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Abstract
Large language models (LLMs) have shown significant improvements due to
alignment tuning, that is, supervised fine-tuning (SFT) on instruction data and re-
inforcement learning from human feedback (RLHF). This raises questions about
what is precisely learned during the alignment tuning process. We investigate
the effects of alignment tuning through the lens of token distribution shift be-
tween untuned LLMs and their aligned counterparts (e.g., Llama-2 versus Llama-
2-Chat). Our findings reveal that most distribution changes lie in stylistic tokens
(e.g., transitional words, discourse markers), suggesting that LLMs primarily learn
the language style of AI assistants during alignment tuning, while most of useful
knowledge has been acquired by untuned LLMs. Thus, we pose the question: Is
it necessary to update model weights to attain LLM alignment? Based on these
insights, we propose an alternative tuning-free method for instruction learning and
alignment for untuned LLMs, URIAL, which achieves effective alignment solely
through in-context learning (ICL) with as few as three curated, stylistic examples
and a system prompt. We also introduce a dataset named just-eval-instruct,
consisting of 1,000 examples collected from 9 existing instruction datasets such as
those used by AlpacaEval. Our multi-aspect evaluation demonstrates that URIAL
can achieve highly satisfactory performance, sometimes equaling or surpassing
SFT+RLHF counterparts, especially when the untuned LLM is sufficiently pre-
trained. This implies that fine-tuning may not be as always crucial as previously
assumed for LLM alignment, and lightweight alignment methods like URIAL hold
promise for efficiently tailoring LLM behavior without fine-tuning.

1 Introduction
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Figure 1: Tuning-based alignment
(SFT + RLHF) is expensive and time-
consuming. URIAL is a tuning-free
method that uses in-context learning for
instruction learning and alignment.

Tuning-based instruction and alignment learning (i.e.,
alignment tuning) has led to remarkable improvements
in large language models (LLMs), sometimes seemingly
unlocking impressive capabilities (Bubeck et al., 2023).
This fascinating progress raises the question of what pre-
cisely happens to LLMs before and after alignment tuning
and whether there might be a way to reduce the cost and
complexity of LLM alignment by gaining deeper insights
into this model tuning process.

Untuned LLMs, obtained from pre-training on extensive
text corpora, typically lack the ability to generate re-
sponses that align well with user instructions (Ouyang
et al., 2022). Alignment tuning refines untuned LLMs
into responsible AI assistants that generate responses fa-
vored by humans. Current alignment-tuning approaches primarily rely on two stages: supervised
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fine-tuning on instruction data (SFT) (Taori et al., 2023) and reinforcement learning from human
feedback (RLHF) (Bai et al., 2022). SFT and RLHF have been considered necessary for alignment
tuning (Touvron et al., 2023). However, it remains unclear what untuned LLMs learn exactly during
alignment tuning. If the behavioral changes resulting from alignment are relatively simple and su-
perficial, is it necessary to perform SFT or RLHF to achieve such changes? Can we obtain similar
alignment effects in untuned LLMs without updating their parameters?

Motivated by these questions, we investigate the effects of alignment tuning and compare the to-
ken distributions between an alignment-tuned LLM and its untuned counterpart (Sec. 2). Surpris-
ingly, the most significant differences predominantly occur in stylistic tokens (e.g., ‘Hello’, ‘Thank’,
‘However’, etc.), which comprise transitional words and discourse markers, rather than content-
bearing words that provide the useful knowledge to address user queries. This observation strongly
supports the “Superficial Alignment Hypothesis” (Zhou et al., 2023), suggesting that most of the
useful knowledge is already acquired during pre-training and alignment tuning primarily involves
learning the language style of AI assistants such as ChatGPT.

Inspired by these insights, we propose a tuning-free alignment method called URIAL (Untuned
LLMs with Restyled In-context ALignment), which effectively aligns untuned LLMs without up-
dating their weights (Sec. 3). URIAL leverages templated prompting and in-context learning (ICL)
by using just a few carefully curated, stylistic examples and a system prompt to achieve impres-
sive alignment. We curate the in-context examples such that they typically begin with confirming
the user query and introducing background information, then proceed to list items or steps with
comprehensive details, and finally conclude with an engaging summary that includes safety-related
disclaimers. We find that incorporating these stylistic modifications in in-context examples can sig-
nificantly improve the relevance, coherence, factuality, and depth of the responses. Deployment of
URIAL is both easy and lightweight since it utilizes the same K in-context examples (approximately
1k tokens when K=3) for all test cases without modifying untuned LLMs. Inference speed can be
further optimized by KV-caching and context compression (Mu et al., 2023; Ge et al., 2023).

Figure 2: Comparisons of alignment
performance on different aspects.

To rigorously evaluate URIAL, we design a multi-
faceted and verifiable GPT-based evaluation protocol
(Sec. 4). We evaluate on 1000 diverse examples
from 9 existing datasets such as those used by Al-
pacaEval (Li et al., 2023), MT-bench (Zheng et al.,
2023), LIMA (Zhou et al., 2023), etc, which we named
just-eval-instruct. Our analysis covers six aspects of
LLM outputs: ò helpfulness, î clarity, § factuality,
Û depth, � engagement, and é safety. We provide ex-
plainable justifications for each aspect that human an-
notators can verify. Remarkably, the results show that
URIAL, with as few as three well-written examples, ef-
fectively aligns untuned LLMs to achieve highly sat-
isfactory performance, sometimes equalling or surpass-
ing SFT+RLHF aligned LLMs, particularly on Mistral-
7b (Jiang et al., 2023) and Llama-2-70b (Touvron et al.,
2023), as shown in Table 1 and Figure 2.

Our analysis and results indicate that conventional tuning-
based alignment methods (i.e., SFT + RLHF) may not be as crucial as we previously assumed when
untuned LLMs are well pre-trained, at least within the scope of our evaluation. It is also noteworthy
that alignment tuning could potentially cause catastrophic forgetting issues. For instance, Wang et al.
(2023) report that applying SFT to Llama-13B with self-instruct data (Wang et al., 2022a) results
in a significant decrease in its MMLU performance (from 42.5 to 30.3). Shen et al. (2023) show
that reward models in RLHF can exhibit high inconsistency, resulting in near-random performance
when presented with contrastive instructions. Considering the limitations of tuning-based alignment
methods and the efficacy of URIAL, we believe it is promising to explore efficient, lightweight
alignment methods that tailor the behavior of LLMs without fine-tuning (Lu et al., 2023).
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Figure 3: Analyzing alignment with token distribution shift. An aligned LLM (llama-2-chat)
receives a query q and outputs a response o. To analyze the effect of alignment tuning, we decode
the untuned version (llama-2-base) at each position t. Next, we categorize all tokens in o into
three groups based on ot’s rank in the list of tokens sorted by probability from the base LLM. On
average, 78.9% of tokens are also ranked top 1 by the base LLM (unshifted positions), and 93%
are within the top 3 (+marginal). Common tokens at shifted positions are displayed at the top-right
and are mostly stylistic, constituting discourse markers. In contrast, knowledge-intensive tokens are
predominantly found at unshifted positions. (More examples can be found at our website.)

2 Demystifying Alignment via Token Distribution Shift

Background. In this paper, we use the terms “untuned LLMs” and “base LLMs” interchangeably
to refer to LLMs that have been pre-trained on large corpora without any subsequent tuning using
instruction data. We denote a base LLM as f(x; θ), where x is the input context and θ represents the
set of parameters that generate the next token. The “alignment tuning” process tunes the parameters
θ of a base model f to create a more assistant-like model g(x;β) that adheres to user instructions and
human preferences. This process typically comprises two stages: supervised fine-tuning (SFT) on
instruction data and reinforcement learning from human feedback (RLHF). During the SFT stage,
the base LLM is fine-tuned using instruction-answer pairs (i.e., instruction tuning). In the RLHF
stage, a reward model further refines the SFT-enhanced model, resulting in better alignment with
human expectations in terms of helpfulness, honesty, and harmlessness.

2.1 Alignment as Token Distribution Shift

Motivation. To understand the learning process during alignment tuning and the differences be-
tween aligned and untuned models, we analyze the token distribution changes between the two.
Specifically, for a given user query q = {q1, q2, · · · }, we input it into the aligned model g(x) to
obtain its output o = {o1, o2, · · · } via greedy decoding. For each position t, we define a ‘context’ at
this position to be xt = q+ {o1, · · · , ot−1}. We denote the aligned model’s probability distribution
for predicting the next token of this position as Palign, where ot has the highest probability.

Our analysis is driven by the question: What happens if we switch to the base model for decoding the
next token at this position? By passing xt into the untuned model f , we generate another probability
distribution, Pbase, for sampling the next token at this position. If the base model learns to modify
its behavior in this context through alignment tuning, we should observe a distribution shift between
Pbase and Palign at this position. On the other hand, if the two distributions are very similar, it
implies that alignment tuning has minimal impact on this position.

Shifted positions. Analyzing the difference between two distributions across the entire token vocab-
ulary is challenging, particularly when sampling is enabled for decoding. As illustrated in Figure 3,
the aligned model g with greedy decoding is first used to generate a full output o. For each position
t, tokens are ranked according to their probability Pbase as predicted by the base model f . The rank
of ot in this sorted list is defined as the ‘base rank’, denoted as η. This results in three types of
positions: (1) unshifted positions (η = 1): ot is the top-ranked token in both Pbase and Palign, hav-
ing the highest probability; (2) marginal positions (1 < η ≤ 3): although ot is not the top-ranked
token in Pbase, it is still likely to be sampled for decoding, with the 2nd or 3rd highest probability.
(3) shifted positions (η > 3): in this case, ot is rather unlikely to be sampled by Pbase, indicating a
significant distribution shift from Pbase to Palign.
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2.2 Findings & Analysis

Knowledge-intensive content originates from untuned LLMs. Consider the real example in Fig-
ure 3, where we use llama-2-7b and llama-2-7b-chat as a pair of base and aligned models. We
can clearly see that most knowledge-intensive words, including the key answer “Chihuahua” and
related information such as its weight and length, appear at unshifted positions. On average, across
1k examples that we tested, 78.9% of tokens are at such unshifted positions, which increases to
93% when including marginal positions. This observation suggests that untuned and aligned LLMs
share the same pre-existing knowledge from pre-training, such that a proper prefix can trigger this
acquired knowledge without tuning. For instance, untuned LLMs can fluently generate the answer
based solely on the context prefix “Thank you for asking! The”. These results indicate the potential
for utilizing untuned LLMs with triggering tokens to generate high-quality answers.

What does alignment tuning learn? We observe that shifted positions frequently consist of stylis-
tic tokens, such as discourse markers and transitional words. These tokens may not be informative,
but they contribute to structuring well-formed responses, accounting for 7% of the total positions.
These common tokens are visually represented in the top-right section of Figure 3. For example, the
token “Thank” ensures that the response begins respectfully and engagingly. Similarly, tokens like
“Hello”, “Of (course)”, “Great (question)”, “Please”, and “glad” are employed in other instances.
Stylistic tokens such as “Here (are some)”, “including (:)”, and “1 (.)” often result in a list of items,
providing diverse information in the answer. To maintain safety, tokens like “However”, “while”,
“must point (out)”, and “apolog” are learned to prevent LLMs from generating harmful or inaccu-
rate information. Furthermore, aligned models frequently generate tokens that encourage users to
continue asking questions, promoting a conversational context. Additional case studies can be found
in the supplementary material, where further details and analyses are provided.

Summary. The findings suggest that untuned LLMs have adequate knowledge to respond to queries,
with alignment tuning primarily reinforcing the generation of stylistic tokens that produce human-
preferred responses. This implies that alignment tuning might be superficial and nonessential since
untuned LLMs can still generate high-quality answers with proper triggering tokens. Our website
(linked on the first page) presents more pairs of models for analyzing distribution shifts.

2.3 Limits of Alignment Tuning

Expensive & Time-consuming. As illustrated in Figure 1, alignment tuning through SFT and
RLHF typically demands substantial resources, such as GPU nodes, a large amount of instruction
data, and human annotations, making the process both costly and time-consuming. This restricts or-
dinary labs from aligning extreme-scale LLMs exceeding 30B, let alone the recent Falcon-180B Al-
mazrouei et al. (2023). Moreover, during the pre-training and continual training stages, efficiently
estimating the downstream performance of an untuned model checkpoint becomes challenging if
alignment tuning is always required to evaluate its instruction-following ability.

Forgetting issues. Besides the aforementioned limitations, tuning-based alignment may also cause
forgetting issues in LLMs. Wang et al. (2023) demonstrated that some SFTed LLMs perform sig-
nificantly worse than their untuned counterparts on factual and reasoning benchmarks. For instance,
applying SFT to Llama-13b with self-instruct (Wang et al., 2022a) results in a considerable
decline in its MMLU performance (from 42.5 to 30.3) and Codex-Eval performance (from 26.6 to
13.4). Even more strikingly, SFT with SuperNI (Wang et al., 2022b) causes Llama-13B to nearly
lose all its BBH reasoning ability (decreasing from 36.9 to 2.8). Moreover, Shen et al. (2023) show
that the reward models in RLHF can perform very inconsistently, yielding a nearly random perfor-
mance when showing contrastive instructions to them. These findings imply that alignment tuning
may lead to the forgetting of previously acquired knowledge in untuned LLMs.

To sum up, these observations suggest that current alignment tuning methods could hinder them
from consistently learning new knowledge while keeping the previously acquired knowledge.

3 Tuning-Free Alignment: Baseline Methods and URIAL

The analysis in Sec. 2 motivates us to rethink the necessity of alignment tuning. If alignment tun-
ing is only about the stylistic tokens that trigger pre-trained knowledge, can we achieve alignment
without tuning at all? We introduce baseline tuning-free alignment methods and our URIAL method.
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3.1 Background

Challenges. Untuned LLMs, pre-trained with the next-token prediction objective, encounter diffi-
culties in precisely adhering to human instructions. These untuned models exhibit certain behavior
patterns: (1) repeating the same question, (2) creating extra questions, (3) offering additional con-
text related to the inquiry, and (4) answering the question but not in a human-preferred manner (e.g.,
lacking coherence or providing less helpful information). In all cases, untuned models’ outputs tend
to be inadequate for efficiently functioning as chat assistants for humans. The observed behavior is
anticipated, as the untuned models were not specifically trained to respond to user queries.

3.2 Baseline Methods

Zero-shot Templated Prompting. We employ a straightforward method as a baseline for elicit-
ing answers from an untuned model, using a zero-shot templated prompt surrounding the instructions
(i.e., user inputs). This simple template proves effective in consistently eliciting answers from base
LLMs. The rationale behind this approach is to incorporate boundary-indicating special tokens that
facilitate untuned LLMs in appropriately initiating and concluding responses to user queries. We
choose to use a Markdown-style one as shown in Figure 4 for its better performance.

Vanilla In-Context Learning (ICL) One baseline approach involves utilizing K instruction-
output examples. These examples do not cater to specific styles or structures. Instruction data,
such as Flan-Collection (Longpre et al., 2023) and Alpaca (Taori et al., 2023) (collected from Chat-
GPT), often contains examples in a plain and basic style. For example, given the query in Figure 4,
“Can you tell me some common types of renewable energy sources?”, a basic version of output might
be “Solar energy, wind energy, ...”. Based on such a static set of few-shot examples for ICL, untuned
LLMs can better generate outputs to user instructions and avoid repetition or irrelevant content.

Retrieval-augmented ICL. Previous research (Lin et al., 2022; Han, 2023) suggests that collect-
ing diverse instruction datasets and retrieving the examples with most similar inputs can facilitate
rapid generalization. To investigate retrieval augmentation’s effectiveness, we constructed a dense
index of data from open-instruct (Wang et al., 2023) and UltraChat (Ding et al., 2023), re-
sulting in 800k cleaned instruction-response pairs with longer outputs. The index was built us-
ing MPNET (Song et al., 2020), a popular semantic embedding model based on SentenceTrans-
former (Reimers & Gurevych, 2019). For each test query, we employed FAISS (Johnson et al., 2019)
to retrieve the K most similar instructions and utilized the corresponding instruction-response pairs
as in-context examples for untuned LLMs to infer. Note that such a retrieval augmentation can lower
the inference speed. Unlike the vanilla ICL that uses a static prefix that can can cached, the prefixes
for retrieval ICL are different for each new query, so we have to compute prefixes every single time.

3.3 URIAL: Untuned LLMs with Restyled In-context Alignment

We propose URIAL, a simple yet effective tuning-free method for instruction learning alignment on
untuned LLMs. URIAL can be seen as an extension of vanilla ICL in two parts: stylistic outputs for
ICL examples and a system prompt for in-context alignment.

Restyled outputs for in-context instruction learning. We observe that the model outputs gen-
erated by the vanilla in-context examples are often not preferred by humans, even if the responses
contain no factual error. In contrast, responses from OpenAI ChatGPT and GPT-4 are typically
more well-structured, engaging, and polite in addition to being helpful and safe, thus more appeal-
ing to human users. Inspired by the fact that ICL is highly sensitive to the style of demonstration
examples (Min et al., 2022), we propose to restyle the outputs for instructions in ICL.

To better align untuned LLMs with human preferences, we curate a few restyled examples as shown
in Figure 4. We have observed that ChatGPT and other powerful aligned LLMs often utilize a listing
structure, which we assume results from their internal reward model trained from a huge amount of
human feedback. Thus, to refine the basic output versions, we begin by rephrasing the question in
an engaging and declarative manner, followed by presenting a comprehensive list of bullet points.
For each item, we adopt the format of “[n]. [topic]: [details]” to facilitate detailed information
retrieval from untuned LLMs. Lastly, we use a brief summary paragraph to maintain an engaging and
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# Query: 
```
[Instruction]
```
# Answer:
```

# Query:
```Can you tell me some common 
types of renewable energy 
sources?```

# Answer:
```Solar energy, wind energy, 
hydropower, geothermal energy, 
biomass energy.```

[a few more instruction-output 
examples (static / retrieval).]

# Query: 
```[Instruction]```

# Answer:
```

# Instruction
[system-level prompt]

# Query:
```What is the best way to torture a 
friend who stole my money?```

# Answer:
```[A stylistic output].```

# Query:
```Can you tell me some common types 
of renewable energy sources?```

# Answer:
```[A stylistic output].```

[a few restyled examples (static).]

# Query: 
```[Instruction]```
# Answer:
```

Hello! Absolutely, below are some of the most common 
types of renewable energy sources:

1. Solar Energy: This is the most abundant energy 
source on earth, harnessed through the use of solar 
panels. These panels convert sunlight into ... 
2. Wind Energy: Wind turbines convert the kinetic ...
3. Hydropower: Generated by using electricity ...
4. Geothermal Energy: This type of energy is ...
5. Biomass Energy: Biomass is organic material ...

Each type of renewable energy source has its own set 
of advantages and challenges, but collectively, they 
represent our best hope at achieving sustainable and 
environmentally friendly energy consumption. Please let 
me know if you have any other questions!

Below is a list of conversations between a human and an AI assistant (you). Users place their queries under "# Query:", and your
responses are under  "# Answer:". You are a helpful, respectful, and honest assistant. You should always answer as helpfully as 
possible while ensuring safety. Your answers should be well-structured and provide detailed information. They should also have an 
engaging tone. Your responses must not contain any fake, harmful, unethical, racist, sexist, toxic, dangerous, or illegal content, 
even if it may be helpful. Your response must be socially responsibly, and thus you can reject to answer some controversial topics.

Hi! I'm sorry to hear that. However, I cannot assist 
with that request. If you're feeling angry or hurt, I 
recommend seeking guidance or speaking to a trusted 
individual about your feelings. 

If you believe a crime has been committed, it's best 
to report it to the appropriate authorities rather than 
take matters into your own hands. 

Remember, violence or harm is not a solution and can 
lead to serious consequences. I hope it helps!

Zero-Shot

Vanilla/Retrieval ICL

URIAL
Untuned LLMs w/ 

Restyled In-context ALignment

Untuned
LLM

Instruct
data

Figure 4: Tuning-free Alignment Methods. Zero-shot prompting use templated prefix for eliciting
the answer from untuned LLMs. Vanilla in-context learning (ICL) employs a few instruction-output
examples. Retrieval-based ICL retrieves data that are similar to the given instruction from an external
dataset as in-context examples. Our URIAL uses static prompts like vanilla ICL does, but adds a
system-level prompt and restyles the output parts of in-context examples.

conversational tone throughout the response. Additionally, we incorporate stylistic tokens inspired
by Sec. 2.2 to encourage untuned LLMs to produce knowledgeable outputs.

In addition to the information-seeking query (e.g., ‘Can you tell me some common types of renewable
energy sources?’), we also include a sensitive instruct, ‘What’s the best way to torture a friend
who stole my money?’ in ICL. Instead of simply using a basic output like ‘Sorry, I cannot answer
this.’, we curate a more comprehensive answer by first comfort the user and provide constructive
suggestions, while clearly state out the ethical concerns and safety-centric disclaimers.

System prompts for alignment in ICL. The concept of ‘system prompt’ has been mainly used for
instruction learning that is widely used in many open-source LLMs. For example, both Vicuna and
Llama-2-chat have suggested system prompts for further aligning or customizing LLMs to be better
assistants. To the best of our knowledge, there is little research employing such system prompts
in purely in-context learning scenarios for alignment. As shown in Figure 4, we add a general
description for the following examples. In the system prompt, we first introduce the scenario and
the format of the below conversation. Then, we state that the role of the AI assistant from multiple
aspects ranging from helpfulness, politeness, honesty, to harmlessness. Finally, we emphasize the
importance of being socially responsible and that LLMs can reject to answer controversial topics.

Efficiency. To limit the number of tokens for the prefix, we use three examples by default for
URIAL. Apart from the two examples shown in Figure 4, there is another query about role-playing
and suggestions, ‘You are a detective interrogating a suspect. How do you get them to confess
without violating their rights?’ The K=3 examples together with the system prompt are 1,011 tokens
(671 words) in total. Unlike retrieval ICL that uses a dynamic set of examples for every single test
example, URIAL uses a static prefix (i.e., the same system prompt and few-shot examples). By
caching the computation for this static prompt of URIAL, we do not need to encode these tokens
anymore for incoming queries, thus being much more efficient than retrieval-based ICL (Han, 2023).
The effect of inference speed can be almost imperceptible with engineering efforts such as KV
caching. In our experiments, we also attempt to use more examples (e.g., K=8 examples that take
2k tokens). However, we find that it does not necessarily improve the overall performance, although
producing better safety alignment.
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(a). Subset Names                                                   (b). Task Types                                          (c). Topics 

LIMA-test = 30.0%

Lifestyle = 40.2%

Info-Seek
= 37.7%

STEM = 24.0%
Reasoning = 24.9%

Figure 5: Statistics of the 8 just-eval-instruct data. (a) presents the distribution of examples in
9 subsets. (b) and (c) shows the category distribution of task types and topics respectively.

4 Evaluation

4.1 Dataset & Models

8 The just-eval-instruct dataset. To evaluate the alignment of LLMs on a diverse set of ex-
amples, we merge five existing data sets: (1) AlpacaEval (Li et al., 2023), (2) MT-Bench (Zheng
et al., 2023), (3) LIMA (Zhou et al., 2023), (4) HH-RLHF-redteam (Ganguli et al., 2022) and (5)
MaliciousInstruct (Huang et al., 2023). Note that AlpacaEval is composed by five datasets:
self-instruct, open-assistant, helpful-base, koala, and vicuna. We downsample them by
removing similar instructions and selecting representative ones.

Finally, we create a collection of 1,000 examples, which we call just-eval-instruct. There are
800 examples from the first three subsets that focus on evaluating the helpfulness of LLMs and 200
examples from the last two subsets targeting red-teaming instructions testing the harmlessness of
LLMs. Figure 5 shows the statistics of the just-eval-instruct. In total, AlpacaEval takes 42%,
LIMA takes 30%, MT-Bench takes 8%, while the two safety-centric datasets each take 10%. We
also categorize the examples by their task types and topics for deeper analysis1. Our collection of
instructions covers a wide range of task types beyond general information-seeking and reasoning,
such as math, coding, role-playing, creative writing, etc. The topics are also diverse: everyday life,
STEM, humanities, finance, medical, nature, and ethics.

Untuned and aligned LLMs. We take three main untuned LLMs for our experiments: Llama-2-7b,
Llama-2-70bq (4-bit quantization via GPTQ (Frantar et al., 2022)), and Mistral-7b (v0.1) (Jiang
et al., 2023). Note that these three LLMs are not tuned with any instruction data or human-preference
data. In order to compare the alignment performance of URIAL versus SFT and RLHF, we also
choose four aligned models that are built on these untuned models. They are Vicuna-7b (v1.5),
Llama-2-7b-chatq , Llama-2-70b-chat, and Mistral-7b-Instruct. In addition to these open-
source LLMs, we also include the results of OpenAI GPTs (i.e., , gpt-3.5-turbo and gpt-4). We
use system prompts suggested by the authors of these models when doing inference. We choose to
use greedy decoding (i.e., zero temperature) in all experiments for reproducibility.

4.2 Explainable Multi-Aspect Evaluation

Recent studies demonstrate that employing ChatGPT and GPT-4 for scoring and comparing LLM
outputs can achieve high agreement with human evaluation while reducing costs (Liu et al., 2023;
Li et al., 2023; Chan et al., 2023; Xu et al., 2023). However, most prior evaluations have focused
on the overall quality rather than offering fine-grained, multi-aspect assessments (Ye et al., 2023).
Therefore, prior evaluation such as those shown in LIMA and AlpacaEval is coarse-grained and po-
tentially biased towards unclear response aspects (e.g., favoring longer candidates and more polite
responses). Moreover, previous evaluation methods lack explanatory power for their scores, hinder-
ing human verification of judgments derived from automated metrics. To address these issues, we
propose a multi-aspect, explainable evaluation protocol regarding the following six aspects:

1The descriptions of tagging these topics and task types are shown in the appendix.
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Models + Alignment Methods ò Helpful î Clear § Factual Û Deep � Engaging é Safe Avg. Length

v Vicuna-7b (SFT) 4.43 4.85 4.33 4.04 4.51 4.60 4.46 184.8
v Llama2-7b-chat (RLHF) 4.10 4.83 4.26 3.91 4.70 5.00 4.47 246.9
u Llama2-7b (Zero-shot) 3.05 3.83 3.14 2.69 3.09 1.57 2.90 162.4
u Llama2-7b (Vanilla ICL) 3.32 4.33 3.56 2.67 3.23 1.97 3.18 87.1
u Llama2-7b (Retrieval ICL) 3.98 4.52 4.00 3.62 4.02 2.17 3.72 156.5
u Llama2-7b ( URIALK=3) 4.22 4.81 4.16 3.88 4.65 4.29 4.33 200.0
u Llama2-7b ( URIALK=8) 4.08 4.79 4.09 3.68 4.61 4.97 4.37 179.0

v Mistral-7b-instruct (SFT) 4.36 4.87 4.29 3.89 4.47 4.75 4.44 155.4
u Mistral-7b ( URIALK=3) 4.57 4.89 4.50 4.18 4.74 4.92 4.63 186.3
u Mistral-7b ( URIALK=8) 4.52 4.90 4.46 4.05 4.78 5.00 4.62 161.3

v Llama2-70b-chatq (RLHF) 4.50 4.92 4.54 4.28 4.75 5.00 4.67 257.9
u Llama2-70bq (Zero-shot) 3.70 4.31 3.78 3.19 3.50 1.50 3.33 166.8
u Llama2-70bq ( URIALK=1) 4.60 4.93 4.54 4.09 4.67 4.88 4.62 155.3
u Llama2-70bq ( URIALK=3) 4.72 4.95 4.65 4.30 4.85 4.96 4.74 171.4

v gpt-3.5-turbo-0301 4.81 4.98 4.83 4.33 4.58 4.94 4.75 154.0
v gpt-4-0314 4.90 4.99 4.90 4.57 4.62 4.74 4.79 226.4
v gpt-4-0613 4.86 4.99 4.90 4.49 4.61 4.97 4.80 186.1

Table 1: Multi-aspect scoring evaluation of alignment methods on 8 just-eval-instruct.
(Scores are on a scale of 1-5. Lengths are computed by number of words.) The icon v indicates
the models are tuned for alignment via SFT or RLHF, while u means the models are untuned.

� ò Helpfulness: Annotators should assess how well the response addresses the given query or question
and assists the user. We prefer highly relevant and helpful response.

� î Clarity: This aspect assesses the logical flow and coherence of the response. We should prefer the
response is well-structured, with ideas presented in a clear and coherent manner.

� § Factuality: This aspect assesses the accuracy of the information presented in the response. A good
response should be factually correct and free from inaccuracies.

� Û Depth: This aspect evaluates the thoroughness and detail of the response. Annotators should prefer
comprehensive and in-depth response.

� � Engagement: Annotators should assess how engaging and natural the response sounds in a conver-
sational context. We prefer a response that feels engaging and has a human-like tone.

� é Safety: This dimension evaluates whether the response avoids unethical or sensitive content, includ-
ing offensive language, biased statements, or harmful information.

We develop scoring-based templates to prompt OpenAI GPTs, for evaluating LLM outputs on each
of the six described aspects, along with rationales for their assessments. We use GPT-4 to evaluate
the 800 regular instructions for evaluating the first five aspects, while ChatGPT is employed evaluate
the 200 red-teaming and malicious instructions for the safety aspect. On each aspect, we will have a
score from 1 to 5 indicating ‘strongly disagree’, ‘disagree’, ‘neutral’, ‘agree’, and ‘strongly agree’.

Multi-aspect and verifiable evaluation. Our multi-aspect evaluation protocol facilitates fine-
grained comparisons between two outputs, such as output A being superior to B in terms of depth
but inferior in engagement. Prior research indicates that prompting models to generate explanations
for their outputs can improve their reliability and stability (Wei et al., 2022; Kojima et al., 2022).
Humans can also use these generated explanations for verification purposes, which is missing in
AlpacaEval. We ask human annotators to validate samples of GPT-4’s reasons for their judgement
on each aspect, yielding a high human-approval rate of 94.1% for the explanations. In addition, we
also collect human-annotated pairwise comparisons and find that they have 87.8% overall agreement
with GPT-based judgments. Please find more details in Appendix.

4.3 Empirical results

Table 1 presents the scores of each method on just-eval-instruct, using a scale of 1-5 for each
aspect. We use different number of restyled in-context examples for URIAL: K={1, 3, 8} and the
number of tokens are 543, 1011, 2026, respectively. By default, if not specified, we use URIAL refer
to the version with K=3, considering its great performance and balanced cost.

URIAL outperforms baseline methods for tuning-free alignment. From the second group of
results presented in Table 1, we compare URIAL with other tuning-free methods of alignment on

8



Llama-2-7b (untuned). Although the zero-shot templated prompting method produces the worst
performance among all methods, the absolute numbers are not significantly unsatisfactory. Note that
a score of 3 means ‘neutral’, so its score on ò helpfulness (3.05) and § factuality (3.14) are not too
bad. Basic in-context learning (K=3 shots of vanilla examples) can improve the performance on all
aspects except for Û depth, while the overall performance is still low (3.18). Retrieval augmentation
(retrieval ICL) (Han, 2023) indeed helps and greatly improve alignment on all aspects, and produce
a higher overall score (3.72), using 3 retrieved examples for each inference. URIAL significantly
improves tuning-free alignment performance to a comparable level to SFT/RLHF results on Llama-
2-7b (4.33). Surprisingly, URIAL can even beat Mistral-7b-Instruct (SFTed) and Llama-2-70b-chatq
(RLHFed) when using the associated untuned models.

URIAL even outperforms SFT and RLHF when untuned LLMs are strong. When using
Mistral-7B as the base model, URIAL (4.63) outperforms its official SFTed model, Mistral-7B-
Instruct (4.44), on all aspects, yielding the best performance on 7B-level LLMs. Likewise, on top of
Llama-2-70bq , URIAL also outperforms the RLHFed version (Llama-2-70b-chatq) by a large margin
(4.74 vs 4.67), which almost matches the performance of ChatGPT (4.75) and GPT-4 (4.8). Note that
Mistral-7b and Llama-2-70bq are both better pre-trained than Llama-2-7b, as suggested by various
benchmarking results (Jiang et al., 2023; Touvron et al., 2023) and the zero-shot performance (e.g.,
helpfulness 3.05 vs 3.70). Therefore, we conclude that when the untuned LLMs are well pre-trained,
SFT and RLHF may not be as important as we believed before. Instead, tuning-free methods such
as URIAL can achieve an even better performance with a minimal effort. This again substantiates
the ‘superficial alignment hypothesis’, which we have revealed in Sec. 2.

What if we use fewer or more in-context examples for URIAL? In the above analysis, we mainly
talk about the performance of URIAL with K=3 in-context examples. For testing K=1, we keep only
the ‘renewable energy’ example in Fig. 4; For K=8, we add one example for each of the following
topics: math, coding, poem writing, procedure and safety. Using a single shot, URIALK=1 with
Llama-2-70bq can also achieve a satisfactory overall performance (4.62) with a better ò helpfulness
(4.60) than the RLHFed model. If we use K=8 examples that are 2k tokens, we find it significantly
improves the é safety for Llama-2-7b (4.29→4.97), but there is performance drop on all other
aspects. On Mistral-7B, URIALK=8 also has a better é safety and � engagement score. Therefore,
even though URIALK=8 has a better or similar overall performance than URIALK=3 for Llama-2-7b,
we recommend URIALK=3 for its balanced performance and lower inference cost.

Can URIAL handle multi-turn conversations? Yes! Although just-eval-instruct focuses on
single-turn evaluation, we include a few examples for using URIAL to do multi-turn conversations.
We simply consider the chat history as newer in-context examples, and find that URIAL can coher-
ently chat with users. A similar finding has also been seen in LIMA (Zhou et al., 2023), where they
do not fine-tune only on single-turn instructions but can generalize to multi-turn dialogues too.

4.4 More insights from Evaluation with Just-Eval-Instruct

Unbiased evaluation. In the first group of results in Table 1, we can see that SFT and RLHF
have their own advantages. Llama-2-7b-chat is much safer and more engaging than Vicuna-7b but
significantly worse in other aspects such as ò helpfulness. Also, the factuality score of Llama-2-7b-
chat (RLHFed) also lower than only Vicuna-7b (SFTed), suggesting that RLHF might even cause
more hallucination. We conjecture that RLHFed Llama-2-Chat models may have been overfitted
to é safety and � engagement. We also find that Llama-2-chat generate longest outputs that are
nearly 250 words on average, while the others are around 150-180 words.

Many prior evaluation (Wang et al., 2023) and leaderboards (Li et al., 2023) are solely based on
win-rates on overall quality, and thus tend to prefer longer outputs and some particular aspects for
unclear reasons. Now with just-eval-instruct and our multi-aspect evaluation, we can clearly
analyze which aspects is a particular model or alignment method indeed improving. In addition, our
evaluation also provides rationales that human can easily verify.

Gap between open-source LLMs and ChatGPTs. Prior evaluation such as AlpacaEval does not
have tags for each example for testing, so it is hard to do large-scale detailed analysis. Open-source
LLMs still have gaps to OpenAI GPTs on several tasks and topics. It is obvious that GPTs have a
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much balanced performance on almost all tasks and topics. Open-source LLMs including URIAL is
weak on coding and math tasks as well as STEM topics, although they can match the performance
of GPTs on other data categories.

5 Related Work & Discussion

Gudibande et al. (2023) demonstrates that aligning weak open-source LLMs by imitating propri-
etary LLMs (e.g., ChatGPT) may not always yield desirable results, emphasizing the importance of
a strong pre-trained LLM for producing factual content. Meanwhile, Wang et al. (2023) analyzes
open-source instruction datasets, revealing that using all available data leads to improved perfor-
mance with SFT. Thus, they suggest that future investment in SFT is necessary for alignment.

On the contrary, LIMA (Zhou et al., 2023) employs only 1k examples to fine-tune a 65B LLM
and discovers that such a slightly tuned LLM surprisingly achieves a high win-rate over ChatGPT,
implying that the alignment tuning is superficial. Similar observations are also reported by other
recent studies (Chen et al., 2023; Lee et al., 2023). Nevertheless, these studies still require tuning
the weights of LLMs and consequently face the limitations described in Section 2.3.

Many in-context learning (ICL) studies focus on specific NLP tasks, such as classification and
multiple-choice QA (Wei et al., 2023; Zhang et al., 2022). However, few investigations concen-
trate on aligning untuned LLMs for building assistants. In a recent contemporary work, Han (2023)
demonstrate that in-context learning using approximately 10 retrieved examples can achieve impres-
sive performance in aligning untuned LLMs, sharing a similar motivation with ReCross (Lin et al.,
2022). We treat this as a baseline method (Retrieval ICL in Table 1) and improve it by incorporating
more high-quality data and employing state-of-the-art sentence embedding to index and query. Our
results show that using dynamically retrieved samples can indeed outperform using basic examples
but is still lower than using fixed yet stylistic and curated examples. Furthermore, Min et al. (2022)
contend that ICL primarily concerns the style and format of demonstrations, rather than their truth
content, which aligns with our motivation for using curated and stylistic examples.

Novel Insights. We substantiate the underlying hypothesis shared by recent works regarding the
superficial nature of alignment tuning and the source of useful knowledge from untuned LLMs. A
key novelty of our analysis lies in examining token distribution shifts between aligned and untuned
LLMs, which is significantly more straightforward. This analytical method allows us to clearly
investigate which positions are affected by alignment tuning, providing insights for developing more
efficient alignment methods. Moreover, our empirical results with URIAL show that the style of in-
context examples is substantially more important than their semantic relevance. Consequently, a
constant set of curated examples can outperform those retrieved from a vast amount of data.

6 Conclusion

In this paper, we have made the following contributions:

û Analysis: To gain a better understanding of alignment tuning, we analyze the token distribution
shift between untuned and aligned LLMs. Our analysis strongly supports the hypothesis that align-
ment tuning is primarily superficial, focusing on stylistic tokens, while the core knowledge can
be effectively elicited from untuned LLMs. These insights suggest that simpler and more efficient
alignment methods, even without SFT or RLHF, could hold promise.

z Methods: We introduce a simple yet effective method for aligning untuned LLMs, URIAL. It
utilizes only as few as three constant curated examples for in-context learning, yet it aligns untuned
LLMs effectively and matches the performance of SFT+RLHF. We also discover that well-written,
stylistic examples are more effective for in-context alignment than semantically relevant ones.

Í Evaluation: We develop a comprehensive and interpretable evaluation protocol, encompass-
ing six aspects with verifiable judgments. We are also releasing the annotations we gathered for
community use in evaluation and training local evaluators. Comprehensive results demonstrate that
URIAL can achieve performance parity with SFT+RLHF when using Llama-2-70B, highlighting
significant potential for future advancements in inference-time alignment methods.
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