hS,S) is the
polynomial mapping constructed by the boundary functions corresponding to some set S of
boundaries, LS(α,w,λ) = fx,i(α,w) +λ⊤hS(α,w) is the corresponding Lagrangian function.
Next, our goal is to decompose the solution set of the above Lagrangian into a union of monotonic
curves (Definition 19), which we show to have the following property: for any α ∈ It, there is
at most one point (α,w,λ) in the monotonic curve C (Lemma F.19).

Towards this goal, we refine the partition of A into intervals, using the set of points
A2 that contains points in A1 and some additional points in set B, for a total of
O
(
(2∆)2d+1

(
eM
d

)d
+∆4d

(
eM
d

)d)
elements. Here, B is the set of α-coordinates of

the set of points in B′, which contains the points (α,w,λ) that satisfy

hS(α,w) = 0, ∇wLS(α,w,λ) = 0, det(JkS
(w,λ)) = 0.

where JkS
(w,λ) is the Jacobian of kS = (hS ,∇wLS) with respect to (w,λ). Under

Assumption 3.2, the number of such points is bounded, leading to the number of elements in
B being bounded. In any interval It in the partition of A created by the set of points A2, we claim
that the set ZkS

= {(α,w,λ) | kS(α,w,λ) = 0} defines a smooth one-dimensional manifold
in the space of (α,w,λ).

(d) Next, we want to partition the hyperparameter space α into intervals, such that in any interval, the
function u∗x,i can be written as the point-wise maximum of the piece function fx,i(α,w) along
some fixed set of monotonic curves. Concretely, we further refine the partition of A into intervals,
using the set of points A3 ⊂ A that contains the points in A2 and some extra points in the set D.
Here, D contains the α-extreme points of connected components of the algebraic set ZkS

(where
kS = (hS ,∇wLS) as defined in (c)) and the α-coordinate of the intersections between ZkS

with
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another boundary h′ ̸∈ S , for some fixed set of the boundaries S . In any interval It, there is a fixed
set Ct of monotonic curves such that for any α ∈ I , the function u∗x,i can be written as u∗x,i(α

′) =
maxC∈Ct

gC(α
′), where gC(α′) = fx,i(α

′,wα′), and (α′,wα′ ,λα′) is the unique point in mono-
tonic curve C that has α-coordinate equal to α′ (a property of monotonic curve, see Lemma F.19).
Therefore, over this interval, u∗x,i(α) is continuous, since each gC(α′) is continuous (Lemma F.1).

(e) Moreover, we show that in each interval It, any local maximum of u∗x,i(α) is a local maximum
of fx,i(α,w) along a monotonic curve (Lemma F.21). Again, we can control the number of such
points using Bezout’s theorem (Corollary F.10) and Assumption 3.3. Finally, we put together
all the potential discontinuities and local extrema of u∗x,i. Combining with Lemma 2.1 we have
the upper-bound for Pdim(U) (Theorem F.26).

2. We show that for any function class U whose dual functions u∗x have piece functions and boundaries
satisfying Assumption 1, we can construct a new function class V . The dual functions v∗x of V have
piece functions and boundaries that satisfy Assumption 3. Moreover, we show that ∥u∗x − v∗x∥∞
can be made arbitrarily small. See Lemma F.30 for a proof overview as well as the detailed proof.

3. Finally, using the results from Step (1), we establish an upper bound on the pseudo-dimension
for the function class V described in Step (2). The result can then be used to determine the
learning-theoretic complexity of U by applying Lemma C.3 and Lemma C.4. Standard learning
theory literature then allows us to translate the learning-theoretic complexity of U into its learning
guarantee. This final step is detailed in Appendix F.5.

4.1 Relaxation to approximate-ERM oracle

The preceding analysis implicitly assumes access to an exact-ERM (e-ERM) oracle in defining the
dual utility function. In practice, however, such an exact oracle is unavailable; instead, we typically
have access to an approximate-ERM (a-ERM) oracle (for example, the weights learned using gradient
descent based optimization) which we formalize below.
Assumption 2 (ξ-a-ERM oracle and its induced function class). Consider a utility function class
U = {uα : X → [0, H] | α ∈ A}. Assume that we access to a ξ-a-ERM oracle such that given
a problem instance x and a hyperparameter α, return w̃α such that |u∗x(α)− v∗x(α)| < ξ, where
u∗x(α) = supw:(α,w)∈A×W fx(α,w), and v∗x(α) = fx(α, w̃α). We further define V = {vα : X →
[0, H] | α ∈ A} the induced function class by the ξ-a-ERM oracle, where vα(x) := v∗x(α).

The below gives learning guarantees for the induced function class V (proof in Appendix G).
Theorem 4.2. Assuming U = {uα : X → [0, H] | α ∈ [αmin, αmax]} satisfying Assumption 1. Let
V = {vα : X → [0, H] | α ∈ A} be the induced function class by ξ-a-ERM oracle. Then for any
distribution D over X , for any δ ∈ (0, 1), w.p. at least 1− δ over the draw of S = {x1, . . . ,xm} ∼

Dm, we have |Ex∼D[vα̂ERM(x)]− Ex∼D[vα∗(x)]| = O
(√

logN+d log(∆M)+log(1/δ)
m + ξ

)
.

5 Applications

We demonstrate the application of our results to two specific hyperparameter tuning problems in
deep learning. We note that the problem might be presented as analyzing a loss function class
L = {ℓα : X → [0, H] | α ∈ A} instead of utility function class U = {uα : X → [0, H] | α ∈ A},
but our results still hold, just by defining uα(x) = H−ℓα(x). We establish bounds on the complexity
of tuning the linear interpolation hyperparameter for activation functions, which is motivated by
DARTS [14], and exploring the tuning of graph kernel parameters in Graph Neural Networks (GNNs),
in both regression and classification problems. We present below the guarantee for tuning interpolation
hyperparameter of neural activation functions here (details and other applications in Appendix H).

We consider a feed-forward neural network f with L layers, Wi parameters in the ith layer, and W =∑L
i=1Wi is the total number of parameters. We denote by ki the number of computational nodes in

layer i, and let k =
∑L

i=1 ki. At each node, we choose between two piecewise polynomial activation
functions, o1 : R → R and o2 : R → R. The domain of the activation functions is partitioned by
finitely many breakpoints, such that the activation function is polynomial in each partition. For exam-
ple, 0 is a breakpoint of the ReLU activation function. Liu et al. [14] propose a simple method for se-
lecting activation functions: during training, they define a general activation function σ as a weighted
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combination of o1 and o2. While their framework is more general, allowing for multiple activation
functions and layer-specific activation, we analyze a simplified version. The combined activation func-
tion is given by σ(x) = αo1(x) + (1− α)o2(x),where α ∈ [0, 1] is the interpolation hyperparameter.
This framework can express functions like the parametric ReLU, σ(z) = max{0, z}+ αmin{0, z},
which empirically outperforms the regular ReLU which corresponds to α = 0 [33].

In parametric regression, the final layer output is g(α,w,x) = ŷ ∈ RD, where w ∈ W ⊂ RW is the
parameter vector and α is the architecture hyperparameter. The loss for a single example (x, y) is
∥g(α,w, x)− y∥2, and for T examples, we define

ℓα((X,Y )) = min
w∈W

1

T

∑
(x,y)∈(X,Y )

∥g(α,w, x)− y∥2 = min
w∈W

f((X,Y ), α,w).

With X as the space of T -example sets, we define the loss function class LAF = {ℓα : X →
R | α ∈ [αmin, αmax]}. We aim to provide a learning-theoretic guarantee for LAF. Given a
problem instance (X,Y ), the key idea is to establish a piecewise polynomial structure for the
parameter-dependent dual functionf(X,Y )(α,w), and then apply our main result Theorem 4.1. We
establish this structure by extending the inductive argument due to Bartlett et al. [34] who establish
the piecewise polynomial structure of the neural network output as a function of just the parameters
w (i.e. when there are no hyperparameters) on any fixed collection of input examples.

Theorem 5.1. Let LAF denote loss function class defined above, with activation functions o1, o2
having maximum degree ∆ and maximum breakpoints p. Given a problem instance x = (X,Y ),
the dual loss function is defined as ℓ∗x(α) := minw∈W f(x, α,w) = minw∈W fx(α,w). Then,
fx(α,w) admits piecewise polynomial structure with bounded pieces and boundaries. Further, if the
piecewise structure of fx(α,w) satisfies Assumption 1, then for any δ ∈ (0, 1), w.p. at least 1− δ
over the draw of problem instances S = {x1, . . . ,xm} ∼ Dm, where D is some distribution over X ,
we have

|Ex∼D[ℓα̂S
(x)]− Ex∼D[ℓα∗(x)]| = O

(√
L2W log∆ + LW log(Tpk) + log(1/δ)

m

)
.

6 Conclusion and future work

In this work, we combined tools from multiple fields, including algebraic geometry, differential
geometry, constrained optimization, and statistical learning theory to provide bounds on the sample
complexity of hyperparameter tuning when the parameter-dependent dual function admits polynomial
structures. We further show that this piecewise polynomial structure is observed in data-driven
model hyperparameter tuning of neural networks, specifically for tuning graph kernels for graph
convolutional networks and interpolation parameters for neural activation functions. We note that our
proposed framework is applicable beyond neural networks for data-driven algorithm design.

A major open question is to extend our work to multiple hyperparameters (i.e., α ∈ Rn). For
the case of one-dimensional hyperparameter, we showed that when the parameter-dependent dual
function fx(α,w) is piecewise polynomial, then the dual utility function u∗x(α) has bounded
oscillations, even if it is not as structured as the parameter-dependent dual; this bounded oscillations
structure is sufficient to imply learnability. An interesting open technical question is determining
the analogous structure to bounded oscillations in the case of multiple hyperparameters. In the
case of one-dimensional hyperparameters, we leveraged and extended tools from differential
geometry, combined with constrained optimization techniques to prove that the dual utility function
has bounded oscillations. We believe that our idea can serve as a first step in generalizing to the
high-dimensional regimes. Another open question is to give a simpler analysis for one-dimensional
hyperparameter, potentially under weaker assumptions.
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A Additional related work

Learning-theoretic complexity of deep nets. A related line of work studies the learning-theoretic
complexity of deep networks, corresponding to selection of network parameters (weights) over a
single problem instance. Bounds on the VC dimension of neural networks have been shown for
piecewise linear and polynomial activation functions [35, 34] as well as the broader class of Pfaffian
activation functions [36]. Recent work includes near-tight bounds for the piecewise linear activation
functions [37] and data-dependent margin bounds for neural networks [38].

Data-driven algorithm design. Data-driven algorithm design [11, 39, 40] is an emerging field that
adapts algorithms’ internal configuration to specific problem instances, particularly in parameterized
algorithms with multiple performance-dictating hyperparameters. Unlike traditional worst-case or
average-case analysis, this approach assumes problem instances come from an application-specific
distribution. By leveraging available input problem instances, this approach seeks to maximize
empirical utilities that measure algorithmic performance for those specific instances. This method
has demonstrated effectiveness across various domains, including low-rank approximation and
dimensionality reduction [41, 42, 43], accelerating linear system solvers [44, 45], mechanism design
[46, 47], sketching algorithms [48], branch-and-cut algorithms for (mixed) integer linear programming
[49], learning decision trees [50],among others. Prior work has also studied online learning of
algorithms [51, 52, 53, 54, 55]. In this work, we focus mainly on the statistical learning setting and
extending our techniques to online learning is an interesting future direction.

Neural architecture search. Neural architecture search (NAS) captures a significant part of the
engineering challenge in deploying deep networks for a given application. While neural networks
successfully automate the tedious task of “feature engineering” associated with classical machine
learning techniques by automatically learning features from data, it requires a tedious search over
a large search space to come up with the best neural architecture for any new application domain.
Multiple different a pproaches with different search spaces have been proposed for effective NAS,
including searching over the discrete topology of connections between the neural network nodes, and
interpolation of activation functions. Due to intense recent interest in moving from hand-crafted to
automatically searched architectures, several practically successful approaches have been developed
including framing NAS as Bayesian optimization [18, 56, 20], reinforcement learning [15, 19],
tree search [57, 58], gradient-based optimization [14], among others, with progress measured over
standard benchmarks [59, 60]. [61] introduce a geometry-aware mirror descent based approach to
learn the network architecture and weights simultaneously, within a single problem instance, yielding
a practical algorithm but without provable guarantees. Our formulation is closely related to tuning the
interpolation parameter for activation parameter in the NAS approach of [14], which can be viewed
as a multi-hyperparameter generalization of our setup. We establish the first learning guarantees for
the simpler case of single hyperparameter tuning.

Graph-based learning. While several classical [62, 63, 64, 65] as well as neural models [22, 66,
67, 68] have been proposed for graph-based learning, the underlying graph used to represent the data
typically involves heuristically set graph parameters. The latter approach is usually more effective
in practice, but comes without formal learning guarantees. Our work provides the first provable
guarantees for tuning the graph kernel hyperparameter in graph neural networks.

Comparison to Hyperband [8]. Hyperband is one of the most notable works for hyperparameter
tuning of deep neural networks with principled theoretical guarantees, albeit under strong assumptions.
Here, we provide a detailed comparison between the guarantees presented in Hyperband and our
results.

1. Hyperparameter configuration setting: Theoretical results (Theorem 1, Proposition 4) in
Hyperband assume finitely many distinct arms and the guarantees are with respect to the best
arm in that set. Even their infinite arm setting considers a distribution over the hyperparameter
space from which n arms are sampled. It is assumed that n is large enough to sample a good arm
with high probability without actually showing that this holds for any concrete hyperparameter
loss landscape. It is not clear why this assumption will hold in our cases. In sharp contrast, we
seek optimality over the entire continuous hyperparameter hyperparameter range for concrete loss
functions which satisfy a piecewise polynomial dual structure.
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2. Guarantees: The notion of “sample complexity” in Hyperband is very different from ours.
Intuitively, their goal is to find the best hyperparameter from learning curves over fewest training
epochs, assuming the test loss converges to a fixed value for each hyperparameter after some epochs.
By ruling out (successively halving) hyperparameters that are unlikely to be optimal early, they
speed up the search process (by avoiding full training epochs for suboptimal hyperparameters). In
contrast, we focus on model hyperparameters and assume the network can be trained to optimality
for any value of the hyperparameter. We ignore the computational efficiency aspect and focus on
the data (sample) efficiency aspect which is not captured in Hyperband analysis.

3. Learning setting: Hyperband assumes the problem instance is fixed, and aims to accelerate
the random search of hyperparameter configuration for that problem instance with constrained
budgets (formulated as a pure-exploration non-stochastic infinite-armed bandit). In contrast, our
results assume a problem distribution D (data-driven setting), and bounds the sample complexity
of learning a good hyperparameter for the problem distribution D.

B Technical challenges and novelty

Our main contributions (Lemma 3.2, Theorem 4.1) in this paper is introducing new technique for
analyzing the model hyperparameter tuning in data-driven setting, where the parameter-dependent
dual function fx(α,w) admits a specific piecewise polynomial structure. In this section, we will
make an in-depth comparison between our setting and the settings in prior work in data-driven
algorithm hyperparameter tuning, and discuss why our setting is challenging and requires novel
techniques to analyze.

Challenges. Our setting requires significant technical novelty beyond prior work in data-driven
algorithm design. Generally, most prior work on statistical data-driven algorithm design falls into
two categories:

1. The hyperparameter tuning process does not involve the parameters w, that is, the learning
algorithm is completely determined by the hyperparameter α and has no parameters that need
to be tuned using a training set. Some concrete examples include tuning hyperparameters of
hierarchical clustering algorithms [25, 26], branch and bound (B&B) algorithms for (mixed)
integer linear programming [69, 28], and graph-based semi-supervised learning [23]. The typical
approach is to show that the utility function u∗x(α) admits specific piecewise structure of α,
typically piecewise polynomial and rational.

2. The hyperparameter tuning process involves the parameters w, for example in tuning regularization
hyperparameters in linear regression. However, here the optimal parameters w∗(α) can either
have a closed analytical form in terms of the hyperparameter α [29], or can be easily approximated
in terms of α with bounded error [70].

However, in our setting, the utility function u∗x(α) is defined via an optimization problem
u∗x(α) = maxw fx(α,w), where the parameter-dependent dual function fx(α,w) admits a piece-
wise polynomial structure. This involves the parameter w so it does not belong to the first case, and
it is not clear how to use the second approach either. This is why our problem is quite challenging
and requires the development of novel techniques.

New techniques. Two general approaches are known from prior work to establish a generalization
guarantee for U .

1. The first approach is to establish a pseudo-dimension bound for U via alternatively analyzing
the learning-theoretic dimensions of the piece and boundary function classes, derived when
establishing the piecewise structure of u∗x(α) (following Theorem 3.3 of [12]). We build on this
idea. However, in order to apply it we need significant innovation to analyze the structure of the
function u∗x in our case.

2. The second approach is specialized to the case where the computation of u∗x(α) can be described
via the GJ algorithm [48], where we can do four basic operations (+,−,×,÷) and conditional
statements. However, it is not applicable to our case due to the use of a max operation in the
definition.

As mentioned above, we follow the first approach though we have to develop new techniques to
analyze our setting. Here, we choose to analyze u∗x(α) via indirectly analyzing fx(α,w), which is
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shown in some cases to admit piecewise polynomial structure. To do that, we have to develop the
following:

1. A connection between number of discontinuities and local maxima of the dual utility function
u∗x(α), and the learning-theoretic complexity of U .

2. An approach to upper-bound the number of discontinuities and local extrema of u∗x(α). This is
done using ideas from differential/algebraic geometry, and constrained optimization. We note that
even the tools needed from differential geometry are not readily available, but we have to identify
and develop those tools (e.g. monotonic curves and its properties, see Definition 12 and Lemma
18).

That corresponds to the main contribution of our papers (Theorem 3.2, 4.1). We then demonstrate the
applicability of our results to two concrete problems in hyperparameter tuning in machine learning
(Section 5).

C Learning theory background

C.1 Uniform convergence

Definition 1 (Uniform convergence, [71]). Let F be a real-valued function class which takes input
from domain X , and D is a distribution over X . If for any ϵ > 0, and any δ ∈ (0, 1), there exists
a number N(ϵ, δ) depending on ϵ and δ such that with probability at least 1 − δ over the draw of
m ≥ N(ϵ, δ) i.i.d. samples x1, . . . ,xm ∼ D, we have

∆m = sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

f(xi)− Ex∼D[f(x)]

∣∣∣∣∣ < ϵ,

then we say that (the empirical process of) F uniformly converges with sample complexity N(ϵ, δ).

C.2 Shattering and pseudo-dimension

We now formally recall the definition of shattering and pseudo-dimension, the main learning-theoretic
complexity used throughout this work, as well as the corresponding generalization results.
Definition 2 (Shattering and pseudo-dimension, [72]). Let U be a real-valued function class, of
which each function takes input in X . Given a set of inputs S = (x1, . . . ,xm) ⊂ X , we say that S is
pseudo-shattered byH if there exists a set of real-valued thresholds r1, . . . , rm ∈ R such that

|{(sign(u(x1)− r1), . . . , sign(u(xm)− rm)) | u ∈ U}| = 2m.

The pseudo-dimension ofH, denoted as Pdim(U), is the maximum size m of an input set thatH can
shatter.

The following classical result shows that if a real-valued bounded function class has finite pseudo-
dimension, then it has uniform convergence property.
Theorem C.1 ([72]). Given a real-valued function class U whose range is [0, H], and assume that
Pdim(U) is finite. Then, given any δ ∈ (0, 1), and any distribution D over the input space X , with
probability at least 1− δ over the drawn of S = {x1, . . . ,xm} ∼ Dm, we have∣∣∣∣∣ 1m

m∑
i=1

u(xi)− Ex∼D[u(x)]

∣∣∣∣∣ ≤ O
(
H

√
1

m

(
Pdim(U) + ln

1

δ

))
.

C.3 Rademacher complexity

Besides, we also use the notion of Rademacher complexity, as well as its connection to the pseudo-
dimension. This learning-theoretic complexity notion is very useful in our analysis, especially for
simplifying Assumption 3 to Assumption 1, a critical step when establishing Theorem F.25.
Definition 3 (Rademacher complexity, [71]). Let F be a real-valued function class mapping from
X to [0, 1]. For a set of inputs S = {x1, . . . ,xm}, we define the empirical Rademacher complexity
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R̂S(F) as

R̂S(F) =
1

m
Eϵ1,...,ϵm∼i.i.d unif. ±1

[
sup
f∈F

m∑
i=1

ϵif(xi)

]
.

We then define the Rademacher complexity RDm , where D is a distribution over X , as

RDm(F) = ES∼Dm [R̂S(F)].
Furthermore, we define

Rm(F) = sup
S∈Xm

R̂S(F).

Theorem C.2 (Empirical Rademacher complexity givrs uniform convergence). Let F be a class of
functions mapping X to [0, 1]. Then for any δ ∈ (0, 1), with probability at least 1− δ over the draw
of S ∼ Dm, the following holds simultaneously for all f ∈ F:

Ex∼D[f(x)] ≤
1

m

∑
x∈S

f(x) + 2Rm(F) + 3

√
ln(2/δ)

m
.

The following lemma provides a useful result that allows us to relate the empirical Rademacher
complexity of two function classes when the infinity norm between their corresponding dual utility
functions is upper-bounded.
Lemma C.3 ([73]). Let F = {fα : X → [0, 1] | α ∈ A} and G = {gα : X → [0, 1] | α ∈ A}
where A ⊆ Rd. For any S ⊆ X , we have

R̂S(F) ≤ R̂S(G) +
1

|S|
∑
x∈S

∥f∗x − g∗x∥∞,

where f∗x : A → [0, 1] and g∗x : A → [0, 1] are defined as

f∗x(α) := fα(x), g∗x(α) := gα(x).

The following theorem establishes a connection between pseudo-dimension and Rademacher com-
plexity.
Lemma C.4 ([74]). Let F be a function class with a bounded pseudo-dimension consisting of

functions f : F → [0, 1]. Then Rm(F) = O
(√

Pdim(F)
m

)
.

D Additional results and omitted proofs for Section 2.1

In this Appendix, we will recall the definition of oscillations of a real-valued function proposed by
Balcan et al. [12], and extend their results to obtain useful lemmas for bounding the pseudo-dimension
of our function classes.

D.1 Oscillations and connection to pseudo-dimension

When the function class U = {uα : X → R | α ∈ R} is parameterized by a real-valued index α, [12]
propose a convenient way for bounding the pseudo-dimension ofH, via bounding the oscillations of
the dual function u∗x(α) := uα(x) corresponding to any problem instance x. In this section, we will
recall the notions of oscillations and the connection of the pseudo-dimension of a function class with
the oscillations of its dual functions. This tool is very helpful in our later analyses.
Definition 4 (Oscillations, [12]). A function h : R→ R has at most B oscillations if for every z ∈ R,
the function α 7→ I{h(α)≥z} is piecewise constant with at most B discontinuities.

An illustration of the notion of oscillations can be found in Figure 2. Using the idea of oscillations,
one can analyze the pseudo-dimension of parameterized function classes by alternatively analyzing
the oscillations of their dual functions, formalized as follows.
Theorem D.1 ([12]). Let U = {uα : X → R | α ∈ R}, of which each dual function u∗x(α) has at
most B-oscillations. Then Pdim(U) = O(logB).
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Figure 2: This figure demonstrates the oscillation property for a function h : R→ R. The oscillation
of a function h is defined as the maximum number of discontinuities in the function I{h(α)≥z}, as the
threshold z varies. The figure shows several graphs of I{h(α)≥z} corresponding to different choices
of the threshold z. We can observe that when z = z1, the function I{h(α)≥z} exhibits the highest
number of discontinuities, which is 4. This number of discontinuities is also the maximum for any
choice of z. Therefore, we conclude that h has 4 oscillations.

D.2 Omitted proofs for Section 2.1

The following result allows us to draw a connection between the number of discontinuities and local
maxima of piecewise continuous function and its number of oscillations.

Lemma D.2. Let h : R→ R be a piecewise continuous function which has at most B1 discontinuity
points, and has at most B2 local maxima. Then h has at most O(B1 +B2) oscillations.

Proof. We show that in each interval where h is continuous, we can bound for any z, the number of
solutions of h(α) = z using the number of local maxima of h. Aggregating the number of solutions
across all continuous intervals of h yields the desired result.

For any z ∈ R, consider the function g(α) = I{h(α)≥z}. By definition, on any interval over which
h is continuous, any discontinuity point of g(α) is a root of the equation h(α) = z. Therefore, it
suffices to give an upper-bound on the number of roots that the equation h(α) = z can have across
all the intervals where h is continuous.

Let α1 < α2 < · · · < αN be the discontinuity points of h, where N ≤ B1 from assumption.
For convenience, let α0 = −∞ and αN+1 = ∞. For any i = 1, . . . , N , consider an interval
Ii = (αi, αi + 1) over which the function h is continuous. Assume that there are Ei local maxima of
the function h in the interval Ii, meaning that there are at most 2Ei + 1 local extrema. We now claim
that there are at most 2Ei + 2 roots of h(α) = z in Ii. We proceed by contradiction: assume that
α∗
1 < α∗

2 < · · · < α∗
2Ei+3 are 2Ei + 3 roots of the equation h(α) = z, and there is no other root in

between. We have the following claims:

• Claim 1: there is at least one local extremum of h in (α∗
j , α

∗
j+1). Since h has a finite number of

local extrema, meaning that h cannot be constant over [α∗
j , α

∗
j+1]. Therefore, there exists some

α′ ∈ (α∗
j , α

∗
j+1) such that h(α′) ̸= z, and note that z = h(α∗

j ) = h(α∗
j+1). Since h is continuous

over [α∗
j , α

∗
j+1], from extreme value theorem (Theorem F.6), h (when restricted to [α∗

j , α
∗
j+1])

reaches minima and maxima over [α∗
j , α

∗
j+1]. However, since there exists α′ such that h(α′) ̸= z,

then h has to achieve minima or maxima in the interior (α∗
j , α

∗
j+1). That is also a local extremum

of h.
• Claim 2: there are at least 2Ei + 2 local extrema in (α∗

1, α
∗
Ei+2). This claim follows directly from

Claim 1.

Claim 2 leads to a contradiction. Therefore, there are at most 2Ei + 2 roots in the interval Ii. which
implies there are

∑N
i=0 2Ei+2N roots in the intervals Ii for i = 1, . . . , N . Note that

∑N
i=0Ei ≤ B2,

N ≤ B1 by assumption, and each discontinuity point of h could also be discontinuity point of g, we
conclude that there are at most O(B1 +B2) discontinuity points for g, for any z.

We are now ready to give a formal proof for Lemma 2.1.

Theorem 2.1 (restated). Consider a real-valued function class U = {uα : X → R | α ∈ R}, of
which each dual function u∗x(α) is piecewise continuous, with at most B1 discontinuities and B2

local maxima. Then Pdim(U) = O(log(B1 +B2)).
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Proof. From assumption, for each problem instance x, the dual utility function u∗x(α) is piecewise
continuous with at most B1 discontinuities and B2 local maxima. Combining with Lemma D.2,
u∗x(α) has O(log(B1 +B2)) oscillations. From Theorem D.1, we have the conclusion.

Compared to Lemma 2.1, the proof of Lemma 2.2 is more straightforward as it can be directly derived
from the definition of oscillation (Definition 4).
Lemma 2.2 (restated). Consider a real-valued function class U = {uα : X → R | α ∈ R},
of which each dual function u∗x(α) is piecewise constant with at most B discontinuities. Then
Pdim(U) = O(logB).

Proof. Consider a dual function u∗x(α) which is a piecewise constant function with at most B
discontinuities. I{u∗

x(α)≥z} is piecewise continuous with at most B discontinuities for any threshold
z ∈ R. Assume, for the sake of contradiction, that there exists z ∈ R such that I{u∗

x(α)≥z} has N
discontinuities, for some N ≥ B + 1. Since u∗x(α) is piecewise constant, any discontinuities of
I{u∗

x(α)≥z} is also a discontinuity of u∗x(α), meaning that u∗x(α) has at least N discontinuities, which
leads to a contradiction. Therefore, we conclude that u∗x(α) has at most B oscillations, and thus
Pdim(H) = O(logB) by Theorem D.1.

Remark 3. In many applications, the partition of fx(α,w) into connected components is typically
defined by M boundary functions hx,1(α,w), . . . , hx,M (α,w). These boundary functions are often
polynomials in d+ 1 variables with a bounded degree ∆. For such cases, we can establish an upper
bound on the number of connected components created by these boundary functions, represented
as Rd+1 − ∪Mi=1{(α,w) | hx,i(α,w) = 0}, using only ∆ and d. This bound (see Theorem F.9 in
Appendix F.1.2) serves as a crucial step in applying Theorem 3.2.

Notice that Lemma D.2 does not apply in the case where the function h may have constant pieces, as
they correspond to infinitely many local maxima. To handle this more generally, we introduce the
following definition.
Definition 5 (B-monotonicity). A function h : R→ R is said to be B-monotonic if its domain can
be partitioned into at most B intervals such that on each interval: either (a) h is strictly monotonic
and continuous, or (b) h is a constant function.

While a bounded number of discontinuity points and local maxima implies B-monotonicity, the
converse may not be true. We now show how to bound the number of oscillations of B-monotonic
functions.
Lemma D.3. Any B-monotonic function h : R→ R has O(B) oscillations.

Proof. Suppose I be an interval over which h is piecewise constant. Then the function gz : ρ 7→
I{h(ρ)≥z} is also constant over I for any z ∈ R (either constant zero or constant one throughout I
depending on z). On the other hand, if h is strictly monotonic and continuous over I , then gz is
piecewise constant over I with at most two pieces. Thus, gz has at most 2B discontinuities for any z,
or h has O(B) oscillations by Definition 4.

We conclude with the following corollary (immediate from Lemma D.3 and Theorem D.1) for the
special case of piecewise constant functions. Compared to Lemma 2.1, the proof of Lemma 2.2 is
more straightforward as it can be directly derived from the definition of oscillation (Definition 4).
Lemma 2.2 (restated). Consider a real-valued function class U = {uα : X → R | α ∈ R},
of which each dual function u∗x(α) is piecewise constant with at most B discontinuities. Then
Pdim(U) = O(logB).

Proof. Consider a dual function u∗x(α) which is a piecewise constant function with at most B
discontinuities. I{u∗

x(α)≥z} is piecewise continuous with at most B discontinuities for any threshold
z ∈ R. Assume, for the sake of contradiction, that there exists z ∈ R such that I{u∗

x(α)≥z} has N
discontinuities, for some N ≥ B + 1. Since u∗x(α) is piecewise constant, any discontinuities of
I{u∗

x(α)≥z} is also a discontinuity of u∗x(α), meaning that u∗x(α) has at least N discontinuities, which
leads to a contradiction. Therefore, we conclude that u∗x(α) has at most B oscillations, and thus
Pdim(H) = O(logB) by Theorem D.1.
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E An illustration for the proof in Section 3

Figure 3: A demonstration of the proof idea for Theorem 3.1: We begin by partitioning the domain
A of the dual utility function u∗x(α) into intervals. This partitioning is formed using two key
points for each connected component R in the partition Px of the domain A × W of fx(α,w):
αR,inf = infα{α : ∃w, (α,w) ∈ R} and αR,sup = supα{α : ∃w, (α,w) ∈ R}. Given that P
contains N elements, the number of such points is O(N). We demonstrate that the dual utility
functions u∗x remain constant over each interval defined by these points.

F Additional results and omitted proofs for Section 4

In this section, we will present the required background and supporting results for Lemma 4.

F.1 General auxiliary results

We first present some useful auxiliary lemmas.

F.1.1 Results for analyzing local maxima of pointwise maximum function

In this section, we recall some elementary results which are crucial in our analysis. The following
lemma says that the pointwise maximum of continuous functions is also a continuous function.
Lemma F.1. Let fi : X → R, where i = 1, . . . , N , be continuous functions over a subset X ⊆ Rn,
and let f(x) = maxi∈{1,...,N} fi(x). Then we have f(x) is a continuous function over X .

Proof. In the case N = 2, we can rewrite f(x) as

f(x) =
f1(x) + f2(x)

2
+

1

2
|f1(x)− f2(x)| ,

which is the sum of continuous functions. Hence, f(x) is continuous. Assume the claim holds for
N = k, we then claim that it also holds for N = k + 1 by rewriting f(x) as

f(x) = max

{
max

i∈{1,...,k}
{fi(x)}, fk+1(x)

}
.

Therefore, the claim is established by induction.

The following results are helpful when we want to bound the number of local maxima of pointwise
maximum of differentiable functions. In particular, we show that the local maxima of g(x) =
maxi∈{1,...,n} gi(x) is the local extrema of one of the functions gi(x). This property helps us
controlling the number of local maxima of g(x) by controlling the number of local maxima of each
function gi(x).
Proposition F.2. Let X be a finite-dimensional Euclidean space and gi : X → R, where i =
1, . . . , N , be continuous functions on X with the local maxima on X is given by the set Ci. Then the
function g(x) = maxi∈{1,...,N}{gi(x)} has its local maxima contained in the union ∪i∈{1,...,N}Ci.
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Proof. Let x′ be a local maxima of g(x). It means there exists a neighborhood Nx′ of x′ such that
for any x ∈ Nx′ , we have g(x′) ≥ g(x). Let gi be a function s.t. gi(x′) = g(x′). Then

gi(x
′) = g(x′) ≥ g(x) = max

j∈{1,...,N}
gj(x) ≥ gi(x),

for any x ∈ Nx′ . This means that x′ is the local maxima of gi, i.e, x′ ∈ Ci ⊂ ∪j∈{1,...,N}Cj .

We recall the Lagrangian multipliers theorem, which allows us to give a necessary condition for the
extrema of a function over a constraint.
Theorem F.3 (Lagrangian multipliers, [75]). Let h : Rd → R, f : Rd → Rn be C1 functions, and
let Zf = {x ∈ Rd | f(x) = 0} ⊆ Rd. Assume that for all x0 ∈ Zf , rank(Jf ,x(x0)) = n. If x′ is
a local extrema of h on Zf , then there exists λ = (λ1, . . . , λn) ∈ Rn such that:

∇h(x′) =

n∑
i=1

λi∇fi(x′), and f(x′) = 0,

where λ is called Lagrangian multipliers.

We next recall the following well-known results that characterize the local extrema of continuously
differentiable functions over a compact set.
Lemma F.4 (Fermat’s interior extremum theorem). Let f : D → R be a continuously differentiable
function, where D ⊆ Rm is an open set, and suppose that x′ is a local extrema of f in D. Then
∇f(x′) = 0.
Corollary F.5. Let f : D → R be a differentiable function, where D ⊂ Rm is a compact set. If
x′ ∈ D is a local extrema of f in D, then x0 is either: (1) an interior point of D and ∇f(x′) = 0,
or (2) a point in the boundary bd(D) of D.
Lemma F.6 (Extreme value theorem). Let f : D → R be a continuous function, where D ⊂ Rm is a
compact set, then f is bounded in D and there exists x1,x2 ∈ D such that f(x1) = supx∈D f(x)
and f(x2) = infx∈D f(x).

We also recall the well-known Sauer-Shelah Lemma.
Lemma F.7 ([76]). Let 1 ≤ k ≤ n, where k and n are positive integers. Then

k∑
j=0

(
n

j

)
≤
(en
k

)k
.

F.1.2 Results for bounding the number of connected components defined by algebraic sets

In this section, we formally define connected components and extreme points.
Definition 6 (Connected components). A connected component of a set S ⊂ Rd is a maximal
nonempty subset A ⊆ S such that any two points of A are connected by a continuous curve lying in
A.
Definition 7 (Extreme points of a connected component). Let S ⊂ R×Rm and let A be a connected
component of S. We call xA,inf = inf{x ∈ R | ∃y ∈ Rm, (x,y) ∈ A}, and xA,sup = sup{x ∈ R |
∃y ∈ Rm, (x,y) ∈ A} the x-extreme points of A.

The following theorems allow us to upper-bound the number of connected components defined by
algebraic sets and the complement of algebraic sets.
Lemma F.8 ([77]). Let p be a polynomial in n variables. If the degree of polynomial p is ∆, the
number of connected components of {z ∈ Rn | p(z) = 0} is at most 2∆n.
Theorem F.9 ([77]). Suppose N ≥ n. Consider N polynomials p1, . . . , pN in n variables, each of
degree at most ∆. Then the number of connected components of Rn −∪Ni=1{z ∈ Rn | pi(z) = 0} is
O
(
N∆
n

)n
.

For a connected component C of Rn − ∪Ni=1Zpi
, we can define its adjacent boundaries, which is the

algebraic set Zpi
that is adjacent to C.
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Definition 8 (Adjacent boundaries). Consider N polynomials p1, . . . , pN in n variables, and let
Zpi = {z ∈ Rn | pi(z) = 0} be the algebraic set defined by pi. Let C be any connected component
of Rn − ∪Ni=1Zpi . We say that Zpi is an adjacent boundary to C if C ∩ Zpi ̸= ∅. Here C is the
closure of C.

The following result is a direct consequence of Bezout’s theorem [78].
Corollary F.10. Let f1, . . . , fn : Rn → R be n polynomials in n variables of degree d1, . . . , dn,
respectively. Assuming that ∩ni=1Zfi has only isolated points, then the number of isolated solutions
of ∩ni=1Zfi is at most

∏n
i=1 di.

We also have the Bezout’s theorem specialized for the two-dimensional case.
Corollary F.11 (Bezout’s theorem on a plane, [79]). Let f1, f2 : R2 → R are two polynomials with
no common factor (of degree more than 1). Let Zf1∩Zf2 = {(x, y) ∈ R2 | f1(x, y) = f2(x, y) = 0}.
Then the number of points in Zf1 ∩ Zf2 is at most deg(f1) · deg(f2).

F.2 Background on differential geometry

In this section, we will introduce some basic terminology of differential geometry, as well as key
results that we use in our proofs. First, we recall the definition of a topological manifold.
Definition 9 (Topological manifold, [80]). A subset M ⊆ Rn is a topological manifold of dimension
k ≤ n if:

• For any p ∈ M , there exists an open neighborhood U ⊆ RN of p and a homeomorphism
ϕ : U ∩M → V , where V ⊂ Rk is open.

• M is equipped with the subspace topology inherited from Rn (i.e., a subset S ⊂M is open in M if
there is an open set S′ in Rn such that S = S′ ∩M ), is Hausdorff (any two points in M have two
corresponding disjoint neighborhoods), and second-countable (M has a countable basis).

Using the subspace topology, we can define the open set and neighborhood in a topological manifold
as follows.
Definition 10 (Open set). Let M ⊆ Rn be a topological manifold. A subset S ⊂M is called open
in M if there exists an open set S′ in Rn such that S =M ∩ S′.
Definition 11 (Neighborhood). Let M ⊆ Rn be a topological manifold, and let p is a point in M .
Then a neighborhood of p in M is an open subset S of M that contains p.

We will now define charts, atlases, and smooth (differentiable) manifolds. Roughly speaking, given
a manifold M , one can think of a chart (U, ϕ), where U is a neighborhood of some point in M , as
a way to assign (Euclidean) coordinates to a local region in M . An atlas then describes the local
coordinate systems that cover all M , and the transition map describes how we convert coordinates
between overlapping charts.
Definition 12 (Charts, atlas, and transition map, [80]). A chart on M ⊆ Rn is a pair (U, ϕ),
where U ⊂ M is open, and ϕ : U → Rk is a homeomorphism. An atlas is a collection of charts
{(Uα, ϕα)} covering M , i.e., M ⊆ ∪αUα. For overlapping charts (Uα, ϕα) and (Uβ , ϕβ), the map
ϕβ ◦ ϕ−1

α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ) is called the transition mapping between open subsets of
Rk.
Definition 13 (Smooth manifold, [80]). A subset M ⊆ Rn is a smooth manifold of dimension k ≤ n
if it has an atlas where all transitions maps are smooth (C∞).

We now define the smooth map between smooth manifolds.
Definition 14 (Smooth map between smooth manifolds, [80]). Let M ⊂ Rn and N ⊂ Rm be
smooth manifolds in Rn and Rm, respectively. A map f : M → N is called smooth if: for every
p ∈M , there exists charts (U, ϕ) containing p and (V, ψ) containing f(p) such that the coordinate
representation ψ ◦f ◦ψ−1 : ϕ(U ∩f−1(V ))→ ψ(V ) is smooth in the standard sense (i.e., infinitely
differentiable).

In case that M and N are Euclidean spaces, the definition of a smooth map just has the standard
sense.
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Definition 15 (Smooth map between Euclidean spaces). f : Rn → Rm is a smooth map if it is
infinitely differentiable, i.e., if every partial derivative of f exists and is continuous.

We now define the tangent space and the regular value of a smooth map. Intuitively, the tangent space
Tp(M) of a smooth manifold M at point p represents all the directions that we can move along from
p and still stay in the manifold M .
Definition 16 (Tangent space, [80]). Let γ : (−ϵ, ϵ)→M be a smooth curve in M with γ(0) = p.
The tangent vector v = γ′(0) represents a direction "along M" at p. The tangent space Tp(M) is
the set of all such vectors v obtained from smooth curves though p, i.e.,

Tp(M) = {γ′(0) | γ : (−ϵ, ϵ)→M smooth, γ(0) = p}.
Definition 17 (Regular value, [80]). Let M ⊆ Rn be a smooth k-dimensional submanifold, and
let f : M → Rm be a smooth map. A point ϵ ∈ Rm is called a regular value of f if for every
p ∈ f−1(ϵ), the Jacobian evaluated at p of an ambient map f̃ : Rn → Rm of f extended to the
ambient space Rn, when restricted to Tp(M), has rank m:

rank

(
Jf̃ (p)

∣∣∣∣
Tp(M)

)
= dim

(
{Jf̃ (p)z | z ∈ Tp(M)}

)
= m.

In case M is an open subset in Rn (including Rn itself), we can simplify the definition of regular
value as follow.
Corollary F.12. Let M is an open set in Rn, and let f : M → Rm be a smooth map. Then ϵ is a
regular value of f if for any p ∈ f−1(ϵ), the Jacobian matrix Jf (p) has rank m.

The following result shows the smooth manifold structure of the preimage of regular values.
Lemma F.13 (Preimage theorem, [80]). Let f : M → Rm is a smooth map, where M ⊆ Rn is a
k-dimensional smooth manifold of Rn and k ≥ m. Let ϵ ∈ Rm be a regular value of f . Then f−1(ϵ)
defines a (k −m)-dimensional smooth sub-manifold in M .

In the case M = Rn, we can further simplify the lemma above as follows.
Corollary F.14. Let f : Rn → Rm is a smooth map, and let ϵ ∈ Rm be a regular value of f . Then
f−1(ϵ) defines a (k −m)-dimensional smooth manifold in Rn.

The following theorem says that for any smooth map f , the set of non-regular values of f has
Lebesgue measure zero.
Theorem F.15 (Sard’s theorem, [80]). Let M ⊆ Rn be a smooth manifold in Rn, and let f :M →
Rm be a smooth map. Then the set of non-regular value of f has Lebesgue measure zero in Rm.
Moreover, if dim(M) ≥ m, then f−1(ϵ) has dimension dim(M)−m, and if dim(M) < m, then
f(M) has measure zero.

F.3 Monotonic curve and its properties

In this section, we propose the definition of monotonic curve and establish some important properties,
which will play a key role in our main results.
Definition 18 (Polynomial map and zero set). Let

f :R× Rn → Rm

(x,y) 7→ (f1(x,y), . . . , fd(x,y))

be a smooth map. If for any i = 1, . . . ,m, fi(x,y) is a polynomial of x and y, then we call f the
polynomial map, and Zf = {(x,y) ∈ R× Rn | f(x,y) = 0} the zero set of the polynomial map f .

Specifically, if n = m and 0 ∈ Rn is a regular value of the polynomial map, then the zero-
set Zf inherits favorable structure. We note that f being a polynomial map allows us to use
Warren’s theorems (Theorem F.9, Lemma F.8) to derive the upper-bound for the number of connected
components for Zf and R× Rm − Zf , regardless of whether 0 is a regular value of f .
Corollary F.16. Let f : R× Rm → Rm be a polynomial map. Assume that 0 ∈ Rm is a regular
value of f , then Zf defines a smooth 1-dimensional manifold in R× Rm.
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Proof. This result follows directly from Corollary F.14.

We are now ready to define monotonic curves.
Definition 19 (x-Monotonic curve). Let f : R× Rm → Rm be a polynomial map, and assume that
0 ∈ Rm is a regular value of f . Let C ⊂ Zf be an connected open set in Zf . The curve C is said
to be x-monotonic if for any point (a, b) ∈ C, we have det(Jf ,y(a, b)) ̸= 0, where Jf ,y(a, b) is a
Jacobian of f with respect to y evaluated at (a, b), defined as

Jf,y(a, b) =

[
∂fi
∂yj

(a, b)

]
m×m

.

A key property of an x-monotonic curve C is that for any x0, there exists at most one y such that
(x0,y) ∈ C. We will formalize this claim in Lemma F.19, but first, we will review some fundamental
results necessary for the proof.
Theorem F.17 (Implicit function theorem, [81]). Let f

f : Rn × Rm → Rm

(x,y) 7→ (f1(x,y), . . . , fm(x,y)),

be a continuously differentiable function. Consider a point (a, b) ∈ Rn ×Rm such that f(a, b) = 0
and the Jacobian

Jf ,y =

[
∂fi
∂yj

(a, b)

]
m×m

is invertible, then there exists a neighborhood U of a in Rn and a neighborhood V of b in Rm, such
that there exists a unique function g : U → V such that g(a) = b and f(x, g(x)) = 0 for all
x ∈ U . We can also say that for (x,y) ∈ U × V , we have y = g(x). Moreover, g is continuously
differentiable and, if we denote

Jf,x(a, b) =

[
∂fi
∂xj

(a, b)

]
m×n

then [
∂gi
∂xj

(x)

]
m×n

= − [Jf,y(x, g(x))]
−1
m×m · [Jf,x(x, g(x))]m×n.

Theorem F.18 (Vector-valued mean value theorem). Let S ⊆ Rn be an open subset on Rn and
let f : S → Rm be a continuously differentiable function. Consider x,y ∈ S such that the
line segment connecting these two points is contained in S, i.e. L(x,y) ⊂ S, where L(x,y) =
{tx + (1 − t)y | t ∈ [0, 1]}. Then for every a ∈ Rm, there exists a point z ∈ L(x,y) such that
⟨a,f(y)− f(x)⟩ = ⟨a, Jf ,x(z)(y − x)⟩.

We are now ready to present a formal statement and proof for the key property of x-monotonic
curves, which essentially says that for a monotonic curve C any x0, there is at most one y such that
(x0,y) ∈ C.
Lemma F.19. Let f : R× Rm → Rm be a polynomial map, and assume that 0 ∈ Rm is a regular
value of f . Let f be a monotonic curve in Zf . Then for any x0 ∈ R, there is at most one point
y ∈ Rm such that (x0,y) ∈ C.

Proof. (of Lemma F.19) Since 0 ∈ Rm is a regular value of f , then Zf defines a smooth 1-
dimensional manifold in R × Rm. Therefore, C is a connected open subset of an 1-dimensional
smooth manifold Vf means that C is diffeomorphic to (0, 1). This means there exists a continuously
differentiable function h, where

h : (0, 1)→ C

t 7→ (x,y) = (h0(t), h1(t), . . . , hm(t)) ∈ C,

with corresponding inverse function h−1 : C → (0, 1) which is also continuously differentiable.

We will prove the statement by contradiction. Assume that there exists (x0,y1), (x0,y2) ∈ C where
y1 ̸= y2. Then we have two corresponding values t1 = h−1(x0,y1) ̸= t2 = h−1(x0,y2). Using
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Mean-value Theorem (Theorem F.18) for the function h, for any a ∈ Rm+1, there exists za ∈ (0, 1)
such that

⟨a, (0,∆y)⟩ = ⟨a,∆tJh,t(za)⟩ ,
where ∆y = y2 − y1 ̸= 0, ∆t = t2 − t1 ̸= 0, and Jh,t(za) = (∂h0

∂t (za),
∂h1

∂t (za), . . . ,
∂hm

∂t (za)).

Choose a = a1 = (1, 0, . . . , 0) ∈ R × Rm, then from above, there exists za1
∈ (0, 1) such

that ∂h0

∂t

∣∣∣∣
t=za1

= 0. Now, consider the point (xa1
,ya1

) = h(za1
). From the assumption,

det(Jf,y(xa1 ,ya1
)) ̸= 0. Therefore, from Implicit Function Theorem (Theorem F.17), there exists

neighborhoods U of xa1 in R, V of ya1
in Rm, such that there exists a continuously differentiable

function g : U → Rm, such that for any (x,y) ∈ U × V , we have y = g(x). Again, at the point
(xa1 ,ya1

) corresponding to t = za1 , we have

∂yi
∂t

∣∣∣∣
t=za1

=
∂gi
∂x
· ∂x
∂t

∣∣∣∣
t=za1

= 0.

This means that at the point t = za1 , we have ∂x
∂t

∣∣∣∣
t=za1

= ∂yi

∂t

∣∣∣∣
t=za1

= 0.

Note that since h is a diffeomorphism, we have t = (h−1 ◦ h)(t). From chain rule, we have
1 = Jh−1,h·Jh,t. However, if we let t = za1

, then Jh,t(a1) = 0, meaning that Jh−1,h·Jh,t(za1) = 0,
leading to a contradiction.

From Definition 20 and Proposition F.19, for each x-monotonic curve C, we can define their x-end
points, which are the maximum and minimum of x-coordinate that a point in C can have.
Definition 20 (x-end points of a monotonic curve). Let C be a monotonic curve as defined in
Definition 19. Then we call sup{x | ∃y, (x,y) ∈ V } and inf{x | ∃y, (x,y) ∈ V } the x-end points
of C.

We now show that the pointwise maximum of continuous functions along monotonic curves is also
continuous. We then relate the local maxima of the pointwise maximum with the local maxima of
continuous functions along the monotonic curves in Proposition F.21.
Proposition F.20. Let M ⊂ Rn be a topological manifold, and let S be an open subset in M . Let p
be a point in S, and assume that V is a neighborhood of x in S. Then V is also a neighborhood of p
in M .

Proof. First, note that since V is a neighborhood of p in S, V is an open set in the subspace topology
S, meaning that there exists an open set T in M such that V = S ∩ T . However, note that both S
and T are open sets in M , which implies V is also an open set in M . And since V contains p, we
have that V is a neighborhood of p in M .

Proposition F.21. Let C = {C1, . . . , Ck} be a set of k x-monotonic curves as defined in Definition
19 that have x1, x2 as x-end points. Consider a smooth function g : R × Rm → R, and let
h : (x1, x2)→ R defined as

h(x) = max
i=1,...,k

g(ICi
(x)),

where ICi
: (x1, x2) → R × Rm maps x to the point ICi

(x) = (x,yx) ∈ Ci . Then h(x) is
continuous over (x1, x2), and for any local maximum x′ of h(x), there exist a point (x′,yx′) that is
a local maximum of the function g(x,y) restricted to some monotonic curve C ∈ C. Moreover, if h is
strictly monotonically decreasing (resp. strictly monotonically increasing, constant) at x′ ∈ (x1, x2),
then h(x′) = g(ICi(x

′)) for some i such that g ◦ ICi is strictly monotonically decreasing (resp.
strictly monotonically increasing, constant).

Proof. From the property of monotonic curves, it is easy to show that ICi
is a diffeomorphism

between (x1, x2) and Ci. Therefore, g ◦ ICi
: (x1, x2)→ R is a continuous function. This implies

that h is the pointwise maximum of continuous functions, and hence is also continuous.

Now consider any monotonic curve C ∈ C. Assume x′ is a local maximum of g ◦ IC in (x1, x2).
By definition, there exists an open neighborhood V of x′ in (x1, x2) such that for any x ∈ V ,
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g(IC(x
′)) ≥ g(IC(x)). Since IC is a diffeomorphism between (x1, x2) and C, this implies IC(V )

is also an open set in V that contains IC(x′). Now for any (x,yx) ∈ IC(V ) where yx is the unique
value corresponding to x in C, we have g(x, yx) = g(IC(x)) ≤ g(IC(x′)) = g(x′,yx′). This means
(x′,yx′) is a local maximum of g in C.

Finally, it suffices to give a proof for the case of k = 2. Let h(x) = max{g(IC1
(x)), g(IC2

(x))}.
We claim that any local maximum of h would be a local maximum of either g ◦ IC1 or g ◦ IC2 in
(x1, x2) . Assume that x′ is a local maximum of h in (x1, x2), then there exists an open neighbor V
of x′ in (α1, α2) such that for any x ∈ V , h(x) ≤ h(x′). WLOG, assume that h(x′) = g(IC1(x

′)).
Then we have:

g(IC1
(x′)) = h(x′) ≥ h(x) = max{g(IC1

(x)), g(IC2
(x))} ≥ g(IC1

(x)),

for any x ∈ V . This means that x′ is a local maximum of g ◦ IC1
in (α1, α2). Combining with the

above, we also have (x′,yx′)) is the local maximum of g in C1.

Similarly, suppose that h is strictly monotonically decreasing at x′. Then for a sufficiently small
left-neighborhood L = (x′ − ε, x′), we must have that h is strictly monotonically decreasing over L
and h(x) = g(ICi

(x)) for all x ∈ L for some fixed i. Moreover, g◦ICi
must be strictly monotonically

decreasing over sufficiently small R = (x′, x′ + ε′), as g(ICi
(x)) ≤ h(x) over R and h is strictly

monotonically decreasing for sufficiently small R.

Proposition F.22. Let C = {C1, . . . , Ck} be a set of k x-monotonic curves (Definition 19) that
have x1, x2 as x-end points. Consider a smooth function g : R× Rm → R. Define gi : R→ R as
gi(x) = g(ICi(x)), where ICi : (x1, x2) → R × Rm maps x to the point ICi(x) = (x,yx) ∈ Ci.
Let h : (x1, x2)→ R be given as

h(x) = max
i=1,...,k

gi(x).

Then if each gi is Bi-monotonic (Definition 5), then h is O(
∑k

i=1Bi)-monotonic.

Proof. Let Ai denote the finite set (of smallest size) of critical points for gi, such that between
any two consecutive points in Ai, gi is either strictly monotonic or a constant. By Definition 5
and the assumption that gi is Bi-monotonic, we have that |Ai| = O(Bi). Let A = ∪iAi. Clearly,
|A| ≤

∑
i |Ai| = O(

∑k
i=1Bi). Consider any two consecutive points a1, a2 in A. We claim that h is

3-monotonic over (a1, a2).

To establish this claim, we consider two cases for any point a ∈ (a1, a2).

(i) Case: h(a) = gi(a) and gi is strictly monotonically decreasing at a. We claim that for any
a′ ∈ (a1, a), h(a′) is strictly monotonically decreasing. If not, then h(a′) = gj(a

′) for some
function gj that is either constant or monotonically increasing at a′ (since there are no critical points
for gj in (a1, a2)). But this contradicts h(a) = gi(a) as gi(a) < gi(a

′) ≤ gj(a′) ≤ gj(a) ≤ h(a).
(ii) Case: h(a) = gi(a) and gi is strictly monotonically increasing at a. By inverting the argument for

Case (i) above, for any a′ ∈ (a, a2), h(a′) is strictly monotonically increasing.

Let a′1 = sup{a ∈ (a1, a2) | h is strictly monotonically decreasing at a} and a′2 = inf{a ∈
(a1, a2) | h is strictly monotonically increasing at a}. By cases (i) and (ii) above, and using Proposi-
tion F.21, we have a1 ≤ a′1 ≤ a′2 ≤ a2. Thus, h is 3-monotonic over (a1, a2) as it must be strictly
decreasing over (a1, a′1), constant over (a′1, a

′
2) and strictly increasing over (a′2, a2). Therefore, h is

3|A|-monotonic or equivalently O(
∑k

i=1Bi)-monotonic over the entire domain.

F.4 Simpler illustrative case: hyperparameter tuning with a single parameter

We provide some intuition for our novel proof techniques by first considering a simpler setting. We
first consider the case where there is a single parameter and only one piece function. That is, we
assume that d = 1, N = 1, and M = 0. Since there is only one piece in this case, we abuse the
notations and use interchangeably u∗x and fx for u∗x,1 and fx,1, respectively. This means fx is now
a polynomial function of α,w of degree at most ∆p, instead of admitting a piecewise polynomial
structure.

We first present a structural result for the dual function class U∗, which establishes that any function
u∗x in the dual utility function class U∗ is piecewise continuous with O(∆2

p) pieces. Furthermore,
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we show that there are O(∆3
p) oscillations in u∗x which implies a bound on the pseudo-dimension of

U∗ using results in Section 2.1.

Our proof approach is summarized as follows. We note that the supremum over w ∈ W in the
definition of u∗x can only be achieved at a domain boundary or at a point (α,w) that satisfies
kx(α,w) = ∂fx(α,w)

∂w = 0, which defines an algebraic curve. We partition this algebraic curve into
monotonic arcs [82, 83], which intersect α = α0 at most once for any α0. Intuitively, a point of
discontinuity of u∗x can only occur when the set of monotonic arcs corresponding to a fixed value
of α changes as α is varied, which corresponds to α-extreme points of the monotonic arcs. We
use a direct consequence of Bezout’s theorem (Corollary F.10) to upper bound these extreme points
of kx(α,w) = 0 to obtain an upper bound on the number of pieces of u∗x. Next, we seek to upper
bound the number of local extrema of u∗x to bound its oscillating behavior within the continuous
pieces. To this end, we need to examine the behavior of u∗x along the algebraic curve hx(α,w) = 0
and use the Lagrange’s multiplier theorem (Theorem F.3) to express the locations of the extrema as
intersections of algebraic varieties (in α,w and the Lagrange multiplier λ). Another application of
Bezout’s theorem (Corollary F.10) gives us the desired upper bound on the number of local extrema
of u∗x.
Lemma F.23. Let d = 1, N = 1,M = 0. That is, there is a single parameter, a single piece function,
and no boundary functions. Assume that A = [αmin, αmax] andW = [wmin, wmax]. Then

(a) The hyperparameter domain A can be partitioned into O(∆2
p) intervals such that u∗x is a

continuous function over any interval in the partition.

(b) u∗x is O(∆2
p)-monotonic (Definition 5).

Proof. (a) Denote kx(α,w) = ∂fx(α,w)
∂w . From assumption, fx(α,w) is a polynomial of α and

w, therefore it is differentiable everywhere in the compact domain [αmin, αmax] × [wmin, wmax].
Consider any α0 ∈ [αmin, αmax], we have {(α,w) | α = α0} ∩ ([αmin, αmax] × [wmin, wmax]) is
an intersection of a hyperplane and a compact set, hence it is also compact. Thus Fermat’s interior
extremum theorem (Lemma F.4) applies and, for any α0, fx(α0, w) attains the local maxima w either
in wmin, wmax, or for w ∈ (wmin, wmax) such that kx(α0, w) = 0. Note that from assumption,
fx(α,w) is a polynomial of degree at most ∆p in α and w. This implies kx(α,w) is a polynomial
of degree at most ∆p − 1.

Denote Cx = V (kx) the zero set of kx in R := A ×W . If Cx has any components consisting
of axis-parallel straight lines α = α1, we include the corresponding discontinuities (later) via the
intersections of Cx with the boundary lines w = wmin, wmax. Therefore, assume that Cx does not
have such components. For any α0, Cx intersects the line α = α0 in at most ∆p − 1 points by
Bezout’s theorem (Corollary F.11). This implies that, for any α, there are at most ∆p + 1 candidate
values of w which can possibly maximize fx(α,w), which can be either wmin, wmax, or on some
point in Cx. We can decompose Cx into monotonic arcs using well-known techniques from algebraic
geometry [82, 83]. We then define the candidate arc set C : A → Mα(Cx) as the function that
maps α0 ∈ A to the set of all maximal α-monotonic arcs of Cx (Definition 19, informally arcs that
intersect any line α = α0 at most once) that intersect with α = α0. By the argument above, we have
|C(α)| ≤ ∆p + 1 for any α.

We now have the following claims: (1) C is a piecewise constant function, and (2) any point of
discontinuity of u∗x must be a point of discontinuity of C. For (1), we will show that C is piecewise
constant, with the piece boundaries contained in the set ofα-extreme points4 ofCx and the intersection
points of Cx with boundary lines w = wmin, wmax. Indeed, for any interval I = (α1, α2) ⊆ A, if
there is no α-extreme point of Cx in the interval, then the set of arcs C(α) is fixed over I by Definition
19. Next, we will prove (2) via an equivalent statement: assume that C is continuous over an interval
I ⊆ A, we want to prove that u∗x is also continuous over I . Note that if C is continuous over I ,
then u∗x(α) involves a maximum over a fixed set of α-monotonic arcs of Cx, and the straight lines
w = wmin, w = wmax. Since fx is continuous along these arcs, so is the maximum u∗x (Lemma F.1).

The above claim implies that the number of discontinuity points of C upper-bounds the number of
discontinuity points of u∗x(α). Using a well-known result for algebraic curves (e.g. [84]), the number

4An α-extreme point of an algebraic curve C is a point p = (α,W ) such that there is an open neighborhood
N around p for which p has the smallest or largest α-coordinate among all points p′ ∈ N on the curve.
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of α-extreme points is O(∆2
p). Moreover, there are O(∆p) intersection points between Cx and the

boundary lines w = wmin and w = wmax. Thus, the total discontinuities of C are O(∆2
p), giving an

upper bound on the number of discontinuity points of u∗x.

(b) Consider any interval I ⊂ A over which the function C is continuous. In particular, this means
that there is no α-extreme point corresponding to any α ∈ I . By Proposition F.2 and Proposition
F.22, it suffices to bound the B-monotonicity of fx along the algebraic curve Cx (i.e. along a fixed
set of monotonic arcs of Cx) and the straight lines w = wmin and w = wmax.

To bound the number of elements of the set of local maxima of fx along the algebraic curve Cx,
consider the Lagrangian

L(α,w, λ) = fx(α,w) + λkx(α,w).

From the Lagrange’s multiplier theorem, any local maxima of fx along the algebraic curve Cx is
also a critical point of L, which satisfies the following equations

∂L
∂α

=
∂fx
∂α

+ λ
∂kx
∂α

=
∂fx
∂α

+ λ
∂2fx
∂α∂w

= 0,

∂L
∂w

=
∂fx
∂w

+ λ
∂kx
∂w

=
∂fx
∂w

+ λ
∂2fx
∂w2

= 0,

∂L
∂λ

= kx =
∂fx
∂w

= 0.

Plugging ∂fx
∂w = 0 into the second equation above, we get that either λ = 0 or ∂2fx

∂w2 = 0. In the
former case, the first equation implies ∂fx

∂α = 0. Thus, we consider two cases for critical points of L.
Let’s suppose (α̃, w̃) is a local maximum of fx along Cx. There must exist a λ such that (α̃, w̃, λ)
satisfies the Lagrangian equations above.

Case λ = 0. ∂fx(α̃,w̃)
∂w = 0, ∂fx(α̃,w̃)

∂α = 0. For this to be true, α̃, w̃ must be at the intersection of the
algebraic curves ∂fx(α,w)

∂w = 0, ∂fx(α,w)
∂α = 0. By Bezout’s theorem on the plane (Corollary F.11),

these algebraic curves intersect in at most ∆2
p points, unless the polynomials ∂fx(α,w)

∂w , ∂fx(α,w)
∂α

have a common factor. In this case, we can write ∂fx(α,w)
∂w = g(α,w)g1(α,w) and ∂fx(α,w)

∂α =

g(α,w)g2(α,w) where g = gcd
(

∂fx
∂w ,

∂fx
∂α

)
and g1, g2 have no common factors. Now for any

point (α̃, w̃) on the curve g(α,w) = 0, we have both ∂fx(α̃,w̃)
∂w = 0, ∂fx(α̃,w̃)

∂α = 0. Therefore, for
any two points (α1, w1) and (α2, w2) on the curve g(α,w) = 0, fx(α1, w1) = fx(α2, w2). Thus,
fx is constant along g(α,w) = 0. Recall that we are computing the local maxima on an interval
I , corresponding to a fixed set of monotonic arcs of kx (and therefore also g, which is a factor
of kx). By Bezout’s theorem (Corollary F.11), g1(α,w) = 0, g2(α,w) = 0 intersect in at most
deg(g1)deg(g2) ≤ ∆2

p points (since they do not have any common factors), which are the only other
candidate points for which (α̃, w̃, 0) satisfies the Lagrangian. Thus, the number of local maxima of
u∗x that correspond to this case (i.e. across all monotonic arcs not corresponding to g) is O(∆2

p).

Case λ ̸= 0. ∂fx(α̃,w̃)
∂w = 0, ∂

2fx(α̃,w̃)
∂w2 = 0. This essentially corresponds to the α-extreme points

computed above (see e.g. [85]), and do not occur over any interval I considered here.

Similarly, the equations fx(α,wmin) = 0 and fx(α,wmax) = 0 also have at most ∆p solutions each.
Putting together, by Theorem F.22, we conclude that u∗x is O(∆2

p)-monotonic.

Theorem F.24. Pdim(U∗) = O(log∆p).

Proof. From Theorem F.23 and Theorem D.3, we conclude that u∗x has at most O(∆2
p) oscillations

for any u∗x ∈ U∗. Therefore, using Theorem D.1, we conclude that Pdim(U∗) = O(log∆p).

Remark 4. Challenges of generalizing the one-dimensional parameter and single region setting
above to high-dimensional parameters and multiple regions. Recall that in the simple setting above,
we assume that fx(α,w) is a polynomial in the whole domain R := [αmin, αmax]× [wmin, wmax].
In this case, our approach is to characterize the manifold on which the optimal solution of
maxw:(α,w)∈R fx(α,w) lies, as α varies. We then use algebraic geometry tools to upper bound
the number of discontinuity points and local extrema of u∗x(α) = maxw:(α,w)∈R fx(α,w), leading
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to a bound on the pseudo-dimension of the utility function class U by using our proposed tools in
Section 2.1. However, to generalize this idea to high-dimensional parameters and multiple regions is
much more challenging due to the following issues: (1) handling the analysis of multiple pieces while
accounting for polynomial boundary functions is tricky as the w∗ maximizing fx(α,w) can switch
between pieces as α is varied, (2) characterizing the optimal solution maxw:(α,w)∈R fx(α,w) is
not trivial and typically requires additional assumptions to ensure that a general position property
is achieved, and care needs to be taken to make sure that the assumptions are not too strong, (3)
generalizing the monotonic curve notion to high-dimensions is not trivial and requires a much more
complicated analysis invoking tools from differential geometry, and (4) controlling the number of
discontinuities and local maxima of u∗x over the high-dimensional monotonic curves requires more
sophisticated techniques.

F.5 Omitted proofs for Theorem 4.1

In this section, we will present a detailed proof for Theorem 4.1.

Figure 4: A simplified illustration for the proof idea of Theorem 4.1 where w ∈ R. Here, our goal
is to analyze the number of discontinuities and local maxima of u∗x,i(α). The idea is to partition
the hyperparameter space A into intervals such that over each interval, the function u∗x,i(α) is the
pointwise maximum of fx,i(α,w) along some fixed set of “monotonic curves” C (curves that intersect
α = α0 at most once for any α0). u∗x,i(α) is continuous over such interval; this implies that the
interval endpoints contain all discontinuities of u∗x,i(α). In this example, over the interval (αi, αi+1),
we have u∗x,i(α) = maxCi

{fx,i(α,w) : (α,w) ∈ Ci}. Then, we can show that over such an interval,
any local maximum of ux,i(α) is a local extremum of fx,i(α,w) along a monotonic curve C ∈ C.
Finally, we bound the number of points used for partitioning and local extrema using tools from
algebraic and differential geometry.

Theorem 4.1 (restated). Consider the utility function class U = {uα : X → [0, H] | α ∈ A}.
Assume that the parameter-dependent dual function fx(α,w) admits piecewise polynomial structure
with the piece functions fx,i and boundaries hx,i satisfying Assumption 1. Then for any distribution
D over X , for any δ ∈ (0, 1), with probability at least 1− δ over the draw of S ∼ Dm, we have

|Ex∼D[uα̂ERM(x)]− Ex∼D[uα∗(x)]| = O

(√
logN + d log(∆M) + log(1/δ)

m

)
.

Here, M and N are the number of boundaries and connected sets, ∆ = max{δp, δd} is the maximum
degree of piece functions fx,i and boundaries hx,i.

Proof. In this section, we will first go through the general idea of the proof for Theorem 4.1, and its
main steps. The proof consists of three main steps. Step 1: we first bound the number of possible
discontinuities and local extrema of v∗x(α) under Assumption 3, which is a stronger assumption
compared to Assumption 1. Step 2: we show that, for any u∗x(α) that satisfies Assumption 1, we
can construct v∗x(α) satisfies Assumption 3 and is arbitrarily close to u∗x(α). Step 3: we can use this
property to recover the learning guarantee for U . The key ideas of each step are sketched below.
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First step: the proof requiring a stronger assumption

To begin with, we first start by stating the following stronger assumption compared to Assumption 1.

Assumption 3 (Regularity assumption). Assume that for any dual utility function u∗x(α), its piece
functions fx,i(α,w) (for i = 1, . . . , N ) and boundary functions hx,j(α,w) (for j = 1, . . . ,M )
satisfy the following property. For any piece function f chosen from {fx,1, . . . , fx,N} and S boundary
functions h1, . . . , hS chosen from {hx,1, . . . , hx,M}, the following conditions are met:

1. Consider the polynomial map h, where

h :Rd+1 → RS

h(α,w) 7→ (h1(α,w), . . . , hS(α,w)).

Then 0 ∈ RS is a regular value of h. Furthermore, if S ≤ d, we have Jh(w) has full row rank
for (α,w) ∈ h−1(0).

2. Consider the polynomial map k, where

k : Rd+S+1 → Rd+S

(α,w,λ) 7→ (k1(α,w,λ), . . . , kd+S(α,w,λ)) .

Here, S ≤ d and k(α,w,λ) = (k1(α,w,λ), . . . , kd+S(α,w,λ)) is defined as

kj(α,w,λ) = hj(α,w), j = 1, . . . , S,

kS+i(α,w,λ) = ∂wi
L(α,w,λ), i = 1, . . . , d,

where L(α,w,λ) = f(α,w) +λ⊤h(α,w). Then there exists a set of real values Ξ consisting of
at most ∆2S+2d elements such that the Jacobian Jk(w,λ) has full row rank for all (α,w,λ) ∈
k
−1

(0) such that α ̸∈ Ξ.
3. Consider the polynomial map µ

µ :R2d+2S+1 → R2d+2S+1

µ(α,w,γ,λ,θ) 7→ (µ1(α,w,γ,λ,θ), . . . , µ2d+2S+1(α,w,γ,λ,θ)).

Here, S ≤ d, λ ∈ RS , θ ∈ RS , γ ∈ Rd, and each µi is defined as follows:

µj(α,w,γ,λ,θ) = hj(α,w), j = 1, . . . , S

µS+j(α,w,γ,λ,θ) = γ⊤∇whj(α,w), j = 1, . . . , S

µ2S+i(α,w,γ,λ,θ) = ∂wiL(α,w,λ), i = 1 . . . , d

µ2S+d+i(α,w,γ,λ,θ) = ∂wi [L(α,w,θ) + γ⊤∇wL(α,w,λ)], i = 1, . . . , d

µ2S+2d+1(α,w,γ,λ,θ) = ∂α[L(α,w,θ) + γ⊤∇wL(α,w,λ)].

Then the Jacobian Jµ(α,w,γ,λ,θ) has full row rank for all (α,w,γ,λ,θ) ∈ µ−1(0) such that
α ̸∈ Ξ, where Ξ is defined in (2).

Under Assumption 3, we have the following result, which gives the pseudo-dimension upper-bound
for the utility function class U .

Theorem F.25. Assume that Assumption 3 holds, then for any problem instance x ∈ X , the dual
utility function u∗x(α) satisfies the following:

(a) The hyperparameter domain A can be partitioned into at most
O
(
N∆4d

(
eM
d

)d
+MN(2∆)2d+1

(
eM
d

)d)
intervals such that u∗x(α) is a continu-

ous function over any interval in the partition, where N and M are the upper-bound for
the number of pieces and boundary functions respectively, and ∆ = max{∆p,∆b} is the
maximum degree of piece and boundary function polynomials.

(b) Over those intervals, u∗x(α) has O
(
N∆4d+2

(
eM
d

)d)
local maxima for any problem in-

stance x.
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Proof. (a) First, note that we can rewrite u∗x,i(α) as

u∗x,i(α) = max
w:(α,w)∈Rx,i

fx,i(α,w).

Since Rx,i is a connected component in A×W , let

αx,i,inf = inf{α | ∃w : (α,w) ∈ Rx,i}, αx,i,sup = sup{α | ∃w : (α,w) ∈ Rx,i}

be the α-extreme points of Rx,i (Definition 7). Then, for any α ∈ (αx,i,inf , αx,i,sup), there exists w
such that (α,w) ∈ Rx,i.

Let Hx,i be the set of adjacent boundaries of Rx,i (Definition 8). From assumption of problem
setting, there are at most M boundary functions hx,j , meaning that |Hx,i| ≤ M . For any subset
S = {hS,1, . . . , hS,S} ⊂ Hx,i, where |S| = S, consider the algebraic set ZS , where

ZS = ∩Sj=1{(α,w) ∈ R× Rd | hS,j(α,w) = 0}. (1)
If S > d+ 1, from Assumption 3.1, ZS is an empty set. Consider S ≤ d+ 1, from Assumption 3.1,
Jh(α,w) defines a smooth (d+ 1− S)-dimensional manifold in R× Rd. Note that, this is exactly
the set of (α,w) defined by the equation

S∑
j=1

hS,j(α,w)2 = 0,

where the left hand side is a polynomial in α,w of degree at most 2∆. Therefore, from Lemma
F.8, the number of connected components of ZS is at most 2(2∆)d+1. Each connected component
corresponds to 2 α-extreme points, meaning that there are at most 4(2∆)d+1 α-extreme points for all
the connected components of ZS . Taking all possible subset S of Hx,i with at most d+ 1 elements,
we have a total of at most N α-extreme points, where

N ≤ (2∆)d+1
d+1∑
S=0

(
M

S

)
≤ (2∆)d+1

(
eM

d+ 1

)d+1

.

Here, the final inequality is from Sauer-Shelah Lemma (Lemma F.7).

Let A1 be the set of such α-extreme points. Then for any interval It = (αt, αt+1) formed by two
consecutive points in A1, the set S1

t exists. Here, the set S1
t ∈ 2Hx,i contains all subsets S of Hx,i

such that for any S = {hS,1, . . . , hS,S} ∈ S1
t and any α ∈ (αt, αt+1), there exists w such that

hS,j(α,w) = 0 for any j = 1, . . . , S.

Now, for any fixed α ∈ It, assume that wα is a local maxima of fx,i in Rx,i (which exists due to
the compactness of Rx,i), meaning that (α,wα) is also a local extrema in Rx,i. This implies there
exists a set of boundaries S ∈ S1

t and λ such that (α,wα) satisfies the following due to Lagrange
multipliers theorem (Theorem F.3) {

h(α,wα) = 0

∇wL(α,wα,λ) = 0.

Here h = {hS1
, . . . , hS,S} is the polynomial map formed by the boundary functions in S, and

L(α,w,λ) = fx,i(α,w) + λ⊤h(α,w)

is the corresponding Lagrangian. LetMS be the set of points (α,w,λ) that satisfy the equations
above, which defines an algebraic set. From Lemma F.8, the number of connected components of
MS is at most 2(2∆)d+S+1, corresponding to at most 4(2∆)d+S+1 α-extreme points. Moreover, let
k = (h,∇wL). Then from Assumption 3.2, there exists a set of real-valued ΞS of at most ∆2S+2d

elements such that the Jacobian Jk(w,λ) has full row rank for all (α,w,λ) ∈ k
−1

(0) and α ̸∈ ΞS .
Taking all possible subsets S ⊂ S1

t of at most d elements and noting that
∣∣S1

t

∣∣ ≤M , we have at most

O
(
(2∆)2d+1

(
eM
d

)d
+∆4d

(
eM
d

)d)
such points (that are either α-extreme points or in the set of

values ΞS ).
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Let A2 be the (sorted) set that contains all points α in A1 and the points described above. Then for
any interval I1 = (αt, αt+1) formed by two consecutive points in A2, there exists a set S2

t ∈ 2Hx,i

that contains all subsets S = {hS,1, . . . , hS,S} of Hx,i such that for any α ∈ (αt, αt+1), there exist
wα and λα such that (α,wα,λα) satisfies{

h(α,wα) = 0,

∇wL(α,wα,λα) = 0,

and Jk(w,λ)|(α,w,λ)=(α,wα,λα), where k = (h,∇wL), has full row rank. Therefore, over any
interval It, the set of points (α,w,λ) that satisfy k(α,w,λ) = 0 defines a one-dimensional manifold
in the space R × Rd × Rs of α,w,λ, and furthermore, its connected components are monotonic
curves (Definition 19).

Note that for the points (α,wα,λα), (α,wα) might not be in the feasible region Rx,i. For each set
of boundaries S ∈ S2

t , for each point (α,w) at whichMS can enter or exit the feasible region Rx,i,
there exists λ such that (α,w,λ) satisfies the equations

h(α,w) = 0,

∇wL(α,w,λ) = 0,

h′(α,w) = 0, for some h′ ∈ Hx,i − S ,

of which the number of solutions is finite due to Assumption 3.2. In the above constraints, the
first two equations say that the point (α,w,λ) lies in the smooth one-dimensional manifoldMS ,
and the last equation ensures that (α,w,λ) is the intersection ofMS with the boundaries Zh′ =
{(α,w,λ) | h′(α,w) = 0}. For each set S ∈ S2

t and possible boundary h′ ∈ Hx,i − S, the
number of such points is at most 2(2∆)d+S+1. This means that there are at most 2M(2∆)d+S+1

such points for each S, since |Sx,i \ S| ≤ M . Taking all possible sets S and noting that S has at

most d elements, we have at most O
(
M(2∆)2d+1

(
eM
d

)d)
such points (α,w,λ), corresponding to

at most O
(
M(2∆)2d+1

(
eM
d

)d)
α values.

Let A3 be the set that contains all the points in A2 and the α points above. Then for any interval
It = (αt, αt+1), the set S3

t is fixed. Here, the set S3
t ∈ 2Hx,i consists of the set of all subsets

S = {hS,1, . . . , hS,S} of Hx,i such that for any fixed α ∈ (αt, αt+1), there exist wα and λ such
that (α,wα,λα) satisfy

h(α,wα) = 0, j = 1, . . . , S,

∇wL(α,wα,λα) = 0,

(α,wα) ∈ Rx,i,

Jk(w,λ)|(α,w,λ)=(α,wα,λα) has full row rank.

Again, the condition Jk(w,λ)|(α,w,λ)=(α,wα,λα) has full row rank implies that k(α,w,λ) defines
a smooth one-dimensional manifold that consists of monotonic curves.

In summary, there are a set of α points A3 of at most O
(
∆4d

(
eM
d

)d
+M(2∆)2d+1

(
eM
d

)d)
elements such that for any interval It = (αt, αt+1) of consecutive points (αt, αt+1) in A4, there
exists a set Ct of monotonic curves such that for any α ∈ (αt, αt+1), we have

u∗x,i(α) = max
C∈Ct

{fx,i(α,w) | ∃λ, (α,w,λ) ∈ C}.

In other words, the value of u∗x,i(α) for α ∈ It is the pointwise maximum of value of functions
fx,i along the set of monotonic curves C. From Proposition F.21, we have u∗x,i(α) is continu-
ous over It. Therefore, we conclude that the number of discontinuities of u∗x,i(α) is at most

O
(
∆4d

(
eM
d

)d
+M(2∆)2d+1

(
eM
d

)d)
.

Finally, recall that
u∗x(α) = max

i∈{1,...,N}
ux,i(α),

and combining with Lemma F.1, we conclude that the number of discontinuity points of u∗x(α) is at
most O

(
N∆4d

(
eM
d

)d
+MN(2∆)2d+1

(
eM
d

)d)
.
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(b) We now proceed to bound the number of local maxima of u∗x(α). To do that, we proceed with the
following steps.

Recalling useful properties from (a). Recall that we can rewrite u∗x(α) as follows

u∗x(α) = max
i∈{1,...,N}

u∗x,i(α),

where
u∗x,i(α) = max

w:(α,w)∈Rx,i

fx,i(α,w).

In part (a), we show that: there exist α1 < ... < αT , where T =

O
(
N∆4d

(
eM
d

)d
+MN(2∆)2d+1

(
eM
d

)d)
, such that for any interval It = (αt, αt+1), there exists

a set of monotonic curves Ct such that

u∗x,i(α) = max
C∈Ct

{fx,i(α,w) : (α,w,λ) ∈ C}.

Note that, from the property of monotonic curves (Lemma F.19), for each monotonic curve C and
each α, there exists at most one (w,λ) such that (α,w,λ) ∈ C, hence the definition above is
well-defined.

Now, for each interval It, and monotonic curve C ∈ Ct, there is connected component Rx,i with
the piece function fx,i and a set of boundaries S = {hS,1, . . . , hS,S} ⊂ Hx,i such that C is on the
smooth one-manifoldMS in Rd+S+1 defined by{

h(α,w) = 0,

∇wL(α,w,λ) = 0,

where L(α,w,λ) = fx,i(α,w) + λ⊤h(α,w). Note that for each α ∈ (αt, αt+1) and for each
monotonic curve C, there is unique w,λ such that (α,w,λ) ∈ C, and therefore u∗x,i is just pointwise
maximum of fx,i along the curves C ∈ Ct. From Proposition F.21, to bound the number of local
maxima of u∗x,i, it suffices to bound the number of local extrema of fx,i(α,w) along each monotonic
curves.

Analyze the number of local maxima of fx,i along monotonic curves. First, note that the number
of local maxima of fx,i along a monotonic curve C is upper-bounded by the number of local extrema
along C. Moreover, any local extrema of fx,i along C is a local extrema of fx,i on the smooth
1-manifoldMS , i.e., satisfying the following constraints:

{
h(α,w) = 0,

∇wL(α,w,λ) = 0,

To see this, WLOG, assume that (α′,w′,λ′) is a local maximum of fx,i along C. By definition, there
exists a neighborhood V of (α′,w′,λ′) ∈ C such that for any (α,w,λ) ∈ V , we have fx,i(α′,w′) ≥
fx,i(α,w). Note that by definition (Definition 20), C is an open set in MS . Combining with
Proposition F.20, we know that V is also an open neighbor of (α′,w′,λ′) in MS . Therefore,
(α′,w′,λ′) is also a local maxima of fx,i alongMS .

Therefore, it suffices to give an upper-bound for the number of local extrema of fx,i restricted to
MS . Consider the Lagrangian function

L(α,w,γ,λ,θ) = fx,i(α,w) +

S∑
j=1

θjh
S
x,i,j(α,w) +

d∑
t=1

γt

∂fx,i(α,w)

∂wt
+

S∑
j=1

λj
∂hSx,i,j(α,w)

∂wt


= L(α,w,θ) + γ⊤∇wL(α,w,λ).
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From Theorem F.3, for any local extrema (α,w,λ) of fx,i(α,w) in MS , there exists θ ∈ RS ,
γ ∈ Rd such that 

h(α,w) = 0,

∇wL(α,w,λ) = 0,

γ⊤∇wh(α,w) = 0,

∇w[L(α,w,θ) + γ⊤∇wL(α,w,λ)] = 0,

∂α[L(α,w,θ) + γ⊤∇wL(α,w,λ)] = 0.

From Assumption 3.3 and Bezout’s theorem, the number of points (α,w,γ,λ,θ) that satisfy the
equations above is at most ∆2S+2d+1. Hence, we conclude that there is at most ∆2S+2d+1 local
extrema of fx,i along any monotonic curve C ofMS such that (α,w) ∈ Rx,i.

Analyzing the number of local extrema of u∗x. In the previous step, for any set of boundaries
S ⊂ Hx,i and |S| = S ≤ d + 1, we show that between all It, there are at most ∆2S+2d+1 local
extrema for f∗x,i along any monotonic curve ofMS . We now take the sum over any S ⊂ Hx,i,
|S| = S ≤ d and any region Ri for i = 1, . . . , N , we then conclude that the number local extrema of
u∗x(α) across all intervals It is O(N ), where

N = N

d∑
S=0

(
M

S

)
∆2S+2d+1

= N∆4d+2
d+1∑
S=0

(
M

S

)
(because S ≤ d)

= N∆4d+2

(
eM

d

)d

(Lemma F.7).

Combining Theorem F.25 and Lemma 2.1, we have the following result.

Theorem F.26. Let U = {uα : X → [0, 1] | α ∈ A}, where A = [αmin, αmax] ⊂ R. Assume that
any dual utility function u∗x admits piecewise polynomial structure that satisfies Assumption 3. Then
we have Pdim(U) = O(logN + d log(∆M)). Here, M and N are the number of boundaries and
functions, and ∆ is the maximum degree of boundaries and piece functions.

Second step: Relaxing Assumption 3 to Assumption 1

In this section, we show how we can relax Assumption 3 to our main Assumption 1. In particular, we
show that for any dual utility function u∗x that satisfies Assumption 1, we can construct a function
v∗x such that: (1) The piecewise structure of v∗x satisfies Assumption 3, and (2) ∥u∗x − v∗x∥∞ can be
arbitrarily small. This means that, for a utility function class U , we can construct a new function class
V of which each dual function v∗x satisfies Assumption 3. We then can establish a pseudo-dimension
upper-bound for V using Theorem F.25, and then recover the learning guarantee for U using Lemma
C.4.

We will now proceed via a sequence of claims towards establishing the reduction. First, we claim
that under Assumption 1, we have the following regularity condition.

Proposition F.27. Under Assumption 1, the Jacobian Jµ(w,γ) of the mapping µ = (µ1, . . . , µ2S)
for S ≤ d, where {

µj(α,w,γ) = hj(α,w), for j = 1, . . . , S,

µS+j(α,w,γ) = γ⊤∇whj(α,w), for j = 1, . . . , S,

has full row rank when evaluated at (α,w,γ) such that µ(α,w,γ) = 0.

Proof. Note that the Jacobian Jµ(w,γ) has the form

Jµ(w,γ) =

[
J1w J1γ
J2w J2γ

]
.
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Essentially, in order to show Jµ(w,γ) is full row rank, we will use that J1w and J2γ are both full
row rank, which follows from Assumption 1.1.

In more detail, here h = (h1, . . . , hS) and

J1w = Jh(w)S×d, J1γ = 0S×d,

J2w =

γ
⊤Hh1

(w)
...

γ⊤HhS
(w)


S×d

, J2γ = Jh(w)S×d,

where Hhj (w) is the Hessian of hj w.r.t. w. Now, in order to prove that Jµ(w,γ) has full row rank,
suppose that there are real coefficients δ1, . . . , δ2S such that

2S∑
j=1

δjJj = 0,

where Jj is the jth row of Jµ(w,γ). Restricting on the columns corresponding to γ, we have

2S∑
j=S+1

δjJh(w)j = 0.

From Assumption 1.1, we have Jh(w) has full row rank for any (α,w) that satisfies h(α,w) = 0.
It means δj = 0 for j = S + 1, . . . , 2S. Combining with

∑2S
j=1 δjJj = 0, we have

S∑
j=1

δjJj = 0.

Again, using the fact that Jh(w) has full row rank, we also claim that δj = 0 for j = 1, . . . , S.
Therefore, δj = 0 for j = 1, . . . , 2S, meaning that Jµ(w,γ) has full row rank.

We now present the notion of algebraic dimension from the literature.

Definition 21 (Stratification, real algebraic dimension, 86). Let S be a semi-algebraic set in Rn.
Then S can be decomposed to finite disjoint union of smooth, connected manifolds Si, called strata,
i.e.,

S = ∪pi=1Si,

where Si is a smooth manifold. The algebraic dimension of S is the maximum dimension of the
smooth manifolds in the stratification of S, i.e., Adim(S) = maxpi=1 dim(Si).

We establish the following straightforward connection between the regular values of a function
defined on a semi-algebraic set and the algebraic dimension of its domain.

Proposition F.28. Let f : S → Rn be a polynomial map, where S is a semi-algebraic set. Then
the set of non-regular values of f has Lebesgue measure 0 in Rn. Assume that Adim(S) = n, then
given a regular value v of f , f−1(v) only contains isolated points in S.

Proof. Consider a stratification S = ∪pi=1Si. For any strata Si, consider the restricted mapping
f |Si

: Si → Rn. From Sard’s theorem, the set Ci ⊂ Rn of non-regular values of f |Si
has Lebesgue

measure 0 in Rn. Therefore, the set of non-regular value C = ∪pi=1Ci of f , which is a finite union of
sets with Lebesgue measure 0, also has Lebesgue measure 0 in Rn.

Now, given a regular value v ∈ Rn, and consider the restriction f |Si
: Si → Rn, for any strata Si. If

Si is a smooth k-dimensional manifold for k < n, then f−1(v) must be empty. To see that, consider
the differential map dfx : TxSi → Rn (since Tf(x)Rn = Rn), which can never be a surjective
(since dim(Si) < n). Therefore, f−1(v) has to be an empty so that the surjective condition holds
vacuously. If Si is a smooth n-dimensional manifold, then f−1(v) is smooth 0-dimensional manifold
in Si, which means that it contains only isolated points.

Finally, the following supporting result uses Bezout’s theorem to bound the number of non-singular
points corresponding to the set Ξ in Assumption 3.
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Proposition F.29. Consider a piece function fx,i and a set of S boundary functions S =
{h1, . . . , hS}. Let L(α,w,λ) = fx,i(α,w) + λ⊤h(α,w), where h = (h1, . . . , hS), and con-
sider the mapping µ = (µ1, . . . , µS+d){

µj(α,w,λ) = hj(α,w), for j = 1, . . . , S,

µS+z(α,w,λ) = ∂wzL(α,w,λ), for z = 1, . . . , d.

Under Assumption 1, we can choose τ ∈ Rd such that the set Ξ of parameters α for which the system{
h(α,w) = 0,

∇wL(α,w,λ)− τ = 0

has a solution (w,λ) where the Jacobian Jµ(w,λ) is singular, is finite. Moreover

1. Given such τ , the set Ξ has at most ∆2S+2d elements. Here, ∆ is the maximum degree of
the piece functions fx,i and boundary functions hj .

2. The set of Ti,S of τ , which does not satisfy the above, has Lebesgue measure 0 in Rd.

Proof. Let Zh = {(α,w,λ) ∈ RS+d+1 | h(α,w,λ) = 0}, which is an algebraic set. From
Assumption 1.1, since Jh(w,λ) has full rank for any (α,w,λ) ∈ Zh, Zh has algebraic dimension
(d+ S + 1)− S = d+ 1 (or more concretely, Zh defines a smooth (d+ 1)-dimensional manifold in
Rd+S+1).

Next, consider Zdet(Jµ(w,λ)) = {(α,w,λ) ∈ RS+d+1 | det(Jµ(w,λ)) = 0}. Since each entry of
Jµ(w,λ) is a polynomial, therefore det(Jµ(w,λ)) is also a polynomial, and Zdet(Jµ(w,λ)) is an
algebraic set. Let W = Zh ∩ Zdet(Jµ(w,λ)), which is also an algebraic set. From Assumption 1.2,
the set W has (algebraic) dimension at most d.

Now, consider the mapping P :W → Rd, where P (α,w,λ) = ∇wL(α,w,λ), which maps a point
(α,w,λ) in the algebraic set W to a point in Rd. From Proposition F.28, the set of non-regular
values of P has Lebesgue measure 0 in Rd. Let τ ∈ Rd be a regular value of P . From Proposition
F.28, P−1(τ ) only contains isolated points in W . Now, note that W = Zh ∩ Zdet(Jµ(w,λ)), and
det(Jµ(w,λ)) is a polynomial of degree at most ∆S+d. From Bezout’s theorem (Corollary F.10),
we have

∣∣P−1(τ )
∣∣ ≤ ∆2S+2d.

Therefore, any other solution (α,w,λ) that satisfies h(α,w) = 0 and ∇wL(α,w,λ)− τ = 0 has
to have det(Jµ(α,w,λ)) ̸= 0, or Jµ(α,w,λ) is non-singular, which concludes the proof.

We now present the main claim in this section, which says that for any function u∗x(α) that satisfies
Assumption 1, we can construct a function v∗x(α) that satisfies Assumption 3 and that ∥u∗x − v∗x∥∞
can be arbitrarily small.

Lemma F.30. Let u∗x be a dual utility function of a utility function class U . Assume that the piecewise
polynomial structure of u∗x satisfies Assumption 1, then we can construct the function v∗x such that v∗x
has piecewise polynomial structures that satisfies Assumption 3, and ∥u∗x − v∗x∥∞ can be arbitrarily
small.

Proof. Proof overview. First, notice that Assumption 1 immediately implies Assumption 3.1.
Therefore, given a dual utility function u∗x of which the piecewise polynomial structure satisfies
Assumption 1, the task now is to construct v∗x such that v∗x has a piecewise polynomial structure that
satisfies Assumptions 3.2 and 3.3.

Given a set of boundary functions S = {h1, . . . , hS} and a piece functions fx,i that satisfies
Assumption 1, we will show that there is a set TS,i ⊂ Rd that has Lebesgue measure 0 in Rd

such that for any τ ∈ Rd − TS,i, if we subtract τ⊤w from the piece function fx,i(α,w), i.e.,
f ′x,i(α,w) = fx,i(α,w)− τ⊤w, then the collection of boundaries functions S = {h1, . . . , hS} as
well as the new piece function f ′x,i(α,w) satisfy Assumption 3.2.

Then, given a set of boundary S = {h1, . . . , hS}, a new piece function f ′x,i, and the set TS,i, we
further show that there exists a set ATS,i

⊂ R that has Lebesgue measure 0 in R such that for
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any a ∈ R − ATS,i
, if we consider another new piece function f ′′x,i(α,w) = f ′x,i(α,w) − aα

(perturbing the original piece function fx,i by −τ⊤w − aα), then the set of boundaries functions
S = {h1, . . . , hS} and the new piece function f ′′x,i(α,w) satisfies Assumption 3.2 and 3.3.

Finally, for any piece i and any set of boundary functions S, if we choose (a, τ ) ∈ (R−ATS,i
)×

Rd − TS,i, we will have the new piecewise structure that satisfies Assumption 3. Furthermore, since
(R−ATS,i

)× Rd − TS,i has full measure in R× Rd, we can choose (a, τ ) arbitrarily small.

Technical details.

We first calculate the Jacobian matrix Jµ. For convenience, let L(α,w,θ) = fx,i(α,w) +∑S
j=1 θjhS,j(α,w) = fx,i+θ⊤h. Here, h(α,w) = (hS,1(α,w), . . . , hS,S(α,w)) is the mapping

of considered boundaries.

We first calculate the Jacobian matrix Jµ(α,w,γ,λ,θ). For convenience, we decompose
Jµ(α,w,γ,λ,θ) into block matrices

Jµ(α,w,γ,λ,θ) =


J1α J1w J1γ J1λ J1θ
J2α J2w J2γ J2λ J2θ
J3α J3w J3γ J3λ J3θ
J4α J4w J4γ J4λ J4θ
J5α J5w J5γ J5λ J5θ

 ,
where the rows J1, J2, J3, J4, J5 corresponds to (µ1, . . . , µS), (µS+1, . . . , µ2S), (µ2S+1, . . . , µ2S+d),

(µ2S+d+1, . . . , µ2S+2d), (µ2d+2S+1) respectively.

For the first column (corresponding to α), we have

J1α =

∂αh1...
∂αhS


S×1

, J2α =


∑d

t=1 γt∂
2
αwt

h1
...∑d

t=1 γt∂
2
αwt

hS


S×1

, J3α =

∂
2
α,w1

L(α,w,λ)
...

∂2α,wd
L(α,w,λ)


d×1

J4α =

∂
2
αw1

(L(α,w,θ) + γ⊤∇wL(α,w,λ))
...

∂2αwd
(L(α,w,θ) + γ⊤∇wL(α,w,λ))


d×1

, J5α = [∂2αα(L(α,w,θ)+γ⊤∇wL(α,w,λ))]1×1

For the second column (corresponding to w), we have

J1w = Jh(w)S×d, J2w =

γ
⊤Hh1

(w)
...

γ⊤HhS
(w)


S×d

, J3w = HL(α,w,λ)(w)
d×d

,

J4w = HL(α,w,θ)+γ⊤∇wL(α,w,λ)(w)
d×d

, J5w = ∇w[∂α(L(α,w,θ) + γ⊤∇wL(α,w,λ))]1×d.

Here, Jh(w) is the Jacobian of h w.r.t. w, and Hh(w) is the Hessian of h w.r.t. w.

For the third column (corresponding to γ), we have

J1γ = 0S×d, J2γ = Jh(w)d×S , J3γ = 0d×d,

J4γ = HL(w,λ)(w)d×d, J5γ = ∇w(∂αL(α,w,λ))1×d.

For the fourth column (corresponding to λ), we have

J1λ = 0S×S , J2λ = 0S×S , J3λ = Jh(w)⊤d×S ,

J4λ = [Hh1
(w)γ, . . . ,HhS

(w)γ]d×S , J5λ = [∂αγ
⊤∇wh1, . . . , ∂αγ

⊤∇whS ]1×S .

For the fifth column (corresponding to θ), we have

J1θ = 0S×S , J2θ = 0S×S , J3θ = 0d×S , J4θ = Jh(w)⊤d×S , J5θ = [∂αh1, . . . , ∂αhS ]1×S .

41



First, consider the mapping µ1(α,w,λ) = (h(α,w),∇wL(α,w,λ)), where h = (h1, . . . , hS) is
a polynomial mapping formed by the set of considered boundaries, and L(α,w,λ) = fx,i(α,w) +

λ⊤h(α,w) is the corresponding Lagrangian. From Proposition F.29, there exists the set TS,i ⊂ Rd

of Lebesgue measure 0 such that for any τ ∈ Rd− TS,i, there is a set of values Ξi,S,τ of size at most
∆2S+2d such that any solution (α,w,λ) that satisfies the system{

h(α,w) = 0,

∇w[fx,i(α,w) + λ⊤h(α,w)]− τ = 0

will have Jµ1(w,λ) non-singular, except for solutions that have α ∈ Ξi,S,τ . Therefore,
choosing f ′x,i(α,w) = fx,i(α,w) − τ⊤w, and note that Jµ1(w,λ) ≡ Jµ′

1
(w,λ) for µ′

1 =

(h,∇wL(α,w,λ)−τ ), we have constructed a new piece function f ′x,i such that f ′x,i and h1, . . . , hS
that satisfy Assumption 3.

Now, we will show that for any τ chosen as above, we will have the Jacobian Jµ′
2
(w,γ,λ,θ)

(µ′
2)j(α,w,γ,λ,θ) = hj(α,w), j = 1, . . . , S

(µ′
2)S+j(α,w,γ,λ,θ) = γ⊤∇whj , j = 1, . . . , S

(µ′
2)2S+i(α,w,γ,λ,θ) = ∂wi

L′(α,w,λ), i = 1 . . . , d

(µ′
2)2S+d+i(α,w,γ,λ,θ) = ∂wi

[L′(α,w,θ) + γ⊤∇wL
′(α,w,λ)], i = 1, . . . , d

where L′(α,w,λ) = f ′x,i(α,w) + λ⊤h(α,w) is non-singular when evaluated at any solution
(α,w,γ,λ,θ) of µ′(α,w,γ,λ,θ) = 0 such that α ̸∈ Ξi,S,τ . First, recall that the form of
Jµ′

2
(w,γ,λ,θ) is

Jµ′
2
(w, γ,λ,θ) =


(w) (γ) (λ) (θ)

Jh(w)S×d 0S×d 0S×S 0S×S

J2w Jh(w)S×d 0S×S 0S×S

HL(α,w,λ)(w)
d×d

0d×d Jh(w)⊤d×S 0d×S

J4w HL(α,w,λ)(w)d×d J4λ Jh(w)⊤d×S


The important point is that: (α,w,γ,λ,θ) that satisfies µ′(α,w,γ,λ,θ) = 0 and α ̸∈ ΞS,i,τ also
satisfies µ′

1(α,w,λ) = 0 and

Jµ′
1
(w,λ) =

[
Jh(w)S×d 0S×S

HL(α,w,λ)(w)
d×d

Jh(w)⊤d×S

]
has full row rank. We will leverage this observation to show that Jµ′

2
(w, γ,λ,θ) also has full row

rank. Now, let δ1, . . . , δ2S+2d be real coefficients such that

2S+2d∑
t=1

δt · Jt = 0,

where Jt is the tth row of the Jacobian Jµ′
2
(w, γ,λ,θ). First, consider the column corresponding to

γ and θ of Jµ′
2
, we have

2S∑
t=S+1

δt · ((Jh(w))t,0) +

2S+2d∑
t=2S+d+1

δt · ((HL(α,w,λ)(w))t, (Jh(w)⊤)t) = 0.

Notice that the above is exactly the rows of Jµ′
1
(w,λ), which has full row rank. Therefore δt = 0

for t = S + 1, . . . , 2S, 2S + d+ 1, . . . , 2S + 2d. Consider this fact and the column corresponding
to w,λ of Jµ′

2
, we have

S∑
t=1

δt · ((Jh(w))t,0) +

2S+d∑
t=2S+1

δt · ((HL(α,w,λ)(w))t, (Jh(w)⊤)t) = 0.

Again, due to Jµ′
1
(w,λ) having full rank, we have δt = 0 for t = 1, . . . , S, 2S + 1, . . . , 2S + d. In

summary, we have δt = 0 for t = 1, . . . , 2S + 2d, which implies Jµ′
2

having full row rank.
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Now, we will show that there exists a set ATS,i
⊂ R with Lebesgue measure 0 such that for any

a ∈ R−ATS,i
, we have that the Jacobian Jµ′′(α,w,γ,λ,θ) with µ′′ given by



µ′′
j (α,w,γ,λ,θ) = hj(α,w), j = 1, . . . , S

µ′′
S+j(α,w,γ,λ,θ) = γ⊤∇whj , j = 1, . . . , S

µ′′
2S+i(α,w,γ,λ,θ) = ∂wiL

′′(α,w,λ), i = 1 . . . , d

µ′′
2S+d+i(α,w,γ,λ,θ) = ∂wi

[L′′(α,w,θ) + γ⊤∇wL
′′(α,w,λ)], i = 1, . . . , d

µ′′
2S+2d+1(α,w,γ,λ,θ) = ∂α[L

′′(α,w,θ) + γ⊤∇wL
′′(α,w,λ)],

has full row rank when evaluated at the solution (α,w,γ,λ,θ) of µ′′(α,w,γ,λ,θ) = 0 and
α ̸∈ ΞS,i. Here, L′′(α,w,λ) = f ′′x,i(α,w) + λ⊤h(α,w), and f ′′x,i(α,w) = f ′x,i(α,w) − aα

(e.g., perturbing fx,i(α,w) − τ⊤w − aα to have f ′′x,i(α,w)). The important point in this step is
that: any solution (α,w,γ,λ,θ) of µ′′(α,w,γ,λ,θ) = 0 also satisfies µ′

2(α,w,γ,λ,θ) = 0, and
Jµ′′

1:2S+2d
(w,γ,λ,θ) is exactly Jµ′

2
(w,γ,λ,θ). Therefore, consider any interval It = (αt, αt+1)

where αt, αt+1 are two consecutive points in ΞS,i, we have Jµ′′
1:2S+2d

(α,w,γ,λ,θ) has full row
rank, since Jµ′′

1:2S+2d
(w,γ,λ,θ) has full row rank. Now, µ′′

1:2S+2d = 0 defines a smooth manifold
M. Consider the mapping P :M→ R, where P = µ′′

2S+2d+1. From Sard’s theorem F.15, there
exists the set ATS,i,t ⊂ R with Lebesgue measure 0 such that any α ∈ R−ATS,i,t is a regular value
of P . Let ATS,i

= ∩tATS,i,t, which has Lebesgue measure 0 in R, we have for any a ∈ R−ATS,i
,

we have Jµ′′(α,w,γ,λ,θ) has full row rank when evaluated at the solution (α,w,γ,λ,θ) of
µ′′(α,w,γ,λ,θ) = 0 and α ̸∈ ΞS,i. This is exactly Assumption 3.3.

Now, to choose (a, τ ) that works for any fx,i and any set of boundary functions S = {h1, . . . , hS},
we simply choose (a, τ ) ∈ B = ∩i,S [(R − TS,i) × (Rd − ATS,i

)], which is a full measure set in
R× Rd since it is a finite intersection of full measure sets.

Finally, we will construct the v∗x that: (1) has the piecewise structure that satisfies Assumption 1, and
(2) ∥u∗x − v∗x∥∞ can be arbitrarily small. The construction is as follows:

• The set of boundary functions is the same as u∗x : {hx,1, . . . , hx,M}.
• In any connected components Rx,i, the piece functions fx,i(α,w) is perturbed by an amount
−aα− τ⊤w, i.e.,

fx,i(α,w)← fx,i(α,w)− aα− τ⊤w,

where, (a, τ ) is chosen random from Bϵ ∩ B. Here, Bϵ = {(a, τ ) | max{a, τ1, . . . , τd} ≤ ϵ} is
the ϵ-ℓ∞ ball in T × A. We note that Bϵ ∩ B is non-empty, since B has full measure in T × A,
meaning that we can always choose (α,w), no matter how small ϵ is.

By constructing v∗x as above, we have:

• The structure of v∗x satisfies Assumption 1, and
• In any region Rx,i, we have∣∣∣fx,i(α,w)− fv

∗

x,i(αw)
∣∣∣ = ∣∣aα+ τ⊤w

∣∣ ≤ ϵC,
where C = max{|αmin| , |αmax| , |wmin| , |wmax|}.

This implies

max
w:(α,w)∈Rx,i

fx,i(α,w)− 2ϵC ≤ max
w:(α,w)∈Rx,i

fv
∗

x,i(α,w) ≤ max
w:(α,w)∈Rx,i

fx,i(α,w) + 2ϵC,

or

u∗x,i(α)− 2ϵC ≤ v∗x,i(α) ≤ u∗x,i(α) + 2ϵC ⇒ ∥u∗x,i − v∗x,i∥∞ ≤ 2ϵC.

Thus ∥u∗x − v∗x∥∞ ≤ 2ϵC, and since ϵ can be arbitrarily small, we have the desired conclusion.

43



Final step: recovering the guarantee under Assumption 1

We now complete the formal proof for Theorem 4.1. Let U = {uα : X → [0, H] | α ∈ A} be a
function class of which each dual utility u∗x satisfies Assumption 1. From Lemma F.30, there exists
a function class V = {vα : X → [0, H] | α ∈ A} such that for any problem instance x, we have
∥u∗x − v∗x∥∞ can be arbitrarily small, and any v∗x satisfies Assumption 3. From Theorem F.25, we
have Pdim(V) = O(logN + d log(∆M)). From Lemma C.4, we have Rm(V) = O

(
Pdim(V)

m

)
.

From Lemma C.3, we have R̂S(U) = O
(√

logN+d log(∆M)
m

)
, where S ∈ Xm. Finally, a standard

result from learning theory gives us the final claim.

G Additional details for Section 4.1

In this section, we provide the formal proof for Theorem 4.2.

Theorem 4.2 (restated). Consider the utility function class U = {uα : X → [0, H] | α ∈
[αmin, αmax]}. Assume that the parameter-dependent dual function fx(α,w) admits piecewise
polynomial structure with N piece functions fx,i (for i = 1, . . . , N ) and M boundaries functions
hx,j (for j = 1, . . . ,M ) satisfying Assumption 1. Let V = {vα : X → [0, H] | α ∈ A} be
the induced function class by ξ-a-ERM oracle of U . Then for any distribution D over X , for any
δ ∈ (0, 1), with probability at least 1− δ over the draw of S = {x1, . . . ,xm} ∼ Dm, we have

|Ex∼D[uα̂ERM(x)]− Ex∼D[uα∗(x)]| = O

(√
logN + d log(∆M) + log(1/δ)

m
+ ξ

)
.

Here, α̂S ∈ argminα∈A
1
m

∑m
i=1 vα(xi), α∗ ∈ maxα∈A Ex∼D[vα(x)], and ∆ = max{∆p,∆d} is

the maximum degree of piece functions fx,i and boundaries hx,j .

Proof. Given the assumption, from the final step of the proof of Theorem 4.1 (Paragraph F.5), we

have R̂S(U) = O
(√

logN+d log(∆M)
m

)
, where S ∈ Xm. Moreover, from the ξ-a-ERM oracle

assumption, given u∗x(α) corresponding to a problem instance x and a hyperparameter α, we have
access to v∗x(α) such that |v∗x(α)− u∗x(α)| < ξ. Therefore, from Lemma C.3, we have

R̂S(V) ≤ R̂S(U) + ξ = O

(√
logN + d log(∆M)

m
+ ξ

)
.

Finally, a standard result from learning theory (Theorem C.2) gives us the final claim.

H Additional details for Section 5

H.1 Tuning the interpolation parameter for activation functions

H.1.1 Omitted proofs for parametric regression setting

Theorem 5.1 (restated). Let LAF denote loss function class defined above, with activation functions
o1, o2 having maximum degree ∆ and maximum breakpoints p. Given a problem instance x = (X,Y ),
the dual loss function is defined as ℓ∗x(α) := minw∈W f(x, α,w) = minw∈W fx(α,w). Then,
fx(α,w) admits piecewise polynomial structure with bounded pieces and boundaries. Further, if the
piecewise structure of fx(α,w) satisfies Assumption 1, then for any δ ∈ (0, 1), w.p. at least 1− δ
over the draw of problem instances x ∼ Dm, where D is some distribution over X , we have

|Ex∼D[ℓα̂ERM(x)]− Ex∼D[ℓα∗(x)]| = O

(√
L2W log∆ + LW log(Tpk) + log(1/δ)

m

)
.

Proof. Let x1, . . . , xT denote the fixed examples from the fixed dataset (X,Y ). We will show a
bound N on a partition of the combined parameter-hyperparameter spaceW × R, such that within
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each piece the function f(X,Y )(α,w) is given by a fixed bounded-degree polynomial function in
α,w on the given fixed dataset (X,Y ), where the boundaries of the partition are induced by at most
M distinct polynomial threshold functions. This structure allows us to use our result Theorem 4.1 to
establish a learning guarantee for the function class LAF.

The proof proceeds by an induction on the number of network layers L. For a single layer L = 1, the
neural network prediction at node j ∈ [k1] is given by

ŷij = αo1(wjxi) + (1− α)o2(wjxi),

for i ∈ [T ]. W × R can be partitioned by 2Tk1p affine boundary functions of the form wjxi − tk,
where tk is a breakpoint of o1 or o2, such that ŷij is a fixed polynomial of degree at most ∆+ 1 in
α,w in any piece of the partition P1 induced by the boundary functions. By Warren’s theorem, we

have |P1| ≤ 2
(

4eTk1p(∆+1)
W1

)W1

.

Now suppose that the neural network function computed at any node in layer r ≤ L for some r ≥ 1 is

given by a piecewise polynomial function of α,w with at most |Pr| ≤
∏r

q=1 2
(

4eTkqp(∆+1)q

Wq

)Wq

pieces, and at most 2Tp
∑r

q=1 kq polynomial boundary functions with degree at most (∆ + 1)r.
Let j′ ∈ [kr+1] be a node in layer r + 1. The node prediction is given by ŷij′ = αo1(wj′ ŷi) +
(1− α)o2(wj′ ŷi), where ŷi denotes the incoming prediction to node j′ for input xi. By inductive
hypothesis, there are at most 2Tkr+1p polynomials of degree at most (∆ + 1)r + 1 such that in each
piece of the refinement of Pr induced by these polynomial boundaries, ŷij′ is a fixed polynomial
with degree at most (∆ + 1)r+1. By Warren’s theorem, the number of pieces in this refinement is at

most |Pr+1| ≤
∏r+1

q=1 2
(

4eTkqp(∆+1)q

Wq

)Wq

.

Thus f(X,Y )(α,w) is piecewise polynomial with at most 2Tp
∑L

q=1 kq = 2mpk polynomial
boundary functions with degree at most (∆ + 1)2L, and number of pieces at most |PL| ≤

ΠL
q=12

(
4eTkqp(∆+1)q

Wq

)Wq

. Assume that the piecewise polynomial structure of f(X,Y )(α,w) satis-
fies Assumption 1, then applying Theorem 4.1 and a standard learning theory result gives us the final
claim.

H.1.2 Binary classification setting

In this section, we consider an alternative setting of tuning the interpolation parameter for activation
functions in the classification setting. In the binary classification setting, the output of the final
layer corresponds to the prediction g(α,w, x) = ŷ ∈ R, where w ∈ W ⊂ RW is the vector of
parameters (network weights), and α is the architecture hyperparameter. The 0-1 loss on a single
example x = (X,Y ) is given by I{g(α,w,x)̸=y}, and on a set of T examples as

ℓcα(x) = min
w∈W

1

T

∑
(x,y)∈(X,Y )

I{g(α,w,x) ̸=y} = min
w∈W

f(x,w, α).

For a fixed dataset x = (X,Y ), the dual class loss function is given by LAF
c = {ℓcα : X → [0, 1] |

α ∈ A}.
Theorem H.1. Let LAF

c denote loss function class defined above, with activation functions o1, o2
having maximum degree ∆ and maximum breakpoints p. Given a problem instance x = (X,Y ),
the dual loss function is defined as ℓ∗x(α) := minw∈W f(x, α,w) = minw∈W fx(α,w). Then,
fx(α,w) admits piecewise constant structure. For any δ ∈ (0, 1), w.p. at least 1− δ over the draw
of problem instances S ∼ Dm, where D is some distribution over X , we have∣∣E(X,Y )∼D[ℓα̂((X,Y ))]− E(X,Y )∼D[ℓα∗((X,Y ))]

∣∣ = O(√L2W log∆ + LW log Tpk + log(1/δ)

m

)
.

Proof. As in the proof of Theorem 5.1, the loss function Lc can be shown to be piecewise constant as

a function of α,w, with at most |PL| ≤ ΠL
q=12

(
4eTkqp(∆+1)q

Wq

)Wq

pieces. We can apply Theorem

3.2 to obtain the desired learning guarantee for LAF
c .
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H.2 Data-driven hyperparameter tuning for graph polynomial kernels

H.2.1 Classification setting

In this section, we demonstrate the applicability of our proposed results in a simple scenario: tuning
the hyperparameter of a graph kernel. Here, we consider the classification case and defer the
regression case to the Appendix.

Partially labeled graph instance. Consider a graph G = (V, E), where V and E are sets of vertices
and edges, respectively. Let n = |V| be the number of vertices. Each vertex in the graph is associated
with a d-dimensional feature vector, and let X ∈ Rn×d denote the matrix that contains all the vertices
(as feature vectors) in the graph. We also have a set of indices YL ⊂ [n] of labeled vertices, where
each vertex belongs to one of C categories and L = |YL| is the number of labeled vertices. Let
y ∈ [F ]L be the vector representing the true labels of labeled vertices, where the coordinate yl of y
corresponds to the label of vertex l ∈ YL.

We want to build a model for classifying the remaining (unlabeled) vertices, which correspond to
YU = [n] \ YL, where [n] = {1, . . . , n}. A popular and effective approach for this is to train a
graph convolutional network (GCN) [22]. Along with the vertex matrix X , we are also given the
distance matrix δ = [δi,j ](i,j)∈[n]2 encoding the correlation between vertices in the graph. The
adjacency matrix A is given by a polynomial kernel of degree ∆ and hyperparameter α > 0, i.e.,
Ai,j = (δ(i, j) + α)∆. Let Ã = A + In, where In is the identity matrix. Also, let D̃ = [D̃i,j ][n]2

where D̃i,j = 0 if i ̸= j, and D̃i,i =
∑n

j=1 Ãi,j for i ∈ [n]. We then denote a problem instance
x = (X, y, δ,YL) and call X the set of all problem instances.

Network architecture. We consider a simple two-layer GCN f [22], which takes the adjacency
matrix A and vertex matrix X as inputs and outputs Z = f(X,A) of the form

Z = ÂReLU(ÂXW (0))W (1),

where Â = D̃−1Ã is the row-normalized adjacency matrix, W (0) ∈ Rd×d0 is the weight matrix of
the first layer, and W (1) ∈ Rd0×F is the hidden-to-output weight matrix. Here, zi is the ith-row of Z
representing the score prediction of the model. The prediction ŷi for vertex i ∈ YU is then computed
from Z as ŷi = max zi which is the maximum coordinate of vector zi.

Objective function and the loss function class. We consider the 0-1 loss function corresponding
to hyperparameter α and network parameters w = (w(0),w(1)) for given problem instance x,
fx(α,w) = 1

|YL|
∑

i∈YL
I{ŷi ̸=yi}. The dual loss function corresponding to hyperparameter α for

instance x is given as ℓα(x) = minw fx(α,w), and the corresponding loss function class is LGCN =
{lα : X → [0, 1] | α ∈ A}.
To analyze the learning guarantee of LGCN, we first show that any dual loss function ℓ∗x(α) :=
ℓα(x) = minw fx(α,w), fx(α,w) has a piecewise constant structure, where: The pieces are
bounded by rational functions of α and w with bounded degree and positive denominators. We bound
the number of connected components created by these functions and apply Theorem 3.2 to derive our
result.

Theorem H.2. Let LGCN denote the loss function class defined above. Given a problem instance
x, the dual loss function is defined as ℓ∗x(α) := minw∈W f(x, α,w) = minw∈W fx(α,w). Then
fx(α,w) admits piecewise constant structure. Furthermore, for any δ ∈ (0, 1), w.p. at least 1− δ
over the draw of problem instances S = (x1, . . . ,xm) ∼ Dm, where D is some problem distribution
over X , we have

|Ex∼D[ℓα̂S
(x)]− Ex∼D[ℓα∗(x)]| = O

(√
d0(d+ F ) log nF∆+ log(1/δ)

m

)
.

To prove Theorem H.2, we first show that given any problem instance x, the function f(x,w;α) =
fx(α,w) is a piecewise constant function, where the boundaries are rational threshold functions of
α and w. We then proceed to bound the number of rational functions and their maximum degrees,
which can be used to give an upper-bound for the number of connected components, using Lemma
F.9. After giving an upper-bound for the number of connected components, we then use Theorem 3.2
to recover the learning guarantee for U .
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Lemma H.3. Given a problem instance x = (X, y, δ,YL) that contains the vertices representation
X , the label of labeled vertices, the indices of labeled vertices YL, and the distance matrix δ, consider
the function

fx(α,w) := f(x, α,w) =
1

|YL|
∑
i∈YL

I{ŷi ̸=yi}

which measures the 0-1 loss corresponding to the GCN parameter w, polynomial kernel parameter
α, and labeled vertices on problem instance x. Then we can partition the space of w and α into

O

((
(nF 2)(2∆ + 6)

1 + dd0 + d0F

)1+dd0+d0F

(∆ + 1)nd0

)
connected components, in each of which the function fx(α,w) is a constant function.

Proof. First, recall that Z = GCN(X,A) = ÂReLU(ÂXW (0))W (1), where Â = D̃−1Ã is the
row-normalized adjacency matrix, and the matrices Ã = [Ãi,j ] = A + In and D̃ = [D̃i,j ] are
calculated as

Ai,j = (δi,j + α)∆,

D̃i,j = 0 if i ̸= j, and D̃i,i =

n∑
j=1

Ãi,j for i ∈ [n].

Here, recall that δ = [δi,j ] is the distance matrix. We first proceed to analyze the output Z step by
step as follow:

• Consider the matrix T (1) = XW (0) of size n × d0. It is clear that each element of T (1) is a
polynomial of W (0) of degree at most 1.

• Consider the matrix T (2) = ÂT (1) of size n × d0. We can see that each element of matrix Â is
a rational function of α of degree at most ∆. Moreover, by definition, the denominator of each
rational function is strictly positive. Therefore, each element of matrix T (2) is a rational function
of W (0) and α of degree at most ∆+ 1.

• Consider the matrix T (3) = ReLU(T (2)) of size n× d0. By definition, we have

T
(3)
i,j =

{
T

(2)
i,j , if T (2)

i,j ≥ 0

0, otherwise.

This implies that there are n× d0 boundary functions of the form I
T

(2)
i,j ≥0

where T (2)
i,j is a rational

function ofW (0) and α of degree at most ∆+1 with strictly positive denominators. From Theorem
F.9, the number of connected components given by those n× d0 boundaries are O

(
(∆ + 1)nd0

)
.

In each connected component, the form of T (3) is fixed, in the sense that each element of T (3) is a
rational function in W (0) and α of degree at most ∆+ 1.

• Consider the matrix T (4) = T (3)W (1). In connected components defined above, it is clear that
each element of T (4) is either 0 or a rational function in W (0),W (1), and α of degree at most
∆+ 2.

• Finally, consider Z = ÂT (4). In each connected component defined above, we can see that each
element of Z is either 0 or a rational function in W (0),W (1), and α of degree at most ∆+ 3.

In summary, we proved above that the space of w, α can be partitioned intoO((∆+1)nd0) connected
components, over each of which the output Z = GCN(X,A) is a matrix with each element is rational
function in W (0, W (1), and α of degree at most ∆+ 3. Now in each connected component C, each
corresponding to a fixed form of Z, we will analyze the behavior of fx(α,w), where

fx(α,w) =
1

|YL|
∑
i∈YL

Iŷi ̸=yi
.

Here ŷi = argmaxj∈1,...,F Zi,j , assuming that we break tie arbitrarily but consistently. For any
F ≥ j > k ≥ 1, consider the boundary function IZi,j≥Zi,k

, where Zi,j and Zi,k are rational functions
in α and w of degree at most ∆+ 3, and have strictly positive denominators. This means that the
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boundary function IZi,j≥Zi,k
can also equivalently rewritten as IZ̃i,j≥0, where Z̃i,j is a polynomial

in α and w of degree at most 2∆ + 6. There are O(nF 2) such boundary functions, partitioning
the connected component C into at most O (( (nF 2)(2∆+6)

1+dd0+d0F

)
1+dd0+d0F

)
connected components. In

each connected components, ŷi is fixed for all i ∈ {1, . . . , n}, meaning that fx(α,w) is a constant
function.

In conclusion, we can partition the space of w and α into
O (( (nF 2)(2∆+6)

1+dd0+d0F

)
1+dd0+d0F × (∆ + 1)nd0

)
connected components, in each of which the

function fx(α,w) is a constant function.

Theorem H.2 (restated). Let LGCN denote the loss function class defined above. Given a problem in-
stance x, the dual loss function is defined as ℓ∗x(α) := minw∈W f(x, α,w)) = minw∈W fx(α,w).
Then fx(α,w) admits piecewise constant structure. Furthermore, for any δ ∈ (0, 1), w.p. at least
1 − δ over the draw of problem instances x = (x1, . . . ,xm) ∼ Dm, where D is some problem
distribution over X , we have

|Ex∼D[ℓα̂ERM(x)]− Ex∼D[ℓα∗(x)]| = O

(√
d0(d+ F ) log nF∆+ log(1/δ)

m

)
.

Proof. Given a problem instance x, from Lemma H.3, we can partition the space of w and α

into O (( (nF 2)(2∆+6)
1+dd0+d0F

)
1+dd0+d0F (∆ + 1)nd0

)
connected components, each of which the function

fx(α,w) remains constant. Combining with Theorem 3.2, we have the final claim.

H.2.2 The regression setting

The case is a bit more tricky, since our piece function now is not a polynomial, but instead a rational
function of α and w. Therefore, we need a stronger assumption (Assumption 2) to have Theorem
H.5.

Graph instance and associated representations. Consider a graph G = (V, E), where V and E
are sets of vertices and edges, respectively. Let n = |V| be the number of vertices. Each vertex in
the graph is associated with a feature vector of d-dimension, and let X ∈ Rn×d be the matrix that
contains the feature vectors for all the vertices in the graph. We also have a set of indices YL ⊂ [n]
of labeled vertices, where each vertex belongs to one of C categories and L = |YL| is the number
of labeled vertices. Let y ∈ [−R,R]L be the vector representing the true labels of labeled vertices,
where the coordinate yl of Y corresponds to the label vector of vertex l ∈ YL.

Label prediction. We want to build a model for classifying the other unlabeled vertices, which
belongs to the index set YU = [n] \ YL. To do that, we train a graph convolutional network (GCN)
[22] using semi-supervised learning. Along with the vertices representation matrix X , we are also
given the distance matrix δ = [δi,j ](i,j)∈[n]2 encoding the correlation between vertices in the graph.
Using the distance matrix D, we then calculate the following matrices A, Ã, D̃ which serve as the
inputs for the GCN. The matrix A = [Ai,j ](i,j)∈[n]2 is the adjacency matrix which is calculated using
distance matrix δ and the polynomial kernel of degree ∆ and hyperparameter α > 0

Ai,j = (δ(i, j) + α)∆.

We then let Ã = A+ In, where In is the identity matrix, and D̃ = [D̃i,j ][n]2 of which each element
is calculated as

D̃i,j = 0 if i ̸= j, and D̃i,i =

n∑
j=1

Ãi,j for i ∈ [n].

Network architecture. We consider a simple two-layer graph convolutional network (GCN) f
[22], which takes the adjacency matrix A and vertices representation matrix X as inputs and output
Z = f(X,A) of the form

Z = GCN(X,A) = ÂReLU(ÂXW (0))W (1),
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where Â = D̃−1Ã, W (0) ∈ Rd×d0 is the weight matrix of the first layer, and W (1) ∈ Rd0×1 is the
hidden-to-output weight matrix. Here, zi is the ith element of Z representing the prediction of the
model for vertice i.

Objective function and the loss function class. We consider mean squared loss function corre-
sponding to hyperparameter α and networks parameter w = (w(0),w(1)) when operating on the
problem instance x as follows

fx(α,w) =
1

|YL|
∑
i∈YL

(zi − yi)2.

We then define the loss function corresponding to hyperparameter α when operating on the problem
instance x as

ℓα(x) = min
w

fx(α,w).

We then define the loss function class for this problem as follow

LGCN
r = {ℓα : X → [0, R2] | α ∈ A},

and our goal is to analyze the pseudo-dimension of the function class LGCN
r .

Lemma H.4. Given a problem instance x = (X, y, δ,YL) that contains the graph G, its vertices
representation X , the indices of labeled vertices YL, and the distance matrix δ, consider the function

fx(α,w) := f(x, α,w) =
1

|YL|
∑
i∈YL

(zi − yi)2.

which measures the mean squared loss corresponding to the GCN parameter w, polynomial kernel
parameter α, and labeled vertices on problem instance x. Then we can partition the space of w and
α into O((∆ + 1)nd0) connected components, in each of which the function fx(α,w) is a rational
function in α and w of degree at most 2(∆ + 3).

Proof. First, recall that Z = GCN(X,A) = ÂReLU(ÂXW (0))W (1), where Â = D̃−1/2ÃD̃−1/2

is the row-normalized adjacency matrix, and the matrices Ã = [Ãi,j ] = A+ In and D̃ = [D̃i,j ] are
calculated as

Ai,j = (δi,j + α)∆,

D̃i,j = 0 if i ̸= j, and D̃i,i =

n∑
j=1

Ãi,j for i ∈ [n].

Here, recall that δ = [δi,j ] is the distance matrix. We first proceed to analyze the output Z step by
step as follows:

• Consider the matrix T (1) = XW (0) of size n × d0. It is clear that each element of T (1) is a
polynomial of W (0) of degree at most 1.

• Consider the matrix T (2) = ÂT (1) of size n × d0. We can see that each element of matrix Â
is a rational function of α of degree at most ∆. Moreover, by definition, the denominator of
each rational function is strictly positive. Therefore, each element of the matrix T (2) is a rational
function of W (0) and α of degree at most ∆+ 1.

• Consider the matrix T (3) = ReLU(T (2)) of size n× d0. By definition, we have

T
(3)
i,j =

{
T

(2)
i,j , if T (2)

i,j ≥ 0

0, otherwise.

This implies that there are n× d0 boundary functions of the form I
T

(2)
i,j ≥0

where T (2)
i,j is a rational

function ofW (0) and α of degree at most ∆+1 with strictly positive denominators. From Theorem
F.9, the number of connected components given by those n× d0 boundaries are O

(
(∆ + 1)nd0

)
.

In each connected component, the form of T (3) is fixed, in the sense that each element of T (3) is a
rational function in W (0) and α of degree at most ∆+ 1.
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• Consider the matrix T (4) = T (3)W (1). In connected components defined above, it is clear that
each element of T (4) is either 0 or a rational function in W (0),W (1), and α of degree at most
∆+ 2.

• Finally, consider Z = ÂT (4). In each connected component defined above, we can see that each
element of Z is either 0 or a rational function in W (0),W (1), and α of degree at most ∆+ 3.

In summary, we proved that the space of w, α can be partitioned into O((∆ + 1)nd0) connected
components, over each of which the output Z = GCN(X,A) is a matrix with each element is a
rational function in W (0),W (1), and α of degree at most ∆+ 3. It means that in each piece, the loss
function would be a rational function of degree at most 2(∆ + 3), as claimed.

Theorem H.5. Consider the loss function class LGCN
r defined above. For a problem instance x,

the dual loss function ℓ∗x(α) := minw∈W fx(α,w), where fx(α,w) admits piecewise polynomial
structure (Lemma H.4). If we assume the piecewise polynomial structure satisfies Assumption 3, then
for any δ ∈ (0, 1), w.p. at least 1− δ over the draw of m problem instances S ∼ Dm, where D is
some problem distribution over X , we have

|ES∼D[ℓα̂ERM(S)]− ES∼D[ℓα∗(S)]| = O

(√
nd0 log∆ + d log(∆F ) + log(1/δ)

m

)
.

I A discussion on how to capture flatness of optima in our framework

Our definition of dual utility function u∗x(α) = maxw∈W fx(α,w) implicitly assumes an ERM
oracle. As discussed in Section B, this ERM oracle assumption makes the function u∗x(α) well-
defined and simplifies the analysis. However, one may argue that assuming the ERM oracle will
make the behavior of tuned hyperparameters significantly different compared to when using common
optimization algorithms in deep learning. The difference potentially stems from the fact that the
global optimum found by an ERM oracle might have a sharp curvature, compared to the local optima
found by other optimization algorithms, which tend to have flatter local curvature due to their implicit
bias.

In this section, we consider the following simplified scenario where the ERM oracle also finds the
near-optimum that is locally flat, and explain how our framework could potentially be useful in this
case. Instead of defining u∗x(α) = maxw∈W fx(α,w), we define u∗x(α) = maxw∈W f ′x(α,w),
where the surrogate function f ′x(α,w) is defined as follows.

Definition 22 (Surrogate function construction). Assume that fx(α,w) admits piecewise polynomial
structure, meaning that:

1. The domain A × W of fx is divided into N connected components by M polynomi-
als hx,1, . . . , hx,M in α,w, each of degree at most ∆b. The resulting partition Px =
{Rx,1, . . . , Rx,N} consists of connected sets Rx,i, each formed by a connected component
Cx,i and its adjacent boundaries.

2. Within each Rx,i, fx takes the form of a polynomial fx,i in α and w of degree at most ∆p.

Defining the function surrogate f ′x(α,w) as follows:

1. The domain A×W of f ′x(α,w) is partitioned into N connected components by M polynomials
hx,1, . . . , hx,M in α,w similar to fx. This results in a similar partition Px = {Rx,1, . . . , Rx,N}.

2. In each region Rx,i, f ′x is defined as

f ′x(α,w) = f ′x,i(α,w) = fx,i(α,w)− η∥∇2
w,wfx(α,w)∥2F ,

for some fixed η > 0. Here, ∥·∥F denotes the Frobenius norm. We can see that ∥∇2
w,wfx(α,w)∥2F

is a polynomial of α,w of degree at most 2∆p. Therefore, f ′x(α,w) is also a polynomial of degree
at most 2∆p in the region Rx,i.

From the above construction, we can see that f ′x(α,w) also admits piecewise polynomial structure,
where the input domain partition Px is the same as fx(α,w). In each region Rx,i, the function
f ′x(α,w) is also a polynomial in α,w of degree at most 2∆p. Therefore, our framework is still
applicable in this case. Moreover, the construction above naturally introduces an extra hyperparameter
η, which is the magnitude of curvature regularization. This makes the analysis more challenging, but
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for simplicity, we here assume that η is fixed and good enough for balancing the effect of the flatness
regularization.

We can see that by defining u∗x(α) = maxw∈W f ′x(α,w), we can capture the generalization behavior
of tuned hyperparameter α, when the solution w∗ of maxw∈W f ′x(α,w) is: (1) near optimal w.r.t.
maxw∈W fx(α,w), and (2) locally flat.

Remark 5. We note that the example above is an oversimplified scenario. To truly understand the
behavior of data-driven hyperparameter tuning without an ERM oracle, we need a better analysis to
capture the behavior of u∗x(α) in such a scenario. This analysis should consider the joint interaction
between the model, data, and the optimization algorithm, and remains an interesting direction for
future work.

J An application to Pfaffian functions

In this section, we demonstrate how to apply our results beyond polynomial settings. In particular,
we will apply our results to the case where the boundary functions involve Pfaffian functions, which
includes commonly appearing functions like the exponential function and the logarithm function. We
refer the reader to [70] for a formal background on Pfaffian functions.

We first consider the case where the boundary functions are Pfaffian functions instead of polynomials
as discussed in Section 3. Concretely, given a problem instance x ∈ X , there are M boundary
functions hx,1, . . . , hx,N that partition the space A×W of hyperparameter α and parameters w into
connected components, in each of which the dual utility function u∗x(α) remains constant. In this
case, following Theorem 3.2, the main idea is again to bound the number of connected components
in the space A×W partitioned by M Pfaffian boundary functions. We now recall a standard result
that allows us to handle this case.

Lemma J.1 ([70, 87]). Let h1, . . . , hM be M Pfaffian functions of degree at most ∆ that come from
a Pfaffian chain C(x1, . . . , xd, f1, . . . , fq) of d variables, length q, and Pfaffian degree D. Then the
number of connected components of the complement of solution sets Rd−∪Mi=1{x ∈ Rd | hi(x) = 0}
is upper-bounded by 2qd(qd−1)/2∆d[d2(∆ +D)]dq

(
2eM
d

)d
.

Combining Lemma J.1 and Theorem 3.2, we have the following result, which provides a generalization
guarantee for function classes for which each dual utility function admits a piecewise constant
structure partitioned by Pfaffian boundary functions.

Corollary J.2. Consider the utility function class U = {uα : X → [0, H] | α ∈ A}. Assuming
that for any x, there are M boundary functions hx,1, . . . , hx,M partitioning the domain A×W into
Px = {Rx,1, . . . , Rx,N}, over each of which fx,i remains constant. Assuming that the boundary
functions hx,i, where i = 1, . . . ,M , are Pfaffian functions of degree at most ∆ from a Pfaffian chain
of length q and Pfaffian degree D. Then for any distribution D over X , and any δ ∈ (0, 1), with
probability at least 1− δ over the draw of S = {x1, . . . ,xm} ∼ Dm, we have that

|Ex∼D[uα̂S
(x)]− Ex∼D[uα∗(x)]| = O

(√
q2d2 + qd log(∆ +D) + d logM + log(1/δ)

m

)
.

Proof. From Lemma J.1, we have N ≤ O
(
2qd(qd−1)/2∆d[d2(∆ +D)]dq

(
2eM
d

)d)
. Substituting

into Theorem 3.2, we have the conclusion.

We leave the more general scenario of piecewise-Pfaffian setting (where the piece functions are
Pfaffian in addition to the boundaries) as an open question for future work and have the following
conjectured bound.

Conjecture 1. Consider the utility function class U = {uα : X → [0, H] | α ∈ [αmin, αmax]}.
Assume that the parameter-dependent dual function fx(α,w) admits piecewise Pfaffian structure
with N piece functions fx,i (for i = 1, . . . , N ) and M boundaries functions hx,j (for j = 1, . . . ,M )
satisfying Assumption 3. Furthermore, assuming that the boundary functions hx,j and piece functions
fx,i are Pfaffian functions of degree at most ∆ from a Pfaffian chain of length q and Pfaffian degree
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D. Then for any distribution D over X , for any δ ∈ (0, 1), with probability at least 1− δ over the
draw of S = {x1, . . . ,xm} ∼ Dm, we have

|Ex∼D[uα̂ERM(x)]− Ex∼D[uα∗(x)]| =

O

(√
q2d2 + qd log(∆ +D) + logN + d logM + T + log(1/δ)

m

)
.

Here, α̂S ∈ argminα∈A
1
m

∑m
i=1 uα(xi) and α∗ ∈ maxα∈A Ex∼D[uα(x)].
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